~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/file.c

Version: ~ [ linux-6.4-rc3 ] ~ [ linux-6.3.4 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.30 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.113 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.180 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.243 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.283 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.315 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2007 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/fs.h>
  7 #include <linux/pagemap.h>
  8 #include <linux/time.h>
  9 #include <linux/init.h>
 10 #include <linux/string.h>
 11 #include <linux/backing-dev.h>
 12 #include <linux/falloc.h>
 13 #include <linux/writeback.h>
 14 #include <linux/compat.h>
 15 #include <linux/slab.h>
 16 #include <linux/btrfs.h>
 17 #include <linux/uio.h>
 18 #include <linux/iversion.h>
 19 #include <linux/fsverity.h>
 20 #include "ctree.h"
 21 #include "disk-io.h"
 22 #include "transaction.h"
 23 #include "btrfs_inode.h"
 24 #include "print-tree.h"
 25 #include "tree-log.h"
 26 #include "locking.h"
 27 #include "volumes.h"
 28 #include "qgroup.h"
 29 #include "compression.h"
 30 #include "delalloc-space.h"
 31 #include "reflink.h"
 32 #include "subpage.h"
 33 
 34 static struct kmem_cache *btrfs_inode_defrag_cachep;
 35 /*
 36  * when auto defrag is enabled we
 37  * queue up these defrag structs to remember which
 38  * inodes need defragging passes
 39  */
 40 struct inode_defrag {
 41         struct rb_node rb_node;
 42         /* objectid */
 43         u64 ino;
 44         /*
 45          * transid where the defrag was added, we search for
 46          * extents newer than this
 47          */
 48         u64 transid;
 49 
 50         /* root objectid */
 51         u64 root;
 52 
 53         /*
 54          * The extent size threshold for autodefrag.
 55          *
 56          * This value is different for compressed/non-compressed extents,
 57          * thus needs to be passed from higher layer.
 58          * (aka, inode_should_defrag())
 59          */
 60         u32 extent_thresh;
 61 };
 62 
 63 static int __compare_inode_defrag(struct inode_defrag *defrag1,
 64                                   struct inode_defrag *defrag2)
 65 {
 66         if (defrag1->root > defrag2->root)
 67                 return 1;
 68         else if (defrag1->root < defrag2->root)
 69                 return -1;
 70         else if (defrag1->ino > defrag2->ino)
 71                 return 1;
 72         else if (defrag1->ino < defrag2->ino)
 73                 return -1;
 74         else
 75                 return 0;
 76 }
 77 
 78 /* pop a record for an inode into the defrag tree.  The lock
 79  * must be held already
 80  *
 81  * If you're inserting a record for an older transid than an
 82  * existing record, the transid already in the tree is lowered
 83  *
 84  * If an existing record is found the defrag item you
 85  * pass in is freed
 86  */
 87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
 88                                     struct inode_defrag *defrag)
 89 {
 90         struct btrfs_fs_info *fs_info = inode->root->fs_info;
 91         struct inode_defrag *entry;
 92         struct rb_node **p;
 93         struct rb_node *parent = NULL;
 94         int ret;
 95 
 96         p = &fs_info->defrag_inodes.rb_node;
 97         while (*p) {
 98                 parent = *p;
 99                 entry = rb_entry(parent, struct inode_defrag, rb_node);
100 
101                 ret = __compare_inode_defrag(defrag, entry);
102                 if (ret < 0)
103                         p = &parent->rb_left;
104                 else if (ret > 0)
105                         p = &parent->rb_right;
106                 else {
107                         /* if we're reinserting an entry for
108                          * an old defrag run, make sure to
109                          * lower the transid of our existing record
110                          */
111                         if (defrag->transid < entry->transid)
112                                 entry->transid = defrag->transid;
113                         entry->extent_thresh = min(defrag->extent_thresh,
114                                                    entry->extent_thresh);
115                         return -EEXIST;
116                 }
117         }
118         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
119         rb_link_node(&defrag->rb_node, parent, p);
120         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
121         return 0;
122 }
123 
124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
125 {
126         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
127                 return 0;
128 
129         if (btrfs_fs_closing(fs_info))
130                 return 0;
131 
132         return 1;
133 }
134 
135 /*
136  * insert a defrag record for this inode if auto defrag is
137  * enabled
138  */
139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
140                            struct btrfs_inode *inode, u32 extent_thresh)
141 {
142         struct btrfs_root *root = inode->root;
143         struct btrfs_fs_info *fs_info = root->fs_info;
144         struct inode_defrag *defrag;
145         u64 transid;
146         int ret;
147 
148         if (!__need_auto_defrag(fs_info))
149                 return 0;
150 
151         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
152                 return 0;
153 
154         if (trans)
155                 transid = trans->transid;
156         else
157                 transid = inode->root->last_trans;
158 
159         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
160         if (!defrag)
161                 return -ENOMEM;
162 
163         defrag->ino = btrfs_ino(inode);
164         defrag->transid = transid;
165         defrag->root = root->root_key.objectid;
166         defrag->extent_thresh = extent_thresh;
167 
168         spin_lock(&fs_info->defrag_inodes_lock);
169         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
170                 /*
171                  * If we set IN_DEFRAG flag and evict the inode from memory,
172                  * and then re-read this inode, this new inode doesn't have
173                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
174                  */
175                 ret = __btrfs_add_inode_defrag(inode, defrag);
176                 if (ret)
177                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
178         } else {
179                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
180         }
181         spin_unlock(&fs_info->defrag_inodes_lock);
182         return 0;
183 }
184 
185 /*
186  * pick the defragable inode that we want, if it doesn't exist, we will get
187  * the next one.
188  */
189 static struct inode_defrag *
190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
191 {
192         struct inode_defrag *entry = NULL;
193         struct inode_defrag tmp;
194         struct rb_node *p;
195         struct rb_node *parent = NULL;
196         int ret;
197 
198         tmp.ino = ino;
199         tmp.root = root;
200 
201         spin_lock(&fs_info->defrag_inodes_lock);
202         p = fs_info->defrag_inodes.rb_node;
203         while (p) {
204                 parent = p;
205                 entry = rb_entry(parent, struct inode_defrag, rb_node);
206 
207                 ret = __compare_inode_defrag(&tmp, entry);
208                 if (ret < 0)
209                         p = parent->rb_left;
210                 else if (ret > 0)
211                         p = parent->rb_right;
212                 else
213                         goto out;
214         }
215 
216         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
217                 parent = rb_next(parent);
218                 if (parent)
219                         entry = rb_entry(parent, struct inode_defrag, rb_node);
220                 else
221                         entry = NULL;
222         }
223 out:
224         if (entry)
225                 rb_erase(parent, &fs_info->defrag_inodes);
226         spin_unlock(&fs_info->defrag_inodes_lock);
227         return entry;
228 }
229 
230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
231 {
232         struct inode_defrag *defrag;
233         struct rb_node *node;
234 
235         spin_lock(&fs_info->defrag_inodes_lock);
236         node = rb_first(&fs_info->defrag_inodes);
237         while (node) {
238                 rb_erase(node, &fs_info->defrag_inodes);
239                 defrag = rb_entry(node, struct inode_defrag, rb_node);
240                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
241 
242                 cond_resched_lock(&fs_info->defrag_inodes_lock);
243 
244                 node = rb_first(&fs_info->defrag_inodes);
245         }
246         spin_unlock(&fs_info->defrag_inodes_lock);
247 }
248 
249 #define BTRFS_DEFRAG_BATCH      1024
250 
251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
252                                     struct inode_defrag *defrag)
253 {
254         struct btrfs_root *inode_root;
255         struct inode *inode;
256         struct btrfs_ioctl_defrag_range_args range;
257         int ret = 0;
258         u64 cur = 0;
259 
260 again:
261         if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
262                 goto cleanup;
263         if (!__need_auto_defrag(fs_info))
264                 goto cleanup;
265 
266         /* get the inode */
267         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
268         if (IS_ERR(inode_root)) {
269                 ret = PTR_ERR(inode_root);
270                 goto cleanup;
271         }
272 
273         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
274         btrfs_put_root(inode_root);
275         if (IS_ERR(inode)) {
276                 ret = PTR_ERR(inode);
277                 goto cleanup;
278         }
279 
280         if (cur >= i_size_read(inode)) {
281                 iput(inode);
282                 goto cleanup;
283         }
284 
285         /* do a chunk of defrag */
286         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
287         memset(&range, 0, sizeof(range));
288         range.len = (u64)-1;
289         range.start = cur;
290         range.extent_thresh = defrag->extent_thresh;
291 
292         sb_start_write(fs_info->sb);
293         ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
294                                        BTRFS_DEFRAG_BATCH);
295         sb_end_write(fs_info->sb);
296         iput(inode);
297 
298         if (ret < 0)
299                 goto cleanup;
300 
301         cur = max(cur + fs_info->sectorsize, range.start);
302         goto again;
303 
304 cleanup:
305         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
306         return ret;
307 }
308 
309 /*
310  * run through the list of inodes in the FS that need
311  * defragging
312  */
313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
314 {
315         struct inode_defrag *defrag;
316         u64 first_ino = 0;
317         u64 root_objectid = 0;
318 
319         atomic_inc(&fs_info->defrag_running);
320         while (1) {
321                 /* Pause the auto defragger. */
322                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
323                              &fs_info->fs_state))
324                         break;
325 
326                 if (!__need_auto_defrag(fs_info))
327                         break;
328 
329                 /* find an inode to defrag */
330                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
331                                                  first_ino);
332                 if (!defrag) {
333                         if (root_objectid || first_ino) {
334                                 root_objectid = 0;
335                                 first_ino = 0;
336                                 continue;
337                         } else {
338                                 break;
339                         }
340                 }
341 
342                 first_ino = defrag->ino + 1;
343                 root_objectid = defrag->root;
344 
345                 __btrfs_run_defrag_inode(fs_info, defrag);
346         }
347         atomic_dec(&fs_info->defrag_running);
348 
349         /*
350          * during unmount, we use the transaction_wait queue to
351          * wait for the defragger to stop
352          */
353         wake_up(&fs_info->transaction_wait);
354         return 0;
355 }
356 
357 /* simple helper to fault in pages and copy.  This should go away
358  * and be replaced with calls into generic code.
359  */
360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
361                                          struct page **prepared_pages,
362                                          struct iov_iter *i)
363 {
364         size_t copied = 0;
365         size_t total_copied = 0;
366         int pg = 0;
367         int offset = offset_in_page(pos);
368 
369         while (write_bytes > 0) {
370                 size_t count = min_t(size_t,
371                                      PAGE_SIZE - offset, write_bytes);
372                 struct page *page = prepared_pages[pg];
373                 /*
374                  * Copy data from userspace to the current page
375                  */
376                 copied = copy_page_from_iter_atomic(page, offset, count, i);
377 
378                 /* Flush processor's dcache for this page */
379                 flush_dcache_page(page);
380 
381                 /*
382                  * if we get a partial write, we can end up with
383                  * partially up to date pages.  These add
384                  * a lot of complexity, so make sure they don't
385                  * happen by forcing this copy to be retried.
386                  *
387                  * The rest of the btrfs_file_write code will fall
388                  * back to page at a time copies after we return 0.
389                  */
390                 if (unlikely(copied < count)) {
391                         if (!PageUptodate(page)) {
392                                 iov_iter_revert(i, copied);
393                                 copied = 0;
394                         }
395                         if (!copied)
396                                 break;
397                 }
398 
399                 write_bytes -= copied;
400                 total_copied += copied;
401                 offset += copied;
402                 if (offset == PAGE_SIZE) {
403                         pg++;
404                         offset = 0;
405                 }
406         }
407         return total_copied;
408 }
409 
410 /*
411  * unlocks pages after btrfs_file_write is done with them
412  */
413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
414                              struct page **pages, size_t num_pages,
415                              u64 pos, u64 copied)
416 {
417         size_t i;
418         u64 block_start = round_down(pos, fs_info->sectorsize);
419         u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
420 
421         ASSERT(block_len <= U32_MAX);
422         for (i = 0; i < num_pages; i++) {
423                 /* page checked is some magic around finding pages that
424                  * have been modified without going through btrfs_set_page_dirty
425                  * clear it here. There should be no need to mark the pages
426                  * accessed as prepare_pages should have marked them accessed
427                  * in prepare_pages via find_or_create_page()
428                  */
429                 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
430                                                block_len);
431                 unlock_page(pages[i]);
432                 put_page(pages[i]);
433         }
434 }
435 
436 /*
437  * After btrfs_copy_from_user(), update the following things for delalloc:
438  * - Mark newly dirtied pages as DELALLOC in the io tree.
439  *   Used to advise which range is to be written back.
440  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
441  * - Update inode size for past EOF write
442  */
443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
444                       size_t num_pages, loff_t pos, size_t write_bytes,
445                       struct extent_state **cached, bool noreserve)
446 {
447         struct btrfs_fs_info *fs_info = inode->root->fs_info;
448         int err = 0;
449         int i;
450         u64 num_bytes;
451         u64 start_pos;
452         u64 end_of_last_block;
453         u64 end_pos = pos + write_bytes;
454         loff_t isize = i_size_read(&inode->vfs_inode);
455         unsigned int extra_bits = 0;
456 
457         if (write_bytes == 0)
458                 return 0;
459 
460         if (noreserve)
461                 extra_bits |= EXTENT_NORESERVE;
462 
463         start_pos = round_down(pos, fs_info->sectorsize);
464         num_bytes = round_up(write_bytes + pos - start_pos,
465                              fs_info->sectorsize);
466         ASSERT(num_bytes <= U32_MAX);
467 
468         end_of_last_block = start_pos + num_bytes - 1;
469 
470         /*
471          * The pages may have already been dirty, clear out old accounting so
472          * we can set things up properly
473          */
474         clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
475                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
476                          0, 0, cached);
477 
478         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
479                                         extra_bits, cached);
480         if (err)
481                 return err;
482 
483         for (i = 0; i < num_pages; i++) {
484                 struct page *p = pages[i];
485 
486                 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
487                 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
488                 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
489         }
490 
491         /*
492          * we've only changed i_size in ram, and we haven't updated
493          * the disk i_size.  There is no need to log the inode
494          * at this time.
495          */
496         if (end_pos > isize)
497                 i_size_write(&inode->vfs_inode, end_pos);
498         return 0;
499 }
500 
501 /*
502  * this drops all the extents in the cache that intersect the range
503  * [start, end].  Existing extents are split as required.
504  */
505 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
506                              int skip_pinned)
507 {
508         struct extent_map *em;
509         struct extent_map *split = NULL;
510         struct extent_map *split2 = NULL;
511         struct extent_map_tree *em_tree = &inode->extent_tree;
512         u64 len = end - start + 1;
513         u64 gen;
514         int ret;
515         int testend = 1;
516         unsigned long flags;
517         int compressed = 0;
518         bool modified;
519 
520         WARN_ON(end < start);
521         if (end == (u64)-1) {
522                 len = (u64)-1;
523                 testend = 0;
524         }
525         while (1) {
526                 bool ends_after_range = false;
527                 int no_splits = 0;
528 
529                 modified = false;
530                 if (!split)
531                         split = alloc_extent_map();
532                 if (!split2)
533                         split2 = alloc_extent_map();
534                 if (!split || !split2)
535                         no_splits = 1;
536 
537                 write_lock(&em_tree->lock);
538                 em = lookup_extent_mapping(em_tree, start, len);
539                 if (!em) {
540                         write_unlock(&em_tree->lock);
541                         break;
542                 }
543                 if (testend && em->start + em->len > start + len)
544                         ends_after_range = true;
545                 flags = em->flags;
546                 gen = em->generation;
547                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
548                         if (ends_after_range) {
549                                 free_extent_map(em);
550                                 write_unlock(&em_tree->lock);
551                                 break;
552                         }
553                         start = em->start + em->len;
554                         if (testend)
555                                 len = start + len - (em->start + em->len);
556                         free_extent_map(em);
557                         write_unlock(&em_tree->lock);
558                         continue;
559                 }
560                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
561                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
562                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
563                 modified = !list_empty(&em->list);
564                 if (no_splits)
565                         goto next;
566 
567                 if (em->start < start) {
568                         split->start = em->start;
569                         split->len = start - em->start;
570 
571                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
572                                 split->orig_start = em->orig_start;
573                                 split->block_start = em->block_start;
574 
575                                 if (compressed)
576                                         split->block_len = em->block_len;
577                                 else
578                                         split->block_len = split->len;
579                                 split->orig_block_len = max(split->block_len,
580                                                 em->orig_block_len);
581                                 split->ram_bytes = em->ram_bytes;
582                         } else {
583                                 split->orig_start = split->start;
584                                 split->block_len = 0;
585                                 split->block_start = em->block_start;
586                                 split->orig_block_len = 0;
587                                 split->ram_bytes = split->len;
588                         }
589 
590                         split->generation = gen;
591                         split->flags = flags;
592                         split->compress_type = em->compress_type;
593                         replace_extent_mapping(em_tree, em, split, modified);
594                         free_extent_map(split);
595                         split = split2;
596                         split2 = NULL;
597                 }
598                 if (ends_after_range) {
599                         u64 diff = start + len - em->start;
600 
601                         split->start = start + len;
602                         split->len = em->start + em->len - (start + len);
603                         split->flags = flags;
604                         split->compress_type = em->compress_type;
605                         split->generation = gen;
606 
607                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
608                                 split->orig_block_len = max(em->block_len,
609                                                     em->orig_block_len);
610 
611                                 split->ram_bytes = em->ram_bytes;
612                                 if (compressed) {
613                                         split->block_len = em->block_len;
614                                         split->block_start = em->block_start;
615                                         split->orig_start = em->orig_start;
616                                 } else {
617                                         split->block_len = split->len;
618                                         split->block_start = em->block_start
619                                                 + diff;
620                                         split->orig_start = em->orig_start;
621                                 }
622                         } else {
623                                 split->ram_bytes = split->len;
624                                 split->orig_start = split->start;
625                                 split->block_len = 0;
626                                 split->block_start = em->block_start;
627                                 split->orig_block_len = 0;
628                         }
629 
630                         if (extent_map_in_tree(em)) {
631                                 replace_extent_mapping(em_tree, em, split,
632                                                        modified);
633                         } else {
634                                 ret = add_extent_mapping(em_tree, split,
635                                                          modified);
636                                 /* Logic error, shouldn't happen. */
637                                 ASSERT(ret == 0);
638                                 if (WARN_ON(ret != 0) && modified)
639                                         btrfs_set_inode_full_sync(inode);
640                         }
641                         free_extent_map(split);
642                         split = NULL;
643                 }
644 next:
645                 if (extent_map_in_tree(em)) {
646                         /*
647                          * If the extent map is still in the tree it means that
648                          * either of the following is true:
649                          *
650                          * 1) It fits entirely in our range (doesn't end beyond
651                          *    it or starts before it);
652                          *
653                          * 2) It starts before our range and/or ends after our
654                          *    range, and we were not able to allocate the extent
655                          *    maps for split operations, @split and @split2.
656                          *
657                          * If we are at case 2) then we just remove the entire
658                          * extent map - this is fine since if anyone needs it to
659                          * access the subranges outside our range, will just
660                          * load it again from the subvolume tree's file extent
661                          * item. However if the extent map was in the list of
662                          * modified extents, then we must mark the inode for a
663                          * full fsync, otherwise a fast fsync will miss this
664                          * extent if it's new and needs to be logged.
665                          */
666                         if ((em->start < start || ends_after_range) && modified) {
667                                 ASSERT(no_splits);
668                                 btrfs_set_inode_full_sync(inode);
669                         }
670                         remove_extent_mapping(em_tree, em);
671                 }
672                 write_unlock(&em_tree->lock);
673 
674                 /* once for us */
675                 free_extent_map(em);
676                 /* once for the tree*/
677                 free_extent_map(em);
678         }
679         if (split)
680                 free_extent_map(split);
681         if (split2)
682                 free_extent_map(split2);
683 }
684 
685 /*
686  * this is very complex, but the basic idea is to drop all extents
687  * in the range start - end.  hint_block is filled in with a block number
688  * that would be a good hint to the block allocator for this file.
689  *
690  * If an extent intersects the range but is not entirely inside the range
691  * it is either truncated or split.  Anything entirely inside the range
692  * is deleted from the tree.
693  *
694  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
695  * to deal with that. We set the field 'bytes_found' of the arguments structure
696  * with the number of allocated bytes found in the target range, so that the
697  * caller can update the inode's number of bytes in an atomic way when
698  * replacing extents in a range to avoid races with stat(2).
699  */
700 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
701                        struct btrfs_root *root, struct btrfs_inode *inode,
702                        struct btrfs_drop_extents_args *args)
703 {
704         struct btrfs_fs_info *fs_info = root->fs_info;
705         struct extent_buffer *leaf;
706         struct btrfs_file_extent_item *fi;
707         struct btrfs_ref ref = { 0 };
708         struct btrfs_key key;
709         struct btrfs_key new_key;
710         u64 ino = btrfs_ino(inode);
711         u64 search_start = args->start;
712         u64 disk_bytenr = 0;
713         u64 num_bytes = 0;
714         u64 extent_offset = 0;
715         u64 extent_end = 0;
716         u64 last_end = args->start;
717         int del_nr = 0;
718         int del_slot = 0;
719         int extent_type;
720         int recow;
721         int ret;
722         int modify_tree = -1;
723         int update_refs;
724         int found = 0;
725         struct btrfs_path *path = args->path;
726 
727         args->bytes_found = 0;
728         args->extent_inserted = false;
729 
730         /* Must always have a path if ->replace_extent is true */
731         ASSERT(!(args->replace_extent && !args->path));
732 
733         if (!path) {
734                 path = btrfs_alloc_path();
735                 if (!path) {
736                         ret = -ENOMEM;
737                         goto out;
738                 }
739         }
740 
741         if (args->drop_cache)
742                 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
743 
744         if (args->start >= inode->disk_i_size && !args->replace_extent)
745                 modify_tree = 0;
746 
747         update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
748         while (1) {
749                 recow = 0;
750                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
751                                                search_start, modify_tree);
752                 if (ret < 0)
753                         break;
754                 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
755                         leaf = path->nodes[0];
756                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
757                         if (key.objectid == ino &&
758                             key.type == BTRFS_EXTENT_DATA_KEY)
759                                 path->slots[0]--;
760                 }
761                 ret = 0;
762 next_slot:
763                 leaf = path->nodes[0];
764                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
765                         BUG_ON(del_nr > 0);
766                         ret = btrfs_next_leaf(root, path);
767                         if (ret < 0)
768                                 break;
769                         if (ret > 0) {
770                                 ret = 0;
771                                 break;
772                         }
773                         leaf = path->nodes[0];
774                         recow = 1;
775                 }
776 
777                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
778 
779                 if (key.objectid > ino)
780                         break;
781                 if (WARN_ON_ONCE(key.objectid < ino) ||
782                     key.type < BTRFS_EXTENT_DATA_KEY) {
783                         ASSERT(del_nr == 0);
784                         path->slots[0]++;
785                         goto next_slot;
786                 }
787                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
788                         break;
789 
790                 fi = btrfs_item_ptr(leaf, path->slots[0],
791                                     struct btrfs_file_extent_item);
792                 extent_type = btrfs_file_extent_type(leaf, fi);
793 
794                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
795                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
796                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
797                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
798                         extent_offset = btrfs_file_extent_offset(leaf, fi);
799                         extent_end = key.offset +
800                                 btrfs_file_extent_num_bytes(leaf, fi);
801                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
802                         extent_end = key.offset +
803                                 btrfs_file_extent_ram_bytes(leaf, fi);
804                 } else {
805                         /* can't happen */
806                         BUG();
807                 }
808 
809                 /*
810                  * Don't skip extent items representing 0 byte lengths. They
811                  * used to be created (bug) if while punching holes we hit
812                  * -ENOSPC condition. So if we find one here, just ensure we
813                  * delete it, otherwise we would insert a new file extent item
814                  * with the same key (offset) as that 0 bytes length file
815                  * extent item in the call to setup_items_for_insert() later
816                  * in this function.
817                  */
818                 if (extent_end == key.offset && extent_end >= search_start) {
819                         last_end = extent_end;
820                         goto delete_extent_item;
821                 }
822 
823                 if (extent_end <= search_start) {
824                         path->slots[0]++;
825                         goto next_slot;
826                 }
827 
828                 found = 1;
829                 search_start = max(key.offset, args->start);
830                 if (recow || !modify_tree) {
831                         modify_tree = -1;
832                         btrfs_release_path(path);
833                         continue;
834                 }
835 
836                 /*
837                  *     | - range to drop - |
838                  *  | -------- extent -------- |
839                  */
840                 if (args->start > key.offset && args->end < extent_end) {
841                         BUG_ON(del_nr > 0);
842                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
843                                 ret = -EOPNOTSUPP;
844                                 break;
845                         }
846 
847                         memcpy(&new_key, &key, sizeof(new_key));
848                         new_key.offset = args->start;
849                         ret = btrfs_duplicate_item(trans, root, path,
850                                                    &new_key);
851                         if (ret == -EAGAIN) {
852                                 btrfs_release_path(path);
853                                 continue;
854                         }
855                         if (ret < 0)
856                                 break;
857 
858                         leaf = path->nodes[0];
859                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
860                                             struct btrfs_file_extent_item);
861                         btrfs_set_file_extent_num_bytes(leaf, fi,
862                                                         args->start - key.offset);
863 
864                         fi = btrfs_item_ptr(leaf, path->slots[0],
865                                             struct btrfs_file_extent_item);
866 
867                         extent_offset += args->start - key.offset;
868                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
869                         btrfs_set_file_extent_num_bytes(leaf, fi,
870                                                         extent_end - args->start);
871                         btrfs_mark_buffer_dirty(leaf);
872 
873                         if (update_refs && disk_bytenr > 0) {
874                                 btrfs_init_generic_ref(&ref,
875                                                 BTRFS_ADD_DELAYED_REF,
876                                                 disk_bytenr, num_bytes, 0);
877                                 btrfs_init_data_ref(&ref,
878                                                 root->root_key.objectid,
879                                                 new_key.objectid,
880                                                 args->start - extent_offset,
881                                                 0, false);
882                                 ret = btrfs_inc_extent_ref(trans, &ref);
883                                 BUG_ON(ret); /* -ENOMEM */
884                         }
885                         key.offset = args->start;
886                 }
887                 /*
888                  * From here on out we will have actually dropped something, so
889                  * last_end can be updated.
890                  */
891                 last_end = extent_end;
892 
893                 /*
894                  *  | ---- range to drop ----- |
895                  *      | -------- extent -------- |
896                  */
897                 if (args->start <= key.offset && args->end < extent_end) {
898                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
899                                 ret = -EOPNOTSUPP;
900                                 break;
901                         }
902 
903                         memcpy(&new_key, &key, sizeof(new_key));
904                         new_key.offset = args->end;
905                         btrfs_set_item_key_safe(fs_info, path, &new_key);
906 
907                         extent_offset += args->end - key.offset;
908                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
909                         btrfs_set_file_extent_num_bytes(leaf, fi,
910                                                         extent_end - args->end);
911                         btrfs_mark_buffer_dirty(leaf);
912                         if (update_refs && disk_bytenr > 0)
913                                 args->bytes_found += args->end - key.offset;
914                         break;
915                 }
916 
917                 search_start = extent_end;
918                 /*
919                  *       | ---- range to drop ----- |
920                  *  | -------- extent -------- |
921                  */
922                 if (args->start > key.offset && args->end >= extent_end) {
923                         BUG_ON(del_nr > 0);
924                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
925                                 ret = -EOPNOTSUPP;
926                                 break;
927                         }
928 
929                         btrfs_set_file_extent_num_bytes(leaf, fi,
930                                                         args->start - key.offset);
931                         btrfs_mark_buffer_dirty(leaf);
932                         if (update_refs && disk_bytenr > 0)
933                                 args->bytes_found += extent_end - args->start;
934                         if (args->end == extent_end)
935                                 break;
936 
937                         path->slots[0]++;
938                         goto next_slot;
939                 }
940 
941                 /*
942                  *  | ---- range to drop ----- |
943                  *    | ------ extent ------ |
944                  */
945                 if (args->start <= key.offset && args->end >= extent_end) {
946 delete_extent_item:
947                         if (del_nr == 0) {
948                                 del_slot = path->slots[0];
949                                 del_nr = 1;
950                         } else {
951                                 BUG_ON(del_slot + del_nr != path->slots[0]);
952                                 del_nr++;
953                         }
954 
955                         if (update_refs &&
956                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
957                                 args->bytes_found += extent_end - key.offset;
958                                 extent_end = ALIGN(extent_end,
959                                                    fs_info->sectorsize);
960                         } else if (update_refs && disk_bytenr > 0) {
961                                 btrfs_init_generic_ref(&ref,
962                                                 BTRFS_DROP_DELAYED_REF,
963                                                 disk_bytenr, num_bytes, 0);
964                                 btrfs_init_data_ref(&ref,
965                                                 root->root_key.objectid,
966                                                 key.objectid,
967                                                 key.offset - extent_offset, 0,
968                                                 false);
969                                 ret = btrfs_free_extent(trans, &ref);
970                                 BUG_ON(ret); /* -ENOMEM */
971                                 args->bytes_found += extent_end - key.offset;
972                         }
973 
974                         if (args->end == extent_end)
975                                 break;
976 
977                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
978                                 path->slots[0]++;
979                                 goto next_slot;
980                         }
981 
982                         ret = btrfs_del_items(trans, root, path, del_slot,
983                                               del_nr);
984                         if (ret) {
985                                 btrfs_abort_transaction(trans, ret);
986                                 break;
987                         }
988 
989                         del_nr = 0;
990                         del_slot = 0;
991 
992                         btrfs_release_path(path);
993                         continue;
994                 }
995 
996                 BUG();
997         }
998 
999         if (!ret && del_nr > 0) {
1000                 /*
1001                  * Set path->slots[0] to first slot, so that after the delete
1002                  * if items are move off from our leaf to its immediate left or
1003                  * right neighbor leafs, we end up with a correct and adjusted
1004                  * path->slots[0] for our insertion (if args->replace_extent).
1005                  */
1006                 path->slots[0] = del_slot;
1007                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1008                 if (ret)
1009                         btrfs_abort_transaction(trans, ret);
1010         }
1011 
1012         leaf = path->nodes[0];
1013         /*
1014          * If btrfs_del_items() was called, it might have deleted a leaf, in
1015          * which case it unlocked our path, so check path->locks[0] matches a
1016          * write lock.
