~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/btrfs_inode.h

Version: ~ [ linux-5.2-rc1 ] ~ [ linux-5.1.2 ] ~ [ linux-5.0.16 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.43 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.119 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.176 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.179 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.139 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.67 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  * Copyright (C) 2007 Oracle.  All rights reserved.
  4  */
  5 
  6 #ifndef BTRFS_INODE_H
  7 #define BTRFS_INODE_H
  8 
  9 #include <linux/hash.h>
 10 #include "extent_map.h"
 11 #include "extent_io.h"
 12 #include "ordered-data.h"
 13 #include "delayed-inode.h"
 14 
 15 /*
 16  * ordered_data_close is set by truncate when a file that used
 17  * to have good data has been truncated to zero.  When it is set
 18  * the btrfs file release call will add this inode to the
 19  * ordered operations list so that we make sure to flush out any
 20  * new data the application may have written before commit.
 21  */
 22 enum {
 23         BTRFS_INODE_ORDERED_DATA_CLOSE,
 24         BTRFS_INODE_DUMMY,
 25         BTRFS_INODE_IN_DEFRAG,
 26         BTRFS_INODE_HAS_ASYNC_EXTENT,
 27         BTRFS_INODE_NEEDS_FULL_SYNC,
 28         BTRFS_INODE_COPY_EVERYTHING,
 29         BTRFS_INODE_IN_DELALLOC_LIST,
 30         BTRFS_INODE_READDIO_NEED_LOCK,
 31         BTRFS_INODE_HAS_PROPS,
 32         BTRFS_INODE_SNAPSHOT_FLUSH,
 33 };
 34 
 35 /* in memory btrfs inode */
 36 struct btrfs_inode {
 37         /* which subvolume this inode belongs to */
 38         struct btrfs_root *root;
 39 
 40         /* key used to find this inode on disk.  This is used by the code
 41          * to read in roots of subvolumes
 42          */
 43         struct btrfs_key location;
 44 
 45         /*
 46          * Lock for counters and all fields used to determine if the inode is in
 47          * the log or not (last_trans, last_sub_trans, last_log_commit,
 48          * logged_trans).
 49          */
 50         spinlock_t lock;
 51 
 52         /* the extent_tree has caches of all the extent mappings to disk */
 53         struct extent_map_tree extent_tree;
 54 
 55         /* the io_tree does range state (DIRTY, LOCKED etc) */
 56         struct extent_io_tree io_tree;
 57 
 58         /* special utility tree used to record which mirrors have already been
 59          * tried when checksums fail for a given block
 60          */
 61         struct extent_io_tree io_failure_tree;
 62 
 63         /* held while logging the inode in tree-log.c */
 64         struct mutex log_mutex;
 65 
 66         /* held while doing delalloc reservations */
 67         struct mutex delalloc_mutex;
 68 
 69         /* used to order data wrt metadata */
 70         struct btrfs_ordered_inode_tree ordered_tree;
 71 
 72         /* list of all the delalloc inodes in the FS.  There are times we need
 73          * to write all the delalloc pages to disk, and this list is used
 74          * to walk them all.
 75          */
 76         struct list_head delalloc_inodes;
 77 
 78         /* node for the red-black tree that links inodes in subvolume root */
 79         struct rb_node rb_node;
 80 
 81         unsigned long runtime_flags;
 82 
 83         /* Keep track of who's O_SYNC/fsyncing currently */
 84         atomic_t sync_writers;
 85 
 86         /* full 64 bit generation number, struct vfs_inode doesn't have a big
 87          * enough field for this.
 88          */
 89         u64 generation;
 90 
 91         /*
 92          * transid of the trans_handle that last modified this inode
 93          */
 94         u64 last_trans;
 95 
 96         /*
 97          * transid that last logged this inode
 98          */
 99         u64 logged_trans;
100 
101         /*
102          * log transid when this inode was last modified
103          */
104         int last_sub_trans;
105 
106         /* a local copy of root's last_log_commit */
107         int last_log_commit;
108 
109         /* total number of bytes pending delalloc, used by stat to calc the
110          * real block usage of the file
111          */
112         u64 delalloc_bytes;
113 
114         /*
115          * Total number of bytes pending delalloc that fall within a file
116          * range that is either a hole or beyond EOF (and no prealloc extent
117          * exists in the range). This is always <= delalloc_bytes.
118          */
119         u64 new_delalloc_bytes;
120 
121         /*
122          * total number of bytes pending defrag, used by stat to check whether
123          * it needs COW.
124          */
125         u64 defrag_bytes;
126 
127         /*
128          * the size of the file stored in the metadata on disk.  data=ordered
129          * means the in-memory i_size might be larger than the size on disk
130          * because not all the blocks are written yet.
131          */
132         u64 disk_i_size;
133 
134         /*
135          * if this is a directory then index_cnt is the counter for the index
136          * number for new files that are created
137          */
138         u64 index_cnt;
139 
140         /* Cache the directory index number to speed the dir/file remove */
141         u64 dir_index;
142 
143         /* the fsync log has some corner cases that mean we have to check
144          * directories to see if any unlinks have been done before
145          * the directory was logged.  See tree-log.c for all the
146          * details
147          */
148         u64 last_unlink_trans;
149 
150         /*
151          * Number of bytes outstanding that are going to need csums.  This is
152          * used in ENOSPC accounting.
153          */
154         u64 csum_bytes;
155 
156         /* flags field from the on disk inode */
157         u32 flags;
158 
159         /*
160          * Counters to keep track of the number of extent item's we may use due
161          * to delalloc and such.  outstanding_extents is the number of extent
162          * items we think we'll end up using, and reserved_extents is the number
163          * of extent items we've reserved metadata for.
164          */
165         unsigned outstanding_extents;
166 
167         struct btrfs_block_rsv block_rsv;
168 
169         /*
170          * Cached values of inode properties
171          */
172         unsigned prop_compress;         /* per-file compression algorithm */
173         /*
174          * Force compression on the file using the defrag ioctl, could be
175          * different from prop_compress and takes precedence if set
176          */
177         unsigned defrag_compress;
178 
179         struct btrfs_delayed_node *delayed_node;
180 
181         /* File creation time. */
182         struct timespec64 i_otime;
183 
184         /* Hook into fs_info->delayed_iputs */
185         struct list_head delayed_iput;
186 
187         /*
188          * To avoid races between lockless (i_mutex not held) direct IO writes
189          * and concurrent fsync requests. Direct IO writes must acquire read
190          * access on this semaphore for creating an extent map and its
191          * corresponding ordered extent. The fast fsync path must acquire write
192          * access on this semaphore before it collects ordered extents and
193          * extent maps.
194          */
195         struct rw_semaphore dio_sem;
196 
197         struct inode vfs_inode;
198 };
199 
200 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
201 {
202         return container_of(inode, struct btrfs_inode, vfs_inode);
203 }
204 
205 static inline unsigned long btrfs_inode_hash(u64 objectid,
206                                              const struct btrfs_root *root)
207 {
208         u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
209 
210 #if BITS_PER_LONG == 32
211         h = (h >> 32) ^ (h & 0xffffffff);
212 #endif
213 
214         return (unsigned long)h;
215 }
216 
217 static inline void btrfs_insert_inode_hash(struct inode *inode)
218 {
219         unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
220 
221         __insert_inode_hash(inode, h);
222 }
223 
224 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
225 {
226         u64 ino = inode->location.objectid;
227 
228         /*
229          * !ino: btree_inode
230          * type == BTRFS_ROOT_ITEM_KEY: subvol dir
231          */
232         if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
233                 ino = inode->vfs_inode.i_ino;
234         return ino;
235 }
236 
237 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
238 {
239         i_size_write(&inode->vfs_inode, size);
240         inode->disk_i_size = size;
241 }
242 
243 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
244 {
245         struct btrfs_root *root = inode->root;
246 
247         if (root == root->fs_info->tree_root &&
248             btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
249                 return true;
250         if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
251                 return true;
252         return false;
253 }
254 
255 static inline bool is_data_inode(struct inode *inode)
256 {
257         return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
258 }
259 
260 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
261                                                  int mod)
262 {
263         lockdep_assert_held(&inode->lock);
264         inode->outstanding_extents += mod;
265         if (btrfs_is_free_space_inode(inode))
266                 return;
267         trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
268                                                   mod);
269 }
270 
271 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
272 {
273         int ret = 0;
274 
275         spin_lock(&inode->lock);
276         if (inode->logged_trans == generation &&
277             inode->last_sub_trans <= inode->last_log_commit &&
278             inode->last_sub_trans <= inode->root->last_log_commit) {
279                 /*
280                  * After a ranged fsync we might have left some extent maps
281                  * (that fall outside the fsync's range). So return false
282                  * here if the list isn't empty, to make sure btrfs_log_inode()
283                  * will be called and process those extent maps.
284                  */
285                 smp_mb();
286                 if (list_empty(&inode->extent_tree.modified_extents))
287                         ret = 1;
288         }
289         spin_unlock(&inode->lock);
290         return ret;
291 }
292 
293 #define BTRFS_DIO_ORIG_BIO_SUBMITTED    0x1
294 
295 struct btrfs_dio_private {
296         struct inode *inode;
297         unsigned long flags;
298         u64 logical_offset;
299         u64 disk_bytenr;
300         u64 bytes;
301         void *private;
302 
303         /* number of bios pending for this dio */
304         atomic_t pending_bios;
305 
306         /* IO errors */
307         int errors;
308 
309         /* orig_bio is our btrfs_io_bio */
310         struct bio *orig_bio;
311 
312         /* dio_bio came from fs/direct-io.c */
313         struct bio *dio_bio;
314 
315         /*
316          * The original bio may be split to several sub-bios, this is
317          * done during endio of sub-bios
318          */
319         blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
320                         blk_status_t);
321 };
322 
323 /*
324  * Disable DIO read nolock optimization, so new dio readers will be forced
325  * to grab i_mutex. It is used to avoid the endless truncate due to
326  * nonlocked dio read.
327  */
328 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
329 {
330         set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
331         smp_mb();
332 }
333 
334 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
335 {
336         smp_mb__before_atomic();
337         clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
338 }
339 
340 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
341                 u64 logical_start, u32 csum, u32 csum_expected, int mirror_num)
342 {
343         struct btrfs_root *root = inode->root;
344 
345         /* Output minus objectid, which is more meaningful */
346         if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
347                 btrfs_warn_rl(root->fs_info,
348         "csum failed root %lld ino %lld off %llu csum 0x%08x expected csum 0x%08x mirror %d",
349                         root->root_key.objectid, btrfs_ino(inode),
350                         logical_start, csum, csum_expected, mirror_num);
351         else
352                 btrfs_warn_rl(root->fs_info,
353         "csum failed root %llu ino %llu off %llu csum 0x%08x expected csum 0x%08x mirror %d",
354                         root->root_key.objectid, btrfs_ino(inode),
355                         logical_start, csum, csum_expected, mirror_num);
356 }
357 
358 #endif
359 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp