1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 #include <scsi/sg.h> /* for struct sg_iovec */ 32 33 #include <trace/events/block.h> 34 35 /* 36 * Test patch to inline a certain number of bi_io_vec's inside the bio 37 * itself, to shrink a bio data allocation from two mempool calls to one 38 */ 39 #define BIO_INLINE_VECS 4 40 41 /* 42 * if you change this list, also change bvec_alloc or things will 43 * break badly! cannot be bigger than what you can fit into an 44 * unsigned short 45 */ 46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { 48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 49 }; 50 #undef BV 51 52 /* 53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 54 * IO code that does not need private memory pools. 55 */ 56 struct bio_set *fs_bio_set; 57 EXPORT_SYMBOL(fs_bio_set); 58 59 /* 60 * Our slab pool management 61 */ 62 struct bio_slab { 63 struct kmem_cache *slab; 64 unsigned int slab_ref; 65 unsigned int slab_size; 66 char name[8]; 67 }; 68 static DEFINE_MUTEX(bio_slab_lock); 69 static struct bio_slab *bio_slabs; 70 static unsigned int bio_slab_nr, bio_slab_max; 71 72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 73 { 74 unsigned int sz = sizeof(struct bio) + extra_size; 75 struct kmem_cache *slab = NULL; 76 struct bio_slab *bslab, *new_bio_slabs; 77 unsigned int new_bio_slab_max; 78 unsigned int i, entry = -1; 79 80 mutex_lock(&bio_slab_lock); 81 82 i = 0; 83 while (i < bio_slab_nr) { 84 bslab = &bio_slabs[i]; 85 86 if (!bslab->slab && entry == -1) 87 entry = i; 88 else if (bslab->slab_size == sz) { 89 slab = bslab->slab; 90 bslab->slab_ref++; 91 break; 92 } 93 i++; 94 } 95 96 if (slab) 97 goto out_unlock; 98 99 if (bio_slab_nr == bio_slab_max && entry == -1) { 100 new_bio_slab_max = bio_slab_max << 1; 101 new_bio_slabs = krealloc(bio_slabs, 102 new_bio_slab_max * sizeof(struct bio_slab), 103 GFP_KERNEL); 104 if (!new_bio_slabs) 105 goto out_unlock; 106 bio_slab_max = new_bio_slab_max; 107 bio_slabs = new_bio_slabs; 108 } 109 if (entry == -1) 110 entry = bio_slab_nr++; 111 112 bslab = &bio_slabs[entry]; 113 114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 115 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL); 116 if (!slab) 117 goto out_unlock; 118 119 bslab->slab = slab; 120 bslab->slab_ref = 1; 121 bslab->slab_size = sz; 122 out_unlock: 123 mutex_unlock(&bio_slab_lock); 124 return slab; 125 } 126 127 static void bio_put_slab(struct bio_set *bs) 128 { 129 struct bio_slab *bslab = NULL; 130 unsigned int i; 131 132 mutex_lock(&bio_slab_lock); 133 134 for (i = 0; i < bio_slab_nr; i++) { 135 if (bs->bio_slab == bio_slabs[i].slab) { 136 bslab = &bio_slabs[i]; 137 break; 138 } 139 } 140 141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 142 goto out; 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 kmem_cache_destroy(bslab->slab); 150 bslab->slab = NULL; 151 152 out: 153 mutex_unlock(&bio_slab_lock); 154 } 155 156 unsigned int bvec_nr_vecs(unsigned short idx) 157 { 158 return bvec_slabs[idx].nr_vecs; 159 } 160 161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 162 { 163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); 164 165 if (idx == BIOVEC_MAX_IDX) 166 mempool_free(bv, pool); 167 else { 168 struct biovec_slab *bvs = bvec_slabs + idx; 169 170 kmem_cache_free(bvs->slab, bv); 171 } 172 } 173 174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 175 mempool_t *pool) 176 { 177 struct bio_vec *bvl; 178 179 /* 180 * see comment near bvec_array define! 181 */ 182 switch (nr) { 183 case 1: 184 *idx = 0; 185 break; 186 case 2 ... 4: 187 *idx = 1; 188 break; 189 case 5 ... 16: 190 *idx = 2; 191 break; 192 case 17 ... 64: 193 *idx = 3; 194 break; 195 case 65 ... 128: 196 *idx = 4; 197 break; 198 case 129 ... BIO_MAX_PAGES: 199 *idx = 5; 200 break; 201 default: 202 return NULL; 203 } 204 205 /* 206 * idx now points to the pool we want to allocate from. only the 207 * 1-vec entry pool is mempool backed. 208 */ 209 if (*idx == BIOVEC_MAX_IDX) { 210 fallback: 211 bvl = mempool_alloc(pool, gfp_mask); 212 } else { 213 struct biovec_slab *bvs = bvec_slabs + *idx; 214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); 215 216 /* 217 * Make this allocation restricted and don't dump info on 218 * allocation failures, since we'll fallback to the mempool 219 * in case of failure. 220 */ 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 222 223 /* 224 * Try a slab allocation. If this fails and __GFP_WAIT 225 * is set, retry with the 1-entry mempool 226 */ 227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { 229 *idx = BIOVEC_MAX_IDX; 230 goto fallback; 231 } 232 } 233 234 return bvl; 235 } 236 237 static void __bio_free(struct bio *bio) 238 { 239 bio_disassociate_task(bio); 240 241 if (bio_integrity(bio)) 242 bio_integrity_free(bio); 243 } 244 245 static void bio_free(struct bio *bio) 246 { 247 struct bio_set *bs = bio->bi_pool; 248 void *p; 249 250 __bio_free(bio); 251 252 if (bs) { 253 if (bio_flagged(bio, BIO_OWNS_VEC)) 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); 255 256 /* 257 * If we have front padding, adjust the bio pointer before freeing 258 */ 259 p = bio; 260 p -= bs->front_pad; 261 262 mempool_free(p, bs->bio_pool); 263 } else { 264 /* Bio was allocated by bio_kmalloc() */ 265 kfree(bio); 266 } 267 } 268 269 void bio_init(struct bio *bio) 270 { 271 memset(bio, 0, sizeof(*bio)); 272 bio->bi_flags = 1 << BIO_UPTODATE; 273 atomic_set(&bio->bi_remaining, 1); 274 atomic_set(&bio->bi_cnt, 1); 275 } 276 EXPORT_SYMBOL(bio_init); 277 278 /** 279 * bio_reset - reinitialize a bio 280 * @bio: bio to reset 281 * 282 * Description: 283 * After calling bio_reset(), @bio will be in the same state as a freshly 284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 285 * preserved are the ones that are initialized by bio_alloc_bioset(). See 286 * comment in struct bio. 287 */ 288 void bio_reset(struct bio *bio) 289 { 290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 291 292 __bio_free(bio); 293 294 memset(bio, 0, BIO_RESET_BYTES); 295 bio->bi_flags = flags|(1 << BIO_UPTODATE); 296 atomic_set(&bio->bi_remaining, 1); 297 } 298 EXPORT_SYMBOL(bio_reset); 299 300 static void bio_chain_endio(struct bio *bio, int error) 301 { 302 bio_endio(bio->bi_private, error); 303 bio_put(bio); 304 } 305 306 /** 307 * bio_chain - chain bio completions 308 * 309 * The caller won't have a bi_end_io called when @bio completes - instead, 310 * @parent's bi_end_io won't be called until both @parent and @bio have 311 * completed; the chained bio will also be freed when it completes. 312 * 313 * The caller must not set bi_private or bi_end_io in @bio. 314 */ 315 void bio_chain(struct bio *bio, struct bio *parent) 316 { 317 BUG_ON(bio->bi_private || bio->bi_end_io); 318 319 bio->bi_private = parent; 320 bio->bi_end_io = bio_chain_endio; 321 atomic_inc(&parent->bi_remaining); 322 } 323 EXPORT_SYMBOL(bio_chain); 324 325 static void bio_alloc_rescue(struct work_struct *work) 326 { 327 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 328 struct bio *bio; 329 330 while (1) { 331 spin_lock(&bs->rescue_lock); 332 bio = bio_list_pop(&bs->rescue_list); 333 spin_unlock(&bs->rescue_lock); 334 335 if (!bio) 336 break; 337 338 generic_make_request(bio); 339 } 340 } 341 342 static void punt_bios_to_rescuer(struct bio_set *bs) 343 { 344 struct bio_list punt, nopunt; 345 struct bio *bio; 346 347 /* 348 * In order to guarantee forward progress we must punt only bios that 349 * were allocated from this bio_set; otherwise, if there was a bio on 350 * there for a stacking driver higher up in the stack, processing it 351 * could require allocating bios from this bio_set, and doing that from 352 * our own rescuer would be bad. 353 * 354 * Since bio lists are singly linked, pop them all instead of trying to 355 * remove from the middle of the list: 356 */ 357 358 bio_list_init(&punt); 359 bio_list_init(&nopunt); 360 361 while ((bio = bio_list_pop(current->bio_list))) 362 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 363 364 *current->bio_list = nopunt; 365 366 spin_lock(&bs->rescue_lock); 367 bio_list_merge(&bs->rescue_list, &punt); 368 spin_unlock(&bs->rescue_lock); 369 370 queue_work(bs->rescue_workqueue, &bs->rescue_work); 371 } 372 373 /** 374 * bio_alloc_bioset - allocate a bio for I/O 375 * @gfp_mask: the GFP_ mask given to the slab allocator 376 * @nr_iovecs: number of iovecs to pre-allocate 377 * @bs: the bio_set to allocate from. 378 * 379 * Description: 380 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 381 * backed by the @bs's mempool. 382 * 383 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be 384 * able to allocate a bio. This is due to the mempool guarantees. To make this 385 * work, callers must never allocate more than 1 bio at a time from this pool. 386 * Callers that need to allocate more than 1 bio must always submit the 387 * previously allocated bio for IO before attempting to allocate a new one. 388 * Failure to do so can cause deadlocks under memory pressure. 389 * 390 * Note that when running under generic_make_request() (i.e. any block 391 * driver), bios are not submitted until after you return - see the code in 392 * generic_make_request() that converts recursion into iteration, to prevent 393 * stack overflows. 394 * 395 * This would normally mean allocating multiple bios under 396 * generic_make_request() would be susceptible to deadlocks, but we have 397 * deadlock avoidance code that resubmits any blocked bios from a rescuer 398 * thread. 399 * 400 * However, we do not guarantee forward progress for allocations from other 401 * mempools. Doing multiple allocations from the same mempool under 402 * generic_make_request() should be avoided - instead, use bio_set's front_pad 403 * for per bio allocations. 404 * 405 * RETURNS: 406 * Pointer to new bio on success, NULL on failure. 407 */ 408 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 409 { 410 gfp_t saved_gfp = gfp_mask; 411 unsigned front_pad; 412 unsigned inline_vecs; 413 unsigned long idx = BIO_POOL_NONE; 414 struct bio_vec *bvl = NULL; 415 struct bio *bio; 416 void *p; 417 418 if (!bs) { 419 if (nr_iovecs > UIO_MAXIOV) 420 return NULL; 421 422 p = kmalloc(sizeof(struct bio) + 423 nr_iovecs * sizeof(struct bio_vec), 424 gfp_mask); 425 front_pad = 0; 426 inline_vecs = nr_iovecs; 427 } else { 428 /* 429 * generic_make_request() converts recursion to iteration; this 430 * means if we're running beneath it, any bios we allocate and 431 * submit will not be submitted (and thus freed) until after we 432 * return. 433 * 434 * This exposes us to a potential deadlock if we allocate 435 * multiple bios from the same bio_set() while running 436 * underneath generic_make_request(). If we were to allocate 437 * multiple bios (say a stacking block driver that was splitting 438 * bios), we would deadlock if we exhausted the mempool's 439 * reserve. 440 * 441 * We solve this, and guarantee forward progress, with a rescuer 442 * workqueue per bio_set. If we go to allocate and there are 443 * bios on current->bio_list, we first try the allocation 444 * without __GFP_WAIT; if that fails, we punt those bios we 445 * would be blocking to the rescuer workqueue before we retry 446 * with the original gfp_flags. 447 */ 448 449 if (current->bio_list && !bio_list_empty(current->bio_list)) 450 gfp_mask &= ~__GFP_WAIT; 451 452 p = mempool_alloc(bs->bio_pool, gfp_mask); 453 if (!p && gfp_mask != saved_gfp) { 454 punt_bios_to_rescuer(bs); 455 gfp_mask = saved_gfp; 456 p = mempool_alloc(bs->bio_pool, gfp_mask); 457 } 458 459 front_pad = bs->front_pad; 460 inline_vecs = BIO_INLINE_VECS; 461 } 462 463 if (unlikely(!p)) 464 return NULL; 465 466 bio = p + front_pad; 467 bio_init(bio); 468 469 if (nr_iovecs > inline_vecs) { 470 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 471 if (!bvl && gfp_mask != saved_gfp) { 472 punt_bios_to_rescuer(bs); 473 gfp_mask = saved_gfp; 474 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 475 } 476 477 if (unlikely(!bvl)) 478 goto err_free; 479 480 bio->bi_flags |= 1 << BIO_OWNS_VEC; 481 } else if (nr_iovecs) { 482 bvl = bio->bi_inline_vecs; 483 } 484 485 bio->bi_pool = bs; 486 bio->bi_flags |= idx << BIO_POOL_OFFSET; 487 bio->bi_max_vecs = nr_iovecs; 488 bio->bi_io_vec = bvl; 489 return bio; 490 491 err_free: 492 mempool_free(p, bs->bio_pool); 493 return NULL; 494 } 495 EXPORT_SYMBOL(bio_alloc_bioset); 496 497 void zero_fill_bio(struct bio *bio) 498 { 499 unsigned long flags; 500 struct bio_vec bv; 501 struct bvec_iter iter; 502 503 bio_for_each_segment(bv, bio, iter) { 504 char *data = bvec_kmap_irq(&bv, &flags); 505 memset(data, 0, bv.bv_len); 506 flush_dcache_page(bv.bv_page); 507 bvec_kunmap_irq(data, &flags); 508 } 509 } 510 EXPORT_SYMBOL(zero_fill_bio); 511 512 /** 513 * bio_put - release a reference to a bio 514 * @bio: bio to release reference to 515 * 516 * Description: 517 * Put a reference to a &struct bio, either one you have gotten with 518 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 519 **/ 520 void bio_put(struct bio *bio) 521 { 522 BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); 523 524 /* 525 * last put frees it 526 */ 527 if (atomic_dec_and_test(&bio->bi_cnt)) 528 bio_free(bio); 529 } 530 EXPORT_SYMBOL(bio_put); 531 532 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 533 { 534 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 535 blk_recount_segments(q, bio); 536 537 return bio->bi_phys_segments; 538 } 539 EXPORT_SYMBOL(bio_phys_segments); 540 541 /** 542 * __bio_clone_fast - clone a bio that shares the original bio's biovec 543 * @bio: destination bio 544 * @bio_src: bio to clone 545 * 546 * Clone a &bio. Caller will own the returned bio, but not 547 * the actual data it points to. Reference count of returned 548 * bio will be one. 549 * 550 * Caller must ensure that @bio_src is not freed before @bio. 551 */ 552 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 553 { 554 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); 555 556 /* 557 * most users will be overriding ->bi_bdev with a new target, 558 * so we don't set nor calculate new physical/hw segment counts here 559 */ 560 bio->bi_bdev = bio_src->bi_bdev; 561 bio->bi_flags |= 1 << BIO_CLONED; 562 bio->bi_rw = bio_src->bi_rw; 563 bio->bi_iter = bio_src->bi_iter; 564 bio->bi_io_vec = bio_src->bi_io_vec; 565 } 566 EXPORT_SYMBOL(__bio_clone_fast); 567 568 /** 569 * bio_clone_fast - clone a bio that shares the original bio's biovec 570 * @bio: bio to clone 571 * @gfp_mask: allocation priority 572 * @bs: bio_set to allocate from 573 * 574 * Like __bio_clone_fast, only also allocates the returned bio 575 */ 576 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 577 { 578 struct bio *b; 579 580 b = bio_alloc_bioset(gfp_mask, 0, bs); 581 if (!b) 582 return NULL; 583 584 __bio_clone_fast(b, bio); 585 586 if (bio_integrity(bio)) { 587 int ret; 588 589 ret = bio_integrity_clone(b, bio, gfp_mask); 590 591 if (ret < 0) { 592 bio_put(b); 593 return NULL; 594 } 595 } 596 597 return b; 598 } 599 EXPORT_SYMBOL(bio_clone_fast); 600 601 /** 602 * bio_clone_bioset - clone a bio 603 * @bio_src: bio to clone 604 * @gfp_mask: allocation priority 605 * @bs: bio_set to allocate from 606 * 607 * Clone bio. Caller will own the returned bio, but not the actual data it 608 * points to. Reference count of returned bio will be one. 609 */ 610 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 611 struct bio_set *bs) 612 { 613 struct bvec_iter iter; 614 struct bio_vec bv; 615 struct bio *bio; 616 617 /* 618 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 619 * bio_src->bi_io_vec to bio->bi_io_vec. 620 * 621 * We can't do that anymore, because: 622 * 623 * - The point of cloning the biovec is to produce a bio with a biovec 624 * the caller can modify: bi_idx and bi_bvec_done should be 0. 625 * 626 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 627 * we tried to clone the whole thing bio_alloc_bioset() would fail. 628 * But the clone should succeed as long as the number of biovecs we 629 * actually need to allocate is fewer than BIO_MAX_PAGES. 630 * 631 * - Lastly, bi_vcnt should not be looked at or relied upon by code 632 * that does not own the bio - reason being drivers don't use it for 633 * iterating over the biovec anymore, so expecting it to be kept up 634 * to date (i.e. for clones that share the parent biovec) is just 635 * asking for trouble and would force extra work on 636 * __bio_clone_fast() anyways. 637 */ 638 639 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 640 if (!bio) 641 return NULL; 642 643 bio->bi_bdev = bio_src->bi_bdev; 644 bio->bi_rw = bio_src->bi_rw; 645 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 646 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 647 648 if (bio->bi_rw & REQ_DISCARD) 649 goto integrity_clone; 650 651 if (bio->bi_rw & REQ_WRITE_SAME) { 652 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 653 goto integrity_clone; 654 } 655 656 bio_for_each_segment(bv, bio_src, iter) 657 bio->bi_io_vec[bio->bi_vcnt++] = bv; 658 659 integrity_clone: 660 if (bio_integrity(bio_src)) { 661 int ret; 662 663 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 664 if (ret < 0) { 665 bio_put(bio); 666 return NULL; 667 } 668 } 669 670 return bio; 671 } 672 EXPORT_SYMBOL(bio_clone_bioset); 673 674 /** 675 * bio_get_nr_vecs - return approx number of vecs 676 * @bdev: I/O target 677 * 678 * Return the approximate number of pages we can send to this target. 679 * There's no guarantee that you will be able to fit this number of pages 680 * into a bio, it does not account for dynamic restrictions that vary 681 * on offset. 682 */ 683 int bio_get_nr_vecs(struct block_device *bdev) 684 { 685 struct request_queue *q = bdev_get_queue(bdev); 686 int nr_pages; 687 688 nr_pages = min_t(unsigned, 689 queue_max_segments(q), 690 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); 691 692 return min_t(unsigned, nr_pages, BIO_MAX_PAGES); 693 694 } 695 EXPORT_SYMBOL(bio_get_nr_vecs); 696 697 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page 698 *page, unsigned int len, unsigned int offset, 699 unsigned int max_sectors) 700 { 701 int retried_segments = 0; 702 struct bio_vec *bvec; 703 704 /* 705 * cloned bio must not modify vec list 706 */ 707 if (unlikely(bio_flagged(bio, BIO_CLONED))) 708 return 0; 709 710 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 711 return 0; 712 713 /* 714 * For filesystems with a blocksize smaller than the pagesize 715 * we will often be called with the same page as last time and 716 * a consecutive offset. Optimize this special case. 717 */ 718 if (bio->bi_vcnt > 0) { 719 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 720 721 if (page == prev->bv_page && 722 offset == prev->bv_offset + prev->bv_len) { 723 unsigned int prev_bv_len = prev->bv_len; 724 prev->bv_len += len; 725 726 if (q->merge_bvec_fn) { 727 struct bvec_merge_data bvm = { 728 /* prev_bvec is already charged in 729 bi_size, discharge it in order to 730 simulate merging updated prev_bvec 731 as new bvec. */ 732 .bi_bdev = bio->bi_bdev, 733 .bi_sector = bio->bi_iter.bi_sector, 734 .bi_size = bio->bi_iter.bi_size - 735 prev_bv_len, 736 .bi_rw = bio->bi_rw, 737 }; 738 739 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { 740 prev->bv_len -= len; 741 return 0; 742 } 743 } 744 745 goto done; 746 } 747 } 748 749 if (bio->bi_vcnt >= bio->bi_max_vecs) 750 return 0; 751 752 /* 753 * we might lose a segment or two here, but rather that than 754 * make this too complex. 