1017          */
1018         if (!ret && args->replace_extent &&
1019             path->locks[0] == BTRFS_WRITE_LOCK &&
1020             btrfs_leaf_free_space(leaf) >=
1021             sizeof(struct btrfs_item) + args->extent_item_size) {
1022 
1023                 key.objectid = ino;
1024                 key.type = BTRFS_EXTENT_DATA_KEY;
1025                 key.offset = args->start;
1026                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1027                         struct btrfs_key slot_key;
1028 
1029                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1030                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1031                                 path->slots[0]++;
1032                 }
1033                 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
1034                 args->extent_inserted = true;
1035         }
1036 
1037         if (!args->path)
1038                 btrfs_free_path(path);
1039         else if (!args->extent_inserted)
1040                 btrfs_release_path(path);
1041 out:
1042         args->drop_end = found ? min(args->end, last_end) : args->end;
1043 
1044         return ret;
1045 }
1046 
1047 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1048                             u64 objectid, u64 bytenr, u64 orig_offset,
1049                             u64 *start, u64 *end)
1050 {
1051         struct btrfs_file_extent_item *fi;
1052         struct btrfs_key key;
1053         u64 extent_end;
1054 
1055         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1056                 return 0;
1057 
1058         btrfs_item_key_to_cpu(leaf, &key, slot);
1059         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1060                 return 0;
1061 
1062         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1063         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1064             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1065             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1066             btrfs_file_extent_compression(leaf, fi) ||
1067             btrfs_file_extent_encryption(leaf, fi) ||
1068             btrfs_file_extent_other_encoding(leaf, fi))
1069                 return 0;
1070 
1071         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1072         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1073                 return 0;
1074 
1075         *start = key.offset;
1076         *end = extent_end;
1077         return 1;
1078 }
1079 
1080 /*
1081  * Mark extent in the range start - end as written.
1082  *
1083  * This changes extent type from 'pre-allocated' to 'regular'. If only
1084  * part of extent is marked as written, the extent will be split into
1085  * two or three.
1086  */
1087 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1088                               struct btrfs_inode *inode, u64 start, u64 end)
1089 {
1090         struct btrfs_fs_info *fs_info = trans->fs_info;
1091         struct btrfs_root *root = inode->root;
1092         struct extent_buffer *leaf;
1093         struct btrfs_path *path;
1094         struct btrfs_file_extent_item *fi;
1095         struct btrfs_ref ref = { 0 };
1096         struct btrfs_key key;
1097         struct btrfs_key new_key;
1098         u64 bytenr;
1099         u64 num_bytes;
1100         u64 extent_end;
1101         u64 orig_offset;
1102         u64 other_start;
1103         u64 other_end;
1104         u64 split;
1105         int del_nr = 0;
1106         int del_slot = 0;
1107         int recow;
1108         int ret = 0;
1109         u64 ino = btrfs_ino(inode);
1110 
1111         path = btrfs_alloc_path();
1112         if (!path)
1113                 return -ENOMEM;
1114 again:
1115         recow = 0;
1116         split = start;
1117         key.objectid = ino;
1118         key.type = BTRFS_EXTENT_DATA_KEY;
1119         key.offset = split;
1120 
1121         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122         if (ret < 0)
1123                 goto out;
1124         if (ret > 0 && path->slots[0] > 0)
1125                 path->slots[0]--;
1126 
1127         leaf = path->nodes[0];
1128         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1129         if (key.objectid != ino ||
1130             key.type != BTRFS_EXTENT_DATA_KEY) {
1131                 ret = -EINVAL;
1132                 btrfs_abort_transaction(trans, ret);
1133                 goto out;
1134         }
1135         fi = btrfs_item_ptr(leaf, path->slots[0],
1136                             struct btrfs_file_extent_item);
1137         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1138                 ret = -EINVAL;
1139                 btrfs_abort_transaction(trans, ret);
1140                 goto out;
1141         }
1142         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1143         if (key.offset > start || extent_end < end) {
1144                 ret = -EINVAL;
1145                 btrfs_abort_transaction(trans, ret);
1146                 goto out;
1147         }
1148 
1149         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1150         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1151         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1152         memcpy(&new_key, &key, sizeof(new_key));
1153 
1154         if (start == key.offset && end < extent_end) {
1155                 other_start = 0;
1156                 other_end = start;
1157                 if (extent_mergeable(leaf, path->slots[0] - 1,
1158                                      ino, bytenr, orig_offset,
1159                                      &other_start, &other_end)) {
1160                         new_key.offset = end;
1161                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1162                         fi = btrfs_item_ptr(leaf, path->slots[0],
1163                                             struct btrfs_file_extent_item);
1164                         btrfs_set_file_extent_generation(leaf, fi,
1165                                                          trans->transid);
1166                         btrfs_set_file_extent_num_bytes(leaf, fi,
1167                                                         extent_end - end);
1168                         btrfs_set_file_extent_offset(leaf, fi,
1169                                                      end - orig_offset);
1170                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1171                                             struct btrfs_file_extent_item);
1172                         btrfs_set_file_extent_generation(leaf, fi,
1173                                                          trans->transid);
1174                         btrfs_set_file_extent_num_bytes(leaf, fi,
1175                                                         end - other_start);
1176                         btrfs_mark_buffer_dirty(leaf);
1177                         goto out;
1178                 }
1179         }
1180 
1181         if (start > key.offset && end == extent_end) {
1182                 other_start = end;
1183                 other_end = 0;
1184                 if (extent_mergeable(leaf, path->slots[0] + 1,
1185                                      ino, bytenr, orig_offset,
1186                                      &other_start, &other_end)) {
1187                         fi = btrfs_item_ptr(leaf, path->slots[0],
1188                                             struct btrfs_file_extent_item);
1189                         btrfs_set_file_extent_num_bytes(leaf, fi,
1190                                                         start - key.offset);
1191                         btrfs_set_file_extent_generation(leaf, fi,
1192                                                          trans->transid);
1193                         path->slots[0]++;
1194                         new_key.offset = start;
1195                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1196 
1197                         fi = btrfs_item_ptr(leaf, path->slots[0],
1198                                             struct btrfs_file_extent_item);
1199                         btrfs_set_file_extent_generation(leaf, fi,
1200                                                          trans->transid);
1201                         btrfs_set_file_extent_num_bytes(leaf, fi,
1202                                                         other_end - start);
1203                         btrfs_set_file_extent_offset(leaf, fi,
1204                                                      start - orig_offset);
1205                         btrfs_mark_buffer_dirty(leaf);
1206                         goto out;
1207                 }
1208         }
1209 
1210         while (start > key.offset || end < extent_end) {
1211                 if (key.offset == start)
1212                         split = end;
1213 
1214                 new_key.offset = split;
1215                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1216                 if (ret == -EAGAIN) {
1217                         btrfs_release_path(path);
1218                         goto again;
1219                 }
1220                 if (ret < 0) {
1221                         btrfs_abort_transaction(trans, ret);
1222                         goto out;
1223                 }
1224 
1225                 leaf = path->nodes[0];
1226                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1227                                     struct btrfs_file_extent_item);
1228                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1229                 btrfs_set_file_extent_num_bytes(leaf, fi,
1230                                                 split - key.offset);
1231 
1232                 fi = btrfs_item_ptr(leaf, path->slots[0],
1233                                     struct btrfs_file_extent_item);
1234 
1235                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1236                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1237                 btrfs_set_file_extent_num_bytes(leaf, fi,
1238                                                 extent_end - split);
1239                 btrfs_mark_buffer_dirty(leaf);
1240 
1241                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1242                                        num_bytes, 0);
1243                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1244                                     orig_offset, 0, false);
1245                 ret = btrfs_inc_extent_ref(trans, &ref);
1246                 if (ret) {
1247                         btrfs_abort_transaction(trans, ret);
1248                         goto out;
1249                 }
1250 
1251                 if (split == start) {
1252                         key.offset = start;
1253                 } else {
1254                         if (start != key.offset) {
1255                                 ret = -EINVAL;
1256                                 btrfs_abort_transaction(trans, ret);
1257                                 goto out;
1258                         }
1259                         path->slots[0]--;
1260                         extent_end = end;
1261                 }
1262                 recow = 1;
1263         }
1264 
1265         other_start = end;
1266         other_end = 0;
1267         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1268                                num_bytes, 0);
1269         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1270                             0, false);
1271         if (extent_mergeable(leaf, path->slots[0] + 1,
1272                              ino, bytenr, orig_offset,
1273                              &other_start, &other_end)) {
1274                 if (recow) {
1275                         btrfs_release_path(path);
1276                         goto again;
1277                 }
1278                 extent_end = other_end;
1279                 del_slot = path->slots[0] + 1;
1280                 del_nr++;
1281                 ret = btrfs_free_extent(trans, &ref);
1282                 if (ret) {
1283                         btrfs_abort_transaction(trans, ret);
1284                         goto out;
1285                 }
1286         }
1287         other_start = 0;
1288         other_end = start;
1289         if (extent_mergeable(leaf, path->slots[0] - 1,
1290                              ino, bytenr, orig_offset,
1291                              &other_start, &other_end)) {
1292                 if (recow) {
1293                         btrfs_release_path(path);
1294                         goto again;
1295                 }
1296                 key.offset = other_start;
1297                 del_slot = path->slots[0];
1298                 del_nr++;
1299                 ret = btrfs_free_extent(trans, &ref);
1300                 if (ret) {
1301                         btrfs_abort_transaction(trans, ret);
1302                         goto out;
1303                 }
1304         }
1305         if (del_nr == 0) {
1306                 fi = btrfs_item_ptr(leaf, path->slots[0],
1307                            struct btrfs_file_extent_item);
1308                 btrfs_set_file_extent_type(leaf, fi,
1309                                            BTRFS_FILE_EXTENT_REG);
1310                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1311                 btrfs_mark_buffer_dirty(leaf);
1312         } else {
1313                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1314                            struct btrfs_file_extent_item);
1315                 btrfs_set_file_extent_type(leaf, fi,
1316                                            BTRFS_FILE_EXTENT_REG);
1317                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1318                 btrfs_set_file_extent_num_bytes(leaf, fi,
1319                                                 extent_end - key.offset);
1320                 btrfs_mark_buffer_dirty(leaf);
1321 
1322                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1323                 if (ret < 0) {
1324                         btrfs_abort_transaction(trans, ret);
1325                         goto out;
1326                 }
1327         }
1328 out:
1329         btrfs_free_path(path);
1330         return ret;
1331 }
1332 
1333 /*
1334  * on error we return an unlocked page and the error value
1335  * on success we return a locked page and 0
1336  */
1337 static int prepare_uptodate_page(struct inode *inode,
1338                                  struct page *page, u64 pos,
1339                                  bool force_uptodate)
1340 {
1341         struct folio *folio = page_folio(page);
1342         int ret = 0;
1343 
1344         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1345             !PageUptodate(page)) {
1346                 ret = btrfs_read_folio(NULL, folio);
1347                 if (ret)
1348                         return ret;
1349                 lock_page(page);
1350                 if (!PageUptodate(page)) {
1351                         unlock_page(page);
1352                         return -EIO;
1353                 }
1354 
1355                 /*
1356                  * Since btrfs_read_folio() will unlock the folio before it
1357                  * returns, there is a window where btrfs_release_folio() can be
1358                  * called to release the page.  Here we check both inode
1359                  * mapping and PagePrivate() to make sure the page was not
1360                  * released.
1361                  *
1362                  * The private flag check is essential for subpage as we need
1363                  * to store extra bitmap using page->private.
1364                  */
1365                 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1366                         unlock_page(page);
1367                         return -EAGAIN;
1368                 }
1369         }
1370         return 0;
1371 }
1372 
1373 /*
1374  * this just gets pages into the page cache and locks them down.
1375  */
1376 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1377                                   size_t num_pages, loff_t pos,
1378                                   size_t write_bytes, bool force_uptodate)
1379 {
1380         int i;
1381         unsigned long index = pos >> PAGE_SHIFT;
1382         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1383         int err = 0;
1384         int faili;
1385 
1386         for (i = 0; i < num_pages; i++) {
1387 again:
1388                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1389                                                mask | __GFP_WRITE);
1390                 if (!pages[i]) {
1391                         faili = i - 1;
1392                         err = -ENOMEM;
1393                         goto fail;
1394                 }
1395 
1396                 err = set_page_extent_mapped(pages[i]);
1397                 if (err < 0) {
1398                         faili = i;
1399                         goto fail;
1400                 }
1401 
1402                 if (i == 0)
1403                         err = prepare_uptodate_page(inode, pages[i], pos,
1404                                                     force_uptodate);
1405                 if (!err && i == num_pages - 1)
1406                         err = prepare_uptodate_page(inode, pages[i],
1407                                                     pos + write_bytes, false);
1408                 if (err) {
1409                         put_page(pages[i]);
1410                         if (err == -EAGAIN) {
1411                                 err = 0;
1412                                 goto again;
1413                         }
1414                         faili = i - 1;
1415                         goto fail;
1416                 }
1417                 wait_on_page_writeback(pages[i]);
1418         }
1419 
1420         return 0;
1421 fail:
1422         while (faili >= 0) {
1423                 unlock_page(pages[faili]);
1424                 put_page(pages[faili]);
1425                 faili--;
1426         }
1427         return err;
1428 
1429 }
1430 
1431 /*
1432  * This function locks the extent and properly waits for data=ordered extents
1433  * to finish before allowing the pages to be modified if need.
1434  *
1435  * The return value:
1436  * 1 - the extent is locked
1437  * 0 - the extent is not locked, and everything is OK
1438  * -EAGAIN - need re-prepare the pages
1439  * the other < 0 number - Something wrong happens
1440  */
1441 static noinline int
1442 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1443                                 size_t num_pages, loff_t pos,
1444                                 size_t write_bytes,
1445                                 u64 *lockstart, u64 *lockend,
1446                                 struct extent_state **cached_state)
1447 {
1448         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1449         u64 start_pos;
1450         u64 last_pos;
1451         int i;
1452         int ret = 0;
1453 
1454         start_pos = round_down(pos, fs_info->sectorsize);
1455         last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1456 
1457         if (start_pos < inode->vfs_inode.i_size) {
1458                 struct btrfs_ordered_extent *ordered;
1459 
1460                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1461                                 cached_state);
1462                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1463                                                      last_pos - start_pos + 1);
1464                 if (ordered &&
1465                     ordered->file_offset + ordered->num_bytes > start_pos &&
1466                     ordered->file_offset <= last_pos) {
1467                         unlock_extent_cached(&inode->io_tree, start_pos,
1468                                         last_pos, cached_state);
1469                         for (i = 0; i < num_pages; i++) {
1470                                 unlock_page(pages[i]);
1471                                 put_page(pages[i]);
1472                         }
1473                         btrfs_start_ordered_extent(ordered, 1);
1474                         btrfs_put_ordered_extent(ordered);
1475                         return -EAGAIN;
1476                 }
1477                 if (ordered)
1478                         btrfs_put_ordered_extent(ordered);
1479 
1480                 *lockstart = start_pos;
1481                 *lockend = last_pos;
1482                 ret = 1;
1483         }
1484 
1485         /*
1486          * We should be called after prepare_pages() which should have locked
1487          * all pages in the range.
1488          */
1489         for (i = 0; i < num_pages; i++)
1490                 WARN_ON(!PageLocked(pages[i]));
1491 
1492         return ret;
1493 }
1494 
1495 /*
1496  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1497  *
1498  * @pos:         File offset.
1499  * @write_bytes: The length to write, will be updated to the nocow writeable
1500  *               range.
1501  *
1502  * This function will flush ordered extents in the range to ensure proper
1503  * nocow checks.
1504  *
1505  * Return:
1506  * > 0          If we can nocow, and updates @write_bytes.
1507  *  0           If we can't do a nocow write.
1508  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1509  *              root is in progress.
1510  * < 0          If an error happened.
1511  *
1512  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1513  */
1514 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1515                            size_t *write_bytes)
1516 {
1517         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1518         struct btrfs_root *root = inode->root;
1519         u64 lockstart, lockend;
1520         u64 num_bytes;
1521         int ret;
1522 
1523         if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1524                 return 0;
1525 
1526         if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1527                 return -EAGAIN;
1528 
1529         lockstart = round_down(pos, fs_info->sectorsize);
1530         lockend = round_up(pos + *write_bytes,
1531                            fs_info->sectorsize) - 1;
1532         num_bytes = lockend - lockstart + 1;
1533 
1534         btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, NULL);
1535         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1536                         NULL, NULL, NULL, false);
1537         if (ret <= 0) {
1538                 ret = 0;
1539                 btrfs_drew_write_unlock(&root->snapshot_lock);
1540         } else {
1541                 *write_bytes = min_t(size_t, *write_bytes ,
1542                                      num_bytes - pos + lockstart);
1543         }
1544         unlock_extent(&inode->io_tree, lockstart, lockend);
1545 
1546         return ret;
1547 }
1548 
1549 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1550 {
1551         btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1552 }
1553 
1554 static void update_time_for_write(struct inode *inode)
1555 {
1556         struct timespec64 now;
1557 
1558         if (IS_NOCMTIME(inode))
1559                 return;
1560 
1561         now = current_time(inode);
1562         if (!timespec64_equal(&inode->i_mtime, &now))
1563                 inode->i_mtime = now;
1564 
1565         if (!timespec64_equal(&inode->i_ctime, &now))
1566                 inode->i_ctime = now;
1567 
1568         if (IS_I_VERSION(inode))
1569                 inode_inc_iversion(inode);
1570 }
1571 
1572 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1573                              size_t count)
1574 {
1575         struct file *file = iocb->ki_filp;
1576         struct inode *inode = file_inode(file);
1577         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1578         loff_t pos = iocb->ki_pos;
1579         int ret;
1580         loff_t oldsize;
1581         loff_t start_pos;
1582 
1583         /*
1584          * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1585          * prealloc flags, as without those flags we always have to COW. We will
1586          * later check if we can really COW into the target range (using
1587          * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1588          */
1589         if ((iocb->ki_flags & IOCB_NOWAIT) &&
1590             !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1591                 return -EAGAIN;
1592 
1593         current->backing_dev_info = inode_to_bdi(inode);
1594         ret = file_remove_privs(file);
1595         if (ret)
1596                 return ret;
1597 
1598         /*
1599          * We reserve space for updating the inode when we reserve space for the
1600          * extent we are going to write, so we will enospc out there.  We don't
1601          * need to start yet another transaction to update the inode as we will
1602          * update the inode when we finish writing whatever data we write.
1603          */
1604         update_time_for_write(inode);
1605 
1606         start_pos = round_down(pos, fs_info->sectorsize);
1607         oldsize = i_size_read(inode);
1608         if (start_pos > oldsize) {
1609                 /* Expand hole size to cover write data, preventing empty gap */
1610                 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1611 
1612                 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1613                 if (ret) {
1614                         current->backing_dev_info = NULL;
1615                         return ret;
1616                 }
1617         }
1618 
1619         return 0;
1620 }
1621 
1622 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1623                                                struct iov_iter *i)
1624 {
1625         struct file *file = iocb->ki_filp;
1626         loff_t pos;
1627         struct inode *inode = file_inode(file);
1628         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1629         struct page **pages = NULL;
1630         struct extent_changeset *data_reserved = NULL;
1631         u64 release_bytes = 0;
1632         u64 lockstart;
1633         u64 lockend;
1634         size_t num_written = 0;
1635         int nrptrs;
1636         ssize_t ret;
1637         bool only_release_metadata = false;
1638         bool force_page_uptodate = false;
1639         loff_t old_isize = i_size_read(inode);
1640         unsigned int ilock_flags = 0;
1641 
1642         if (iocb->ki_flags & IOCB_NOWAIT)
1643                 ilock_flags |= BTRFS_ILOCK_TRY;
1644 
1645         ret = btrfs_inode_lock(inode, ilock_flags);
1646         if (ret < 0)
1647                 return ret;
1648 
1649         ret = generic_write_checks(iocb, i);
1650         if (ret <= 0)
1651                 goto out;
1652 
1653         ret = btrfs_write_check(iocb, i, ret);
1654         if (ret < 0)
1655                 goto out;
1656 
1657         pos = iocb->ki_pos;
1658         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1659                         PAGE_SIZE / (sizeof(struct page *)));
1660         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1661         nrptrs = max(nrptrs, 8);
1662         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1663         if (!pages) {
1664                 ret = -ENOMEM;
1665                 goto out;
1666         }
1667 
1668         while (iov_iter_count(i) > 0) {
1669                 struct extent_state *cached_state = NULL;
1670                 size_t offset = offset_in_page(pos);
1671                 size_t sector_offset;
1672                 size_t write_bytes = min(iov_iter_count(i),
1673                                          nrptrs * (size_t)PAGE_SIZE -
1674                                          offset);
1675                 size_t num_pages;
1676                 size_t reserve_bytes;
1677                 size_t dirty_pages;
1678                 size_t copied;
1679                 size_t dirty_sectors;
1680                 size_t num_sectors;
1681                 int extents_locked;
1682 
1683                 /*
1684                  * Fault pages before locking them in prepare_pages
1685                  * to avoid recursive lock
1686                  */
1687                 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1688                         ret = -EFAULT;
1689                         break;
1690                 }
1691 
1692                 only_release_metadata = false;
1693                 sector_offset = pos & (fs_info->sectorsize - 1);
1694 
1695                 extent_changeset_release(data_reserved);
1696                 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1697                                                   &data_reserved, pos,
1698                                                   write_bytes);
1699                 if (ret < 0) {
1700                         /*
1701                          * If we don't have to COW at the offset, reserve
1702                          * metadata only. write_bytes may get smaller than
1703                          * requested here.
1704                          */
1705                         if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1706                                                    &write_bytes) > 0)
1707                                 only_release_metadata = true;
1708                         else
1709                                 break;
1710                 }
1711 
1712                 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1713                 WARN_ON(num_pages > nrptrs);
1714                 reserve_bytes = round_up(write_bytes + sector_offset,
1715                                          fs_info->sectorsize);
1716                 WARN_ON(reserve_bytes == 0);
1717                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1718                                                       reserve_bytes,
1719                                                       reserve_bytes, false);
1720                 if (ret) {
1721                         if (!only_release_metadata)
1722                                 btrfs_free_reserved_data_space(BTRFS_I(inode),
1723                                                 data_reserved, pos,
1724                                                 write_bytes);
1725                         else
1726                                 btrfs_check_nocow_unlock(BTRFS_I(inode));
1727                         break;
1728                 }
1729 
1730                 release_bytes = reserve_bytes;
1731 again:
1732                 /*
1733                  * This is going to setup the pages array with the number of
1734                  * pages we want, so we don't really need to worry about the
1735                  * contents of pages from loop to loop
1736                  */
1737                 ret = prepare_pages(inode, pages, num_pages,
1738                                     pos, write_bytes,
1739                                     force_page_uptodate);
1740                 if (ret) {
1741                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1742                                                        reserve_bytes);
1743                         break;
1744                 }
1745 
1746                 extents_locked = lock_and_cleanup_extent_if_need(
1747                                 BTRFS_I(inode), pages,
1748                                 num_pages, pos, write_bytes, &lockstart,
1749                                 &lockend, &cached_state);
1750                 if (extents_locked < 0) {
1751                         if (extents_locked == -EAGAIN)
1752                                 goto again;
1753                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1754                                                        reserve_bytes);
1755                         ret = extents_locked;
1756                         break;
1757                 }
1758 
1759                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1760 
1761                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1762                 dirty_sectors = round_up(copied + sector_offset,
1763                                         fs_info->sectorsize);
1764                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1765 
1766                 /*
1767                  * if we have trouble faulting in the pages, fall
1768                  * back to one page at a time
1769                  */
1770                 if (copied < write_bytes)
1771                         nrptrs = 1;
1772 
1773                 if (copied == 0) {
1774                         force_page_uptodate = true;
1775                         dirty_sectors = 0;
1776                         dirty_pages = 0;
1777                 } else {
1778                         force_page_uptodate = false;
1779                         dirty_pages = DIV_ROUND_UP(copied + offset,
1780                                                    PAGE_SIZE);
1781                 }
1782 
1783                 if (num_sectors > dirty_sectors) {
1784                         /* release everything except the sectors we dirtied */
1785                         release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1786                         if (only_release_metadata) {
1787                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1788                                                         release_bytes, true);
1789                         } else {
1790                                 u64 __pos;
1791 
1792                                 __pos = round_down(pos,
1793                                                    fs_info->sectorsize) +
1794                                         (dirty_pages << PAGE_SHIFT);
1795                                 btrfs_delalloc_release_space(BTRFS_I(inode),
1796                                                 data_reserved, __pos,
1797                                                 release_bytes, true);
1798                         }
1799                 }
1800 
1801                 release_bytes = round_up(copied + sector_offset,
1802                                         fs_info->sectorsize);
1803 
1804                 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1805                                         dirty_pages, pos, copied,
1806                                         &cached_state, only_release_metadata);
1807 
1808                 /*
1809                  * If we have not locked the extent range, because the range's
1810                  * start offset is >= i_size, we might still have a non-NULL
1811                  * cached extent state, acquired while marking the extent range
1812                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1813                  * possible cached extent state to avoid a memory leak.
1814                  */
1815                 if (extents_locked)
1816                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1817                                              lockstart, lockend, &cached_state);
1818                 else
1819                         free_extent_state(cached_state);
1820 
1821                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1822                 if (ret) {
1823                         btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1824                         break;
1825                 }
1826 
1827                 release_bytes = 0;
1828                 if (only_release_metadata)
1829                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1830 
1831                 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1832 
1833                 cond_resched();
1834 
1835                 balance_dirty_pages_ratelimited(inode->i_mapping);
1836 
1837                 pos += copied;
1838                 num_written += copied;
1839         }
1840 
1841         kfree(pages);
1842 
1843         if (release_bytes) {
1844                 if (only_release_metadata) {
1845                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1846                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1847                                         release_bytes, true);
1848                 } else {
1849                         btrfs_delalloc_release_space(BTRFS_I(inode),
1850                                         data_reserved,
1851                                         round_down(pos, fs_info->sectorsize),
1852                                         release_bytes, true);
1853                 }
1854         }
1855 
1856         extent_changeset_free(data_reserved);
1857         if (num_written > 0) {
1858                 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1859                 iocb->ki_pos += num_written;
1860         }
1861 out:
1862         btrfs_inode_unlock(inode, ilock_flags);
1863         return num_written ? num_written : ret;
1864 }
1865 
1866 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1867                                const struct iov_iter *iter, loff_t offset)
1868 {
1869         const u32 blocksize_mask = fs_info->sectorsize - 1;
1870 
1871         if (offset & blocksize_mask)
1872                 return -EINVAL;
1873 
1874         if (iov_iter_alignment(iter) & blocksize_mask)
1875                 return -EINVAL;
1876 
1877         return 0;
1878 }
1879 
1880 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1881 {
1882         const bool is_sync_write = (iocb->ki_flags & IOCB_DSYNC);
1883         struct file *file = iocb->ki_filp;
1884         struct inode *inode = file_inode(file);
1885         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1886         loff_t pos;
1887         ssize_t written = 0;
1888         ssize_t written_buffered;
1889         size_t prev_left = 0;
1890         loff_t endbyte;
1891         ssize_t err;
1892         unsigned int ilock_flags = 0;
1893 
1894         if (iocb->ki_flags & IOCB_NOWAIT)
1895                 ilock_flags |= BTRFS_ILOCK_TRY;
1896 
1897         /* If the write DIO is within EOF, use a shared lock */
1898         if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1899                 ilock_flags |= BTRFS_ILOCK_SHARED;
1900 
1901 relock:
1902         err = btrfs_inode_lock(inode, ilock_flags);
1903         if (err < 0)
1904                 return err;
1905 
1906         err = generic_write_checks(iocb, from);
1907         if (err <= 0) {
1908                 btrfs_inode_unlock(inode, ilock_flags);
1909                 return err;
1910         }
1911 
1912         err = btrfs_write_check(iocb, from, err);
1913         if (err < 0) {
1914                 btrfs_inode_unlock(inode, ilock_flags);
1915                 goto out;
1916         }
1917 
1918         pos = iocb->ki_pos;
1919         /*
1920          * Re-check since file size may have changed just before taking the
1921          * lock or pos may have changed because of O_APPEND in generic_write_check()
1922          */
1923         if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1924             pos + iov_iter_count(from) > i_size_read(inode)) {
1925                 btrfs_inode_unlock(inode, ilock_flags);
1926                 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1927                 goto relock;
1928         }
1929 
1930         if (check_direct_IO(fs_info, from, pos)) {
1931                 btrfs_inode_unlock(inode, ilock_flags);
1932                 goto buffered;
1933         }
1934 
1935         /*
1936          * We remove IOCB_DSYNC so that we don't deadlock when iomap_dio_rw()
1937          * calls generic_write_sync() (through iomap_dio_complete()), because
1938          * that results in calling fsync (btrfs_sync_file()) which will try to
1939          * lock the inode in exclusive/write mode.
1940          */
1941         if (is_sync_write)
1942                 iocb->ki_flags &= ~IOCB_DSYNC;
1943 
1944         /*
1945          * The iov_iter can be mapped to the same file range we are writing to.
1946          * If that's the case, then we will deadlock in the iomap code, because
1947          * it first calls our callback btrfs_dio_iomap_begin(), which will create
1948          * an ordered extent, and after that it will fault in the pages that the
1949          * iov_iter refers to. During the fault in we end up in the readahead
1950          * pages code (starting at btrfs_readahead()), which will lock the range,
1951          * find that ordered extent and then wait for it to complete (at
1952          * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1953          * obviously the ordered extent can never complete as we didn't submit
1954          * yet the respective bio(s). This always happens when the buffer is
1955          * memory mapped to the same file range, since the iomap DIO code always
1956          * invalidates pages in the target file range (after starting and waiting
1957          * for any writeback).
1958          *
1959          * So here we disable page faults in the iov_iter and then retry if we
1960          * got -EFAULT, faulting in the pages before the retry.
1961          */
1962 again:
1963         from->nofault = true;
1964         err = btrfs_dio_rw(iocb, from, written);
1965         from->nofault = false;
1966 
1967         /* No increment (+=) because iomap returns a cumulative value. */
1968         if (err > 0)
1969                 written = err;
1970 
1971         if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1972                 const size_t left = iov_iter_count(from);
1973                 /*
1974                  * We have more data left to write. Try to fault in as many as
1975                  * possible of the remainder pages and retry. We do this without
1976                  * releasing and locking again the inode, to prevent races with
1977                  * truncate.
1978                  *
1979                  * Also, in case the iov refers to pages in the file range of the
1980                  * file we want to write to (due to a mmap), we could enter an
1981                  * infinite loop if we retry after faulting the pages in, since
1982                  * iomap will invalidate any pages in the range early on, before
1983                  * it tries to fault in the pages of the iov. So we keep track of
1984                  * how much was left of iov in the previous EFAULT and fallback
1985                  * to buffered IO in case we haven't made any progress.
1986                  */
1987                 if (left == prev_left) {
1988                         err = -ENOTBLK;
1989                 } else {
1990                         fault_in_iov_iter_readable(from, left);
1991                         prev_left = left;
1992                         goto again;
1993                 }
1994         }
1995 
1996         btrfs_inode_unlock(inode, ilock_flags);
1997 
1998         /*
1999          * Add back IOCB_DSYNC. Our caller, btrfs_file_write_iter(), will do
2000          * the fsync (call generic_write_sync()).
2001          */
2002         if (is_sync_write)
2003                 iocb->ki_flags |= IOCB_DSYNC;
2004 
2005         /* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */
2006         if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
2007                 goto out;
2008 
2009 buffered:
2010         pos = iocb->ki_pos;
2011         written_buffered = btrfs_buffered_write(iocb, from);
2012         if (written_buffered < 0) {
2013                 err = written_buffered;
2014                 goto out;
2015         }
2016         /*
2017          * Ensure all data is persisted. We want the next direct IO read to be
2018          * able to read what was just written.
2019          */
2020         endbyte = pos + written_buffered - 1;
2021         err = btrfs_fdatawrite_range(inode, pos, endbyte);
2022         if (err)
2023                 goto out;
2024         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
2025         if (err)
2026                 goto out;
2027         written += written_buffered;
2028         iocb->ki_pos = pos + written_buffered;
2029         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
2030                                  endbyte >> PAGE_SHIFT);
2031 out:
2032         return err < 0 ? err : written;
2033 }
2034 
2035 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
2036                         const struct btrfs_ioctl_encoded_io_args *encoded)
2037 {
2038         struct file *file = iocb->ki_filp;
2039         struct inode *inode = file_inode(file);
2040         loff_t count;
2041         ssize_t ret;
2042 
2043         btrfs_inode_lock(inode, 0);
2044         count = encoded->len;
2045         ret = generic_write_checks_count(iocb, &count);
2046         if (ret == 0 && count != encoded->len) {
2047                 /*
2048                  * The write got truncated by generic_write_checks_count(). We
2049                  * can't do a partial encoded write.
2050                  */
2051                 ret = -EFBIG;
2052         }
2053         if (ret || encoded->len == 0)
2054                 goto out;
2055 
2056         ret = btrfs_write_check(iocb, from, encoded->len);
2057         if (ret < 0)
2058                 goto out;
2059 
2060         ret = btrfs_do_encoded_write(iocb, from, encoded);
2061 out:
2062         btrfs_inode_unlock(inode, 0);
2063         return ret;
2064 }
2065 
2066 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
2067                             const struct btrfs_ioctl_encoded_io_args *encoded)
2068 {
2069         struct file *file = iocb->ki_filp;
2070         struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2071         ssize_t num_written, num_sync;
2072         const bool sync = iocb->ki_flags & IOCB_DSYNC;
2073 
2074         /*
2075          * If the fs flips readonly due to some impossible error, although we
2076          * have opened a file as writable, we have to stop this write operation
2077          * to ensure consistency.
2078          */
2079         if (BTRFS_FS_ERROR(inode->root->fs_info))
2080                 return -EROFS;
2081 
2082         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2083                 return -EOPNOTSUPP;
2084 
2085         if (sync)
2086                 atomic_inc(&inode->sync_writers);
2087 
2088         if (encoded) {
2089                 num_written = btrfs_encoded_write(iocb, from, encoded);
2090                 num_sync = encoded->len;
2091         } else if (iocb->ki_flags & IOCB_DIRECT) {
2092                 num_written = num_sync = btrfs_direct_write(iocb, from);
2093         } else {
2094                 num_written = num_sync = btrfs_buffered_write(iocb, from);
2095         }
2096 
2097         btrfs_set_inode_last_sub_trans(inode);
2098 
2099         if (num_sync > 0) {
2100                 num_sync = generic_write_sync(iocb, num_sync);
2101                 if (num_sync < 0)
2102                         num_written = num_sync;
2103         }
2104 
2105         if (sync)
2106                 atomic_dec(&inode->sync_writers);
2107 
2108         current->backing_dev_info = NULL;
2109         return num_written;
2110 }
2111 
2112 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2113 {
2114         return btrfs_do_write_iter(iocb, from, NULL);
2115 }
2116 
2117 int btrfs_release_file(struct inode *inode, struct file *filp)
2118 {
2119         struct btrfs_file_private *private = filp->private_data;
2120 
2121         if (private && private->filldir_buf)
2122                 kfree(private->filldir_buf);
2123         kfree(private);
2124         filp->private_data = NULL;
2125 
2126         /*
2127          * Set by setattr when we are about to truncate a file from a non-zero
2128          * size to a zero size.  This tries to flush down new bytes that may
2129          * have been written if the application were using truncate to replace
2130          * a file in place.
2131          */
2132         if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2133                                &BTRFS_I(inode)->runtime_flags))
2134                         filemap_flush(inode->i_mapping);
2135         return 0;
2136 }
2137 
2138 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2139 {
2140         int ret;
2141         struct blk_plug plug;
2142 
2143         /*
2144          * This is only called in fsync, which would do synchronous writes, so
2145          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2146          * multiple disks using raid profile, a large IO can be split to
2147          * several segments of stripe length (currently 64K).
2148          */
2149         blk_start_plug(&plug);
2150         atomic_inc(&BTRFS_I(inode)->sync_writers);
2151         ret = btrfs_fdatawrite_range(inode, start, end);
2152         atomic_dec(&BTRFS_I(inode)->sync_writers);
2153         blk_finish_plug(&plug);
2154 
2155         return ret;
2156 }
2157 
2158 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2159 {
2160         struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2161         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2162 
2163         if (btrfs_inode_in_log(inode, fs_info->generation) &&
2164             list_empty(&ctx->ordered_extents))
2165                 return true;
2166 
2167         /*
2168          * If we are doing a fast fsync we can not bail out if the inode's
2169          * last_trans is <= then the last committed transaction, because we only
2170          * update the last_trans of the inode during ordered extent completion,
2171          * and for a fast fsync we don't wait for that, we only wait for the
2172          * writeback to complete.
2173          */
2174         if (inode->last_trans <= fs_info->last_trans_committed &&
2175             (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2176              list_empty(&ctx->ordered_extents)))
2177                 return true;
2178 
2179         return false;
2180 }
2181 
2182 /*
2183  * fsync call for both files and directories.  This logs the inode into
2184  * the tree log instead of forcing full commits whenever possible.
2185  *
2186  * It needs to call filemap_fdatawait so that all ordered extent updates are
2187  * in the metadata btree are up to date for copying to the log.
2188  *
2189  * It drops the inode mutex before doing the tree log commit.  This is an
2190  * important optimization for directories because holding the mutex prevents
2191  * new operations on the dir while we write to disk.
2192  */
2193 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2194 {
2195         struct dentry *dentry = file_dentry(file);
2196         struct inode *inode = d_inode(dentry);
2197         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2198         struct btrfs_root *root = BTRFS_I(inode)->root;
2199         struct btrfs_trans_handle *trans;
2200         struct btrfs_log_ctx ctx;
2201         int ret = 0, err;
2202         u64 len;
2203         bool full_sync;
2204 
2205         trace_btrfs_sync_file(file, datasync);
2206 
2207         btrfs_init_log_ctx(&ctx, inode);
2208 
2209         /*
2210          * Always set the range to a full range, otherwise we can get into
2211          * several problems, from missing file extent items to represent holes
2212          * when not using the NO_HOLES feature, to log tree corruption due to
2213          * races between hole detection during logging and completion of ordered
2214          * extents outside the range, to missing checksums due to ordered extents
2215          * for which we flushed only a subset of their pages.
2216          */
2217         start = 0;
2218         end = LLONG_MAX;
2219         len = (u64)LLONG_MAX + 1;
2220 
2221         /*
2222          * We write the dirty pages in the range and wait until they complete
2223          * out of the ->i_mutex. If so, we can flush the dirty pages by
2224          * multi-task, and make the performance up.  See
2225          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2226          */
2227         ret = start_ordered_ops(inode, start, end);
2228         if (ret)
2229                 goto out;
2230 
2231         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2232 
2233         atomic_inc(&root->log_batch);
2234 
2235         /*
2236          * Before we acquired the inode's lock and the mmap lock, someone may
2237          * have dirtied more pages in the target range. We need to make sure
2238          * that writeback for any such pages does not start while we are logging
2239          * the inode, because if it does, any of the following might happen when
2240          * we are not doing a full inode sync:
2241          *
2242          * 1) We log an extent after its writeback finishes but before its
2243          *    checksums are added to the csum tree, leading to -EIO errors
2244          *    when attempting to read the extent after a log replay.
2245          *
2246          * 2) We can end up logging an extent before its writeback finishes.
2247          *    Therefore after the log replay we will have a file extent item
2248          *    pointing to an unwritten extent (and no data checksums as well).
2249          *
2250          * So trigger writeback for any eventual new dirty pages and then we
2251          * wait for all ordered extents to complete below.
2252          */
2253         ret = start_ordered_ops(inode, start, end);
2254         if (ret) {
2255                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2256                 goto out;
2257         }
2258 
2259         /*
2260          * Always check for the full sync flag while holding the inode's lock,
2261          * to avoid races with other tasks. The flag must be either set all the
2262          * time during logging or always off all the time while logging.
2263          * We check the flag here after starting delalloc above, because when
2264          * running delalloc the full sync flag may be set if we need to drop
2265          * extra extent map ranges due to temporary memory allocation failures.
2266          */
2267         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2268                              &BTRFS_I(inode)->runtime_flags);
2269 
2270         /*
2271          * We have to do this here to avoid the priority inversion of waiting on
2272          * IO of a lower priority task while holding a transaction open.
2273          *
2274          * For a full fsync we wait for the ordered extents to complete while
2275          * for a fast fsync we wait just for writeback to complete, and then
2276          * attach the ordered extents to the transaction so that a transaction
2277          * commit waits for their completion, to avoid data loss if we fsync,
2278          * the current transaction commits before the ordered extents complete
2279          * and a power failure happens right after that.
2280          *
2281          * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2282          * logical address recorded in the ordered extent may change. We need
2283          * to wait for the IO to stabilize the logical address.
2284          */
2285         if (full_sync || btrfs_is_zoned(fs_info)) {
2286                 ret = btrfs_wait_ordered_range(inode, start, len);
2287         } else {
2288                 /*
2289                  * Get our ordered extents as soon as possible to avoid doing
2290                  * checksum lookups in the csum tree, and use instead the
2291                  * checksums attached to the ordered extents.
2292                  */
2293                 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2294                                                       &ctx.ordered_extents);
2295                 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2296         }
2297 
2298         if (ret)
2299                 goto out_release_extents;
2300 
2301         atomic_inc(&root->log_batch);
2302 
2303         smp_mb();
2304         if (skip_inode_logging(&ctx)) {
2305                 /*
2306                  * We've had everything committed since the last time we were
2307                  * modified so clear this flag in case it was set for whatever
2308                  * reason, it's no longer relevant.
2309                  */
2310                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2311                           &BTRFS_I(inode)->runtime_flags);
2312                 /*
2313                  * An ordered extent might have started before and completed
2314                  * already with io errors, in which case the inode was not
2315                  * updated and we end up here. So check the inode's mapping
2316                  * for any errors that might have happened since we last
2317                  * checked called fsync.
2318                  */
2319                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2320                 goto out_release_extents;
2321         }
2322 
2323         /*
2324          * We use start here because we will need to wait on the IO to complete
2325          * in btrfs_sync_log, which could require joining a transaction (for
2326          * example checking cross references in the nocow path).  If we use join
2327          * here we could get into a situation where we're waiting on IO to
2328          * happen that is blocked on a transaction trying to commit.  With start
2329          * we inc the extwriter counter, so we wait for all extwriters to exit
2330          * before we start blocking joiners.  This comment is to keep somebody
2331          * from thinking they are super smart and changing this to
2332          * btrfs_join_transaction *cough*Josef*cough*.
2333          */
2334         trans = btrfs_start_transaction(root, 0);
2335         if (IS_ERR(trans)) {
2336                 ret = PTR_ERR(trans);
2337                 goto out_release_extents;
2338         }
2339         trans->in_fsync = true;
2340 
2341         ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2342         btrfs_release_log_ctx_extents(&ctx);
2343         if (ret < 0) {
2344                 /* Fallthrough and commit/free transaction. */
2345                 ret = BTRFS_LOG_FORCE_COMMIT;
2346         }
2347 
2348         /* we've logged all the items and now have a consistent
2349          * version of the file in the log.  It is possible that
2350          * someone will come in and modify the file, but that's
2351          * fine because the log is consistent on disk, and we
2352          * have references to all of the file's extents
2353          *
2354          * It is possible that someone will come in and log the
2355          * file again, but that will end up using the synchronization
2356          * inside btrfs_sync_log to keep things safe.
2357          */
2358         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2359 
2360         if (ret == BTRFS_NO_LOG_SYNC) {
2361                 ret = btrfs_end_transaction(trans);
2362                 goto out;
2363         }
2364 
2365         /* We successfully logged the inode, attempt to sync the log. */
2366         if (!ret) {
2367                 ret = btrfs_sync_log(trans, root, &ctx);
2368                 if (!ret) {
2369                         ret = btrfs_end_transaction(trans);
2370                         goto out;
2371                 }
2372         }
2373 
2374         /*
2375          * At this point we need to commit the transaction because we had
2376          * btrfs_need_log_full_commit() or some other error.
2377          *
2378          * If we didn't do a full sync we have to stop the trans handle, wait on
2379          * the ordered extents, start it again and commit the transaction.  If
2380          * we attempt to wait on the ordered extents here we could deadlock with
2381          * something like fallocate() that is holding the extent lock trying to
2382          * start a transaction while some other thread is trying to commit the
2383          * transaction while we (fsync) are currently holding the transaction
2384          * open.
2385          */
2386         if (!full_sync) {
2387                 ret = btrfs_end_transaction(trans);
2388                 if (ret)
2389                         goto out;
2390                 ret = btrfs_wait_ordered_range(inode, start, len);
2391                 if (ret)
2392                         goto out;
2393 
2394                 /*
2395                  * This is safe to use here because we're only interested in
2396                  * making sure the transaction that had the ordered extents is
2397                  * committed.  We aren't waiting on anything past this point,
2398                  * we're purely getting the transaction and committing it.
2399                  */
2400                 trans = btrfs_attach_transaction_barrier(root);
2401                 if (IS_ERR(trans)) {
2402                         ret = PTR_ERR(trans);
2403 
2404                         /*
2405                          * We committed the transaction and there's no currently
2406                          * running transaction, this means everything we care
2407                          * about made it to disk and we are done.
2408                          */
2409                         if (ret == -ENOENT)
2410                                 ret = 0;
2411                         goto out;
2412                 }
2413         }
2414 
2415         ret = btrfs_commit_transaction(trans);
2416 out:
2417         ASSERT(list_empty(&ctx.list));
2418         err = file_check_and_advance_wb_err(file);
2419         if (!ret)
2420                 ret = err;
2421         return ret > 0 ? -EIO : ret;
2422 
2423 out_release_extents:
2424         btrfs_release_log_ctx_extents(&ctx);
2425         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2426         goto out;
2427 }
2428 
2429 static const struct vm_operations_struct btrfs_file_vm_ops = {
2430         .fault          = filemap_fault,
2431         .map_pages      = filemap_map_pages,
2432         .page_mkwrite   = btrfs_page_mkwrite,
2433 };
2434 
2435 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2436 {
2437         struct address_space *mapping = filp->f_mapping;
2438 
2439         if (!mapping->a_ops->read_folio)
2440                 return -ENOEXEC;
2441 
2442         file_accessed(filp);
2443         vma->vm_ops = &btrfs_file_vm_ops;
2444 
2445         return 0;
2446 }
2447 
2448 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2449                           int slot, u64 start, u64 end)
2450 {
2451         struct btrfs_file_extent_item *fi;
2452         struct btrfs_key key;
2453 
2454         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2455                 return 0;
2456 
2457         btrfs_item_key_to_cpu(leaf, &key, slot);
2458         if (key.objectid != btrfs_ino(inode) ||
2459             key.type != BTRFS_EXTENT_DATA_KEY)
2460                 return 0;
2461 
2462         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2463 
2464         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2465                 return 0;
2466 
2467         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2468                 return 0;
2469 
2470         if (key.offset == end)
2471                 return 1;
2472         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2473                 return 1;
2474         return 0;
2475 }
2476 
2477 static int fill_holes(struct btrfs_trans_handle *trans,
2478                 struct btrfs_inode *inode,
2479                 struct btrfs_path *path, u64 offset, u64 end)
2480 {
2481         struct btrfs_fs_info *fs_info = trans->fs_info;
2482         struct btrfs_root *root = inode->root;
2483         struct extent_buffer *leaf;
2484         struct btrfs_file_extent_item *fi;
2485         struct extent_map *hole_em;
2486         struct extent_map_tree *em_tree = &inode->extent_tree;
2487         struct btrfs_key key;
2488         int ret;
2489 
2490         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2491                 goto out;
2492 
2493         key.objectid = btrfs_ino(inode);
2494         key.type = BTRFS_EXTENT_DATA_KEY;
2495         key.offset = offset;
2496 
2497         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2498         if (ret <= 0) {
2499                 /*
2500                  * We should have dropped this offset, so if we find it then
2501                  * something has gone horribly wrong.
2502                  */
2503                 if (ret == 0)
2504                         ret = -EINVAL;
2505                 return ret;
2506         }
2507 
2508         leaf = path->nodes[0];
2509         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2510                 u64 num_bytes;
2511 
2512                 path->slots[0]--;
2513                 fi = btrfs_item_ptr(leaf, path->slots[0],
2514                                     struct btrfs_file_extent_item);
2515                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2516                         end - offset;
2517                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2518                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2519                 btrfs_set_file_extent_offset(leaf, fi, 0);
2520                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2521                 btrfs_mark_buffer_dirty(leaf);
2522                 goto out;
2523         }
2524 
2525         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2526                 u64 num_bytes;
2527 
2528                 key.offset = offset;
2529                 btrfs_set_item_key_safe(fs_info, path, &key);
2530                 fi = btrfs_item_ptr(leaf, path->slots[0],
2531                                     struct btrfs_file_extent_item);
2532                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2533                         offset;
2534                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2535                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2536                 btrfs_set_file_extent_offset(leaf, fi, 0);
2537                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2538                 btrfs_mark_buffer_dirty(leaf);
2539                 goto out;
2540         }
2541         btrfs_release_path(path);
2542 
2543         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2544                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2545         if (ret)
2546                 return ret;
2547 
2548 out:
2549         btrfs_release_path(path);
2550 
2551         hole_em = alloc_extent_map();
2552         if (!hole_em) {
2553                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2554                 btrfs_set_inode_full_sync(inode);
2555         } else {
2556                 hole_em->start = offset;
2557                 hole_em->len = end - offset;
2558                 hole_em->ram_bytes = hole_em->len;
2559                 hole_em->orig_start = offset;
2560 
2561                 hole_em->block_start = EXTENT_MAP_HOLE;
2562                 hole_em->block_len = 0;
2563                 hole_em->orig_block_len = 0;
2564                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2565                 hole_em->generation = trans->transid;
2566 
2567                 do {
2568                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2569                         write_lock(&em_tree->lock);
2570                         ret = add_extent_mapping(em_tree, hole_em, 1);
2571                         write_unlock(&em_tree->lock);
2572                 } while (ret == -EEXIST);
2573                 free_extent_map(hole_em);
2574                 if (ret)
2575                         btrfs_set_inode_full_sync(inode);
2576         }
2577 
2578         return 0;
2579 }
2580 
2581 /*
2582  * Find a hole extent on given inode and change start/len to the end of hole
2583  * extent.(hole/vacuum extent whose em->start <= start &&
2584  *         em->start + em->len > start)
2585  * When a hole extent is found, return 1 and modify start/len.
2586  */
2587 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2588 {
2589         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2590         struct extent_map *em;
2591         int ret = 0;
2592 
2593         em = btrfs_get_extent(inode, NULL, 0,
2594                               round_down(*start, fs_info->sectorsize),
2595                               round_up(*len, fs_info->sectorsize));
2596         if (IS_ERR(em))
2597                 return PTR_ERR(em);
2598 
2599         /* Hole or vacuum extent(only exists in no-hole mode) */
2600         if (em->block_start == EXTENT_MAP_HOLE) {
2601                 ret = 1;
2602                 *len = em->start + em->len > *start + *len ?
2603                        0 : *start + *len - em->start - em->len;
2604                 *start = em->start + em->len;
2605         }
2606         free_extent_map(em);
2607         return ret;
2608 }
2609 
2610 static void btrfs_punch_hole_lock_range(struct inode *inode,
2611                                         const u64 lockstart,
2612                                         const u64 lockend,
2613                                         struct extent_state **cached_state)
2614 {
2615         /*
2616          * For subpage case, if the range is not at page boundary, we could
2617          * have pages at the leading/tailing part of the range.
2618          * This could lead to dead loop since filemap_range_has_page()
2619          * will always return true.
2620          * So here we need to do extra page alignment for
2621          * filemap_range_has_page().
2622          */
2623         const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2624         const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2625 
2626         while (1) {
2627                 truncate_pagecache_range(inode, lockstart, lockend);
2628 
2629                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2630                                  cached_state);
2631                 /*
2632                  * We can't have ordered extents in the range, nor dirty/writeback
2633                  * pages, because we have locked the inode's VFS lock in exclusive
2634                  * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2635                  * we have flushed all delalloc in the range and we have waited
2636                  * for any ordered extents in the range to complete.
2637                  * We can race with anyone reading pages from this range, so after
2638                  * locking the range check if we have pages in the range, and if
2639                  * we do, unlock the range and retry.
2640                  */
2641                 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2642                                             page_lockend))
2643                         break;
2644 
2645                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2646                                      lockend, cached_state);
2647         }
2648 
2649         btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2650 }
2651 
2652 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2653                                      struct btrfs_inode *inode,
2654                                      struct btrfs_path *path,
2655                                      struct btrfs_replace_extent_info *extent_info,
2656                                      const u64 replace_len,
2657                                      const u64 bytes_to_drop)
2658 {
2659         struct btrfs_fs_info *fs_info = trans->fs_info;
2660         struct btrfs_root *root = inode->root;
2661         struct btrfs_file_extent_item *extent;
2662         struct extent_buffer *leaf;
2663         struct btrfs_key key;
2664         int slot;
2665         struct btrfs_ref ref = { 0 };
2666         int ret;
2667 
2668         if (replace_len == 0)
2669                 return 0;
2670 
2671         if (extent_info->disk_offset == 0 &&
2672             btrfs_fs_incompat(fs_info, NO_HOLES)) {
2673                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2674                 return 0;
2675         }
2676 
2677         key.objectid = btrfs_ino(inode);
2678         key.type = BTRFS_EXTENT_DATA_KEY;
2679         key.offset = extent_info->file_offset;
2680         ret = btrfs_insert_empty_item(trans, root, path, &key,
2681                                       sizeof(struct btrfs_file_extent_item));
2682         if (ret)
2683                 return ret;
2684         leaf = path->nodes[0];
2685         slot = path->slots[0];
2686         write_extent_buffer(leaf, extent_info->extent_buf,
2687                             btrfs_item_ptr_offset(leaf, slot),
2688                             sizeof(struct btrfs_file_extent_item));
2689         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2690         ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2691         btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2692         btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2693         if (extent_info->is_new_extent)
2694                 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2695         btrfs_mark_buffer_dirty(leaf);
2696         btrfs_release_path(path);
2697 
2698         ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2699                                                 replace_len);
2700         if (ret)
2701                 return ret;
2702 
2703         /* If it's a hole, nothing more needs to be done. */
2704         if (extent_info->disk_offset == 0) {
2705                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2706                 return 0;
2707         }
2708 
2709         btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2710 
2711         if (extent_info->is_new_extent && extent_info->insertions == 0) {
2712                 key.objectid = extent_info->disk_offset;
2713                 key.type = BTRFS_EXTENT_ITEM_KEY;
2714                 key.offset = extent_info->disk_len;
2715                 ret = btrfs_alloc_reserved_file_extent(trans, root,
2716                                                        btrfs_ino(inode),
2717                                                        extent_info->file_offset,
2718                                                        extent_info->qgroup_reserved,
2719                                                        &key);
2720         } else {
2721                 u64 ref_offset;
2722 
2723                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2724                                        extent_info->disk_offset,
2725                                        extent_info->disk_len, 0);
2726                 ref_offset = extent_info->file_offset - extent_info->data_offset;
2727                 btrfs_init_data_ref(&ref, root->root_key.objectid,
2728                                     btrfs_ino(inode), ref_offset, 0, false);
2729                 ret = btrfs_inc_extent_ref(trans, &ref);
2730         }
2731 
2732         extent_info->insertions++;
2733 
2734         return ret;
2735 }
2736 
2737 /*
2738  * The respective range must have been previously locked, as well as the inode.
2739  * The end offset is inclusive (last byte of the range).
2740  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2741  * the file range with an extent.
2742  * When not punching a hole, we don't want to end up in a state where we dropped
2743  * extents without inserting a new one, so we must abort the transaction to avoid
2744  * a corruption.
2745  */
2746 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2747                                struct btrfs_path *path, const u64 start,
2748                                const u64 end,
2749                                struct btrfs_replace_extent_info *extent_info,
2750                                struct btrfs_trans_handle **trans_out)
2751 {
2752         struct btrfs_drop_extents_args drop_args = { 0 };
2753         struct btrfs_root *root = inode->root;
2754         struct btrfs_fs_info *fs_info = root->fs_info;
2755         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2756         u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2757         struct btrfs_trans_handle *trans = NULL;
2758         struct btrfs_block_rsv *rsv;
2759         unsigned int rsv_count;
2760         u64 cur_offset;
2761         u64 len = end - start;
2762         int ret = 0;
2763 
2764         if (end <= start)
2765                 return -EINVAL;
2766 
2767         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2768         if (!rsv) {
2769                 ret = -ENOMEM;
2770                 goto out;
2771         }
2772         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2773         rsv->failfast = 1;
2774 
2775         /*
2776          * 1 - update the inode
2777          * 1 - removing the extents in the range
2778          * 1 - adding the hole extent if no_holes isn't set or if we are
2779          *     replacing the range with a new extent
2780          */
2781         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2782                 rsv_count = 3;
2783         else
2784                 rsv_count = 2;
2785 
2786         trans = btrfs_start_transaction(root, rsv_count);
2787         if (IS_ERR(trans)) {
2788                 ret = PTR_ERR(trans);
2789                 trans = NULL;
2790                 goto out_free;
2791         }
2792 
2793         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2794                                       min_size, false);
2795         if (WARN_ON(ret))
2796                 goto out_trans;
2797         trans->block_rsv = rsv;
2798 
2799         cur_offset = start;
2800         drop_args.path = path;
2801         drop_args.end = end + 1;
2802         drop_args.drop_cache = true;
2803         while (cur_offset < end) {
2804                 drop_args.start = cur_offset;
2805                 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2806                 /* If we are punching a hole decrement the inode's byte count */
2807                 if (!extent_info)
2808                         btrfs_update_inode_bytes(inode, 0,
2809                                                  drop_args.bytes_found);
2810                 if (ret != -ENOSPC) {
2811                         /*
2812                          * The only time we don't want to abort is if we are
2813                          * attempting to clone a partial inline extent, in which
2814                          * case we'll get EOPNOTSUPP.  However if we aren't
2815                          * clone we need to abort no matter what, because if we
2816                          * got EOPNOTSUPP via prealloc then we messed up and
2817                          * need to abort.
2818                          */
2819                         if (ret &&
2820                             (ret != -EOPNOTSUPP ||
2821                              (extent_info && extent_info->is_new_extent)))
2822                                 btrfs_abort_transaction(trans, ret);
2823                         break;
2824                 }
2825 
2826                 trans->block_rsv = &fs_info->trans_block_rsv;
2827 
2828                 if (!extent_info && cur_offset < drop_args.drop_end &&
2829                     cur_offset < ino_size) {
2830                         ret = fill_holes(trans, inode, path, cur_offset,
2831                                          drop_args.drop_end);
2832                         if (ret) {
2833                                 /*
2834                                  * If we failed then we didn't insert our hole
2835                                  * entries for the area we dropped, so now the
2836                                  * fs is corrupted, so we must abort the
2837                                  * transaction.
2838                                  */
2839                                 btrfs_abort_transaction(trans, ret);
2840                                 break;
2841                         }
2842                 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2843                         /*
2844                          * We are past the i_size here, but since we didn't
2845                          * insert holes we need to clear the mapped area so we
2846                          * know to not set disk_i_size in this area until a new
2847                          * file extent is inserted here.
2848                          */
2849                         ret = btrfs_inode_clear_file_extent_range(inode,
2850                                         cur_offset,
2851                                         drop_args.drop_end - cur_offset);
2852                         if (ret) {
2853                                 /*
2854                                  * We couldn't clear our area, so we could
2855                                  * presumably adjust up and corrupt the fs, so
2856                                  * we need to abort.
2857                                  */
2858                                 btrfs_abort_transaction(trans, ret);
2859                                 break;
2860                         }
2861                 }
2862 
2863                 if (extent_info &&
2864                     drop_args.drop_end > extent_info->file_offset) {
2865                         u64 replace_len = drop_args.drop_end -
2866                                           extent_info->file_offset;
2867 
2868                         ret = btrfs_insert_replace_extent(trans, inode, path,
2869                                         extent_info, replace_len,
2870                                         drop_args.bytes_found);
2871                         if (ret) {
2872                                 btrfs_abort_transaction(trans, ret);
2873                                 break;
2874                         }
2875                         extent_info->data_len -= replace_len;
2876                         extent_info->data_offset += replace_len;
2877                         extent_info->file_offset += replace_len;
2878                 }
2879 
2880                 /*
2881                  * We are releasing our handle on the transaction, balance the
2882                  * dirty pages of the btree inode and flush delayed items, and
2883                  * then get a new transaction handle, which may now point to a
2884                  * new transaction in case someone else may have committed the
2885                  * transaction we used to replace/drop file extent items. So
2886                  * bump the inode's iversion and update mtime and ctime except
2887                  * if we are called from a dedupe context. This is because a
2888                  * power failure/crash may happen after the transaction is
2889                  * committed and before we finish replacing/dropping all the
2890                  * file extent items we need.
