1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include <linux/workqueue.h> 26 #include "ctree.h" 27 #include "volumes.h" 28 #include "disk-io.h" 29 #include "transaction.h" 30 #include "dev-replace.h" 31 32 #undef DEBUG 33 34 /* 35 * This is the implementation for the generic read ahead framework. 36 * 37 * To trigger a readahead, btrfs_reada_add must be called. It will start 38 * a read ahead for the given range [start, end) on tree root. The returned 39 * handle can either be used to wait on the readahead to finish 40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach). 41 * 42 * The read ahead works as follows: 43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree. 44 * reada_start_machine will then search for extents to prefetch and trigger 45 * some reads. When a read finishes for a node, all contained node/leaf 46 * pointers that lie in the given range will also be enqueued. The reads will 47 * be triggered in sequential order, thus giving a big win over a naive 48 * enumeration. It will also make use of multi-device layouts. Each disk 49 * will have its on read pointer and all disks will by utilized in parallel. 50 * Also will no two disks read both sides of a mirror simultaneously, as this 51 * would waste seeking capacity. Instead both disks will read different parts 52 * of the filesystem. 53 * Any number of readaheads can be started in parallel. The read order will be 54 * determined globally, i.e. 2 parallel readaheads will normally finish faster 55 * than the 2 started one after another. 56 */ 57 58 #define MAX_IN_FLIGHT 6 59 60 struct reada_extctl { 61 struct list_head list; 62 struct reada_control *rc; 63 u64 generation; 64 }; 65 66 struct reada_extent { 67 u64 logical; 68 struct btrfs_key top; 69 u32 blocksize; 70 int err; 71 struct list_head extctl; 72 int refcnt; 73 spinlock_t lock; 74 struct reada_zone *zones[BTRFS_MAX_MIRRORS]; 75 int nzones; 76 struct btrfs_device *scheduled_for; 77 }; 78 79 struct reada_zone { 80 u64 start; 81 u64 end; 82 u64 elems; 83 struct list_head list; 84 spinlock_t lock; 85 int locked; 86 struct btrfs_device *device; 87 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl 88 * self */ 89 int ndevs; 90 struct kref refcnt; 91 }; 92 93 struct reada_machine_work { 94 struct btrfs_work work; 95 struct btrfs_fs_info *fs_info; 96 }; 97 98 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *); 99 static void reada_control_release(struct kref *kref); 100 static void reada_zone_release(struct kref *kref); 101 static void reada_start_machine(struct btrfs_fs_info *fs_info); 102 static void __reada_start_machine(struct btrfs_fs_info *fs_info); 103 104 static int reada_add_block(struct reada_control *rc, u64 logical, 105 struct btrfs_key *top, int level, u64 generation); 106 107 /* recurses */ 108 /* in case of err, eb might be NULL */ 109 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, 110 u64 start, int err) 111 { 112 int level = 0; 113 int nritems; 114 int i; 115 u64 bytenr; 116 u64 generation; 117 struct reada_extent *re; 118 struct btrfs_fs_info *fs_info = root->fs_info; 119 struct list_head list; 120 unsigned long index = start >> PAGE_CACHE_SHIFT; 121 struct btrfs_device *for_dev; 122 123 if (eb) 124 level = btrfs_header_level(eb); 