755 */ 756 757 while (bio->bi_phys_segments >= queue_max_segments(q)) { 758 759 if (retried_segments) 760 return 0; 761 762 retried_segments = 1; 763 blk_recount_segments(q, bio); 764 } 765 766 /* 767 * setup the new entry, we might clear it again later if we 768 * cannot add the page 769 */ 770 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 771 bvec->bv_page = page; 772 bvec->bv_len = len; 773 bvec->bv_offset = offset; 774 775 /* 776 * if queue has other restrictions (eg varying max sector size 777 * depending on offset), it can specify a merge_bvec_fn in the 778 * queue to get further control 779 */ 780 if (q->merge_bvec_fn) { 781 struct bvec_merge_data bvm = { 782 .bi_bdev = bio->bi_bdev, 783 .bi_sector = bio->bi_iter.bi_sector, 784 .bi_size = bio->bi_iter.bi_size, 785 .bi_rw = bio->bi_rw, 786 }; 787 788 /* 789 * merge_bvec_fn() returns number of bytes it can accept 790 * at this offset 791 */ 792 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) { 793 bvec->bv_page = NULL; 794 bvec->bv_len = 0; 795 bvec->bv_offset = 0; 796 return 0; 797 } 798 } 799 800 /* If we may be able to merge these biovecs, force a recount */ 801 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 802 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 803 804 bio->bi_vcnt++; 805 bio->bi_phys_segments++; 806 done: 807 bio->bi_iter.bi_size += len; 808 return len; 809 } 810 811 /** 812 * bio_add_pc_page - attempt to add page to bio 813 * @q: the target queue 814 * @bio: destination bio 815 * @page: page to add 816 * @len: vec entry length 817 * @offset: vec entry offset 818 * 819 * Attempt to add a page to the bio_vec maplist. This can fail for a 820 * number of reasons, such as the bio being full or target block device 821 * limitations. The target block device must allow bio's up to PAGE_SIZE, 822 * so it is always possible to add a single page to an empty bio. 823 * 824 * This should only be used by REQ_PC bios. 825 */ 826 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, 827 unsigned int len, unsigned int offset) 828 { 829 return __bio_add_page(q, bio, page, len, offset, 830 queue_max_hw_sectors(q)); 831 } 832 EXPORT_SYMBOL(bio_add_pc_page); 833 834 /** 835 * bio_add_page - attempt to add page to bio 836 * @bio: destination bio 837 * @page: page to add 838 * @len: vec entry length 839 * @offset: vec entry offset 840 * 841 * Attempt to add a page to the bio_vec maplist. This can fail for a 842 * number of reasons, such as the bio being full or target block device 843 * limitations. The target block device must allow bio's up to PAGE_SIZE, 844 * so it is always possible to add a single page to an empty bio. 845 */ 846 int bio_add_page(struct bio *bio, struct page *page, unsigned int len, 847 unsigned int offset) 848 { 849 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 850 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q)); 851 } 852 EXPORT_SYMBOL(bio_add_page); 853 854 struct submit_bio_ret { 855 struct completion event; 856 int error; 857 }; 858 859 static void submit_bio_wait_endio(struct bio *bio, int error) 860 { 861 struct submit_bio_ret *ret = bio->bi_private; 862 863 ret->error = error; 864 complete(&ret->event); 865 } 866 867 /** 868 * submit_bio_wait - submit a bio, and wait until it completes 869 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 870 * @bio: The &struct bio which describes the I/O 871 * 872 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 873 * bio_endio() on failure. 874 */ 875 int submit_bio_wait(int rw, struct bio *bio) 876 { 877 struct submit_bio_ret ret; 878 879 rw |= REQ_SYNC; 880 init_completion(&ret.event); 881 bio->bi_private = &ret; 882 bio->bi_end_io = submit_bio_wait_endio; 883 submit_bio(rw, bio); 884 wait_for_completion(&ret.event); 885 886 return ret.error; 887 } 888 EXPORT_SYMBOL(submit_bio_wait); 889 890 /** 891 * bio_advance - increment/complete a bio by some number of bytes 892 * @bio: bio to advance 893 * @bytes: number of bytes to complete 894 * 895 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 896 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 897 * be updated on the last bvec as well. 898 * 899 * @bio will then represent the remaining, uncompleted portion of the io. 900 */ 901 void bio_advance(struct bio *bio, unsigned bytes) 902 { 903 if (bio_integrity(bio)) 904 bio_integrity_advance(bio, bytes); 905 906 bio_advance_iter(bio, &bio->bi_iter, bytes); 907 } 908 EXPORT_SYMBOL(bio_advance); 909 910 /** 911 * bio_alloc_pages - allocates a single page for each bvec in a bio 912 * @bio: bio to allocate pages for 913 * @gfp_mask: flags for allocation 914 * 915 * Allocates pages up to @bio->bi_vcnt. 916 * 917 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 918 * freed. 919 */ 920 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 921 { 922 int i; 923 struct bio_vec *bv; 924 925 bio_for_each_segment_all(bv, bio, i) { 926 bv->bv_page = alloc_page(gfp_mask); 927 if (!bv->bv_page) { 928 while (--bv >= bio->bi_io_vec) 929 __free_page(bv->bv_page); 930 return -ENOMEM; 931 } 932 } 933 934 return 0; 935 } 936 EXPORT_SYMBOL(bio_alloc_pages); 937 938 /** 939 * bio_copy_data - copy contents of data buffers from one chain of bios to 940 * another 941 * @src: source bio list 942 * @dst: destination bio list 943 * 944 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 945 * @src and @dst as linked lists of bios. 946 * 947 * Stops when it reaches the end of either @src or @dst - that is, copies 948 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 949 */ 950 void bio_copy_data(struct bio *dst, struct bio *src) 951 { 952 struct bvec_iter src_iter, dst_iter; 953 struct bio_vec src_bv, dst_bv; 954 void *src_p, *dst_p; 955 unsigned bytes; 956 957 src_iter = src->bi_iter; 958 dst_iter = dst->bi_iter; 959 960 while (1) { 961 if (!src_iter.bi_size) { 962 src = src->bi_next; 963 if (!src) 964 break; 965 966 src_iter = src->bi_iter; 967 } 968 969 if (!dst_iter.bi_size) { 970 dst = dst->bi_next; 971 if (!dst) 972 break; 973 974 dst_iter = dst->bi_iter; 975 } 976 977 src_bv = bio_iter_iovec(src, src_iter); 978 dst_bv = bio_iter_iovec(dst, dst_iter); 979 980 bytes = min(src_bv.bv_len, dst_bv.bv_len); 981 982 src_p = kmap_atomic(src_bv.bv_page); 983 dst_p = kmap_atomic(dst_bv.bv_page); 984 985 memcpy(dst_p + dst_bv.bv_offset, 986 src_p + src_bv.bv_offset, 987 bytes); 988 989 kunmap_atomic(dst_p); 990 kunmap_atomic(src_p); 991 992 bio_advance_iter(src, &src_iter, bytes); 993 bio_advance_iter(dst, &dst_iter, bytes); 994 } 995 } 996 EXPORT_SYMBOL(bio_copy_data); 997 998 struct bio_map_data { 999 int nr_sgvecs; 1000 int is_our_pages; 1001 struct sg_iovec sgvecs[]; 1002 }; 1003 1004 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, 1005 const struct sg_iovec *iov, int iov_count, 1006 int is_our_pages) 1007 { 1008 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); 1009 bmd->nr_sgvecs = iov_count; 1010 bmd->is_our_pages = is_our_pages; 1011 bio->bi_private = bmd; 1012 } 1013 1014 static struct bio_map_data *bio_alloc_map_data(int nr_segs, 1015 unsigned int iov_count, 1016 gfp_t gfp_mask) 1017 { 1018 if (iov_count > UIO_MAXIOV) 1019 return NULL; 1020 1021 return kmalloc(sizeof(struct bio_map_data) + 1022 sizeof(struct sg_iovec) * iov_count, gfp_mask); 1023 } 1024 1025 static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count, 1026 int to_user, int from_user, int do_free_page) 1027 { 1028 int ret = 0, i; 1029 struct bio_vec *bvec; 1030 int iov_idx = 0; 1031 unsigned int iov_off = 0; 1032 1033 bio_for_each_segment_all(bvec, bio, i) { 1034 char *bv_addr = page_address(bvec->bv_page); 1035 unsigned int bv_len = bvec->bv_len; 1036 1037 while (bv_len && iov_idx < iov_count) { 1038 unsigned int bytes; 1039 char __user *iov_addr; 1040 1041 bytes = min_t(unsigned int, 1042 iov[iov_idx].iov_len - iov_off, bv_len); 1043 iov_addr = iov[iov_idx].iov_base + iov_off; 1044 1045 if (!ret) { 1046 if (to_user) 1047 ret = copy_to_user(iov_addr, bv_addr, 1048 bytes); 1049 1050 if (from_user) 1051 ret = copy_from_user(bv_addr, iov_addr, 1052 bytes); 1053 1054 if (ret) 1055 ret = -EFAULT; 1056 } 1057 1058 bv_len -= bytes; 1059 bv_addr += bytes; 1060 iov_addr += bytes; 1061 iov_off += bytes; 1062 1063 if (iov[iov_idx].iov_len == iov_off) { 1064 iov_idx++; 1065 iov_off = 0; 1066 } 1067 } 1068 1069 if (do_free_page) 1070 __free_page(bvec->bv_page); 1071 } 1072 1073 return ret; 1074 } 1075 1076 /** 1077 * bio_uncopy_user - finish previously mapped bio 1078 * @bio: bio being terminated 1079 * 1080 * Free pages allocated from bio_copy_user() and write back data 1081 * to user space in case of a read. 1082 */ 1083 int bio_uncopy_user(struct bio *bio) 1084 { 1085 struct bio_map_data *bmd = bio->bi_private; 1086 struct bio_vec *bvec; 1087 int ret = 0, i; 1088 1089 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1090 /* 1091 * if we're in a workqueue, the request is orphaned, so 1092 * don't copy into a random user address space, just free. 1093 */ 1094 if (current->mm) 1095 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs, 1096 bio_data_dir(bio) == READ, 1097 0, bmd->is_our_pages); 1098 else if (bmd->is_our_pages) 1099 bio_for_each_segment_all(bvec, bio, i) 1100 __free_page(bvec->bv_page); 1101 } 1102 kfree(bmd); 1103 bio_put(bio); 1104 return ret; 1105 } 1106 EXPORT_SYMBOL(bio_uncopy_user); 1107 1108 /** 1109 * bio_copy_user_iov - copy user data to bio 1110 * @q: destination block queue 1111 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1112 * @iov: the iovec. 1113 * @iov_count: number of elements in the iovec 1114 * @write_to_vm: bool indicating writing to pages or not 1115 * @gfp_mask: memory allocation flags 1116 * 1117 * Prepares and returns a bio for indirect user io, bouncing data 1118 * to/from kernel pages as necessary. Must be paired with 1119 * call bio_uncopy_user() on io completion. 1120 */ 1121 struct bio *bio_copy_user_iov(struct request_queue *q, 1122 struct rq_map_data *map_data, 1123 const struct sg_iovec *iov, int iov_count, 1124 int write_to_vm, gfp_t gfp_mask) 1125 { 1126 struct bio_map_data *bmd; 1127 struct bio_vec *bvec; 1128 struct page *page; 1129 struct bio *bio; 1130 int i, ret; 1131 int nr_pages = 0; 1132 unsigned int len = 0; 1133 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; 1134 1135 for (i = 0; i < iov_count; i++) { 1136 unsigned long uaddr; 1137 unsigned long end; 1138 unsigned long start; 1139 1140 uaddr = (unsigned long)iov[i].iov_base; 1141 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1142 start = uaddr >> PAGE_SHIFT; 1143 1144 /* 1145 * Overflow, abort 1146 */ 1147 if (end < start) 1148 return ERR_PTR(-EINVAL); 1149 1150 nr_pages += end - start; 1151 len += iov[i].iov_len; 1152 } 1153 1154 if (offset) 1155 nr_pages++; 1156 1157 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask); 1158 if (!bmd) 1159 return ERR_PTR(-ENOMEM); 1160 1161 ret = -ENOMEM; 1162 bio = bio_kmalloc(gfp_mask, nr_pages); 1163 if (!bio) 1164 goto out_bmd; 1165 1166 if (!write_to_vm) 1167 bio->bi_rw |= REQ_WRITE; 1168 1169 ret = 0; 1170 1171 if (map_data) { 1172 nr_pages = 1 << map_data->page_order; 1173 i = map_data->offset / PAGE_SIZE; 1174 } 1175 while (len) { 1176 unsigned int bytes = PAGE_SIZE; 1177 1178 bytes -= offset; 1179 1180 if (bytes > len) 1181 bytes = len; 1182 1183 if (map_data) { 1184 if (i == map_data->nr_entries * nr_pages) { 1185 ret = -ENOMEM; 1186 break; 1187 } 1188 1189 page = map_data->pages[i / nr_pages]; 1190 page += (i % nr_pages); 1191 1192 i++; 1193 } else { 1194 page = alloc_page(q->bounce_gfp | gfp_mask); 1195 if (!page) { 1196 ret = -ENOMEM; 1197 break; 1198 } 1199 } 1200 1201 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1202 break; 1203 1204 len -= bytes; 1205 offset = 0; 1206 } 1207 1208 if (ret) 1209 goto cleanup; 1210 1211 /* 1212 * success 1213 */ 1214 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) || 1215 (map_data && map_data->from_user)) { 1216 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0); 1217 if (ret) 1218 goto cleanup; 1219 } 1220 1221 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); 1222 return bio; 1223 cleanup: 1224 if (!map_data) 1225 bio_for_each_segment_all(bvec, bio, i) 1226 __free_page(bvec->bv_page); 1227 1228 bio_put(bio); 1229 out_bmd: 1230 kfree(bmd); 1231 return ERR_PTR(ret); 1232 } 1233 1234 /** 1235 * bio_copy_user - copy user data to bio 1236 * @q: destination block queue 1237 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1238 * @uaddr: start of user address 1239 * @len: length in bytes 1240 * @write_to_vm: bool indicating writing to pages or not 1241 * @gfp_mask: memory allocation flags 1242 * 1243 * Prepares and returns a bio for indirect user io, bouncing data 1244 * to/from kernel pages as necessary. Must be paired with 1245 * call bio_uncopy_user() on io completion. 1246 */ 1247 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, 1248 unsigned long uaddr, unsigned int len, 1249 int write_to_vm, gfp_t gfp_mask) 1250 { 1251 struct sg_iovec iov; 1252 1253 iov.iov_base = (void __user *)uaddr; 1254 iov.iov_len = len; 1255 1256 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); 1257 } 1258 EXPORT_SYMBOL(bio_copy_user); 1259 1260 static struct bio *__bio_map_user_iov(struct request_queue *q, 1261 struct block_device *bdev, 1262 const struct sg_iovec *iov, int iov_count, 1263 int write_to_vm, gfp_t gfp_mask) 1264 { 1265 int i, j; 1266 int nr_pages = 0; 1267 struct page **pages; 1268 struct bio *bio; 1269 int cur_page = 0; 1270 int ret, offset; 1271 1272 for (i = 0; i < iov_count; i++) { 1273 unsigned long uaddr = (unsigned long)iov[i].iov_base; 1274 unsigned long len = iov[i].iov_len; 1275 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1276 unsigned long start = uaddr >> PAGE_SHIFT; 1277 1278 /* 1279 * Overflow, abort 1280 */ 1281 if (end < start) 1282 return ERR_PTR(-EINVAL); 1283 1284 nr_pages += end - start; 1285 /* 1286 * buffer must be aligned to at least hardsector size for now 1287 */ 1288 if (uaddr & queue_dma_alignment(q)) 1289 return ERR_PTR(-EINVAL); 1290 } 1291 1292 if (!nr_pages) 1293 return ERR_PTR(-EINVAL); 1294 1295 bio = bio_kmalloc(gfp_mask, nr_pages); 1296 if (!bio) 1297 return ERR_PTR(-ENOMEM); 1298 1299 ret = -ENOMEM; 1300 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1301 if (!pages) 1302 goto out; 1303 1304 for (i = 0; i < iov_count; i++) { 1305 unsigned long uaddr = (unsigned long)iov[i].iov_base; 1306 unsigned long len = iov[i].iov_len; 1307 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1308 unsigned long start = uaddr >> PAGE_SHIFT; 1309 const int local_nr_pages = end - start; 1310 const int page_limit = cur_page + local_nr_pages; 1311 1312 ret = get_user_pages_fast(uaddr, local_nr_pages, 1313 write_to_vm, &pages[cur_page]); 1314 if (ret < local_nr_pages) { 1315 ret = -EFAULT; 1316 goto out_unmap; 1317 } 1318 1319 offset = uaddr & ~PAGE_MASK; 1320 for (j = cur_page; j < page_limit; j++) { 1321 unsigned int bytes = PAGE_SIZE - offset; 1322 1323 if (len <= 0) 1324 break; 1325 1326 if (bytes > len) 1327 bytes = len; 1328 1329 /* 1330 * sorry... 1331 */ 1332 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1333 bytes) 1334 break; 1335 1336 len -= bytes; 1337 offset = 0; 1338 } 1339 1340 cur_page = j; 1341 /* 1342 * release the pages we didn't map into the bio, if any 1343 */ 1344 while (j < page_limit) 1345 page_cache_release(pages[j++]); 1346 } 1347 1348 kfree(pages); 1349 1350 /* 1351 * set data direction, and check if mapped pages need bouncing 1352 */ 1353 if (!write_to_vm) 1354 bio->bi_rw |= REQ_WRITE; 1355 1356 bio->bi_bdev = bdev; 1357 bio->bi_flags |= (1 << BIO_USER_MAPPED); 1358 return bio; 1359 1360 out_unmap: 1361 for (i = 0; i < nr_pages; i++) { 1362 if(!pages[i]) 1363 break; 1364 page_cache_release(pages[i]); 1365 } 1366 out: 1367 kfree(pages); 1368 bio_put(bio); 1369 return ERR_PTR(ret); 1370 } 1371 1372 /** 1373 * bio_map_user - map user address into bio 1374 * @q: the struct request_queue for the bio 1375 * @bdev: destination block device 1376 * @uaddr: start of user address 1377 * @len: length in bytes 1378 * @write_to_vm: bool indicating writing to pages or not 1379 * @gfp_mask: memory allocation flags 1380 * 1381 * Map the user space address into a bio suitable for io to a block 1382 * device. Returns an error pointer in case of error. 1383 */ 1384 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, 1385 unsigned long uaddr, unsigned int len, int write_to_vm, 1386 gfp_t gfp_mask) 1387 { 1388 struct sg_iovec iov; 1389 1390 iov.iov_base = (void __user *)uaddr; 1391 iov.iov_len = len; 1392 1393 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); 1394 } 1395 EXPORT_SYMBOL(bio_map_user); 1396 1397 /** 1398 * bio_map_user_iov - map user sg_iovec table into bio 1399 * @q: the struct request_queue for the bio 1400 * @bdev: destination block device 1401 * @iov: the iovec. 1402 * @iov_count: number of elements in the iovec 1403 * @write_to_vm: bool indicating writing to pages or not 1404 * @gfp_mask: memory allocation flags 1405 * 1406 * Map the user space address into a bio suitable for io to a block 1407 * device. Returns an error pointer in case of error. 1408 */ 1409 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, 1410 const struct sg_iovec *iov, int iov_count, 1411 int write_to_vm, gfp_t gfp_mask) 1412 { 1413 struct bio *bio; 1414 1415 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, 1416 gfp_mask); 1417 if (IS_ERR(bio)) 1418 return bio; 1419 1420 /* 1421 * subtle -- if __bio_map_user() ended up bouncing a bio, 1422 * it would normally disappear when its bi_end_io is run. 1423 * however, we need it for the unmap, so grab an extra 1424 * reference to it 1425 */ 1426 bio_get(bio); 1427 1428 return bio; 1429 } 1430 1431 static void __bio_unmap_user(struct bio *bio) 1432 { 1433 struct bio_vec *bvec; 1434 int i; 1435 1436 /* 1437 * make sure we dirty pages we wrote to 1438 */ 1439 bio_for_each_segment_all(bvec, bio, i) { 1440 if (bio_data_dir(bio) == READ) 1441 set_page_dirty_lock(bvec->bv_page); 1442 1443 page_cache_release(bvec->bv_page); 1444 } 1445 1446 bio_put(bio); 1447 } 1448 1449 /** 1450 * bio_unmap_user - unmap a bio 1451 * @bio: the bio being unmapped 1452 * 1453 * Unmap a bio previously mapped by bio_map_user(). Must be called with 1454 * a process context. 1455 * 1456 * bio_unmap_user() may sleep. 1457 */ 1458 void bio_unmap_user(struct bio *bio) 1459 { 1460 __bio_unmap_user(bio); 1461 bio_put(bio); 1462 } 1463 EXPORT_SYMBOL(bio_unmap_user); 1464 1465 static void bio_map_kern_endio(struct bio *bio, int err) 1466 { 1467 bio_put(bio); 1468 } 1469 1470 static struct bio *__bio_map_kern(struct request_queue *q, void *data, 1471 unsigned int len, gfp_t gfp_mask) 1472 { 1473 unsigned long kaddr = (unsigned long)data; 1474 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1475 unsigned long start = kaddr >> PAGE_SHIFT; 1476 const int nr_pages = end - start; 1477 int offset, i; 1478 struct bio *bio; 1479 1480 bio = bio_kmalloc(gfp_mask, nr_pages); 1481 if (!bio) 1482 return ERR_PTR(-ENOMEM); 1483 1484 offset = offset_in_page(kaddr); 1485 for (i = 0; i < nr_pages; i++) { 1486 unsigned int bytes = PAGE_SIZE - offset; 1487 1488 if (len <= 0) 1489 break; 1490 1491 if (bytes > len) 1492 bytes = len; 1493 1494 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1495 offset) < bytes) 1496 break; 1497 1498 data += bytes; 1499 len -= bytes; 1500 offset = 0; 1501 } 1502 1503 bio->bi_end_io = bio_map_kern_endio; 1504 return bio; 1505 } 1506 1507 /** 1508 * bio_map_kern - map kernel address into bio 1509 * @q: the struct request_queue for the bio 1510 * @data: pointer to buffer to map 1511 * @len: length in bytes 1512 * @gfp_mask: allocation flags for bio allocation 1513 * 1514 * Map the kernel address into a bio suitable for io to a block 1515 * device. Returns an error pointer in case of error. 1516 */ 1517 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1518 gfp_t gfp_mask) 1519 { 1520 struct bio *bio; 1521 1522 bio = __bio_map_kern(q, data, len, gfp_mask); 1523 if (IS_ERR(bio)) 1524 return bio; 1525 1526 if (bio->bi_iter.bi_size == len) 1527 return bio; 1528 1529 /* 1530 * Don't support partial mappings. 1531 */ 1532 bio_put(bio); 1533 return ERR_PTR(-EINVAL); 1534 } 1535 EXPORT_SYMBOL(bio_map_kern); 1536 1537 static void bio_copy_kern_endio(struct bio *bio, int err) 1538 { 1539 struct bio_vec *bvec; 1540 const int read = bio_data_dir(bio) == READ; 1541 struct bio_map_data *bmd = bio->bi_private; 1542 int i; 1543 char *p = bmd->sgvecs[0].iov_base; 1544 1545 bio_for_each_segment_all(bvec, bio, i) { 1546 char *addr = page_address(bvec->bv_page); 1547 1548 if (read) 1549 memcpy(p, addr, bvec->bv_len); 1550 1551 __free_page(bvec->bv_page); 1552 p += bvec->bv_len; 1553 } 1554 1555 kfree(bmd); 1556 bio_put(bio); 1557 } 1558 1559 /** 1560 * bio_copy_kern - copy kernel address into bio 1561 * @q: the struct request_queue for the bio 1562 * @data: pointer to buffer to copy 1563 * @len: length in bytes 1564 * @gfp_mask: allocation flags for bio and page allocation 1565 * @reading: data direction is READ 1566 * 1567 * copy the kernel address into a bio suitable for io to a block 1568 * device. Returns an error pointer in case of error. 1569 */ 1570 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1571 gfp_t gfp_mask, int reading) 1572 { 1573 struct bio *bio; 1574 struct bio_vec *bvec; 1575 int i; 1576 1577 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); 1578 if (IS_ERR(bio)) 1579 return bio; 1580 1581 if (!reading) { 1582 void *p = data; 1583 1584 bio_for_each_segment_all(bvec, bio, i) { 1585 char *addr = page_address(bvec->bv_page); 1586 1587 memcpy(addr, p, bvec->bv_len); 1588 p += bvec->bv_len; 1589 } 1590 } 1591 1592 bio->bi_end_io = bio_copy_kern_endio; 1593 1594 return bio; 1595 } 1596 EXPORT_SYMBOL(bio_copy_kern); 1597 1598 /* 1599 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1600 * for performing direct-IO in BIOs. 1601 * 1602 * The problem is that we cannot run set_page_dirty() from interrupt context 1603 * because the required locks are not interrupt-safe. So what we can do is to 1604 * mark the pages dirty _before_ performing IO. And in interrupt context, 1605 * check that the pages are still dirty. If so, fine. If not, redirty them 1606 * in process context. 1607 * 1608 * We special-case compound pages here: normally this means reads into hugetlb 1609 * pages. The logic in here doesn't really work right for compound pages 1610 * because the VM does not uniformly chase down the head page in all cases. 1611 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1612 * handle them at all. So we skip compound pages here at an early stage. 1613 * 1614 * Note that this code is very hard to test under normal circumstances because 1615 * direct-io pins the pages with get_user_pages(). This makes 1616 * is_page_cache_freeable return false, and the VM will not clean the pages. 1617 * But other code (eg, flusher threads) could clean the pages if they are mapped 1618 * pagecache. 1619 * 1620 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1621 * deferred bio dirtying paths. 1622 */ 1623 1624 /* 1625 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1626 */ 1627 void bio_set_pages_dirty(struct bio *bio) 1628 { 1629 struct bio_vec *bvec; 1630 int i; 1631 1632 bio_for_each_segment_all(bvec, bio, i) { 1633 struct page *page = bvec->bv_page; 1634 1635 if (page && !PageCompound(page)) 1636 set_page_dirty_lock(page); 1637 } 1638 } 1639 1640 static void bio_release_pages(struct bio *bio) 1641 { 1642 struct bio_vec *bvec; 1643 int i; 1644 1645 bio_for_each_segment_all(bvec, bio, i) { 1646 struct page *page = bvec->bv_page; 1647 1648 if (page) 1649 put_page(page); 1650 } 1651 } 1652 1653 /* 1654 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1655 * If they are, then fine. If, however, some pages are clean then they must 1656 * have been written out during the direct-IO read. So we take another ref on 1657 * the BIO and the offending pages and re-dirty the pages in process context. 1658 * 1659 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1660 * here on. It will run one page_cache_release() against each page and will 1661 * run one bio_put() against the BIO. 1662 */ 1663 1664 static void bio_dirty_fn(struct work_struct *work); 1665 1666 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1667 static DEFINE_SPINLOCK(bio_dirty_lock); 1668 static struct bio *bio_dirty_list; 1669 1670 /* 1671 * This runs in process context 1672 */ 1673 static void bio_dirty_fn(struct work_struct *work) 1674 { 1675 unsigned long flags; 1676 struct bio *bio; 1677 1678 spin_lock_irqsave(&bio_dirty_lock, flags); 1679 bio = bio_dirty_list; 1680 bio_dirty_list = NULL; 1681 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1682 1683 while (bio) { 1684 struct bio *next = bio->bi_private; 1685 1686 bio_set_pages_dirty(bio); 1687 bio_release_pages(bio); 1688 bio_put(bio); 1689 bio = next; 1690 } 1691 } 1692 1693 void bio_check_pages_dirty(struct bio *bio) 1694 { 1695 struct bio_vec *bvec; 1696 int nr_clean_pages = 0; 1697 int i; 1698 1699 bio_for_each_segment_all(bvec, bio, i) { 1700 struct page *page = bvec->bv_page; 1701 1702 if (PageDirty(page) || PageCompound(page)) { 1703 page_cache_release(page); 1704 bvec->bv_page = NULL; 1705 } else { 1706 nr_clean_pages++; 1707 } 1708 } 1709 1710 if (nr_clean_pages) { 1711 unsigned long flags; 1712 1713 spin_lock_irqsave(&bio_dirty_lock, flags); 1714 bio->bi_private = bio_dirty_list; 1715 bio_dirty_list = bio; 1716 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1717 schedule_work(&bio_dirty_work); 1718 } else { 1719 bio_put(bio); 1720 } 1721 } 1722 1723 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1724 void bio_flush_dcache_pages(struct bio *bi) 1725 { 1726 struct bio_vec bvec; 1727 struct bvec_iter iter; 1728 1729 bio_for_each_segment(bvec, bi, iter) 1730 flush_dcache_page(bvec.bv_page); 1731 } 1732 EXPORT_SYMBOL(bio_flush_dcache_pages); 1733 #endif 1734 1735 /** 1736 * bio_endio - end I/O on a bio 1737 * @bio: bio 1738 * @error: error, if any 1739 * 1740 * Description: 1741 * bio_endio() will end I/O on the whole bio. bio_endio() is the 1742 * preferred way to end I/O on a bio, it takes care of clearing 1743 * BIO_UPTODATE on error. @error is 0 on success, and and one of the 1744 * established -Exxxx (-EIO, for instance) error values in case 1745 * something went wrong. No one should call bi_end_io() directly on a 1746 * bio unless they own it and thus know that it has an end_io 1747 * function. 1748 **/ 1749 void bio_endio(struct bio *bio, int error) 1750 { 1751 while (bio) { 1752 BUG_ON(atomic_read(&bio->bi_remaining) <= 0); 1753 1754 if (error) 1755 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1756 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1757 error = -EIO; 1758 1759 if (!atomic_dec_and_test(&bio->bi_remaining)) 1760 return; 1761 1762 /* 1763 * Need to have a real endio function for chained bios, 1764 * otherwise various corner cases will break (like stacking 1765 * block devices that save/restore bi_end_io) - however, we want 1766 * to avoid unbounded recursion and blowing the stack. Tail call 1767 * optimization would handle this, but compiling with frame 1768 * pointers also disables gcc's sibling call optimization. 1769 */ 1770 if (bio->bi_end_io == bio_chain_endio) { 1771 struct bio *parent = bio->bi_private; 1772 bio_put(bio); 1773 bio = parent; 1774 } else { 1775 if (bio->bi_end_io) 1776 bio->bi_end_io(bio, error); 1777 bio = NULL; 1778 } 1779 } 1780 } 1781 EXPORT_SYMBOL(bio_endio); 1782 1783 /** 1784 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining 1785 * @bio: bio 1786 * @error: error, if any 1787 * 1788 * For code that has saved and restored bi_end_io; thing hard before using this 1789 * function, probably you should've cloned the entire bio. 1790 **/ 1791 void bio_endio_nodec(struct bio *bio, int error) 1792 { 1793 atomic_inc(&bio->bi_remaining); 1794 bio_endio(bio, error); 1795 } 1796 EXPORT_SYMBOL(bio_endio_nodec); 1797 1798 /** 1799 * bio_split - split a bio 1800 * @bio: bio to split 1801 * @sectors: number of sectors to split from the front of @bio 1802 * @gfp: gfp mask 1803 * @bs: bio set to allocate from 1804 * 1805 * Allocates and returns a new bio which represents @sectors from the start of 1806 * @bio, and updates @bio to represent the remaining sectors. 1807 * 1808 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's 1809 * responsibility to ensure that @bio is not freed before the split. 1810 */ 1811 struct bio *bio_split(struct bio *bio, int sectors, 1812 gfp_t gfp, struct bio_set *bs) 1813 { 1814 struct bio *split = NULL; 1815 1816 BUG_ON(sectors <= 0); 1817 BUG_ON(sectors >= bio_sectors(bio)); 1818 1819 split = bio_clone_fast(bio, gfp, bs); 1820 if (!split) 1821 return NULL; 1822 1823 split->bi_iter.bi_size = sectors << 9; 1824 1825 if (bio_integrity(split)) 1826 bio_integrity_trim(split, 0, sectors); 1827 1828 bio_advance(bio, split->bi_iter.bi_size); 1829 1830 return split; 1831 } 1832 EXPORT_SYMBOL(bio_split); 1833 1834 /** 1835 * bio_trim - trim a bio 1836 * @bio: bio to trim 1837 * @offset: number of sectors to trim from the front of @bio 1838 * @size: size we want to trim @bio to, in sectors 1839 */ 1840 void bio_trim(struct bio *bio, int offset, int size) 1841 { 1842 /* 'bio' is a cloned bio which we need to trim to match 1843 * the given offset and size. 1844 */ 1845 1846 size <<= 9; 1847 if (offset == 0 && size == bio->bi_iter.bi_size) 1848 return; 1849 1850 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1851 1852 bio_advance(bio, offset << 9); 1853 1854 bio->bi_iter.bi_size = size; 1855 } 1856 EXPORT_SYMBOL_GPL(bio_trim); 1857 1858 /* 1859 * create memory pools for biovec's in a bio_set. 1860 * use the global biovec slabs created for general use. 1861 */ 1862 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries) 1863 { 1864 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; 1865 1866 return mempool_create_slab_pool(pool_entries, bp->slab); 1867 } 1868 1869 void bioset_free(struct bio_set *bs) 1870 { 1871 if (bs->rescue_workqueue) 1872 destroy_workqueue(bs->rescue_workqueue); 1873 1874 if (bs->bio_pool) 1875 mempool_destroy(bs->bio_pool); 1876 1877 if (bs->bvec_pool) 1878 mempool_destroy(bs->bvec_pool); 1879 1880 bioset_integrity_free(bs); 1881 bio_put_slab(bs); 1882 1883 kfree(bs); 1884 } 1885 EXPORT_SYMBOL(bioset_free); 1886 1887 /** 1888 * bioset_create - Create a bio_set 1889 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1890 * @front_pad: Number of bytes to allocate in front of the returned bio 1891 * 1892 * Description: 1893 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1894 * to ask for a number of bytes to be allocated in front of the bio. 1895 * Front pad allocation is useful for embedding the bio inside 1896 * another structure, to avoid allocating extra data to go with the bio. 1897 * Note that the bio must be embedded at the END of that structure always, 1898 * or things will break badly. 1899 */ 1900 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1901 { 1902 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1903 struct bio_set *bs; 1904 1905 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1906 if (!bs) 1907 return NULL; 1908 1909 bs->front_pad = front_pad; 1910 1911 spin_lock_init(&bs->rescue_lock); 1912 bio_list_init(&bs->rescue_list); 1913 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1914 1915 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1916 if (!bs->bio_slab) { 1917 kfree(bs); 1918 return NULL; 1919 } 1920 1921 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1922 if (!bs->bio_pool) 1923 goto bad; 1924 1925 bs->bvec_pool = biovec_create_pool(bs, pool_size); 1926 if (!bs->bvec_pool) 1927 goto bad; 1928 1929 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1930 if (!bs->rescue_workqueue) 1931 goto bad; 1932 1933 return bs; 1934 bad: 1935 bioset_free(bs); 1936 return NULL; 1937 } 1938 EXPORT_SYMBOL(bioset_create); 1939 1940 #ifdef CONFIG_BLK_CGROUP 1941 /** 1942 * bio_associate_current - associate a bio with %current 1943 * @bio: target bio 1944 * 1945 * Associate @bio with %current if it hasn't been associated yet. Block 1946 * layer will treat @bio as if it were issued by %current no matter which 1947 * task actually issues it. 1948 * 1949 * This function takes an extra reference of @task's io_context and blkcg 1950 * which will be put when @bio is released. The caller must own @bio, 1951 * ensure %current->io_context exists, and is responsible for synchronizing 1952 * calls to this function. 1953 */ 1954 int bio_associate_current(struct bio *bio) 1955 { 1956 struct io_context *ioc; 1957 struct cgroup_subsys_state *css; 1958 1959 if (bio->bi_ioc) 1960 return -EBUSY; 1961 1962 ioc = current->io_context; 1963 if (!ioc) 1964 return -ENOENT; 1965 1966 /* acquire active ref on @ioc and associate */ 1967 get_io_context_active(ioc); 1968 bio->bi_ioc = ioc; 1969 1970 /* associate blkcg if exists */ 1971 rcu_read_lock(); 1972 css = task_css(current, blkio_cgrp_id); 1973 if (css && css_tryget(css)) 1974 bio->bi_css = css; 1975 rcu_read_unlock(); 1976 1977 return 0; 1978 } 1979 1980 /** 1981 * bio_disassociate_task - undo bio_associate_current() 1982 * @bio: target bio 1983 */ 1984 void bio_disassociate_task(struct bio *bio) 1985 { 1986 if (bio->bi_ioc) { 1987 put_io_context(bio->bi_ioc); 1988 bio->bi_ioc = NULL; 1989 } 1990 if (bio->bi_css) { 1991 css_put(bio->bi_css); 1992 bio->bi_css = NULL; 1993 } 1994 } 1995 1996 #endif /* CONFIG_BLK_CGROUP */ 1997 1998 static void __init biovec_init_slabs(void) 1999 { 2000 int i; 2001 2002 for (i = 0; i < BIOVEC_NR_POOLS; i++) { 2003 int size; 2004 struct biovec_slab *bvs = bvec_slabs + i; 2005 2006 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2007 bvs->slab = NULL; 2008 continue; 2009 } 2010 2011 size = bvs->nr_vecs * sizeof(struct bio_vec); 2012 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2013 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2014 } 2015 } 2016 2017 static int __init init_bio(void) 2018 { 2019 bio_slab_max = 2; 2020 bio_slab_nr = 0; 2021 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2022 if (!bio_slabs) 2023 panic("bio: can't allocate bios\n"); 2024 2025 bio_integrity_init(); 2026 biovec_init_slabs(); 2027 2028 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2029 if (!fs_bio_set) 2030 panic("bio: can't allocate bios\n"); 2031 2032 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2033 panic("bio: can't create integrity pool\n"); 2034 2035 return 0; 2036 } 2037 subsys_initcall(init_bio); 2038
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.