2891                  */
2892                 inode_inc_iversion(&inode->vfs_inode);
2893 
2894                 if (!extent_info || extent_info->update_times) {
2895                         inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode);
2896                         inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime;
2897                 }
2898 
2899                 ret = btrfs_update_inode(trans, root, inode);
2900                 if (ret)
2901                         break;
2902 
2903                 btrfs_end_transaction(trans);
2904                 btrfs_btree_balance_dirty(fs_info);
2905 
2906                 trans = btrfs_start_transaction(root, rsv_count);
2907                 if (IS_ERR(trans)) {
2908                         ret = PTR_ERR(trans);
2909                         trans = NULL;
2910                         break;
2911                 }
2912 
2913                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2914                                               rsv, min_size, false);
2915                 if (WARN_ON(ret))
2916                         break;
2917                 trans->block_rsv = rsv;
2918 
2919                 cur_offset = drop_args.drop_end;
2920                 len = end - cur_offset;
2921                 if (!extent_info && len) {
2922                         ret = find_first_non_hole(inode, &cur_offset, &len);
2923                         if (unlikely(ret < 0))
2924                                 break;
2925                         if (ret && !len) {
2926                                 ret = 0;
2927                                 break;
2928                         }
2929                 }
2930         }
2931 
2932         /*
2933          * If we were cloning, force the next fsync to be a full one since we
2934          * we replaced (or just dropped in the case of cloning holes when
2935          * NO_HOLES is enabled) file extent items and did not setup new extent
2936          * maps for the replacement extents (or holes).
2937          */
2938         if (extent_info && !extent_info->is_new_extent)
2939                 btrfs_set_inode_full_sync(inode);
2940 
2941         if (ret)
2942                 goto out_trans;
2943 
2944         trans->block_rsv = &fs_info->trans_block_rsv;
2945         /*
2946          * If we are using the NO_HOLES feature we might have had already an
2947          * hole that overlaps a part of the region [lockstart, lockend] and
2948          * ends at (or beyond) lockend. Since we have no file extent items to
2949          * represent holes, drop_end can be less than lockend and so we must
2950          * make sure we have an extent map representing the existing hole (the
2951          * call to __btrfs_drop_extents() might have dropped the existing extent
2952          * map representing the existing hole), otherwise the fast fsync path
2953          * will not record the existence of the hole region
2954          * [existing_hole_start, lockend].
2955          */
2956         if (drop_args.drop_end <= end)
2957                 drop_args.drop_end = end + 1;
2958         /*
2959          * Don't insert file hole extent item if it's for a range beyond eof
2960          * (because it's useless) or if it represents a 0 bytes range (when
2961          * cur_offset == drop_end).
2962          */
2963         if (!extent_info && cur_offset < ino_size &&
2964             cur_offset < drop_args.drop_end) {
2965                 ret = fill_holes(trans, inode, path, cur_offset,
2966                                  drop_args.drop_end);
2967                 if (ret) {
2968                         /* Same comment as above. */
2969                         btrfs_abort_transaction(trans, ret);
2970                         goto out_trans;
2971                 }
2972         } else if (!extent_info && cur_offset < drop_args.drop_end) {
2973                 /* See the comment in the loop above for the reasoning here. */
2974                 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2975                                         drop_args.drop_end - cur_offset);
2976                 if (ret) {
2977                         btrfs_abort_transaction(trans, ret);
2978                         goto out_trans;
2979                 }
2980 
2981         }
2982         if (extent_info) {
2983                 ret = btrfs_insert_replace_extent(trans, inode, path,
2984                                 extent_info, extent_info->data_len,
2985                                 drop_args.bytes_found);
2986                 if (ret) {
2987                         btrfs_abort_transaction(trans, ret);
2988                         goto out_trans;
2989                 }
2990         }
2991 
2992 out_trans:
2993         if (!trans)
2994                 goto out_free;
2995 
2996         trans->block_rsv = &fs_info->trans_block_rsv;
2997         if (ret)
2998                 btrfs_end_transaction(trans);
2999         else
3000                 *trans_out = trans;
3001 out_free:
3002         btrfs_free_block_rsv(fs_info, rsv);
3003 out:
3004         return ret;
3005 }
3006 
3007 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
3008 {
3009         struct inode *inode = file_inode(file);
3010         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3011         struct btrfs_root *root = BTRFS_I(inode)->root;
3012         struct extent_state *cached_state = NULL;
3013         struct btrfs_path *path;
3014         struct btrfs_trans_handle *trans = NULL;
3015         u64 lockstart;
3016         u64 lockend;
3017         u64 tail_start;
3018         u64 tail_len;
3019         u64 orig_start = offset;
3020         int ret = 0;
3021         bool same_block;
3022         u64 ino_size;
3023         bool truncated_block = false;
3024         bool updated_inode = false;
3025 
3026         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3027 
3028         ret = btrfs_wait_ordered_range(inode, offset, len);
3029         if (ret)
3030                 goto out_only_mutex;
3031 
3032         ino_size = round_up(inode->i_size, fs_info->sectorsize);
3033         ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
3034         if (ret < 0)
3035                 goto out_only_mutex;
3036         if (ret && !len) {
3037                 /* Already in a large hole */
3038                 ret = 0;
3039                 goto out_only_mutex;
3040         }
3041 
3042         ret = file_modified(file);
3043         if (ret)
3044                 goto out_only_mutex;
3045 
3046         lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
3047         lockend = round_down(offset + len,
3048                              btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
3049         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
3050                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
3051         /*
3052          * We needn't truncate any block which is beyond the end of the file
3053          * because we are sure there is no data there.
3054          */
3055         /*
3056          * Only do this if we are in the same block and we aren't doing the
3057          * entire block.
3058          */
3059         if (same_block && len < fs_info->sectorsize) {
3060                 if (offset < ino_size) {
3061                         truncated_block = true;
3062                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3063                                                    0);
3064                 } else {
3065                         ret = 0;
3066                 }
3067                 goto out_only_mutex;
3068         }
3069 
3070         /* zero back part of the first block */
3071         if (offset < ino_size) {
3072                 truncated_block = true;
3073                 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3074                 if (ret) {
3075                         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3076                         return ret;
3077                 }
3078         }
3079 
3080         /* Check the aligned pages after the first unaligned page,
3081          * if offset != orig_start, which means the first unaligned page
3082          * including several following pages are already in holes,
3083          * the extra check can be skipped */
3084         if (offset == orig_start) {
3085                 /* after truncate page, check hole again */
3086                 len = offset + len - lockstart;
3087                 offset = lockstart;
3088                 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
3089                 if (ret < 0)
3090                         goto out_only_mutex;
3091                 if (ret && !len) {
3092                         ret = 0;
3093                         goto out_only_mutex;
3094                 }
3095                 lockstart = offset;
3096         }
3097 
3098         /* Check the tail unaligned part is in a hole */
3099         tail_start = lockend + 1;
3100         tail_len = offset + len - tail_start;
3101         if (tail_len) {
3102                 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
3103                 if (unlikely(ret < 0))
3104                         goto out_only_mutex;
3105                 if (!ret) {
3106                         /* zero the front end of the last page */
3107                         if (tail_start + tail_len < ino_size) {
3108                                 truncated_block = true;
3109                                 ret = btrfs_truncate_block(BTRFS_I(inode),
3110                                                         tail_start + tail_len,
3111                                                         0, 1);
3112                                 if (ret)
3113                                         goto out_only_mutex;
3114                         }
3115                 }
3116         }
3117 
3118         if (lockend < lockstart) {
3119                 ret = 0;
3120                 goto out_only_mutex;
3121         }
3122 
3123         btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
3124 
3125         path = btrfs_alloc_path();
3126         if (!path) {
3127                 ret = -ENOMEM;
3128                 goto out;
3129         }
3130 
3131         ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3132                                          lockend, NULL, &trans);
3133         btrfs_free_path(path);
3134         if (ret)
3135                 goto out;
3136 
3137         ASSERT(trans != NULL);
3138         inode_inc_iversion(inode);
3139         inode->i_mtime = inode->i_ctime = current_time(inode);
3140         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3141         updated_inode = true;
3142         btrfs_end_transaction(trans);
3143         btrfs_btree_balance_dirty(fs_info);
3144 out:
3145         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3146                              &cached_state);
3147 out_only_mutex:
3148         if (!updated_inode && truncated_block && !ret) {
3149                 /*
3150                  * If we only end up zeroing part of a page, we still need to
3151                  * update the inode item, so that all the time fields are
3152                  * updated as well as the necessary btrfs inode in memory fields
3153                  * for detecting, at fsync time, if the inode isn't yet in the
3154                  * log tree or it's there but not up to date.
3155                  */
3156                 struct timespec64 now = current_time(inode);
3157 
3158                 inode_inc_iversion(inode);
3159                 inode->i_mtime = now;
3160                 inode->i_ctime = now;
3161                 trans = btrfs_start_transaction(root, 1);
3162                 if (IS_ERR(trans)) {
3163                         ret = PTR_ERR(trans);
3164                 } else {
3165                         int ret2;
3166 
3167                         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3168                         ret2 = btrfs_end_transaction(trans);
3169                         if (!ret)
3170                                 ret = ret2;
3171                 }
3172         }
3173         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3174         return ret;
3175 }
3176 
3177 /* Helper structure to record which range is already reserved */
3178 struct falloc_range {
3179         struct list_head list;
3180         u64 start;
3181         u64 len;
3182 };
3183 
3184 /*
3185  * Helper function to add falloc range
3186  *
3187  * Caller should have locked the larger range of extent containing
3188  * [start, len)
3189  */
3190 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3191 {
3192         struct falloc_range *range = NULL;
3193 
3194         if (!list_empty(head)) {
3195                 /*
3196                  * As fallocate iterates by bytenr order, we only need to check
3197                  * the last range.
3198                  */
3199                 range = list_last_entry(head, struct falloc_range, list);
3200                 if (range->start + range->len == start) {
3201                         range->len += len;
3202                         return 0;
3203                 }
3204         }
3205 
3206         range = kmalloc(sizeof(*range), GFP_KERNEL);
3207         if (!range)
3208                 return -ENOMEM;
3209         range->start = start;
3210         range->len = len;
3211         list_add_tail(&range->list, head);
3212         return 0;
3213 }
3214 
3215 static int btrfs_fallocate_update_isize(struct inode *inode,
3216                                         const u64 end,
3217                                         const int mode)
3218 {
3219         struct btrfs_trans_handle *trans;
3220         struct btrfs_root *root = BTRFS_I(inode)->root;
3221         int ret;
3222         int ret2;
3223 
3224         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3225                 return 0;
3226 
3227         trans = btrfs_start_transaction(root, 1);
3228         if (IS_ERR(trans))
3229                 return PTR_ERR(trans);
3230 
3231         inode->i_ctime = current_time(inode);
3232         i_size_write(inode, end);
3233         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3234         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3235         ret2 = btrfs_end_transaction(trans);
3236 
3237         return ret ? ret : ret2;
3238 }
3239 
3240 enum {
3241         RANGE_BOUNDARY_WRITTEN_EXTENT,
3242         RANGE_BOUNDARY_PREALLOC_EXTENT,
3243         RANGE_BOUNDARY_HOLE,
3244 };
3245 
3246 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3247                                                  u64 offset)
3248 {
3249         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3250         struct extent_map *em;
3251         int ret;
3252 
3253         offset = round_down(offset, sectorsize);
3254         em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3255         if (IS_ERR(em))
3256                 return PTR_ERR(em);
3257 
3258         if (em->block_start == EXTENT_MAP_HOLE)
3259                 ret = RANGE_BOUNDARY_HOLE;
3260         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3261                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3262         else
3263                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3264 
3265         free_extent_map(em);
3266         return ret;
3267 }
3268 
3269 static int btrfs_zero_range(struct inode *inode,
3270                             loff_t offset,
3271                             loff_t len,
3272                             const int mode)
3273 {
3274         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3275         struct extent_map *em;
3276         struct extent_changeset *data_reserved = NULL;
3277         int ret;
3278         u64 alloc_hint = 0;
3279         const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3280         u64 alloc_start = round_down(offset, sectorsize);
3281         u64 alloc_end = round_up(offset + len, sectorsize);
3282         u64 bytes_to_reserve = 0;
3283         bool space_reserved = false;
3284 
3285         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3286                               alloc_end - alloc_start);
3287         if (IS_ERR(em)) {
3288                 ret = PTR_ERR(em);
3289                 goto out;
3290         }
3291 
3292         /*
3293          * Avoid hole punching and extent allocation for some cases. More cases
3294          * could be considered, but these are unlikely common and we keep things
3295          * as simple as possible for now. Also, intentionally, if the target
3296          * range contains one or more prealloc extents together with regular
3297          * extents and holes, we drop all the existing extents and allocate a
3298          * new prealloc extent, so that we get a larger contiguous disk extent.
3299          */
3300         if (em->start <= alloc_start &&
3301             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3302                 const u64 em_end = em->start + em->len;
3303 
3304                 if (em_end >= offset + len) {
3305                         /*
3306                          * The whole range is already a prealloc extent,
3307                          * do nothing except updating the inode's i_size if
3308                          * needed.
3309                          */
3310                         free_extent_map(em);
3311                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3312                                                            mode);
3313                         goto out;
3314                 }
3315                 /*
3316                  * Part of the range is already a prealloc extent, so operate
3317                  * only on the remaining part of the range.
3318                  */
3319                 alloc_start = em_end;
3320                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3321                 len = offset + len - alloc_start;
3322                 offset = alloc_start;
3323                 alloc_hint = em->block_start + em->len;
3324         }
3325         free_extent_map(em);
3326 
3327         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3328             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3329                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3330                                       sectorsize);
3331                 if (IS_ERR(em)) {
3332                         ret = PTR_ERR(em);
3333                         goto out;
3334                 }
3335 
3336                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3337                         free_extent_map(em);
3338                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3339                                                            mode);
3340                         goto out;
3341                 }
3342                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3343                         free_extent_map(em);
3344                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3345                                                    0);
3346                         if (!ret)
3347                                 ret = btrfs_fallocate_update_isize(inode,
3348                                                                    offset + len,
3349                                                                    mode);
3350                         return ret;
3351                 }
3352                 free_extent_map(em);
3353                 alloc_start = round_down(offset, sectorsize);
3354                 alloc_end = alloc_start + sectorsize;
3355                 goto reserve_space;
3356         }
3357 
3358         alloc_start = round_up(offset, sectorsize);
3359         alloc_end = round_down(offset + len, sectorsize);
3360 
3361         /*
3362          * For unaligned ranges, check the pages at the boundaries, they might
3363          * map to an extent, in which case we need to partially zero them, or
3364          * they might map to a hole, in which case we need our allocation range
3365          * to cover them.