125 126 /* find extent */ 127 spin_lock(&fs_info->reada_lock); 128 re = radix_tree_lookup(&fs_info->reada_tree, index); 129 if (re) 130 re->refcnt++; 131 spin_unlock(&fs_info->reada_lock); 132 133 if (!re) 134 return -1; 135 136 spin_lock(&re->lock); 137 /* 138 * just take the full list from the extent. afterwards we 139 * don't need the lock anymore 140 */ 141 list_replace_init(&re->extctl, &list); 142 for_dev = re->scheduled_for; 143 re->scheduled_for = NULL; 144 spin_unlock(&re->lock); 145 146 if (err == 0) { 147 nritems = level ? btrfs_header_nritems(eb) : 0; 148 generation = btrfs_header_generation(eb); 149 /* 150 * FIXME: currently we just set nritems to 0 if this is a leaf, 151 * effectively ignoring the content. In a next step we could 152 * trigger more readahead depending from the content, e.g. 153 * fetch the checksums for the extents in the leaf. 154 */ 155 } else { 156 /* 157 * this is the error case, the extent buffer has not been 158 * read correctly. We won't access anything from it and 159 * just cleanup our data structures. Effectively this will 160 * cut the branch below this node from read ahead. 161 */ 162 nritems = 0; 163 generation = 0; 164 } 165 166 for (i = 0; i < nritems; i++) { 167 struct reada_extctl *rec; 168 u64 n_gen; 169 struct btrfs_key key; 170 struct btrfs_key next_key; 171 172 btrfs_node_key_to_cpu(eb, &key, i); 173 if (i + 1 < nritems) 174 btrfs_node_key_to_cpu(eb, &next_key, i + 1); 175 else 176 next_key = re->top; 177 bytenr = btrfs_node_blockptr(eb, i); 178 n_gen = btrfs_node_ptr_generation(eb, i); 179 180 list_for_each_entry(rec, &list, list) { 181 struct reada_control *rc = rec->rc; 182 183 /* 184 * if the generation doesn't match, just ignore this 185 * extctl. This will probably cut off a branch from 186 * prefetch. Alternatively one could start a new (sub-) 187 * prefetch for this branch, starting again from root. 188 * FIXME: move the generation check out of this loop 189 */ 190 #ifdef DEBUG 191 if (rec->generation != generation) { 192 printk(KERN_DEBUG "generation mismatch for " 193 "(%llu,%d,%llu) %llu != %llu\n", 194 key.objectid, key.type, key.offset, 195 rec->generation, generation); 196 } 197 #endif 198 if (rec->generation == generation && 199 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 && 200 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0) 201 reada_add_block(rc, bytenr, &next_key, 202 level - 1, n_gen); 203 } 204 } 205 /* 206 * free extctl records 207 */ 208 while (!list_empty(&list)) { 209 struct reada_control *rc; 210 struct reada_extctl *rec; 211 212 rec = list_first_entry(&list, struct reada_extctl, list); 213 list_del(&rec->list); 214 rc = rec->rc; 215 kfree(rec); 216 217 kref_get(&rc->refcnt); 218 if (atomic_dec_and_test(&rc->elems)) { 219 kref_put(&rc->refcnt, reada_control_release); 220 wake_up(&rc->wait); 221 } 222 kref_put(&rc->refcnt, reada_control_release); 223 224 reada_extent_put(fs_info, re); /* one ref for each entry */ 225 } 226 reada_extent_put(fs_info, re); /* our ref */ 227 if (for_dev) 228 atomic_dec(&for_dev->reada_in_flight); 229 230 return 0; 231 } 232 233 /* 234 * start is passed separately in case eb in NULL, which may be the case with 235 * failed I/O 236 */ 237 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, 238 u64 start, int err) 239 { 240 int ret; 241 242 ret = __readahead_hook(root, eb, start, err); 243 244 reada_start_machine(root->fs_info); 245 246 return ret; 247 } 248 249 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info, 250 struct btrfs_device *dev, u64 logical, 251 struct btrfs_bio *bbio) 252 { 253 int ret; 254 struct reada_zone *zone; 255 struct btrfs_block_group_cache *cache = NULL; 256 u64 start; 257 u64 end; 258 int i; 259 260 zone = NULL; 261 spin_lock(&fs_info->reada_lock); 262 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, 263 logical >> PAGE_CACHE_SHIFT, 1); 264 if (ret == 1) 265 kref_get(&zone->refcnt); 266 spin_unlock(&fs_info->reada_lock); 267 268 if (ret == 1) { 269 if (logical >= zone->start && logical < zone->end) 270 return zone; 271 spin_lock(&fs_info->reada_lock); 272 kref_put(&zone->refcnt, reada_zone_release); 273 spin_unlock(&fs_info->reada_lock); 274 } 275 276 cache = btrfs_lookup_block_group(fs_info, logical); 277 if (!cache) 278 return NULL; 279 280 start = cache->key.objectid; 281 end = start + cache->key.offset - 1; 282 btrfs_put_block_group(cache); 283 284 zone = kzalloc(sizeof(*zone), GFP_NOFS); 285 if (!zone) 286 return NULL; 287 288 zone->start = start; 289 zone->end = end; 290 INIT_LIST_HEAD(&zone->list); 291 spin_lock_init(&zone->lock); 292 zone->locked = 0; 293 kref_init(&zone->refcnt); 294 zone->elems = 0; 295 zone->device = dev; /* our device always sits at index 0 */ 296 for (i = 0; i < bbio->num_stripes; ++i) { 297 /* bounds have already been checked */ 298 zone->devs[i] = bbio->stripes[i].dev; 299 } 300 zone->ndevs = bbio->num_stripes; 301 302 spin_lock(&fs_info->reada_lock); 303 ret = radix_tree_insert(&dev->reada_zones, 304 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT), 305 zone); 306 307 if (ret == -EEXIST) { 308 kfree(zone); 309 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, 310 logical >> PAGE_CACHE_SHIFT, 1); 311 if (ret == 1) 312 kref_get(&zone->refcnt); 313 } 314 spin_unlock(&fs_info->reada_lock); 315 316 return zone; 317 } 318 319 static struct reada_extent *reada_find_extent(struct btrfs_root *root, 320 u64 logical, 321 struct btrfs_key *top, int level) 322 { 323 int ret; 324 struct reada_extent *re = NULL; 325 struct reada_extent *re_exist = NULL; 326 struct btrfs_fs_info *fs_info = root->fs_info; 327 struct btrfs_bio *bbio = NULL; 328 struct btrfs_device *dev; 329 struct btrfs_device *prev_dev; 330 u32 blocksize; 331 u64 length; 332 int nzones = 0; 333 int i; 334 unsigned long index = logical >> PAGE_CACHE_SHIFT; 335 int dev_replace_is_ongoing; 336 337 spin_lock(&fs_info->reada_lock); 338 re = radix_tree_lookup(&fs_info->reada_tree, index); 339 if (re) 340 re->refcnt++; 341 spin_unlock(&fs_info->reada_lock); 342 343 if (re) 344 return re; 345 346 re = kzalloc(sizeof(*re), GFP_NOFS); 347 if (!re) 348 return NULL; 349 350 blocksize = btrfs_level_size(root, level); 351 re->logical = logical; 352 re->blocksize = blocksize; 353 re->top = *top; 354 INIT_LIST_HEAD(&re->extctl); 355 spin_lock_init(&re->lock); 356 re->refcnt = 1; 357 358 /* 359 * map block 360 */ 361 length = blocksize; 362 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length, 363 &bbio, 0); 364 if (ret || !bbio || length < blocksize) 365 goto error; 366 367 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) { 368 printk(KERN_ERR "btrfs readahead: more than %d copies not " 369 "supported", BTRFS_MAX_MIRRORS); 370 goto error; 371 } 372 373 for (nzones = 0; nzones < bbio->num_stripes; ++nzones) { 374 struct reada_zone *zone; 375 376 dev = bbio->stripes[nzones].dev; 377 zone = reada_find_zone(fs_info, dev, logical, bbio); 378 if (!zone) 379 break; 380 381 re->zones[nzones] = zone; 382 spin_lock(&zone->lock); 383 if (!zone->elems) 384 kref_get(&zone->refcnt); 385 ++zone->elems; 386 spin_unlock(&zone->lock); 387 spin_lock(&fs_info->reada_lock); 388 kref_put(&zone->refcnt, reada_zone_release); 389 spin_unlock(&fs_info->reada_lock); 390 } 391 re->nzones = nzones; 392 if (nzones == 0) { 393 /* not a single zone found, error and out */ 394 goto error; 395 } 396 397 /* insert extent in reada_tree + all per-device trees, all or nothing */ 398 btrfs_dev_replace_lock(&fs_info->dev_replace); 399 spin_lock(&fs_info->reada_lock); 400 ret = radix_tree_insert(&fs_info->reada_tree, index, re); 401 if (ret == -EEXIST) { 402 re_exist = radix_tree_lookup(&fs_info->reada_tree, index); 403 BUG_ON(!re_exist); 404 re_exist->refcnt++; 405 spin_unlock(&fs_info->reada_lock); 406 btrfs_dev_replace_unlock(&fs_info->dev_replace); 407 goto error; 408 } 409 if (ret) { 410 spin_unlock(&fs_info->reada_lock); 411 btrfs_dev_replace_unlock(&fs_info->dev_replace); 412 goto error; 413 } 414 prev_dev = NULL; 415 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing( 416 &fs_info->dev_replace); 417 for (i = 0; i < nzones; ++i) { 418 dev = bbio->stripes[i].dev; 419 if (dev == prev_dev) { 420 /* 421 * in case of DUP, just add the first zone. As both 422 * are on the same device, there's nothing to gain 423 * from adding both. 424 * Also, it wouldn't work, as the tree is per device 425 * and adding would fail with EEXIST 426 */ 427 continue; 428 } 429 if (!dev->bdev) { 430 /* cannot read ahead on missing device */ 431 continue; 432 } 433 if (dev_replace_is_ongoing && 434 dev == fs_info->dev_replace.tgtdev) { 435 /* 436 * as this device is selected for reading only as 437 * a last resort, skip it for read ahead. 438 */ 439 continue; 440 } 441 prev_dev = dev; 442 ret = radix_tree_insert(&dev->reada_extents, index, re); 443 if (ret) { 444 while (--i >= 0) { 445 dev = bbio->stripes[i].dev; 446 BUG_ON(dev == NULL); 447 /* ignore whether the entry was inserted */ 448 radix_tree_delete(&dev->reada_extents, index); 449 } 450 BUG_ON(fs_info == NULL); 451 radix_tree_delete(&fs_info->reada_tree, index); 452 spin_unlock(&fs_info->reada_lock); 453 btrfs_dev_replace_unlock(&fs_info->dev_replace); 454 goto error; 455 } 456 } 457 spin_unlock(&fs_info->reada_lock); 458 btrfs_dev_replace_unlock(&fs_info->dev_replace); 459 460 kfree(bbio); 461 return re; 462 463 error: 464 while (nzones) { 465 struct reada_zone *zone; 466 467 --nzones; 468 zone = re->zones[nzones]; 469 kref_get(&zone->refcnt); 470 spin_lock(&zone->lock); 471 --zone->elems; 472 if (zone->elems == 0) { 473 /* 474 * no fs_info->reada_lock needed, as this can't be 475 * the last ref 476 */ 477 kref_put(&zone->refcnt, reada_zone_release); 478 } 479 spin_unlock(&zone->lock); 480 481 spin_lock(&fs_info->reada_lock); 482 kref_put(&zone->refcnt, reada_zone_release); 483 spin_unlock(&fs_info->reada_lock); 484 } 485 kfree(bbio); 486 kfree(re); 487 return re_exist; 488 } 489 490 static void reada_extent_put(struct btrfs_fs_info *fs_info, 491 struct reada_extent *re) 492 { 493 int i; 494 unsigned long index = re->logical >> PAGE_CACHE_SHIFT; 495 496 spin_lock(&fs_info->reada_lock); 497 if (--re->refcnt) { 498 spin_unlock(&fs_info->reada_lock); 499 return; 500 } 501 502 radix_tree_delete(&fs_info->reada_tree, index); 503 for (i = 0; i < re->nzones; ++i) { 504 struct reada_zone *zone = re->zones[i]; 505 506 radix_tree_delete(&zone->device->reada_extents, index); 507 } 508 509 spin_unlock(&fs_info->reada_lock); 510 511 for (i = 0; i < re->nzones; ++i) { 512 struct reada_zone *zone = re->zones[i]; 513 514 kref_get(&zone->refcnt); 515 spin_lock(&zone->lock); 516 --zone->elems; 517 if (zone->elems == 0) { 518 /* no fs_info->reada_lock needed, as this can't be 519 * the last ref */ 520 kref_put(&zone->refcnt, reada_zone_release); 521 } 522 spin_unlock(&zone->lock); 523 524 spin_lock(&fs_info->reada_lock); 525 kref_put(&zone->refcnt, reada_zone_release); 526 spin_unlock(&fs_info->reada_lock); 527 } 528 if (re->scheduled_for) 529 atomic_dec(&re->scheduled_for->reada_in_flight); 530 531 kfree(re); 532 } 533 534 static void reada_zone_release(struct kref *kref) 535 { 536 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt); 537 538 radix_tree_delete(&zone->device->reada_zones, 539 zone->end >> PAGE_CACHE_SHIFT); 540 541 kfree(zone); 542 } 543 544 static void reada_control_release(struct kref *kref) 545 { 546 struct reada_control *rc = container_of(kref, struct reada_control, 547 refcnt); 548 549 kfree(rc); 550 } 551 552 static int reada_add_block(struct reada_control *rc, u64 logical, 553 struct btrfs_key *top, int level, u64 generation) 554 { 555 struct btrfs_root *root = rc->root; 556 struct reada_extent *re; 557 struct reada_extctl *rec; 558 559 re = reada_find_extent(root, logical, top, level); /* takes one ref */ 560 if (!re) 561 return -1; 562 563 rec = kzalloc(sizeof(*rec), GFP_NOFS); 564 if (!rec) { 565 reada_extent_put(root->fs_info, re); 566 return -1; 567 } 568 569 rec->rc = rc; 570 rec->generation = generation; 571 atomic_inc(&rc->elems); 572 573 spin_lock(&re->lock); 574 list_add_tail(&rec->list, &re->extctl); 575 spin_unlock(&re->lock); 576 577 /* leave the ref on the extent */ 578 579 return 0; 580 } 581 582 /* 583 * called with fs_info->reada_lock held 584 */ 585 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock) 586 { 587 int i; 588 unsigned long index = zone->end >> PAGE_CACHE_SHIFT; 589 590 for (i = 0; i < zone->ndevs; ++i) { 591 struct reada_zone *peer; 592 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index); 593 if (peer && peer->device != zone->device) 594 peer->locked = lock; 595 } 596 } 597 598 /* 599 * called with fs_info->reada_lock held 600 */ 601 static int reada_pick_zone(struct btrfs_device *dev) 602 { 603 struct reada_zone *top_zone = NULL; 604 struct reada_zone *top_locked_zone = NULL; 605 u64 top_elems = 0; 606 u64 top_locked_elems = 0; 607 unsigned long index = 0; 608 int ret; 609 610 if (dev->reada_curr_zone) { 611 reada_peer_zones_set_lock(dev->reada_curr_zone, 0); 612 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release); 613 dev->reada_curr_zone = NULL; 614 } 615 /* pick the zone with the most elements */ 616 while (1) { 617 struct reada_zone *zone; 618 619 ret = radix_tree_gang_lookup(&dev->reada_zones, 620 (void **)&zone, index, 1); 621 if (ret == 0) 622 break; 623 index = (zone->end >> PAGE_CACHE_SHIFT) + 1; 624 if (zone->locked) { 625 if (zone->elems > top_locked_elems) { 626 top_locked_elems = zone->elems; 627 top_locked_zone = zone; 628 } 629 } else { 630 if (zone->elems > top_elems) { 631 top_elems = zone->elems; 632 top_zone = zone; 633 } 634 } 635 } 636 if (top_zone) 637 dev->reada_curr_zone = top_zone; 638 else if (top_locked_zone) 639 dev->reada_curr_zone = top_locked_zone; 640 else 641 return 0; 642 643 dev->reada_next = dev->reada_curr_zone->start; 644 kref_get(&dev->reada_curr_zone->refcnt); 645 reada_peer_zones_set_lock(dev->reada_curr_zone, 1); 646 647 return 1; 648 } 649 650 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info, 651 struct btrfs_device *dev) 652 { 653 struct reada_extent *re = NULL; 654 int mirror_num = 0; 655 struct extent_buffer *eb = NULL; 656 u64 logical; 657 u32 blocksize; 658 int ret; 659 int i; 660 int need_kick = 0; 661 662 spin_lock(&fs_info->reada_lock); 663 if (dev->reada_curr_zone == NULL) { 664 ret = reada_pick_zone(dev); 665 if (!ret) { 666 spin_unlock(&fs_info->reada_lock); 667 return 0; 668 } 669 } 670 /* 671 * FIXME currently we issue the reads one extent at a time. If we have 672 * a contiguous block of extents, we could also coagulate them or use 673 * plugging to speed things up 674 */ 675 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, 676 dev->reada_next >> PAGE_CACHE_SHIFT, 1); 677 if (ret == 0 || re->logical >= dev->reada_curr_zone->end) { 678 ret = reada_pick_zone(dev); 679 if (!ret) { 680 spin_unlock(&fs_info->reada_lock); 681 return 0; 682 } 683 re = NULL; 684 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, 685 dev->reada_next >> PAGE_CACHE_SHIFT, 1); 686 } 687 if (ret == 0) { 688 spin_unlock(&fs_info->reada_lock); 689 return 0; 690 } 691 dev->reada_next = re->logical + re->blocksize; 692 re->refcnt++; 693 694 spin_unlock(&fs_info->reada_lock); 695 696 /* 697 * find mirror num 698 */ 699 for (i = 0; i < re->nzones; ++i) { 700 if (re->zones[i]->device == dev) { 701 mirror_num = i + 1; 702 break; 703 } 704 } 705 logical = re->logical; 706 blocksize = re->blocksize; 707 708 spin_lock(&re->lock); 709 if (re->scheduled_for == NULL) { 710 re->scheduled_for = dev; 711 need_kick = 1; 712 } 713 spin_unlock(&re->lock); 714 715 reada_extent_put(fs_info, re); 716 717 if (!need_kick) 718 return 0; 719 720 atomic_inc(&dev->reada_in_flight); 721 ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize, 722 mirror_num, &eb); 723 if (ret) 724 __readahead_hook(fs_info->extent_root, NULL, logical, ret); 725 else if (eb) 726 __readahead_hook(fs_info->extent_root, eb, eb->start, ret); 727 728 if (eb) 729 free_extent_buffer(eb); 730 731 return 1; 732 733 } 734 735 static void reada_start_machine_worker(struct btrfs_work *work) 736 { 737 struct reada_machine_work *rmw; 738 struct btrfs_fs_info *fs_info; 739 int old_ioprio; 740 741 rmw = container_of(work, struct reada_machine_work, work); 742 fs_info = rmw->fs_info; 743 744 kfree(rmw); 745 746 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current), 747 task_nice_ioprio(current)); 748 set_task_ioprio(current, BTRFS_IOPRIO_READA); 749 __reada_start_machine(fs_info); 750 set_task_ioprio(current, old_ioprio); 751 } 752 753 static void __reada_start_machine(struct btrfs_fs_info *fs_info) 754 { 755 struct btrfs_device *device; 756 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 757 u64 enqueued; 758 u64 total = 0; 759 int i; 760 761 do { 762 enqueued = 0; 763 list_for_each_entry(device, &fs_devices->devices, dev_list) { 764 if (atomic_read(&device->reada_in_flight) < 765 MAX_IN_FLIGHT) 766 enqueued += reada_start_machine_dev(fs_info, 767 device); 768 } 769 total += enqueued; 770 } while (enqueued && total < 10000); 771 772 if (enqueued == 0) 773 return; 774 775 /* 776 * If everything is already in the cache, this is effectively single 777 * threaded. To a) not hold the caller for too long and b) to utilize 778 * more cores, we broke the loop above after 10000 iterations and now 779 * enqueue to workers to finish it. This will distribute the load to 780 * the cores. 781 */ 782 for (i = 0; i < 2; ++i) 783 reada_start_machine(fs_info); 784 } 785 786 static void reada_start_machine(struct btrfs_fs_info *fs_info) 787 { 788 struct reada_machine_work *rmw; 789 790 rmw = kzalloc(sizeof(*rmw), GFP_NOFS); 791 if (!rmw) { 792 /* FIXME we cannot handle this properly right now */ 793 BUG(); 794 } 795 rmw->work.func = reada_start_machine_worker; 796 rmw->fs_info = fs_info; 797 798 btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work); 799 } 800 801 #ifdef DEBUG 802 static void dump_devs(struct btrfs_fs_info *fs_info, int all) 803 { 804 struct btrfs_device *device; 805 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 806 unsigned long index; 807 int ret; 808 int i; 809 int j; 810 int cnt; 811 812 spin_lock(&fs_info->reada_lock); 813 list_for_each_entry(device, &fs_devices->devices, dev_list) { 814 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid, 815 atomic_read(&device->reada_in_flight)); 816 index = 0; 817 while (1) { 818 struct reada_zone *zone; 819 ret = radix_tree_gang_lookup(&device->reada_zones, 820 (void **)&zone, index, 1); 821 if (ret == 0) 822 break; 823 printk(KERN_DEBUG " zone %llu-%llu elems %llu locked " 824 "%d devs", zone->start, zone->end, zone->elems, 825 zone->locked); 826 for (j = 0; j < zone->ndevs; ++j) { 827 printk(KERN_CONT " %lld", 828 zone->devs[j]->devid); 829 } 830 if (device->reada_curr_zone == zone) 831 printk(KERN_CONT " curr off %llu", 832 device->reada_next - zone->start); 833 printk(KERN_CONT "\n"); 834 index = (zone->end >> PAGE_CACHE_SHIFT) + 1; 835 } 836 cnt = 0; 837 index = 0; 838 while (all) { 839 struct reada_extent *re = NULL; 840 841 ret = radix_tree_gang_lookup(&device->reada_extents, 842 (void **)&re, index, 1); 843 if (ret == 0) 844 break; 845 printk(KERN_DEBUG 846 " re: logical %llu size %u empty %d for %lld", 847 re->logical, re->blocksize, 848 list_empty(&re->extctl), re->scheduled_for ? 849 re->scheduled_for->devid : -1); 850 851 for (i = 0; i < re->nzones; ++i) { 852 printk(KERN_CONT " zone %llu-%llu devs", 853 re->zones[i]->start, 854 re->zones[i]->end); 855 for (j = 0; j < re->zones[i]->ndevs; ++j) { 856 printk(KERN_CONT " %lld", 857 re->zones[i]->devs[j]->devid); 858 } 859 } 860 printk(KERN_CONT "\n"); 861 index = (re->logical >> PAGE_CACHE_SHIFT) + 1; 862 if (++cnt > 15) 863 break; 864 } 865 } 866 867 index = 0; 868 cnt = 0; 869 while (all) { 870 struct reada_extent *re = NULL; 871 872 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re, 873 index, 1); 874 if (ret == 0) 875 break; 876 if (!re->scheduled_for) { 877 index = (re->logical >> PAGE_CACHE_SHIFT) + 1; 878 continue; 879 } 880 printk(KERN_DEBUG 881 "re: logical %llu size %u list empty %d for %lld", 882 re->logical, re->blocksize, list_empty(&re->extctl), 883 re->scheduled_for ? re->scheduled_for->devid : -1); 884 for (i = 0; i < re->nzones; ++i) { 885 printk(KERN_CONT " zone %llu-%llu devs", 886 re->zones[i]->start, 887 re->zones[i]->end); 888 for (i = 0; i < re->nzones; ++i) { 889 printk(KERN_CONT " zone %llu-%llu devs", 890 re->zones[i]->start, 891 re->zones[i]->end); 892 for (j = 0; j < re->zones[i]->ndevs; ++j) { 893 printk(KERN_CONT " %lld", 894 re->zones[i]->devs[j]->devid); 895 } 896 } 897 } 898 printk(KERN_CONT "\n"); 899 index = (re->logical >> PAGE_CACHE_SHIFT) + 1; 900 } 901 spin_unlock(&fs_info->reada_lock); 902 } 903 #endif 904 905 /* 906 * interface 907 */ 908 struct reada_control *btrfs_reada_add(struct btrfs_root *root, 909 struct btrfs_key *key_start, struct btrfs_key *key_end) 910 { 911 struct reada_control *rc; 912 u64 start; 913 u64 generation; 914 int level; 915 struct extent_buffer *node; 916 static struct btrfs_key max_key = { 917 .objectid = (u64)-1, 918 .type = (u8)-1, 919 .offset = (u64)-1 920 }; 921 922 rc = kzalloc(sizeof(*rc), GFP_NOFS); 923 if (!rc) 924 return ERR_PTR(-ENOMEM); 925 926 rc->root = root; 927 rc->key_start = *key_start; 928 rc->key_end = *key_end; 929 atomic_set(&rc->elems, 0); 930 init_waitqueue_head(&rc->wait); 931 kref_init(&rc->refcnt); 932 kref_get(&rc->refcnt); /* one ref for having elements */ 933 934 node = btrfs_root_node(root); 935 start = node->start; 936 level = btrfs_header_level(node); 937 generation = btrfs_header_generation(node); 938 free_extent_buffer(node); 939 940 if (reada_add_block(rc, start, &max_key, level, generation)) { 941 kfree(rc); 942 return ERR_PTR(-ENOMEM); 943 } 944 945 reada_start_machine(root->fs_info); 946 947 return rc; 948 } 949 950 #ifdef DEBUG 951 int btrfs_reada_wait(void *handle) 952 { 953 struct reada_control *rc = handle; 954 955 while (atomic_read(&rc->elems)) { 956 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0, 957 5 * HZ); 958 dump_devs(rc->root->fs_info, 959 atomic_read(&rc->elems) < 10 ? 1 : 0); 960 } 961 962 dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0); 963 964 kref_put(&rc->refcnt, reada_control_release); 965 966 return 0; 967 } 968 #else 969 int btrfs_reada_wait(void *handle) 970 { 971 struct reada_control *rc = handle; 972 973 while (atomic_read(&rc->elems)) { 974 wait_event(rc->wait, atomic_read(&rc->elems) == 0); 975 } 976 977 kref_put(&rc->refcnt, reada_control_release); 978 979 return 0; 980 } 981 #endif 982 983 void btrfs_reada_detach(void *handle) 984 { 985 struct reada_control *rc = handle; 986 987 kref_put(&rc->refcnt, reada_control_release); 988 } 989
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.