3366          */
3367         if (!IS_ALIGNED(offset, sectorsize)) {
3368                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3369                                                             offset);
3370                 if (ret < 0)
3371                         goto out;
3372                 if (ret == RANGE_BOUNDARY_HOLE) {
3373                         alloc_start = round_down(offset, sectorsize);
3374                         ret = 0;
3375                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3376                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3377                         if (ret)
3378                                 goto out;
3379                 } else {
3380                         ret = 0;
3381                 }
3382         }
3383 
3384         if (!IS_ALIGNED(offset + len, sectorsize)) {
3385                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3386                                                             offset + len);
3387                 if (ret < 0)
3388                         goto out;
3389                 if (ret == RANGE_BOUNDARY_HOLE) {
3390                         alloc_end = round_up(offset + len, sectorsize);
3391                         ret = 0;
3392                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3393                         ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3394                                                    0, 1);
3395                         if (ret)
3396                                 goto out;
3397                 } else {
3398                         ret = 0;
3399                 }
3400         }
3401 
3402 reserve_space:
3403         if (alloc_start < alloc_end) {
3404                 struct extent_state *cached_state = NULL;
3405                 const u64 lockstart = alloc_start;
3406                 const u64 lockend = alloc_end - 1;
3407 
3408                 bytes_to_reserve = alloc_end - alloc_start;
3409                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3410                                                       bytes_to_reserve);
3411                 if (ret < 0)
3412                         goto out;
3413                 space_reserved = true;
3414                 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3415                                             &cached_state);
3416                 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3417                                                 alloc_start, bytes_to_reserve);
3418                 if (ret) {
3419                         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3420                                              lockend, &cached_state);
3421                         goto out;
3422                 }
3423                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3424                                                 alloc_end - alloc_start,
3425                                                 i_blocksize(inode),
3426                                                 offset + len, &alloc_hint);
3427                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3428                                      lockend, &cached_state);
3429                 /* btrfs_prealloc_file_range releases reserved space on error */
3430                 if (ret) {
3431                         space_reserved = false;
3432                         goto out;
3433                 }
3434         }
3435         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3436  out:
3437         if (ret && space_reserved)
3438                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3439                                                alloc_start, bytes_to_reserve);
3440         extent_changeset_free(data_reserved);
3441 
3442         return ret;
3443 }
3444 
3445 static long btrfs_fallocate(struct file *file, int mode,
3446                             loff_t offset, loff_t len)
3447 {
3448         struct inode *inode = file_inode(file);
3449         struct extent_state *cached_state = NULL;
3450         struct extent_changeset *data_reserved = NULL;
3451         struct falloc_range *range;
3452         struct falloc_range *tmp;
3453         struct list_head reserve_list;
3454         u64 cur_offset;
3455         u64 last_byte;
3456         u64 alloc_start;
3457         u64 alloc_end;
3458         u64 alloc_hint = 0;
3459         u64 locked_end;
3460         u64 actual_end = 0;
3461         u64 data_space_needed = 0;
3462         u64 data_space_reserved = 0;
3463         u64 qgroup_reserved = 0;
3464         struct extent_map *em;
3465         int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3466         int ret;
3467 
3468         /* Do not allow fallocate in ZONED mode */
3469         if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3470                 return -EOPNOTSUPP;
3471 
3472         alloc_start = round_down(offset, blocksize);
3473         alloc_end = round_up(offset + len, blocksize);
3474         cur_offset = alloc_start;
3475 
3476         /* Make sure we aren't being give some crap mode */
3477         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3478                      FALLOC_FL_ZERO_RANGE))
3479                 return -EOPNOTSUPP;
3480 
3481         if (mode & FALLOC_FL_PUNCH_HOLE)
3482                 return btrfs_punch_hole(file, offset, len);
3483 
3484         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3485 
3486         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3487                 ret = inode_newsize_ok(inode, offset + len);
3488                 if (ret)
3489                         goto out;
3490         }
3491 
3492         ret = file_modified(file);
3493         if (ret)
3494                 goto out;
3495 
3496         /*
3497          * TODO: Move these two operations after we have checked
3498          * accurate reserved space, or fallocate can still fail but
3499          * with page truncated or size expanded.
3500          *
3501          * But that's a minor problem and won't do much harm BTW.
3502          */
3503         if (alloc_start > inode->i_size) {
3504                 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3505                                         alloc_start);
3506                 if (ret)
3507                         goto out;
3508         } else if (offset + len > inode->i_size) {
3509                 /*
3510                  * If we are fallocating from the end of the file onward we
3511                  * need to zero out the end of the block if i_size lands in the
3512                  * middle of a block.
3513                  */
3514                 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3515                 if (ret)
3516                         goto out;
3517         }
3518 
3519         /*
3520          * We have locked the inode at the VFS level (in exclusive mode) and we
3521          * have locked the i_mmap_lock lock (in exclusive mode). Now before
3522          * locking the file range, flush all dealloc in the range and wait for
3523          * all ordered extents in the range to complete. After this we can lock
3524          * the file range and, due to the previous locking we did, we know there
3525          * can't be more delalloc or ordered extents in the range.
3526          */
3527         ret = btrfs_wait_ordered_range(inode, alloc_start,
3528                                        alloc_end - alloc_start);
3529         if (ret)
3530                 goto out;
3531 
3532         if (mode & FALLOC_FL_ZERO_RANGE) {
3533                 ret = btrfs_zero_range(inode, offset, len, mode);
3534                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3535                 return ret;
3536         }
3537 
3538         locked_end = alloc_end - 1;
3539         lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3540                          &cached_state);
3541 
3542         btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3543 
3544         /* First, check if we exceed the qgroup limit */
3545         INIT_LIST_HEAD(&reserve_list);
3546         while (cur_offset < alloc_end) {
3547                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3548                                       alloc_end - cur_offset);
3549                 if (IS_ERR(em)) {
3550                         ret = PTR_ERR(em);
3551                         break;
3552                 }
3553                 last_byte = min(extent_map_end(em), alloc_end);
3554                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3555                 last_byte = ALIGN(last_byte, blocksize);
3556                 if (em->block_start == EXTENT_MAP_HOLE ||
3557                     (cur_offset >= inode->i_size &&
3558                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3559                         const u64 range_len = last_byte - cur_offset;
3560 
3561                         ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3562                         if (ret < 0) {
3563                                 free_extent_map(em);
3564                                 break;
3565                         }
3566                         ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3567                                         &data_reserved, cur_offset, range_len);
3568                         if (ret < 0) {
3569                                 free_extent_map(em);
3570                                 break;
3571                         }
3572                         qgroup_reserved += range_len;
3573                         data_space_needed += range_len;
3574                 }
3575                 free_extent_map(em);
3576                 cur_offset = last_byte;
3577         }
3578 
3579         if (!ret && data_space_needed > 0) {
3580                 /*
3581                  * We are safe to reserve space here as we can't have delalloc
3582                  * in the range, see above.
3583                  */
3584                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3585                                                       data_space_needed);
3586                 if (!ret)
3587                         data_space_reserved = data_space_needed;
3588         }
3589 
3590         /*
3591          * If ret is still 0, means we're OK to fallocate.
3592          * Or just cleanup the list and exit.
3593          */
3594         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3595                 if (!ret) {
3596                         ret = btrfs_prealloc_file_range(inode, mode,
3597                                         range->start,
3598                                         range->len, i_blocksize(inode),
3599                                         offset + len, &alloc_hint);
3600                         /*
3601                          * btrfs_prealloc_file_range() releases space even
3602                          * if it returns an error.
3603                          */
3604                         data_space_reserved -= range->len;
3605                         qgroup_reserved -= range->len;
3606                 } else if (data_space_reserved > 0) {
3607                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3608                                                data_reserved, range->start,
3609                                                range->len);
3610                         data_space_reserved -= range->len;
3611                         qgroup_reserved -= range->len;
3612                 } else if (qgroup_reserved > 0) {
3613                         btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3614                                                range->start, range->len);
3615                         qgroup_reserved -= range->len;
3616                 }
3617                 list_del(&range->list);
3618                 kfree(range);
3619         }
3620         if (ret < 0)
3621                 goto out_unlock;
3622 
3623         /*
3624          * We didn't need to allocate any more space, but we still extended the
3625          * size of the file so we need to update i_size and the inode item.
3626          */
3627         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3628 out_unlock:
3629         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3630                              &cached_state);
3631 out:
3632         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3633         extent_changeset_free(data_reserved);
3634         return ret;
3635 }
3636 
3637 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3638                                   int whence)
3639 {
3640         struct btrfs_fs_info *fs_info = inode->root->fs_info;
3641         struct extent_map *em = NULL;
3642         struct extent_state *cached_state = NULL;
3643         loff_t i_size = inode->vfs_inode.i_size;
3644         u64 lockstart;
3645         u64 lockend;
3646         u64 start;
3647         u64 len;
3648         int ret = 0;
3649 
3650         if (i_size == 0 || offset >= i_size)
3651                 return -ENXIO;
3652 
3653         /*
3654          * offset can be negative, in this case we start finding DATA/HOLE from
3655          * the very start of the file.
3656          */
3657         start = max_t(loff_t, 0, offset);
3658 
3659         lockstart = round_down(start, fs_info->sectorsize);
3660         lockend = round_up(i_size, fs_info->sectorsize);
3661         if (lockend <= lockstart)
3662                 lockend = lockstart + fs_info->sectorsize;
3663         lockend--;
3664         len = lockend - lockstart + 1;
3665 
3666         lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3667 
3668         while (start < i_size) {
3669                 em = btrfs_get_extent_fiemap(inode, start, len);
3670                 if (IS_ERR(em)) {
3671                         ret = PTR_ERR(em);
3672                         em = NULL;
3673                         break;
3674                 }
3675 
3676                 if (whence == SEEK_HOLE &&
3677                     (em->block_start == EXTENT_MAP_HOLE ||
3678                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3679                         break;
3680                 else if (whence == SEEK_DATA &&
3681                            (em->block_start != EXTENT_MAP_HOLE &&
3682                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3683                         break;
3684 
3685                 start = em->start + em->len;
3686                 free_extent_map(em);
3687                 em = NULL;
3688                 cond_resched();
3689         }
3690         free_extent_map(em);
3691         unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3692                              &cached_state);
3693         if (ret) {
3694                 offset = ret;
3695         } else {
3696                 if (whence == SEEK_DATA && start >= i_size)
3697                         offset = -ENXIO;
3698                 else
3699                         offset = min_t(loff_t, start, i_size);
3700         }
3701 
3702         return offset;
3703 }
3704 
3705 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3706 {
3707         struct inode *inode = file->f_mapping->host;
3708 
3709         switch (whence) {
3710         default:
3711                 return generic_file_llseek(file, offset, whence);
3712         case SEEK_DATA:
3713         case SEEK_HOLE:
3714                 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3715                 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3716                 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3717                 break;
3718         }
3719 
3720         if (offset < 0)
3721                 return offset;
3722 
3723         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3724 }
3725 
3726 static int btrfs_file_open(struct inode *inode, struct file *filp)
3727 {
3728         int ret;
3729 
3730         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3731 
3732         ret = fsverity_file_open(inode, filp);
3733         if (ret)
3734                 return ret;
3735         return generic_file_open(inode, filp);
3736 }
3737 
3738 static int check_direct_read(struct btrfs_fs_info *fs_info,
3739                              const struct iov_iter *iter, loff_t offset)
3740 {
3741         int ret;
3742         int i, seg;
3743 
3744         ret = check_direct_IO(fs_info, iter, offset);
3745         if (ret < 0)
3746                 return ret;
3747 
3748         if (!iter_is_iovec(iter))
3749                 return 0;
3750 
3751         for (seg = 0; seg < iter->nr_segs; seg++)
3752                 for (i = seg + 1; i < iter->nr_segs; i++)
3753                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3754                                 return -EINVAL;
3755         return 0;
3756 }
3757 
3758 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3759 {
3760         struct inode *inode = file_inode(iocb->ki_filp);
3761         size_t prev_left = 0;
3762         ssize_t read = 0;
3763         ssize_t ret;
3764 
3765         if (fsverity_active(inode))
3766                 return 0;
3767 
3768         if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3769                 return 0;
3770 
3771         btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3772 again:
3773         /*
3774          * This is similar to what we do for direct IO writes, see the comment
3775          * at btrfs_direct_write(), but we also disable page faults in addition
3776          * to disabling them only at the iov_iter level. This is because when
3777          * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3778          * which can still trigger page fault ins despite having set ->nofault
3779          * to true of our 'to' iov_iter.
3780          *
3781          * The difference to direct IO writes is that we deadlock when trying
3782          * to lock the extent range in the inode's tree during he page reads
3783          * triggered by the fault in (while for writes it is due to waiting for
3784          * our own ordered extent). This is because for direct IO reads,
3785          * btrfs_dio_iomap_begin() returns with the extent range locked, which
3786          * is only unlocked in the endio callback (end_bio_extent_readpage()).
3787          */
3788         pagefault_disable();
3789         to->nofault = true;
3790         ret = btrfs_dio_rw(iocb, to, read);
3791         to->nofault = false;
3792         pagefault_enable();
3793 
3794         /* No increment (+=) because iomap returns a cumulative value. */
3795         if (ret > 0)
3796                 read = ret;
3797 
3798         if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3799                 const size_t left = iov_iter_count(to);
3800 
3801                 if (left == prev_left) {
3802                         /*
3803                          * We didn't make any progress since the last attempt,
3804                          * fallback to a buffered read for the remainder of the
3805                          * range. This is just to avoid any possibility of looping
3806                          * for too long.
3807                          */
3808                         ret = read;
3809                 } else {
3810                         /*
3811                          * We made some progress since the last retry or this is
3812                          * the first time we are retrying. Fault in as many pages
3813                          * as possible and retry.
3814                          */
3815                         fault_in_iov_iter_writeable(to, left);
3816                         prev_left = left;
3817                         goto again;
3818                 }
3819         }
3820         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3821         return ret < 0 ? ret : read;
3822 }
3823 
3824 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3825 {
3826         ssize_t ret = 0;
3827 
3828         if (iocb->ki_flags & IOCB_DIRECT) {
3829                 ret = btrfs_direct_read(iocb, to);
3830                 if (ret < 0 || !iov_iter_count(to) ||
3831                     iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3832                         return ret;
3833         }
3834 
3835         return filemap_read(iocb, to, ret);
3836 }
3837 
3838 const struct file_operations btrfs_file_operations = {
3839         .llseek         = btrfs_file_llseek,
3840         .read_iter      = btrfs_file_read_iter,
3841         .splice_read    = generic_file_splice_read,
3842         .write_iter     = btrfs_file_write_iter,
3843         .splice_write   = iter_file_splice_write,
3844         .mmap           = btrfs_file_mmap,
3845         .open           = btrfs_file_open,
3846         .release        = btrfs_release_file,
3847         .get_unmapped_area = thp_get_unmapped_area,
3848         .fsync          = btrfs_sync_file,
3849         .fallocate      = btrfs_fallocate,
3850         .unlocked_ioctl = btrfs_ioctl,
3851 #ifdef CONFIG_COMPAT
3852         .compat_ioctl   = btrfs_compat_ioctl,
3853 #endif
3854         .remap_file_range = btrfs_remap_file_range,
3855 };
3856 
3857 void __cold btrfs_auto_defrag_exit(void)
3858 {
3859         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3860 }
3861 
3862 int __init btrfs_auto_defrag_init(void)
3863 {
3864         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3865                                         sizeof(struct inode_defrag), 0,
3866                                         SLAB_MEM_SPREAD,
3867                                         NULL);
3868         if (!btrfs_inode_defrag_cachep)
3869                 return -ENOMEM;
3870 
3871         return 0;
3872 }
3873 
3874 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3875 {
3876         int ret;
3877 
3878         /*
3879          * So with compression we will find and lock a dirty page and clear the
3880          * first one as dirty, setup an async extent, and immediately return
3881          * with the entire range locked but with nobody actually marked with
3882          * writeback.  So we can't just filemap_write_and_wait_range() and
3883          * expect it to work since it will just kick off a thread to do the
3884          * actual work.  So we need to call filemap_fdatawrite_range _again_
3885          * since it will wait on the page lock, which won't be unlocked until
3886          * after the pages have been marked as writeback and so we're good to go
3887          * from there.  We have to do this otherwise we'll miss the ordered
3888          * extents and that results in badness.  Please Josef, do not think you
3889          * know better and pull this out at some point in the future, it is
3890          * right and you are wrong.
3891          */
3892         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3893         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3894                              &BTRFS_I(inode)->runtime_flags))
3895                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3896 
3897         return ret;
3898 }
3899 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp