1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 #include "xattr.h" 27 28 /* 29 * Maximum number of references an extent can have in order for us to attempt to 30 * issue clone operations instead of write operations. This currently exists to 31 * avoid hitting limitations of the backreference walking code (taking a lot of 32 * time and using too much memory for extents with large number of references). 33 */ 34 #define SEND_MAX_EXTENT_REFS 64 35 36 /* 37 * A fs_path is a helper to dynamically build path names with unknown size. 38 * It reallocates the internal buffer on demand. 39 * It allows fast adding of path elements on the right side (normal path) and 40 * fast adding to the left side (reversed path). A reversed path can also be 41 * unreversed if needed. 42 */ 43 struct fs_path { 44 union { 45 struct { 46 char *start; 47 char *end; 48 49 char *buf; 50 unsigned short buf_len:15; 51 unsigned short reversed:1; 52 char inline_buf[]; 53 }; 54 /* 55 * Average path length does not exceed 200 bytes, we'll have 56 * better packing in the slab and higher chance to satisfy 57 * a allocation later during send. 58 */ 59 char pad[256]; 60 }; 61 }; 62 #define FS_PATH_INLINE_SIZE \ 63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 64 65 66 /* reused for each extent */ 67 struct clone_root { 68 struct btrfs_root *root; 69 u64 ino; 70 u64 offset; 71 72 u64 found_refs; 73 }; 74 75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 77 78 struct send_ctx { 79 struct file *send_filp; 80 loff_t send_off; 81 char *send_buf; 82 u32 send_size; 83 u32 send_max_size; 84 u64 total_send_size; 85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 87 88 struct btrfs_root *send_root; 89 struct btrfs_root *parent_root; 90 struct clone_root *clone_roots; 91 int clone_roots_cnt; 92 93 /* current state of the compare_tree call */ 94 struct btrfs_path *left_path; 95 struct btrfs_path *right_path; 96 struct btrfs_key *cmp_key; 97 98 /* 99 * infos of the currently processed inode. In case of deleted inodes, 100 * these are the values from the deleted inode. 101 */ 102 u64 cur_ino; 103 u64 cur_inode_gen; 104 int cur_inode_new; 105 int cur_inode_new_gen; 106 int cur_inode_deleted; 107 u64 cur_inode_size; 108 u64 cur_inode_mode; 109 u64 cur_inode_rdev; 110 u64 cur_inode_last_extent; 111 u64 cur_inode_next_write_offset; 112 bool ignore_cur_inode; 113 114 u64 send_progress; 115 116 struct list_head new_refs; 117 struct list_head deleted_refs; 118 119 struct radix_tree_root name_cache; 120 struct list_head name_cache_list; 121 int name_cache_size; 122 123 struct file_ra_state ra; 124 125 /* 126 * We process inodes by their increasing order, so if before an 127 * incremental send we reverse the parent/child relationship of 128 * directories such that a directory with a lower inode number was 129 * the parent of a directory with a higher inode number, and the one 130 * becoming the new parent got renamed too, we can't rename/move the 131 * directory with lower inode number when we finish processing it - we 132 * must process the directory with higher inode number first, then 133 * rename/move it and then rename/move the directory with lower inode 134 * number. Example follows. 135 * 136 * Tree state when the first send was performed: 137 * 138 * . 139 * |-- a (ino 257) 140 * |-- b (ino 258) 141 * | 142 * | 143 * |-- c (ino 259) 144 * | |-- d (ino 260) 145 * | 146 * |-- c2 (ino 261) 147 * 148 * Tree state when the second (incremental) send is performed: 149 * 150 * . 151 * |-- a (ino 257) 152 * |-- b (ino 258) 153 * |-- c2 (ino 261) 154 * |-- d2 (ino 260) 155 * |-- cc (ino 259) 156 * 157 * The sequence of steps that lead to the second state was: 158 * 159 * mv /a/b/c/d /a/b/c2/d2 160 * mv /a/b/c /a/b/c2/d2/cc 161 * 162 * "c" has lower inode number, but we can't move it (2nd mv operation) 163 * before we move "d", which has higher inode number. 164 * 165 * So we just memorize which move/rename operations must be performed 166 * later when their respective parent is processed and moved/renamed. 167 */ 168 169 /* Indexed by parent directory inode number. */ 170 struct rb_root pending_dir_moves; 171 172 /* 173 * Reverse index, indexed by the inode number of a directory that 174 * is waiting for the move/rename of its immediate parent before its 175 * own move/rename can be performed. 176 */ 177 struct rb_root waiting_dir_moves; 178 179 /* 180 * A directory that is going to be rm'ed might have a child directory 181 * which is in the pending directory moves index above. In this case, 182 * the directory can only be removed after the move/rename of its child 183 * is performed. Example: 184 * 185 * Parent snapshot: 186 * 187 * . (ino 256) 188 * |-- a/ (ino 257) 189 * |-- b/ (ino 258) 190 * |-- c/ (ino 259) 191 * | |-- x/ (ino 260) 192 * | 193 * |-- y/ (ino 261) 194 * 195 * Send snapshot: 196 * 197 * . (ino 256) 198 * |-- a/ (ino 257) 199 * |-- b/ (ino 258) 200 * |-- YY/ (ino 261) 201 * |-- x/ (ino 260) 202 * 203 * Sequence of steps that lead to the send snapshot: 204 * rm -f /a/b/c/foo.txt 205 * mv /a/b/y /a/b/YY 206 * mv /a/b/c/x /a/b/YY 207 * rmdir /a/b/c 208 * 209 * When the child is processed, its move/rename is delayed until its 210 * parent is processed (as explained above), but all other operations 211 * like update utimes, chown, chgrp, etc, are performed and the paths 212 * that it uses for those operations must use the orphanized name of 213 * its parent (the directory we're going to rm later), so we need to 214 * memorize that name. 215 * 216 * Indexed by the inode number of the directory to be deleted. 217 */ 218 struct rb_root orphan_dirs; 219 }; 220 221 struct pending_dir_move { 222 struct rb_node node; 223 struct list_head list; 224 u64 parent_ino; 225 u64 ino; 226 u64 gen; 227 struct list_head update_refs; 228 }; 229 230 struct waiting_dir_move { 231 struct rb_node node; 232 u64 ino; 233 /* 234 * There might be some directory that could not be removed because it 235 * was waiting for this directory inode to be moved first. Therefore 236 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 237 */ 238 u64 rmdir_ino; 239 u64 rmdir_gen; 240 bool orphanized; 241 }; 242 243 struct orphan_dir_info { 244 struct rb_node node; 245 u64 ino; 246 u64 gen; 247 u64 last_dir_index_offset; 248 }; 249 250 struct name_cache_entry { 251 struct list_head list; 252 /* 253 * radix_tree has only 32bit entries but we need to handle 64bit inums. 254 * We use the lower 32bit of the 64bit inum to store it in the tree. If 255 * more then one inum would fall into the same entry, we use radix_list 256 * to store the additional entries. radix_list is also used to store 257 * entries where two entries have the same inum but different 258 * generations. 259 */ 260 struct list_head radix_list; 261 u64 ino; 262 u64 gen; 263 u64 parent_ino; 264 u64 parent_gen; 265 int ret; 266 int need_later_update; 267 int name_len; 268 char name[]; 269 }; 270 271 #define ADVANCE 1 272 #define ADVANCE_ONLY_NEXT -1 273 274 enum btrfs_compare_tree_result { 275 BTRFS_COMPARE_TREE_NEW, 276 BTRFS_COMPARE_TREE_DELETED, 277 BTRFS_COMPARE_TREE_CHANGED, 278 BTRFS_COMPARE_TREE_SAME, 279 }; 280 281 __cold 282 static void inconsistent_snapshot_error(struct send_ctx *sctx, 283 enum btrfs_compare_tree_result result, 284 const char *what) 285 { 286 const char *result_string; 287 288 switch (result) { 289 case BTRFS_COMPARE_TREE_NEW: 290 result_string = "new"; 291 break; 292 case BTRFS_COMPARE_TREE_DELETED: 293 result_string = "deleted"; 294 break; 295 case BTRFS_COMPARE_TREE_CHANGED: 296 result_string = "updated"; 297 break; 298 case BTRFS_COMPARE_TREE_SAME: 299 ASSERT(0); 300 result_string = "unchanged"; 301 break; 302 default: 303 ASSERT(0); 304 result_string = "unexpected"; 305 } 306 307 btrfs_err(sctx->send_root->fs_info, 308 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 309 result_string, what, sctx->cmp_key->objectid, 310 sctx->send_root->root_key.objectid, 311 (sctx->parent_root ? 312 sctx->parent_root->root_key.objectid : 0)); 313 } 314 315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 316 317 static struct waiting_dir_move * 318 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 319 320 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 321 322 static int need_send_hole(struct send_ctx *sctx) 323 { 324 return (sctx->parent_root && !sctx->cur_inode_new && 325 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 326 S_ISREG(sctx->cur_inode_mode)); 327 } 328 329 static void fs_path_reset(struct fs_path *p) 330 { 331 if (p->reversed) { 332 p->start = p->buf + p->buf_len - 1; 333 p->end = p->start; 334 *p->start = 0; 335 } else { 336 p->start = p->buf; 337 p->end = p->start; 338 *p->start = 0; 339 } 340 } 341 342 static struct fs_path *fs_path_alloc(void) 343 { 344 struct fs_path *p; 345 346 p = kmalloc(sizeof(*p), GFP_KERNEL); 347 if (!p) 348 return NULL; 349 p->reversed = 0; 350 p->buf = p->inline_buf; 351 p->buf_len = FS_PATH_INLINE_SIZE; 352 fs_path_reset(p); 353 return p; 354 } 355 356 static struct fs_path *fs_path_alloc_reversed(void) 357 { 358 struct fs_path *p; 359 360 p = fs_path_alloc(); 361 if (!p) 362 return NULL; 363 p->reversed = 1; 364 fs_path_reset(p); 365 return p; 366 } 367 368 static void fs_path_free(struct fs_path *p) 369 { 370 if (!p) 371 return; 372 if (p->buf != p->inline_buf) 373 kfree(p->buf); 374 kfree(p); 375 } 376 377 static int fs_path_len(struct fs_path *p) 378 { 379 return p->end - p->start; 380 } 381 382 static int fs_path_ensure_buf(struct fs_path *p, int len) 383 { 384 char *tmp_buf; 385 int path_len; 386 int old_buf_len; 387 388 len++; 389 390 if (p->buf_len >= len) 391 return 0; 392 393 if (len > PATH_MAX) { 394 WARN_ON(1); 395 return -ENOMEM; 396 } 397 398 path_len = p->end - p->start; 399 old_buf_len = p->buf_len; 400 401 /* 402 * First time the inline_buf does not suffice 403 */ 404 if (p->buf == p->inline_buf) { 405 tmp_buf = kmalloc(len, GFP_KERNEL); 406 if (tmp_buf) 407 memcpy(tmp_buf, p->buf, old_buf_len); 408 } else { 409 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 410 } 411 if (!tmp_buf) 412 return -ENOMEM; 413 p->buf = tmp_buf; 414 /* 415 * The real size of the buffer is bigger, this will let the fast path 416 * happen most of the time 417 */ 418 p->buf_len = ksize(p->buf); 419 420 if (p->reversed) { 421 tmp_buf = p->buf + old_buf_len - path_len - 1; 422 p->end = p->buf + p->buf_len - 1; 423 p->start = p->end - path_len; 424 memmove(p->start, tmp_buf, path_len + 1); 425 } else { 426 p->start = p->buf; 427 p->end = p->start + path_len; 428 } 429 return 0; 430 } 431 432 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 433 char **prepared) 434 { 435 int ret; 436 int new_len; 437 438 new_len = p->end - p->start + name_len; 439 if (p->start != p->end) 440 new_len++; 441 ret = fs_path_ensure_buf(p, new_len); 442 if (ret < 0) 443 goto out; 444 445 if (p->reversed) { 446 if (p->start != p->end) 447 *--p->start = '/'; 448 p->start -= name_len; 449 *prepared = p->start; 450 } else { 451 if (p->start != p->end) 452 *p->end++ = '/'; 453 *prepared = p->end; 454 p->end += name_len; 455 *p->end = 0; 456 } 457 458 out: 459 return ret; 460 } 461 462 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 463 { 464 int ret; 465 char *prepared; 466 467 ret = fs_path_prepare_for_add(p, name_len, &prepared); 468 if (ret < 0) 469 goto out; 470 memcpy(prepared, name, name_len); 471 472 out: 473 return ret; 474 } 475 476 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 477 { 478 int ret; 479 char *prepared; 480 481 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 482 if (ret < 0) 483 goto out; 484 memcpy(prepared, p2->start, p2->end - p2->start); 485 486 out: 487 return ret; 488 } 489 490 static int fs_path_add_from_extent_buffer(struct fs_path *p, 491 struct extent_buffer *eb, 492 unsigned long off, int len) 493 { 494 int ret; 495 char *prepared; 496 497 ret = fs_path_prepare_for_add(p, len, &prepared); 498 if (ret < 0) 499 goto out; 500 501 read_extent_buffer(eb, prepared, off, len); 502 503 out: 504 return ret; 505 } 506 507 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 508 { 509 int ret; 510 511 p->reversed = from->reversed; 512 fs_path_reset(p); 513 514 ret = fs_path_add_path(p, from); 515 516 return ret; 517 } 518 519 520 static void fs_path_unreverse(struct fs_path *p) 521 { 522 char *tmp; 523 int len; 524 525 if (!p->reversed) 526 return; 527 528 tmp = p->start; 529 len = p->end - p->start; 530 p->start = p->buf; 531 p->end = p->start + len; 532 memmove(p->start, tmp, len + 1); 533 p->reversed = 0; 534 } 535 536 static struct btrfs_path *alloc_path_for_send(void) 537 { 538 struct btrfs_path *path; 539 540 path = btrfs_alloc_path(); 541 if (!path) 542 return NULL; 543 path->search_commit_root = 1; 544 path->skip_locking = 1; 545 path->need_commit_sem = 1; 546 return path; 547 } 548 549 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 550 { 551 int ret; 552 u32 pos = 0; 553 554 while (pos < len) { 555 ret = kernel_write(filp, buf + pos, len - pos, off); 556 /* TODO handle that correctly */ 557 /*if (ret == -ERESTARTSYS) { 558 continue; 559 }*/ 560 if (ret < 0) 561 return ret; 562 if (ret == 0) { 563 return -EIO; 564 } 565 pos += ret; 566 } 567 568 return 0; 569 } 570 571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 572 { 573 struct btrfs_tlv_header *hdr; 574 int total_len = sizeof(*hdr) + len; 575 int left = sctx->send_max_size - sctx->send_size; 576 577 if (unlikely(left < total_len)) 578 return -EOVERFLOW; 579 580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 581 put_unaligned_le16(attr, &hdr->tlv_type); 582 put_unaligned_le16(len, &hdr->tlv_len); 583 memcpy(hdr + 1, data, len); 584 sctx->send_size += total_len; 585 586 return 0; 587 } 588 589 #define TLV_PUT_DEFINE_INT(bits) \ 590 static int tlv_put_u##bits(struct send_ctx *sctx, \ 591 u##bits attr, u##bits value) \ 592 { \ 593 __le##bits __tmp = cpu_to_le##bits(value); \ 594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 595 } 596 597 TLV_PUT_DEFINE_INT(64) 598 599 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 600 const char *str, int len) 601 { 602 if (len == -1) 603 len = strlen(str); 604 return tlv_put(sctx, attr, str, len); 605 } 606 607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 608 const u8 *uuid) 609 { 610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 611 } 612 613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 614 struct extent_buffer *eb, 615 struct btrfs_timespec *ts) 616 { 617 struct btrfs_timespec bts; 618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 619 return tlv_put(sctx, attr, &bts, sizeof(bts)); 620 } 621 622 623 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 624 do { \ 625 ret = tlv_put(sctx, attrtype, data, attrlen); \ 626 if (ret < 0) \ 627 goto tlv_put_failure; \ 628 } while (0) 629 630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 631 do { \ 632 ret = tlv_put_u##bits(sctx, attrtype, value); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while (0) 636 637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 642 do { \ 643 ret = tlv_put_string(sctx, attrtype, str, len); \ 644 if (ret < 0) \ 645 goto tlv_put_failure; \ 646 } while (0) 647 #define TLV_PUT_PATH(sctx, attrtype, p) \ 648 do { \ 649 ret = tlv_put_string(sctx, attrtype, p->start, \ 650 p->end - p->start); \ 651 if (ret < 0) \ 652 goto tlv_put_failure; \ 653 } while(0) 654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 655 do { \ 656 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 657 if (ret < 0) \ 658 goto tlv_put_failure; \ 659 } while (0) 660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 661 do { \ 662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 663 if (ret < 0) \ 664 goto tlv_put_failure; \ 665 } while (0) 666 667 static int send_header(struct send_ctx *sctx) 668 { 669 struct btrfs_stream_header hdr; 670 671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 673 674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 675 &sctx->send_off); 676 } 677 678 /* 679 * For each command/item we want to send to userspace, we call this function. 680 */ 681 static int begin_cmd(struct send_ctx *sctx, int cmd) 682 { 683 struct btrfs_cmd_header *hdr; 684 685 if (WARN_ON(!sctx->send_buf)) 686 return -EINVAL; 687 688 BUG_ON(sctx->send_size); 689 690 sctx->send_size += sizeof(*hdr); 691 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 692 put_unaligned_le16(cmd, &hdr->cmd); 693 694 return 0; 695 } 696 697 static int send_cmd(struct send_ctx *sctx) 698 { 699 int ret; 700 struct btrfs_cmd_header *hdr; 701 u32 crc; 702 703 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 704 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 705 put_unaligned_le32(0, &hdr->crc); 706 707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 708 put_unaligned_le32(crc, &hdr->crc); 709 710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 711 &sctx->send_off); 712 713 sctx->total_send_size += sctx->send_size; 714 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size; 715 sctx->send_size = 0; 716 717 return ret; 718 } 719 720 /* 721 * Sends a move instruction to user space 722 */ 723 static int send_rename(struct send_ctx *sctx, 724 struct fs_path *from, struct fs_path *to) 725 { 726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 727 int ret; 728 729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 730 731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 732 if (ret < 0) 733 goto out; 734 735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 737 738 ret = send_cmd(sctx); 739 740 tlv_put_failure: 741 out: 742 return ret; 743 } 744 745 /* 746 * Sends a link instruction to user space 747 */ 748 static int send_link(struct send_ctx *sctx, 749 struct fs_path *path, struct fs_path *lnk) 750 { 751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 752 int ret; 753 754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 755 756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 757 if (ret < 0) 758 goto out; 759 760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 762 763 ret = send_cmd(sctx); 764 765 tlv_put_failure: 766 out: 767 return ret; 768 } 769 770 /* 771 * Sends an unlink instruction to user space 772 */ 773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 774 { 775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 776 int ret; 777 778 btrfs_debug(fs_info, "send_unlink %s", path->start); 779 780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 781 if (ret < 0) 782 goto out; 783 784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 785 786 ret = send_cmd(sctx); 787 788 tlv_put_failure: 789 out: 790 return ret; 791 } 792 793 /* 794 * Sends a rmdir instruction to user space 795 */ 796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 797 { 798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 799 int ret; 800 801 btrfs_debug(fs_info, "send_rmdir %s", path->start); 802 803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 804 if (ret < 0) 805 goto out; 806 807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 808 809 ret = send_cmd(sctx); 810 811 tlv_put_failure: 812 out: 813 return ret; 814 } 815 816 /* 817 * Helper function to retrieve some fields from an inode item. 818 */ 819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 821 u64 *gid, u64 *rdev) 822 { 823 int ret; 824 struct btrfs_inode_item *ii; 825 struct btrfs_key key; 826 827 key.objectid = ino; 828 key.type = BTRFS_INODE_ITEM_KEY; 829 key.offset = 0; 830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 831 if (ret) { 832 if (ret > 0) 833 ret = -ENOENT; 834 return ret; 835 } 836 837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 838 struct btrfs_inode_item); 839 if (size) 840 *size = btrfs_inode_size(path->nodes[0], ii); 841 if (gen) 842 *gen = btrfs_inode_generation(path->nodes[0], ii); 843 if (mode) 844 *mode = btrfs_inode_mode(path->nodes[0], ii); 845 if (uid) 846 *uid = btrfs_inode_uid(path->nodes[0], ii); 847 if (gid) 848 *gid = btrfs_inode_gid(path->nodes[0], ii); 849 if (rdev) 850 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 851 852 return ret; 853 } 854 855 static int get_inode_info(struct btrfs_root *root, 856 u64 ino, u64 *size, u64 *gen, 857 u64 *mode, u64 *uid, u64 *gid, 858 u64 *rdev) 859 { 860 struct btrfs_path *path; 861 int ret; 862 863 path = alloc_path_for_send(); 864 if (!path) 865 return -ENOMEM; 866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 867 rdev); 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 873 struct fs_path *p, 874 void *ctx); 875 876 /* 877 * Helper function to iterate the entries in ONE btrfs_inode_ref or 878 * btrfs_inode_extref. 879 * The iterate callback may return a non zero value to stop iteration. This can 880 * be a negative value for error codes or 1 to simply stop it. 881 * 882 * path must point to the INODE_REF or INODE_EXTREF when called. 883 */ 884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 885 struct btrfs_key *found_key, int resolve, 886 iterate_inode_ref_t iterate, void *ctx) 887 { 888 struct extent_buffer *eb = path->nodes[0]; 889 struct btrfs_item *item; 890 struct btrfs_inode_ref *iref; 891 struct btrfs_inode_extref *extref; 892 struct btrfs_path *tmp_path; 893 struct fs_path *p; 894 u32 cur = 0; 895 u32 total; 896 int slot = path->slots[0]; 897 u32 name_len; 898 char *start; 899 int ret = 0; 900 int num = 0; 901 int index; 902 u64 dir; 903 unsigned long name_off; 904 unsigned long elem_size; 905 unsigned long ptr; 906 907 p = fs_path_alloc_reversed(); 908 if (!p) 909 return -ENOMEM; 910 911 tmp_path = alloc_path_for_send(); 912 if (!tmp_path) { 913 fs_path_free(p); 914 return -ENOMEM; 915 } 916 917 918 if (found_key->type == BTRFS_INODE_REF_KEY) { 919 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 920 struct btrfs_inode_ref); 921 item = btrfs_item_nr(slot); 922 total = btrfs_item_size(eb, item); 923 elem_size = sizeof(*iref); 924 } else { 925 ptr = btrfs_item_ptr_offset(eb, slot); 926 total = btrfs_item_size_nr(eb, slot); 927 elem_size = sizeof(*extref); 928 } 929 930 while (cur < total) { 931 fs_path_reset(p); 932 933 if (found_key->type == BTRFS_INODE_REF_KEY) { 934 iref = (struct btrfs_inode_ref *)(ptr + cur); 935 name_len = btrfs_inode_ref_name_len(eb, iref); 936 name_off = (unsigned long)(iref + 1); 937 index = btrfs_inode_ref_index(eb, iref); 938 dir = found_key->offset; 939 } else { 940 extref = (struct btrfs_inode_extref *)(ptr + cur); 941 name_len = btrfs_inode_extref_name_len(eb, extref); 942 name_off = (unsigned long)&extref->name; 943 index = btrfs_inode_extref_index(eb, extref); 944 dir = btrfs_inode_extref_parent(eb, extref); 945 } 946 947 if (resolve) { 948 start = btrfs_ref_to_path(root, tmp_path, name_len, 949 name_off, eb, dir, 950 p->buf, p->buf_len); 951 if (IS_ERR(start)) { 952 ret = PTR_ERR(start); 953 goto out; 954 } 955 if (start < p->buf) { 956 /* overflow , try again with larger buffer */ 957 ret = fs_path_ensure_buf(p, 958 p->buf_len + p->buf - start); 959 if (ret < 0) 960 goto out; 961 start = btrfs_ref_to_path(root, tmp_path, 962 name_len, name_off, 963 eb, dir, 964 p->buf, p->buf_len); 965 if (IS_ERR(start)) { 966 ret = PTR_ERR(start); 967 goto out; 968 } 969 BUG_ON(start < p->buf); 970 } 971 p->start = start; 972 } else { 973 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 974 name_len); 975 if (ret < 0) 976 goto out; 977 } 978 979 cur += elem_size + name_len; 980 ret = iterate(num, dir, index, p, ctx); 981 if (ret) 982 goto out; 983 num++; 984 } 985 986 out: 987 btrfs_free_path(tmp_path); 988 fs_path_free(p); 989 return ret; 990 } 991 992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 993 const char *name, int name_len, 994 const char *data, int data_len, 995 u8 type, void *ctx); 996 997 /* 998 * Helper function to iterate the entries in ONE btrfs_dir_item. 999 * The iterate callback may return a non zero value to stop iteration. This can 1000 * be a negative value for error codes or 1 to simply stop it. 1001 * 1002 * path must point to the dir item when called. 1003 */ 1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1005 iterate_dir_item_t iterate, void *ctx) 1006 { 1007 int ret = 0; 1008 struct extent_buffer *eb; 1009 struct btrfs_item *item; 1010 struct btrfs_dir_item *di; 1011 struct btrfs_key di_key; 1012 char *buf = NULL; 1013 int buf_len; 1014 u32 name_len; 1015 u32 data_len; 1016 u32 cur; 1017 u32 len; 1018 u32 total; 1019 int slot; 1020 int num; 1021 u8 type; 1022 1023 /* 1024 * Start with a small buffer (1 page). If later we end up needing more 1025 * space, which can happen for xattrs on a fs with a leaf size greater 1026 * then the page size, attempt to increase the buffer. Typically xattr 1027 * values are small. 1028 */ 1029 buf_len = PATH_MAX; 1030 buf = kmalloc(buf_len, GFP_KERNEL); 1031 if (!buf) { 1032 ret = -ENOMEM; 1033 goto out; 1034 } 1035 1036 eb = path->nodes[0]; 1037 slot = path->slots[0]; 1038 item = btrfs_item_nr(slot); 1039 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1040 cur = 0; 1041 len = 0; 1042 total = btrfs_item_size(eb, item); 1043 1044 num = 0; 1045 while (cur < total) { 1046 name_len = btrfs_dir_name_len(eb, di); 1047 data_len = btrfs_dir_data_len(eb, di); 1048 type = btrfs_dir_type(eb, di); 1049 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1050 1051 if (type == BTRFS_FT_XATTR) { 1052 if (name_len > XATTR_NAME_MAX) { 1053 ret = -ENAMETOOLONG; 1054 goto out; 1055 } 1056 if (name_len + data_len > 1057 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1058 ret = -E2BIG; 1059 goto out; 1060 } 1061 } else { 1062 /* 1063 * Path too long 1064 */ 1065 if (name_len + data_len > PATH_MAX) { 1066 ret = -ENAMETOOLONG; 1067 goto out; 1068 } 1069 } 1070 1071 if (name_len + data_len > buf_len) { 1072 buf_len = name_len + data_len; 1073 if (is_vmalloc_addr(buf)) { 1074 vfree(buf); 1075 buf = NULL; 1076 } else { 1077 char *tmp = krealloc(buf, buf_len, 1078 GFP_KERNEL | __GFP_NOWARN); 1079 1080 if (!tmp) 1081 kfree(buf); 1082 buf = tmp; 1083 } 1084 if (!buf) { 1085 buf = kvmalloc(buf_len, GFP_KERNEL); 1086 if (!buf) { 1087 ret = -ENOMEM; 1088 goto out; 1089 } 1090 } 1091 } 1092 1093 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1094 name_len + data_len); 1095 1096 len = sizeof(*di) + name_len + data_len; 1097 di = (struct btrfs_dir_item *)((char *)di + len); 1098 cur += len; 1099 1100 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1101 data_len, type, ctx); 1102 if (ret < 0) 1103 goto out; 1104 if (ret) { 1105 ret = 0; 1106 goto out; 1107 } 1108 1109 num++; 1110 } 1111 1112 out: 1113 kvfree(buf); 1114 return ret; 1115 } 1116 1117 static int __copy_first_ref(int num, u64 dir, int index, 1118 struct fs_path *p, void *ctx) 1119 { 1120 int ret; 1121 struct fs_path *pt = ctx; 1122 1123 ret = fs_path_copy(pt, p); 1124 if (ret < 0) 1125 return ret; 1126 1127 /* we want the first only */ 1128 return 1; 1129 } 1130 1131 /* 1132 * Retrieve the first path of an inode. If an inode has more then one 1133 * ref/hardlink, this is ignored. 1134 */ 1135 static int get_inode_path(struct btrfs_root *root, 1136 u64 ino, struct fs_path *path) 1137 { 1138 int ret; 1139 struct btrfs_key key, found_key; 1140 struct btrfs_path *p; 1141 1142 p = alloc_path_for_send(); 1143 if (!p) 1144 return -ENOMEM; 1145 1146 fs_path_reset(path); 1147 1148 key.objectid = ino; 1149 key.type = BTRFS_INODE_REF_KEY; 1150 key.offset = 0; 1151 1152 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1153 if (ret < 0) 1154 goto out; 1155 if (ret) { 1156 ret = 1; 1157 goto out; 1158 } 1159 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1160 if (found_key.objectid != ino || 1161 (found_key.type != BTRFS_INODE_REF_KEY && 1162 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1163 ret = -ENOENT; 1164 goto out; 1165 } 1166 1167 ret = iterate_inode_ref(root, p, &found_key, 1, 1168 __copy_first_ref, path); 1169 if (ret < 0) 1170 goto out; 1171 ret = 0; 1172 1173 out: 1174 btrfs_free_path(p); 1175 return ret; 1176 } 1177 1178 struct backref_ctx { 1179 struct send_ctx *sctx; 1180 1181 /* number of total found references */ 1182 u64 found; 1183 1184 /* 1185 * used for clones found in send_root. clones found behind cur_objectid 1186 * and cur_offset are not considered as allowed clones. 1187 */ 1188 u64 cur_objectid; 1189 u64 cur_offset; 1190 1191 /* may be truncated in case it's the last extent in a file */ 1192 u64 extent_len; 1193 1194 /* Just to check for bugs in backref resolving */ 1195 int found_itself; 1196 }; 1197 1198 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1199 { 1200 u64 root = (u64)(uintptr_t)key; 1201 struct clone_root *cr = (struct clone_root *)elt; 1202 1203 if (root < cr->root->root_key.objectid) 1204 return -1; 1205 if (root > cr->root->root_key.objectid) 1206 return 1; 1207 return 0; 1208 } 1209 1210 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1211 { 1212 struct clone_root *cr1 = (struct clone_root *)e1; 1213 struct clone_root *cr2 = (struct clone_root *)e2; 1214 1215 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1216 return -1; 1217 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1218 return 1; 1219 return 0; 1220 } 1221 1222 /* 1223 * Called for every backref that is found for the current extent. 1224 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1225 */ 1226 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1227 { 1228 struct backref_ctx *bctx = ctx_; 1229 struct clone_root *found; 1230 1231 /* First check if the root is in the list of accepted clone sources */ 1232 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1233 bctx->sctx->clone_roots_cnt, 1234 sizeof(struct clone_root), 1235 __clone_root_cmp_bsearch); 1236 if (!found) 1237 return 0; 1238 1239 if (found->root == bctx->sctx->send_root && 1240 ino == bctx->cur_objectid && 1241 offset == bctx->cur_offset) { 1242 bctx->found_itself = 1; 1243 } 1244 1245 /* 1246 * Make sure we don't consider clones from send_root that are 1247 * behind the current inode/offset. 1248 */ 1249 if (found->root == bctx->sctx->send_root) { 1250 /* 1251 * If the source inode was not yet processed we can't issue a 1252 * clone operation, as the source extent does not exist yet at 1253 * the destination of the stream. 1254 */ 1255 if (ino > bctx->cur_objectid) 1256 return 0; 1257 /* 1258 * We clone from the inode currently being sent as long as the 1259 * source extent is already processed, otherwise we could try 1260 * to clone from an extent that does not exist yet at the 1261 * destination of the stream. 1262 */ 1263 if (ino == bctx->cur_objectid && 1264 offset + bctx->extent_len > 1265 bctx->sctx->cur_inode_next_write_offset) 1266 return 0; 1267 } 1268 1269 bctx->found++; 1270 found->found_refs++; 1271 if (ino < found->ino) { 1272 found->ino = ino; 1273 found->offset = offset; 1274 } else if (found->ino == ino) { 1275 /* 1276 * same extent found more then once in the same file. 1277 */ 1278 if (found->offset > offset + bctx->extent_len) 1279 found->offset = offset; 1280 } 1281 1282 return 0; 1283 } 1284 1285 /* 1286 * Given an inode, offset and extent item, it finds a good clone for a clone 1287 * instruction. Returns -ENOENT when none could be found. The function makes 1288 * sure that the returned clone is usable at the point where sending is at the 1289 * moment. This means, that no clones are accepted which lie behind the current 1290 * inode+offset. 1291 * 1292 * path must point to the extent item when called. 1293 */ 1294 static int find_extent_clone(struct send_ctx *sctx, 1295 struct btrfs_path *path, 1296 u64 ino, u64 data_offset, 1297 u64 ino_size, 1298 struct clone_root **found) 1299 { 1300 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1301 int ret; 1302 int extent_type; 1303 u64 logical; 1304 u64 disk_byte; 1305 u64 num_bytes; 1306 u64 extent_item_pos; 1307 u64 flags = 0; 1308 struct btrfs_file_extent_item *fi; 1309 struct extent_buffer *eb = path->nodes[0]; 1310 struct backref_ctx *backref_ctx = NULL; 1311 struct clone_root *cur_clone_root; 1312 struct btrfs_key found_key; 1313 struct btrfs_path *tmp_path; 1314 struct btrfs_extent_item *ei; 1315 int compressed; 1316 u32 i; 1317 1318 tmp_path = alloc_path_for_send(); 1319 if (!tmp_path) 1320 return -ENOMEM; 1321 1322 /* We only use this path under the commit sem */ 1323 tmp_path->need_commit_sem = 0; 1324 1325 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1326 if (!backref_ctx) { 1327 ret = -ENOMEM; 1328 goto out; 1329 } 1330 1331 if (data_offset >= ino_size) { 1332 /* 1333 * There may be extents that lie behind the file's size. 1334 * I at least had this in combination with snapshotting while 1335 * writing large files. 1336 */ 1337 ret = 0; 1338 goto out; 1339 } 1340 1341 fi = btrfs_item_ptr(eb, path->slots[0], 1342 struct btrfs_file_extent_item); 1343 extent_type = btrfs_file_extent_type(eb, fi); 1344 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1345 ret = -ENOENT; 1346 goto out; 1347 } 1348 compressed = btrfs_file_extent_compression(eb, fi); 1349 1350 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1351 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1352 if (disk_byte == 0) { 1353 ret = -ENOENT; 1354 goto out; 1355 } 1356 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1357 1358 down_read(&fs_info->commit_root_sem); 1359 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1360 &found_key, &flags); 1361 up_read(&fs_info->commit_root_sem); 1362 1363 if (ret < 0) 1364 goto out; 1365 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1366 ret = -EIO; 1367 goto out; 1368 } 1369 1370 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1371 struct btrfs_extent_item); 1372 /* 1373 * Backreference walking (iterate_extent_inodes() below) is currently 1374 * too expensive when an extent has a large number of references, both 1375 * in time spent and used memory. So for now just fallback to write 1376 * operations instead of clone operations when an extent has more than 1377 * a certain amount of references. 1378 */ 1379 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1380 ret = -ENOENT; 1381 goto out; 1382 } 1383 btrfs_release_path(tmp_path); 1384 1385 /* 1386 * Setup the clone roots. 1387 */ 1388 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1389 cur_clone_root = sctx->clone_roots + i; 1390 cur_clone_root->ino = (u64)-1; 1391 cur_clone_root->offset = 0; 1392 cur_clone_root->found_refs = 0; 1393 } 1394 1395 backref_ctx->sctx = sctx; 1396 backref_ctx->found = 0; 1397 backref_ctx->cur_objectid = ino; 1398 backref_ctx->cur_offset = data_offset; 1399 backref_ctx->found_itself = 0; 1400 backref_ctx->extent_len = num_bytes; 1401 1402 /* 1403 * The last extent of a file may be too large due to page alignment. 1404 * We need to adjust extent_len in this case so that the checks in 1405 * __iterate_backrefs work. 1406 */ 1407 if (data_offset + num_bytes >= ino_size) 1408 backref_ctx->extent_len = ino_size - data_offset; 1409 1410 /* 1411 * Now collect all backrefs. 1412 */ 1413 if (compressed == BTRFS_COMPRESS_NONE) 1414 extent_item_pos = logical - found_key.objectid; 1415 else 1416 extent_item_pos = 0; 1417 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1418 extent_item_pos, 1, __iterate_backrefs, 1419 backref_ctx, false); 1420 1421 if (ret < 0) 1422 goto out; 1423 1424 if (!backref_ctx->found_itself) { 1425 /* found a bug in backref code? */ 1426 ret = -EIO; 1427 btrfs_err(fs_info, 1428 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1429 ino, data_offset, disk_byte, found_key.objectid); 1430 goto out; 1431 } 1432 1433 btrfs_debug(fs_info, 1434 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1435 data_offset, ino, num_bytes, logical); 1436 1437 if (!backref_ctx->found) 1438 btrfs_debug(fs_info, "no clones found"); 1439 1440 cur_clone_root = NULL; 1441 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1442 if (sctx->clone_roots[i].found_refs) { 1443 if (!cur_clone_root) 1444 cur_clone_root = sctx->clone_roots + i; 1445 else if (sctx->clone_roots[i].root == sctx->send_root) 1446 /* prefer clones from send_root over others */ 1447 cur_clone_root = sctx->clone_roots + i; 1448 } 1449 1450 } 1451 1452 if (cur_clone_root) { 1453 *found = cur_clone_root; 1454 ret = 0; 1455 } else { 1456 ret = -ENOENT; 1457 } 1458 1459 out: 1460 btrfs_free_path(tmp_path); 1461 kfree(backref_ctx); 1462 return ret; 1463 } 1464 1465 static int read_symlink(struct btrfs_root *root, 1466 u64 ino, 1467 struct fs_path *dest) 1468 { 1469 int ret; 1470 struct btrfs_path *path; 1471 struct btrfs_key key; 1472 struct btrfs_file_extent_item *ei; 1473 u8 type; 1474 u8 compression; 1475 unsigned long off; 1476 int len; 1477 1478 path = alloc_path_for_send(); 1479 if (!path) 1480 return -ENOMEM; 1481 1482 key.objectid = ino; 1483 key.type = BTRFS_EXTENT_DATA_KEY; 1484 key.offset = 0; 1485 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1486 if (ret < 0) 1487 goto out; 1488 if (ret) { 1489 /* 1490 * An empty symlink inode. Can happen in rare error paths when 1491 * creating a symlink (transaction committed before the inode 1492 * eviction handler removed the symlink inode items and a crash 1493 * happened in between or the subvol was snapshoted in between). 1494 * Print an informative message to dmesg/syslog so that the user 1495 * can delete the symlink. 1496 */ 1497 btrfs_err(root->fs_info, 1498 "Found empty symlink inode %llu at root %llu", 1499 ino, root->root_key.objectid); 1500 ret = -EIO; 1501 goto out; 1502 } 1503 1504 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1505 struct btrfs_file_extent_item); 1506 type = btrfs_file_extent_type(path->nodes[0], ei); 1507 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1508 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1509 BUG_ON(compression); 1510 1511 off = btrfs_file_extent_inline_start(ei); 1512 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1513 1514 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1515 1516 out: 1517 btrfs_free_path(path); 1518 return ret; 1519 } 1520 1521 /* 1522 * Helper function to generate a file name that is unique in the root of 1523 * send_root and parent_root. This is used to generate names for orphan inodes. 1524 */ 1525 static int gen_unique_name(struct send_ctx *sctx, 1526 u64 ino, u64 gen, 1527 struct fs_path *dest) 1528 { 1529 int ret = 0; 1530 struct btrfs_path *path; 1531 struct btrfs_dir_item *di; 1532 char tmp[64]; 1533 int len; 1534 u64 idx = 0; 1535 1536 path = alloc_path_for_send(); 1537 if (!path) 1538 return -ENOMEM; 1539 1540 while (1) { 1541 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1542 ino, gen, idx); 1543 ASSERT(len < sizeof(tmp)); 1544 1545 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1546 path, BTRFS_FIRST_FREE_OBJECTID, 1547 tmp, strlen(tmp), 0); 1548 btrfs_release_path(path); 1549 if (IS_ERR(di)) { 1550 ret = PTR_ERR(di); 1551 goto out; 1552 } 1553 if (di) { 1554 /* not unique, try again */ 1555 idx++; 1556 continue; 1557 } 1558 1559 if (!sctx->parent_root) { 1560 /* unique */ 1561 ret = 0; 1562 break; 1563 } 1564 1565 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1566 path, BTRFS_FIRST_FREE_OBJECTID, 1567 tmp, strlen(tmp), 0); 1568 btrfs_release_path(path); 1569 if (IS_ERR(di)) { 1570 ret = PTR_ERR(di); 1571 goto out; 1572 } 1573 if (di) { 1574 /* not unique, try again */ 1575 idx++; 1576 continue; 1577 } 1578 /* unique */ 1579 break; 1580 } 1581 1582 ret = fs_path_add(dest, tmp, strlen(tmp)); 1583 1584 out: 1585 btrfs_free_path(path); 1586 return ret; 1587 } 1588 1589 enum inode_state { 1590 inode_state_no_change, 1591 inode_state_will_create, 1592 inode_state_did_create, 1593 inode_state_will_delete, 1594 inode_state_did_delete, 1595 }; 1596 1597 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1598 { 1599 int ret; 1600 int left_ret; 1601 int right_ret; 1602 u64 left_gen; 1603 u64 right_gen; 1604 1605 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1606 NULL, NULL); 1607 if (ret < 0 && ret != -ENOENT) 1608 goto out; 1609 left_ret = ret; 1610 1611 if (!sctx->parent_root) { 1612 right_ret = -ENOENT; 1613 } else { 1614 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1615 NULL, NULL, NULL, NULL); 1616 if (ret < 0 && ret != -ENOENT) 1617 goto out; 1618 right_ret = ret; 1619 } 1620 1621 if (!left_ret && !right_ret) { 1622 if (left_gen == gen && right_gen == gen) { 1623 ret = inode_state_no_change; 1624 } else if (left_gen == gen) { 1625 if (ino < sctx->send_progress) 1626 ret = inode_state_did_create; 1627 else 1628 ret = inode_state_will_create; 1629 } else if (right_gen == gen) { 1630 if (ino < sctx->send_progress) 1631 ret = inode_state_did_delete; 1632 else 1633 ret = inode_state_will_delete; 1634 } else { 1635 ret = -ENOENT; 1636 } 1637 } else if (!left_ret) { 1638 if (left_gen == gen) { 1639 if (ino < sctx->send_progress) 1640 ret = inode_state_did_create; 1641 else 1642 ret = inode_state_will_create; 1643 } else { 1644 ret = -ENOENT; 1645 } 1646 } else if (!right_ret) { 1647 if (right_gen == gen) { 1648 if (ino < sctx->send_progress) 1649 ret = inode_state_did_delete; 1650 else 1651 ret = inode_state_will_delete; 1652 } else { 1653 ret = -ENOENT; 1654 } 1655 } else { 1656 ret = -ENOENT; 1657 } 1658 1659 out: 1660 return ret; 1661 } 1662 1663 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1664 { 1665 int ret; 1666 1667 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1668 return 1; 1669 1670 ret = get_cur_inode_state(sctx, ino, gen); 1671 if (ret < 0) 1672 goto out; 1673 1674 if (ret == inode_state_no_change || 1675 ret == inode_state_did_create || 1676 ret == inode_state_will_delete) 1677 ret = 1; 1678 else 1679 ret = 0; 1680 1681 out: 1682 return ret; 1683 } 1684 1685 /* 1686 * Helper function to lookup a dir item in a dir. 1687 */ 1688 static int lookup_dir_item_inode(struct btrfs_root *root, 1689 u64 dir, const char *name, int name_len, 1690 u64 *found_inode, 1691 u8 *found_type) 1692 { 1693 int ret = 0; 1694 struct btrfs_dir_item *di; 1695 struct btrfs_key key; 1696 struct btrfs_path *path; 1697 1698 path = alloc_path_for_send(); 1699 if (!path) 1700 return -ENOMEM; 1701 1702 di = btrfs_lookup_dir_item(NULL, root, path, 1703 dir, name, name_len, 0); 1704 if (IS_ERR_OR_NULL(di)) { 1705 ret = di ? PTR_ERR(di) : -ENOENT; 1706 goto out; 1707 } 1708 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1709 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1710 ret = -ENOENT; 1711 goto out; 1712 } 1713 *found_inode = key.objectid; 1714 *found_type = btrfs_dir_type(path->nodes[0], di); 1715 1716 out: 1717 btrfs_free_path(path); 1718 return ret; 1719 } 1720 1721 /* 1722 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1723 * generation of the parent dir and the name of the dir entry. 1724 */ 1725 static int get_first_ref(struct btrfs_root *root, u64 ino, 1726 u64 *dir, u64 *dir_gen, struct fs_path *name) 1727 { 1728 int ret; 1729 struct btrfs_key key; 1730 struct btrfs_key found_key; 1731 struct btrfs_path *path; 1732 int len; 1733 u64 parent_dir; 1734 1735 path = alloc_path_for_send(); 1736 if (!path) 1737 return -ENOMEM; 1738 1739 key.objectid = ino; 1740 key.type = BTRFS_INODE_REF_KEY; 1741 key.offset = 0; 1742 1743 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1744 if (ret < 0) 1745 goto out; 1746 if (!ret) 1747 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1748 path->slots[0]); 1749 if (ret || found_key.objectid != ino || 1750 (found_key.type != BTRFS_INODE_REF_KEY && 1751 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1752 ret = -ENOENT; 1753 goto out; 1754 } 1755 1756 if (found_key.type == BTRFS_INODE_REF_KEY) { 1757 struct btrfs_inode_ref *iref; 1758 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1759 struct btrfs_inode_ref); 1760 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1761 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1762 (unsigned long)(iref + 1), 1763 len); 1764 parent_dir = found_key.offset; 1765 } else { 1766 struct btrfs_inode_extref *extref; 1767 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1768 struct btrfs_inode_extref); 1769 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1770 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1771 (unsigned long)&extref->name, len); 1772 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1773 } 1774 if (ret < 0) 1775 goto out; 1776 btrfs_release_path(path); 1777 1778 if (dir_gen) { 1779 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1780 NULL, NULL, NULL); 1781 if (ret < 0) 1782 goto out; 1783 } 1784 1785 *dir = parent_dir; 1786 1787 out: 1788 btrfs_free_path(path); 1789 return ret; 1790 } 1791 1792 static int is_first_ref(struct btrfs_root *root, 1793 u64 ino, u64 dir, 1794 const char *name, int name_len) 1795 { 1796 int ret; 1797 struct fs_path *tmp_name; 1798 u64 tmp_dir; 1799 1800 tmp_name = fs_path_alloc(); 1801 if (!tmp_name) 1802 return -ENOMEM; 1803 1804 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1805 if (ret < 0) 1806 goto out; 1807 1808 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1809 ret = 0; 1810 goto out; 1811 } 1812 1813 ret = !memcmp(tmp_name->start, name, name_len); 1814 1815 out: 1816 fs_path_free(tmp_name); 1817 return ret; 1818 } 1819 1820 /* 1821 * Used by process_recorded_refs to determine if a new ref would overwrite an 1822 * already existing ref. In case it detects an overwrite, it returns the 1823 * inode/gen in who_ino/who_gen. 1824 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1825 * to make sure later references to the overwritten inode are possible. 1826 * Orphanizing is however only required for the first ref of an inode. 1827 * process_recorded_refs does an additional is_first_ref check to see if 1828 * orphanizing is really required. 1829 */ 1830 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1831 const char *name, int name_len, 1832 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1833 { 1834 int ret = 0; 1835 u64 gen; 1836 u64 other_inode = 0; 1837 u8 other_type = 0; 1838 1839 if (!sctx->parent_root) 1840 goto out; 1841 1842 ret = is_inode_existent(sctx, dir, dir_gen); 1843 if (ret <= 0) 1844 goto out; 1845 1846 /* 1847 * If we have a parent root we need to verify that the parent dir was 1848 * not deleted and then re-created, if it was then we have no overwrite 1849 * and we can just unlink this entry. 1850 */ 1851 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1852 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1853 NULL, NULL, NULL); 1854 if (ret < 0 && ret != -ENOENT) 1855 goto out; 1856 if (ret) { 1857 ret = 0; 1858 goto out; 1859 } 1860 if (gen != dir_gen) 1861 goto out; 1862 } 1863 1864 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1865 &other_inode, &other_type); 1866 if (ret < 0 && ret != -ENOENT) 1867 goto out; 1868 if (ret) { 1869 ret = 0; 1870 goto out; 1871 } 1872 1873 /* 1874 * Check if the overwritten ref was already processed. If yes, the ref 1875 * was already unlinked/moved, so we can safely assume that we will not 1876 * overwrite anything at this point in time. 1877 */ 1878 if (other_inode > sctx->send_progress || 1879 is_waiting_for_move(sctx, other_inode)) { 1880 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1881 who_gen, who_mode, NULL, NULL, NULL); 1882 if (ret < 0) 1883 goto out; 1884 1885 ret = 1; 1886 *who_ino = other_inode; 1887 } else { 1888 ret = 0; 1889 } 1890 1891 out: 1892 return ret; 1893 } 1894 1895 /* 1896 * Checks if the ref was overwritten by an already processed inode. This is 1897 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1898 * thus the orphan name needs be used. 1899 * process_recorded_refs also uses it to avoid unlinking of refs that were 1900 * overwritten. 1901 */ 1902 static int did_overwrite_ref(struct send_ctx *sctx, 1903 u64 dir, u64 dir_gen, 1904 u64 ino, u64 ino_gen, 1905 const char *name, int name_len) 1906 { 1907 int ret = 0; 1908 u64 gen; 1909 u64 ow_inode; 1910 u8 other_type; 1911 1912 if (!sctx->parent_root) 1913 goto out; 1914 1915 ret = is_inode_existent(sctx, dir, dir_gen); 1916 if (ret <= 0) 1917 goto out; 1918 1919 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1920 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1921 NULL, NULL, NULL); 1922 if (ret < 0 && ret != -ENOENT) 1923 goto out; 1924 if (ret) { 1925 ret = 0; 1926 goto out; 1927 } 1928 if (gen != dir_gen) 1929 goto out; 1930 } 1931 1932 /* check if the ref was overwritten by another ref */ 1933 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1934 &ow_inode, &other_type); 1935 if (ret < 0 && ret != -ENOENT) 1936 goto out; 1937 if (ret) { 1938 /* was never and will never be overwritten */ 1939 ret = 0; 1940 goto out; 1941 } 1942 1943 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1944 NULL, NULL); 1945 if (ret < 0) 1946 goto out; 1947 1948 if (ow_inode == ino && gen == ino_gen) { 1949 ret = 0; 1950 goto out; 1951 } 1952 1953 /* 1954 * We know that it is or will be overwritten. Check this now. 1955 * The current inode being processed might have been the one that caused 1956 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1957 * the current inode being processed. 1958 */ 1959 if ((ow_inode < sctx->send_progress) || 1960 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1961 gen == sctx->cur_inode_gen)) 1962 ret = 1; 1963 else 1964 ret = 0; 1965 1966 out: 1967 return ret; 1968 } 1969 1970 /* 1971 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1972 * that got overwritten. This is used by process_recorded_refs to determine 1973 * if it has to use the path as returned by get_cur_path or the orphan name. 1974 */ 1975 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1976 { 1977 int ret = 0; 1978 struct fs_path *name = NULL; 1979 u64 dir; 1980 u64 dir_gen; 1981 1982 if (!sctx->parent_root) 1983 goto out; 1984 1985 name = fs_path_alloc(); 1986 if (!name) 1987 return -ENOMEM; 1988 1989 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1990 if (ret < 0) 1991 goto out; 1992 1993 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1994 name->start, fs_path_len(name)); 1995 1996 out: 1997 fs_path_free(name); 1998 return ret; 1999 } 2000 2001 /* 2002 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2003 * so we need to do some special handling in case we have clashes. This function 2004 * takes care of this with the help of name_cache_entry::radix_list. 2005 * In case of error, nce is kfreed. 2006 */ 2007 static int name_cache_insert(struct send_ctx *sctx, 2008 struct name_cache_entry *nce) 2009 { 2010 int ret = 0; 2011 struct list_head *nce_head; 2012 2013 nce_head = radix_tree_lookup(&sctx->name_cache, 2014 (unsigned long)nce->ino); 2015 if (!nce_head) { 2016 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2017 if (!nce_head) { 2018 kfree(nce); 2019 return -ENOMEM; 2020 } 2021 INIT_LIST_HEAD(nce_head); 2022 2023 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2024 if (ret < 0) { 2025 kfree(nce_head); 2026 kfree(nce); 2027 return ret; 2028 } 2029 } 2030 list_add_tail(&nce->radix_list, nce_head); 2031 list_add_tail(&nce->list, &sctx->name_cache_list); 2032 sctx->name_cache_size++; 2033 2034 return ret; 2035 } 2036 2037 static void name_cache_delete(struct send_ctx *sctx, 2038 struct name_cache_entry *nce) 2039 { 2040 struct list_head *nce_head; 2041 2042 nce_head = radix_tree_lookup(&sctx->name_cache, 2043 (unsigned long)nce->ino); 2044 if (!nce_head) { 2045 btrfs_err(sctx->send_root->fs_info, 2046 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2047 nce->ino, sctx->name_cache_size); 2048 } 2049 2050 list_del(&nce->radix_list); 2051 list_del(&nce->list); 2052 sctx->name_cache_size--; 2053 2054 /* 2055 * We may not get to the final release of nce_head if the lookup fails 2056 */ 2057 if (nce_head && list_empty(nce_head)) { 2058 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2059 kfree(nce_head); 2060 } 2061 } 2062 2063 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2064 u64 ino, u64 gen) 2065 { 2066 struct list_head *nce_head; 2067 struct name_cache_entry *cur; 2068 2069 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2070 if (!nce_head) 2071 return NULL; 2072 2073 list_for_each_entry(cur, nce_head, radix_list) { 2074 if (cur->ino == ino && cur->gen == gen) 2075 return cur; 2076 } 2077 return NULL; 2078 } 2079 2080 /* 2081 * Removes the entry from the list and adds it back to the end. This marks the 2082 * entry as recently used so that name_cache_clean_unused does not remove it. 2083 */ 2084 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2085 { 2086 list_del(&nce->list); 2087 list_add_tail(&nce->list, &sctx->name_cache_list); 2088 } 2089 2090 /* 2091 * Remove some entries from the beginning of name_cache_list. 2092 */ 2093 static void name_cache_clean_unused(struct send_ctx *sctx) 2094 { 2095 struct name_cache_entry *nce; 2096 2097 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2098 return; 2099 2100 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2101 nce = list_entry(sctx->name_cache_list.next, 2102 struct name_cache_entry, list); 2103 name_cache_delete(sctx, nce); 2104 kfree(nce); 2105 } 2106 } 2107 2108 static void name_cache_free(struct send_ctx *sctx) 2109 { 2110 struct name_cache_entry *nce; 2111 2112 while (!list_empty(&sctx->name_cache_list)) { 2113 nce = list_entry(sctx->name_cache_list.next, 2114 struct name_cache_entry, list); 2115 name_cache_delete(sctx, nce); 2116 kfree(nce); 2117 } 2118 } 2119 2120 /* 2121 * Used by get_cur_path for each ref up to the root. 2122 * Returns 0 if it succeeded. 2123 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2124 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2125 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2126 * Returns <0 in case of error. 2127 */ 2128 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2129 u64 ino, u64 gen, 2130 u64 *parent_ino, 2131 u64 *parent_gen, 2132 struct fs_path *dest) 2133 { 2134 int ret; 2135 int nce_ret; 2136 struct name_cache_entry *nce = NULL; 2137 2138 /* 2139 * First check if we already did a call to this function with the same 2140 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2141 * return the cached result. 2142 */ 2143 nce = name_cache_search(sctx, ino, gen); 2144 if (nce) { 2145 if (ino < sctx->send_progress && nce->need_later_update) { 2146 name_cache_delete(sctx, nce); 2147 kfree(nce); 2148 nce = NULL; 2149 } else { 2150 name_cache_used(sctx, nce); 2151 *parent_ino = nce->parent_ino; 2152 *parent_gen = nce->parent_gen; 2153 ret = fs_path_add(dest, nce->name, nce->name_len); 2154 if (ret < 0) 2155 goto out; 2156 ret = nce->ret; 2157 goto out; 2158 } 2159 } 2160 2161 /* 2162 * If the inode is not existent yet, add the orphan name and return 1. 2163 * This should only happen for the parent dir that we determine in 2164 * __record_new_ref 2165 */ 2166 ret = is_inode_existent(sctx, ino, gen); 2167 if (ret < 0) 2168 goto out; 2169 2170 if (!ret) { 2171 ret = gen_unique_name(sctx, ino, gen, dest); 2172 if (ret < 0) 2173 goto out; 2174 ret = 1; 2175 goto out_cache; 2176 } 2177 2178 /* 2179 * Depending on whether the inode was already processed or not, use 2180 * send_root or parent_root for ref lookup. 2181 */ 2182 if (ino < sctx->send_progress) 2183 ret = get_first_ref(sctx->send_root, ino, 2184 parent_ino, parent_gen, dest); 2185 else 2186 ret = get_first_ref(sctx->parent_root, ino, 2187 parent_ino, parent_gen, dest); 2188 if (ret < 0) 2189 goto out; 2190 2191 /* 2192 * Check if the ref was overwritten by an inode's ref that was processed 2193 * earlier. If yes, treat as orphan and return 1. 2194 */ 2195 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2196 dest->start, dest->end - dest->start); 2197 if (ret < 0) 2198 goto out; 2199 if (ret) { 2200 fs_path_reset(dest); 2201 ret = gen_unique_name(sctx, ino, gen, dest); 2202 if (ret < 0) 2203 goto out; 2204 ret = 1; 2205 } 2206 2207 out_cache: 2208 /* 2209 * Store the result of the lookup in the name cache. 2210 */ 2211 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2212 if (!nce) { 2213 ret = -ENOMEM; 2214 goto out; 2215 } 2216 2217 nce->ino = ino; 2218 nce->gen = gen; 2219 nce->parent_ino = *parent_ino; 2220 nce->parent_gen = *parent_gen; 2221 nce->name_len = fs_path_len(dest); 2222 nce->ret = ret; 2223 strcpy(nce->name, dest->start); 2224 2225 if (ino < sctx->send_progress) 2226 nce->need_later_update = 0; 2227 else 2228 nce->need_later_update = 1; 2229 2230 nce_ret = name_cache_insert(sctx, nce); 2231 if (nce_ret < 0) 2232 ret = nce_ret; 2233 name_cache_clean_unused(sctx); 2234 2235 out: 2236 return ret; 2237 } 2238 2239 /* 2240 * Magic happens here. This function returns the first ref to an inode as it 2241 * would look like while receiving the stream at this point in time. 2242 * We walk the path up to the root. For every inode in between, we check if it 2243 * was already processed/sent. If yes, we continue with the parent as found 2244 * in send_root. If not, we continue with the parent as found in parent_root. 2245 * If we encounter an inode that was deleted at this point in time, we use the 2246 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2247 * that were not created yet and overwritten inodes/refs. 2248 * 2249 * When do we have orphan inodes: 2250 * 1. When an inode is freshly created and thus no valid refs are available yet 2251 * 2. When a directory lost all it's refs (deleted) but still has dir items 2252 * inside which were not processed yet (pending for move/delete). If anyone 2253 * tried to get the path to the dir items, it would get a path inside that 2254 * orphan directory. 2255 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2256 * of an unprocessed inode. If in that case the first ref would be 2257 * overwritten, the overwritten inode gets "orphanized". Later when we 2258 * process this overwritten inode, it is restored at a new place by moving 2259 * the orphan inode. 2260 * 2261 * sctx->send_progress tells this function at which point in time receiving 2262 * would be. 2263 */ 2264 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2265 struct fs_path *dest) 2266 { 2267 int ret = 0; 2268 struct fs_path *name = NULL; 2269 u64 parent_inode = 0; 2270 u64 parent_gen = 0; 2271 int stop = 0; 2272 2273 name = fs_path_alloc(); 2274 if (!name) { 2275 ret = -ENOMEM; 2276 goto out; 2277 } 2278 2279 dest->reversed = 1; 2280 fs_path_reset(dest); 2281 2282 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2283 struct waiting_dir_move *wdm; 2284 2285 fs_path_reset(name); 2286 2287 if (is_waiting_for_rm(sctx, ino, gen)) { 2288 ret = gen_unique_name(sctx, ino, gen, name); 2289 if (ret < 0) 2290 goto out; 2291 ret = fs_path_add_path(dest, name); 2292 break; 2293 } 2294 2295 wdm = get_waiting_dir_move(sctx, ino); 2296 if (wdm && wdm->orphanized) { 2297 ret = gen_unique_name(sctx, ino, gen, name); 2298 stop = 1; 2299 } else if (wdm) { 2300 ret = get_first_ref(sctx->parent_root, ino, 2301 &parent_inode, &parent_gen, name); 2302 } else { 2303 ret = __get_cur_name_and_parent(sctx, ino, gen, 2304 &parent_inode, 2305 &parent_gen, name); 2306 if (ret) 2307 stop = 1; 2308 } 2309 2310 if (ret < 0) 2311 goto out; 2312 2313 ret = fs_path_add_path(dest, name); 2314 if (ret < 0) 2315 goto out; 2316 2317 ino = parent_inode; 2318 gen = parent_gen; 2319 } 2320 2321 out: 2322 fs_path_free(name); 2323 if (!ret) 2324 fs_path_unreverse(dest); 2325 return ret; 2326 } 2327 2328 /* 2329 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2330 */ 2331 static int send_subvol_begin(struct send_ctx *sctx) 2332 { 2333 int ret; 2334 struct btrfs_root *send_root = sctx->send_root; 2335 struct btrfs_root *parent_root = sctx->parent_root; 2336 struct btrfs_path *path; 2337 struct btrfs_key key; 2338 struct btrfs_root_ref *ref; 2339 struct extent_buffer *leaf; 2340 char *name = NULL; 2341 int namelen; 2342 2343 path = btrfs_alloc_path(); 2344 if (!path) 2345 return -ENOMEM; 2346 2347 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2348 if (!name) { 2349 btrfs_free_path(path); 2350 return -ENOMEM; 2351 } 2352 2353 key.objectid = send_root->root_key.objectid; 2354 key.type = BTRFS_ROOT_BACKREF_KEY; 2355 key.offset = 0; 2356 2357 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2358 &key, path, 1, 0); 2359 if (ret < 0) 2360 goto out; 2361 if (ret) { 2362 ret = -ENOENT; 2363 goto out; 2364 } 2365 2366 leaf = path->nodes[0]; 2367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2368 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2369 key.objectid != send_root->root_key.objectid) { 2370 ret = -ENOENT; 2371 goto out; 2372 } 2373 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2374 namelen = btrfs_root_ref_name_len(leaf, ref); 2375 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2376 btrfs_release_path(path); 2377 2378 if (parent_root) { 2379 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2380 if (ret < 0) 2381 goto out; 2382 } else { 2383 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2384 if (ret < 0) 2385 goto out; 2386 } 2387 2388 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2389 2390 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2391 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2392 sctx->send_root->root_item.received_uuid); 2393 else 2394 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2395 sctx->send_root->root_item.uuid); 2396 2397 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2398 btrfs_root_ctransid(&sctx->send_root->root_item)); 2399 if (parent_root) { 2400 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2401 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2402 parent_root->root_item.received_uuid); 2403 else 2404 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2405 parent_root->root_item.uuid); 2406 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2407 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2408 } 2409 2410 ret = send_cmd(sctx); 2411 2412 tlv_put_failure: 2413 out: 2414 btrfs_free_path(path); 2415 kfree(name); 2416 return ret; 2417 } 2418 2419 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2420 { 2421 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2422 int ret = 0; 2423 struct fs_path *p; 2424 2425 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2426 2427 p = fs_path_alloc(); 2428 if (!p) 2429 return -ENOMEM; 2430 2431 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2432 if (ret < 0) 2433 goto out; 2434 2435 ret = get_cur_path(sctx, ino, gen, p); 2436 if (ret < 0) 2437 goto out; 2438 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2439 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2440 2441 ret = send_cmd(sctx); 2442 2443 tlv_put_failure: 2444 out: 2445 fs_path_free(p); 2446 return ret; 2447 } 2448 2449 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2450 { 2451 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2452 int ret = 0; 2453 struct fs_path *p; 2454 2455 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2456 2457 p = fs_path_alloc(); 2458 if (!p) 2459 return -ENOMEM; 2460 2461 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2462 if (ret < 0) 2463 goto out; 2464 2465 ret = get_cur_path(sctx, ino, gen, p); 2466 if (ret < 0) 2467 goto out; 2468 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2469 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2470 2471 ret = send_cmd(sctx); 2472 2473 tlv_put_failure: 2474 out: 2475 fs_path_free(p); 2476 return ret; 2477 } 2478 2479 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2480 { 2481 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2482 int ret = 0; 2483 struct fs_path *p; 2484 2485 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2486 ino, uid, gid); 2487 2488 p = fs_path_alloc(); 2489 if (!p) 2490 return -ENOMEM; 2491 2492 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2493 if (ret < 0) 2494 goto out; 2495 2496 ret = get_cur_path(sctx, ino, gen, p); 2497 if (ret < 0) 2498 goto out; 2499 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2500 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2501 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2502 2503 ret = send_cmd(sctx); 2504 2505 tlv_put_failure: 2506 out: 2507 fs_path_free(p); 2508 return ret; 2509 } 2510 2511 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2512 { 2513 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2514 int ret = 0; 2515 struct fs_path *p = NULL; 2516 struct btrfs_inode_item *ii; 2517 struct btrfs_path *path = NULL; 2518 struct extent_buffer *eb; 2519 struct btrfs_key key; 2520 int slot; 2521 2522 btrfs_debug(fs_info, "send_utimes %llu", ino); 2523 2524 p = fs_path_alloc(); 2525 if (!p) 2526 return -ENOMEM; 2527 2528 path = alloc_path_for_send(); 2529 if (!path) { 2530 ret = -ENOMEM; 2531 goto out; 2532 } 2533 2534 key.objectid = ino; 2535 key.type = BTRFS_INODE_ITEM_KEY; 2536 key.offset = 0; 2537 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2538 if (ret > 0) 2539 ret = -ENOENT; 2540 if (ret < 0) 2541 goto out; 2542 2543 eb = path->nodes[0]; 2544 slot = path->slots[0]; 2545 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2546 2547 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2548 if (ret < 0) 2549 goto out; 2550 2551 ret = get_cur_path(sctx, ino, gen, p); 2552 if (ret < 0) 2553 goto out; 2554 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2555 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2556 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2557 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2558 /* TODO Add otime support when the otime patches get into upstream */ 2559 2560 ret = send_cmd(sctx); 2561 2562 tlv_put_failure: 2563 out: 2564 fs_path_free(p); 2565 btrfs_free_path(path); 2566 return ret; 2567 } 2568 2569 /* 2570 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2571 * a valid path yet because we did not process the refs yet. So, the inode 2572 * is created as orphan. 2573 */ 2574 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2575 { 2576 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2577 int ret = 0; 2578 struct fs_path *p; 2579 int cmd; 2580 u64 gen; 2581 u64 mode; 2582 u64 rdev; 2583 2584 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2585 2586 p = fs_path_alloc(); 2587 if (!p) 2588 return -ENOMEM; 2589 2590 if (ino != sctx->cur_ino) { 2591 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2592 NULL, NULL, &rdev); 2593 if (ret < 0) 2594 goto out; 2595 } else { 2596 gen = sctx->cur_inode_gen; 2597 mode = sctx->cur_inode_mode; 2598 rdev = sctx->cur_inode_rdev; 2599 } 2600 2601 if (S_ISREG(mode)) { 2602 cmd = BTRFS_SEND_C_MKFILE; 2603 } else if (S_ISDIR(mode)) { 2604 cmd = BTRFS_SEND_C_MKDIR; 2605 } else if (S_ISLNK(mode)) { 2606 cmd = BTRFS_SEND_C_SYMLINK; 2607 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2608 cmd = BTRFS_SEND_C_MKNOD; 2609 } else if (S_ISFIFO(mode)) { 2610 cmd = BTRFS_SEND_C_MKFIFO; 2611 } else if (S_ISSOCK(mode)) { 2612 cmd = BTRFS_SEND_C_MKSOCK; 2613 } else { 2614 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2615 (int)(mode & S_IFMT)); 2616 ret = -EOPNOTSUPP; 2617 goto out; 2618 } 2619 2620 ret = begin_cmd(sctx, cmd); 2621 if (ret < 0) 2622 goto out; 2623 2624 ret = gen_unique_name(sctx, ino, gen, p); 2625 if (ret < 0) 2626 goto out; 2627 2628 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2629 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2630 2631 if (S_ISLNK(mode)) { 2632 fs_path_reset(p); 2633 ret = read_symlink(sctx->send_root, ino, p); 2634 if (ret < 0) 2635 goto out; 2636 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2637 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2638 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2639 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2640 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2641 } 2642 2643 ret = send_cmd(sctx); 2644 if (ret < 0) 2645 goto out; 2646 2647 2648 tlv_put_failure: 2649 out: 2650 fs_path_free(p); 2651 return ret; 2652 } 2653 2654 /* 2655 * We need some special handling for inodes that get processed before the parent 2656 * directory got created. See process_recorded_refs for details. 2657 * This function does the check if we already created the dir out of order. 2658 */ 2659 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2660 { 2661 int ret = 0; 2662 struct btrfs_path *path = NULL; 2663 struct btrfs_key key; 2664 struct btrfs_key found_key; 2665 struct btrfs_key di_key; 2666 struct extent_buffer *eb; 2667 struct btrfs_dir_item *di; 2668 int slot; 2669 2670 path = alloc_path_for_send(); 2671 if (!path) { 2672 ret = -ENOMEM; 2673 goto out; 2674 } 2675 2676 key.objectid = dir; 2677 key.type = BTRFS_DIR_INDEX_KEY; 2678 key.offset = 0; 2679 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2680 if (ret < 0) 2681 goto out; 2682 2683 while (1) { 2684 eb = path->nodes[0]; 2685 slot = path->slots[0]; 2686 if (slot >= btrfs_header_nritems(eb)) { 2687 ret = btrfs_next_leaf(sctx->send_root, path); 2688 if (ret < 0) { 2689 goto out; 2690 } else if (ret > 0) { 2691 ret = 0; 2692 break; 2693 } 2694 continue; 2695 } 2696 2697 btrfs_item_key_to_cpu(eb, &found_key, slot); 2698 if (found_key.objectid != key.objectid || 2699 found_key.type != key.type) { 2700 ret = 0; 2701 goto out; 2702 } 2703 2704 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2705 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2706 2707 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2708 di_key.objectid < sctx->send_progress) { 2709 ret = 1; 2710 goto out; 2711 } 2712 2713 path->slots[0]++; 2714 } 2715 2716 out: 2717 btrfs_free_path(path); 2718 return ret; 2719 } 2720 2721 /* 2722 * Only creates the inode if it is: 2723 * 1. Not a directory 2724 * 2. Or a directory which was not created already due to out of order 2725 * directories. See did_create_dir and process_recorded_refs for details. 2726 */ 2727 static int send_create_inode_if_needed(struct send_ctx *sctx) 2728 { 2729 int ret; 2730 2731 if (S_ISDIR(sctx->cur_inode_mode)) { 2732 ret = did_create_dir(sctx, sctx->cur_ino); 2733 if (ret < 0) 2734 goto out; 2735 if (ret) { 2736 ret = 0; 2737 goto out; 2738 } 2739 } 2740 2741 ret = send_create_inode(sctx, sctx->cur_ino); 2742 if (ret < 0) 2743 goto out; 2744 2745 out: 2746 return ret; 2747 } 2748 2749 struct recorded_ref { 2750 struct list_head list; 2751 char *name; 2752 struct fs_path *full_path; 2753 u64 dir; 2754 u64 dir_gen; 2755 int name_len; 2756 }; 2757 2758 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2759 { 2760 ref->full_path = path; 2761 ref->name = (char *)kbasename(ref->full_path->start); 2762 ref->name_len = ref->full_path->end - ref->name; 2763 } 2764 2765 /* 2766 * We need to process new refs before deleted refs, but compare_tree gives us 2767 * everything mixed. So we first record all refs and later process them. 2768 * This function is a helper to record one ref. 2769 */ 2770 static int __record_ref(struct list_head *head, u64 dir, 2771 u64 dir_gen, struct fs_path *path) 2772 { 2773 struct recorded_ref *ref; 2774 2775 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2776 if (!ref) 2777 return -ENOMEM; 2778 2779 ref->dir = dir; 2780 ref->dir_gen = dir_gen; 2781 set_ref_path(ref, path); 2782 list_add_tail(&ref->list, head); 2783 return 0; 2784 } 2785 2786 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2787 { 2788 struct recorded_ref *new; 2789 2790 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2791 if (!new) 2792 return -ENOMEM; 2793 2794 new->dir = ref->dir; 2795 new->dir_gen = ref->dir_gen; 2796 new->full_path = NULL; 2797 INIT_LIST_HEAD(&new->list); 2798 list_add_tail(&new->list, list); 2799 return 0; 2800 } 2801 2802 static void __free_recorded_refs(struct list_head *head) 2803 { 2804 struct recorded_ref *cur; 2805 2806 while (!list_empty(head)) { 2807 cur = list_entry(head->next, struct recorded_ref, list); 2808 fs_path_free(cur->full_path); 2809 list_del(&cur->list); 2810 kfree(cur); 2811 } 2812 } 2813 2814 static void free_recorded_refs(struct send_ctx *sctx) 2815 { 2816 __free_recorded_refs(&sctx->new_refs); 2817 __free_recorded_refs(&sctx->deleted_refs); 2818 } 2819 2820 /* 2821 * Renames/moves a file/dir to its orphan name. Used when the first 2822 * ref of an unprocessed inode gets overwritten and for all non empty 2823 * directories. 2824 */ 2825 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2826 struct fs_path *path) 2827 { 2828 int ret; 2829 struct fs_path *orphan; 2830 2831 orphan = fs_path_alloc(); 2832 if (!orphan) 2833 return -ENOMEM; 2834 2835 ret = gen_unique_name(sctx, ino, gen, orphan); 2836 if (ret < 0) 2837 goto out; 2838 2839 ret = send_rename(sctx, path, orphan); 2840 2841 out: 2842 fs_path_free(orphan); 2843 return ret; 2844 } 2845 2846 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 2847 u64 dir_ino, u64 dir_gen) 2848 { 2849 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2850 struct rb_node *parent = NULL; 2851 struct orphan_dir_info *entry, *odi; 2852 2853 while (*p) { 2854 parent = *p; 2855 entry = rb_entry(parent, struct orphan_dir_info, node); 2856 if (dir_ino < entry->ino) 2857 p = &(*p)->rb_left; 2858 else if (dir_ino > entry->ino) 2859 p = &(*p)->rb_right; 2860 else if (dir_gen < entry->gen) 2861 p = &(*p)->rb_left; 2862 else if (dir_gen > entry->gen) 2863 p = &(*p)->rb_right; 2864 else 2865 return entry; 2866 } 2867 2868 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2869 if (!odi) 2870 return ERR_PTR(-ENOMEM); 2871 odi->ino = dir_ino; 2872 odi->gen = dir_gen; 2873 odi->last_dir_index_offset = 0; 2874 2875 rb_link_node(&odi->node, parent, p); 2876 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2877 return odi; 2878 } 2879 2880 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 2881 u64 dir_ino, u64 gen) 2882 { 2883 struct rb_node *n = sctx->orphan_dirs.rb_node; 2884 struct orphan_dir_info *entry; 2885 2886 while (n) { 2887 entry = rb_entry(n, struct orphan_dir_info, node); 2888 if (dir_ino < entry->ino) 2889 n = n->rb_left; 2890 else if (dir_ino > entry->ino) 2891 n = n->rb_right; 2892 else if (gen < entry->gen) 2893 n = n->rb_left; 2894 else if (gen > entry->gen) 2895 n = n->rb_right; 2896 else 2897 return entry; 2898 } 2899 return NULL; 2900 } 2901 2902 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 2903 { 2904 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 2905 2906 return odi != NULL; 2907 } 2908 2909 static void free_orphan_dir_info(struct send_ctx *sctx, 2910 struct orphan_dir_info *odi) 2911 { 2912 if (!odi) 2913 return; 2914 rb_erase(&odi->node, &sctx->orphan_dirs); 2915 kfree(odi); 2916 } 2917 2918 /* 2919 * Returns 1 if a directory can be removed at this point in time. 2920 * We check this by iterating all dir items and checking if the inode behind 2921 * the dir item was already processed. 2922 */ 2923 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2924 u64 send_progress) 2925 { 2926 int ret = 0; 2927 struct btrfs_root *root = sctx->parent_root; 2928 struct btrfs_path *path; 2929 struct btrfs_key key; 2930 struct btrfs_key found_key; 2931 struct btrfs_key loc; 2932 struct btrfs_dir_item *di; 2933 struct orphan_dir_info *odi = NULL; 2934 2935 /* 2936 * Don't try to rmdir the top/root subvolume dir. 2937 */ 2938 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2939 return 0; 2940 2941 path = alloc_path_for_send(); 2942 if (!path) 2943 return -ENOMEM; 2944 2945 key.objectid = dir; 2946 key.type = BTRFS_DIR_INDEX_KEY; 2947 key.offset = 0; 2948 2949 odi = get_orphan_dir_info(sctx, dir, dir_gen); 2950 if (odi) 2951 key.offset = odi->last_dir_index_offset; 2952 2953 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2954 if (ret < 0) 2955 goto out; 2956 2957 while (1) { 2958 struct waiting_dir_move *dm; 2959 2960 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2961 ret = btrfs_next_leaf(root, path); 2962 if (ret < 0) 2963 goto out; 2964 else if (ret > 0) 2965 break; 2966 continue; 2967 } 2968 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2969 path->slots[0]); 2970 if (found_key.objectid != key.objectid || 2971 found_key.type != key.type) 2972 break; 2973 2974 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2975 struct btrfs_dir_item); 2976 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2977 2978 dm = get_waiting_dir_move(sctx, loc.objectid); 2979 if (dm) { 2980 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2981 if (IS_ERR(odi)) { 2982 ret = PTR_ERR(odi); 2983 goto out; 2984 } 2985 odi->gen = dir_gen; 2986 odi->last_dir_index_offset = found_key.offset; 2987 dm->rmdir_ino = dir; 2988 dm->rmdir_gen = dir_gen; 2989 ret = 0; 2990 goto out; 2991 } 2992 2993 if (loc.objectid > send_progress) { 2994 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2995 if (IS_ERR(odi)) { 2996 ret = PTR_ERR(odi); 2997 goto out; 2998 } 2999 odi->gen = dir_gen; 3000 odi->last_dir_index_offset = found_key.offset; 3001 ret = 0; 3002 goto out; 3003 } 3004 3005 path->slots[0]++; 3006 } 3007 free_orphan_dir_info(sctx, odi); 3008 3009 ret = 1; 3010 3011 out: 3012 btrfs_free_path(path); 3013 return ret; 3014 } 3015 3016 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3017 { 3018 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3019 3020 return entry != NULL; 3021 } 3022 3023 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3024 { 3025 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3026 struct rb_node *parent = NULL; 3027 struct waiting_dir_move *entry, *dm; 3028 3029 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3030 if (!dm) 3031 return -ENOMEM; 3032 dm->ino = ino; 3033 dm->rmdir_ino = 0; 3034 dm->rmdir_gen = 0; 3035 dm->orphanized = orphanized; 3036 3037 while (*p) { 3038 parent = *p; 3039 entry = rb_entry(parent, struct waiting_dir_move, node); 3040 if (ino < entry->ino) { 3041 p = &(*p)->rb_left; 3042 } else if (ino > entry->ino) { 3043 p = &(*p)->rb_right; 3044 } else { 3045 kfree(dm); 3046 return -EEXIST; 3047 } 3048 } 3049 3050 rb_link_node(&dm->node, parent, p); 3051 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3052 return 0; 3053 } 3054 3055 static struct waiting_dir_move * 3056 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3057 { 3058 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3059 struct waiting_dir_move *entry; 3060 3061 while (n) { 3062 entry = rb_entry(n, struct waiting_dir_move, node); 3063 if (ino < entry->ino) 3064 n = n->rb_left; 3065 else if (ino > entry->ino) 3066 n = n->rb_right; 3067 else 3068 return entry; 3069 } 3070 return NULL; 3071 } 3072 3073 static void free_waiting_dir_move(struct send_ctx *sctx, 3074 struct waiting_dir_move *dm) 3075 { 3076 if (!dm) 3077 return; 3078 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3079 kfree(dm); 3080 } 3081 3082 static int add_pending_dir_move(struct send_ctx *sctx, 3083 u64 ino, 3084 u64 ino_gen, 3085 u64 parent_ino, 3086 struct list_head *new_refs, 3087 struct list_head *deleted_refs, 3088 const bool is_orphan) 3089 { 3090 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3091 struct rb_node *parent = NULL; 3092 struct pending_dir_move *entry = NULL, *pm; 3093 struct recorded_ref *cur; 3094 int exists = 0; 3095 int ret; 3096 3097 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3098 if (!pm) 3099 return -ENOMEM; 3100 pm->parent_ino = parent_ino; 3101 pm->ino = ino; 3102 pm->gen = ino_gen; 3103 INIT_LIST_HEAD(&pm->list); 3104 INIT_LIST_HEAD(&pm->update_refs); 3105 RB_CLEAR_NODE(&pm->node); 3106 3107 while (*p) { 3108 parent = *p; 3109 entry = rb_entry(parent, struct pending_dir_move, node); 3110 if (parent_ino < entry->parent_ino) { 3111 p = &(*p)->rb_left; 3112 } else if (parent_ino > entry->parent_ino) { 3113 p = &(*p)->rb_right; 3114 } else { 3115 exists = 1; 3116 break; 3117 } 3118 } 3119 3120 list_for_each_entry(cur, deleted_refs, list) { 3121 ret = dup_ref(cur, &pm->update_refs); 3122 if (ret < 0) 3123 goto out; 3124 } 3125 list_for_each_entry(cur, new_refs, list) { 3126 ret = dup_ref(cur, &pm->update_refs); 3127 if (ret < 0) 3128 goto out; 3129 } 3130 3131 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3132 if (ret) 3133 goto out; 3134 3135 if (exists) { 3136 list_add_tail(&pm->list, &entry->list); 3137 } else { 3138 rb_link_node(&pm->node, parent, p); 3139 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3140 } 3141 ret = 0; 3142 out: 3143 if (ret) { 3144 __free_recorded_refs(&pm->update_refs); 3145 kfree(pm); 3146 } 3147 return ret; 3148 } 3149 3150 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3151 u64 parent_ino) 3152 { 3153 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3154 struct pending_dir_move *entry; 3155 3156 while (n) { 3157 entry = rb_entry(n, struct pending_dir_move, node); 3158 if (parent_ino < entry->parent_ino) 3159 n = n->rb_left; 3160 else if (parent_ino > entry->parent_ino) 3161 n = n->rb_right; 3162 else 3163 return entry; 3164 } 3165 return NULL; 3166 } 3167 3168 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3169 u64 ino, u64 gen, u64 *ancestor_ino) 3170 { 3171 int ret = 0; 3172 u64 parent_inode = 0; 3173 u64 parent_gen = 0; 3174 u64 start_ino = ino; 3175 3176 *ancestor_ino = 0; 3177 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3178 fs_path_reset(name); 3179 3180 if (is_waiting_for_rm(sctx, ino, gen)) 3181 break; 3182 if (is_waiting_for_move(sctx, ino)) { 3183 if (*ancestor_ino == 0) 3184 *ancestor_ino = ino; 3185 ret = get_first_ref(sctx->parent_root, ino, 3186 &parent_inode, &parent_gen, name); 3187 } else { 3188 ret = __get_cur_name_and_parent(sctx, ino, gen, 3189 &parent_inode, 3190 &parent_gen, name); 3191 if (ret > 0) { 3192 ret = 0; 3193 break; 3194 } 3195 } 3196 if (ret < 0) 3197 break; 3198 if (parent_inode == start_ino) { 3199 ret = 1; 3200 if (*ancestor_ino == 0) 3201 *ancestor_ino = ino; 3202 break; 3203 } 3204 ino = parent_inode; 3205 gen = parent_gen; 3206 } 3207 return ret; 3208 } 3209 3210 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3211 { 3212 struct fs_path *from_path = NULL; 3213 struct fs_path *to_path = NULL; 3214 struct fs_path *name = NULL; 3215 u64 orig_progress = sctx->send_progress; 3216 struct recorded_ref *cur; 3217 u64 parent_ino, parent_gen; 3218 struct waiting_dir_move *dm = NULL; 3219 u64 rmdir_ino = 0; 3220 u64 rmdir_gen; 3221 u64 ancestor; 3222 bool is_orphan; 3223 int ret; 3224 3225 name = fs_path_alloc(); 3226 from_path = fs_path_alloc(); 3227 if (!name || !from_path) { 3228 ret = -ENOMEM; 3229 goto out; 3230 } 3231 3232 dm = get_waiting_dir_move(sctx, pm->ino); 3233 ASSERT(dm); 3234 rmdir_ino = dm->rmdir_ino; 3235 rmdir_gen = dm->rmdir_gen; 3236 is_orphan = dm->orphanized; 3237 free_waiting_dir_move(sctx, dm); 3238 3239 if (is_orphan) { 3240 ret = gen_unique_name(sctx, pm->ino, 3241 pm->gen, from_path); 3242 } else { 3243 ret = get_first_ref(sctx->parent_root, pm->ino, 3244 &parent_ino, &parent_gen, name); 3245 if (ret < 0) 3246 goto out; 3247 ret = get_cur_path(sctx, parent_ino, parent_gen, 3248 from_path); 3249 if (ret < 0) 3250 goto out; 3251 ret = fs_path_add_path(from_path, name); 3252 } 3253 if (ret < 0) 3254 goto out; 3255 3256 sctx->send_progress = sctx->cur_ino + 1; 3257 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3258 if (ret < 0) 3259 goto out; 3260 if (ret) { 3261 LIST_HEAD(deleted_refs); 3262 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3263 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3264 &pm->update_refs, &deleted_refs, 3265 is_orphan); 3266 if (ret < 0) 3267 goto out; 3268 if (rmdir_ino) { 3269 dm = get_waiting_dir_move(sctx, pm->ino); 3270 ASSERT(dm); 3271 dm->rmdir_ino = rmdir_ino; 3272 dm->rmdir_gen = rmdir_gen; 3273 } 3274 goto out; 3275 } 3276 fs_path_reset(name); 3277 to_path = name; 3278 name = NULL; 3279 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3280 if (ret < 0) 3281 goto out; 3282 3283 ret = send_rename(sctx, from_path, to_path); 3284 if (ret < 0) 3285 goto out; 3286 3287 if (rmdir_ino) { 3288 struct orphan_dir_info *odi; 3289 u64 gen; 3290 3291 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3292 if (!odi) { 3293 /* already deleted */ 3294 goto finish; 3295 } 3296 gen = odi->gen; 3297 3298 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3299 if (ret < 0) 3300 goto out; 3301 if (!ret) 3302 goto finish; 3303 3304 name = fs_path_alloc(); 3305 if (!name) { 3306 ret = -ENOMEM; 3307 goto out; 3308 } 3309 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3310 if (ret < 0) 3311 goto out; 3312 ret = send_rmdir(sctx, name); 3313 if (ret < 0) 3314 goto out; 3315 } 3316 3317 finish: 3318 ret = send_utimes(sctx, pm->ino, pm->gen); 3319 if (ret < 0) 3320 goto out; 3321 3322 /* 3323 * After rename/move, need to update the utimes of both new parent(s) 3324 * and old parent(s). 3325 */ 3326 list_for_each_entry(cur, &pm->update_refs, list) { 3327 /* 3328 * The parent inode might have been deleted in the send snapshot 3329 */ 3330 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3331 NULL, NULL, NULL, NULL, NULL); 3332 if (ret == -ENOENT) { 3333 ret = 0; 3334 continue; 3335 } 3336 if (ret < 0) 3337 goto out; 3338 3339 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3340 if (ret < 0) 3341 goto out; 3342 } 3343 3344 out: 3345 fs_path_free(name); 3346 fs_path_free(from_path); 3347 fs_path_free(to_path); 3348 sctx->send_progress = orig_progress; 3349 3350 return ret; 3351 } 3352 3353 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3354 { 3355 if (!list_empty(&m->list)) 3356 list_del(&m->list); 3357 if (!RB_EMPTY_NODE(&m->node)) 3358 rb_erase(&m->node, &sctx->pending_dir_moves); 3359 __free_recorded_refs(&m->update_refs); 3360 kfree(m); 3361 } 3362 3363 static void tail_append_pending_moves(struct send_ctx *sctx, 3364 struct pending_dir_move *moves, 3365 struct list_head *stack) 3366 { 3367 if (list_empty(&moves->list)) { 3368 list_add_tail(&moves->list, stack); 3369 } else { 3370 LIST_HEAD(list); 3371 list_splice_init(&moves->list, &list); 3372 list_add_tail(&moves->list, stack); 3373 list_splice_tail(&list, stack); 3374 } 3375 if (!RB_EMPTY_NODE(&moves->node)) { 3376 rb_erase(&moves->node, &sctx->pending_dir_moves); 3377 RB_CLEAR_NODE(&moves->node); 3378 } 3379 } 3380 3381 static int apply_children_dir_moves(struct send_ctx *sctx) 3382 { 3383 struct pending_dir_move *pm; 3384 struct list_head stack; 3385 u64 parent_ino = sctx->cur_ino; 3386 int ret = 0; 3387 3388 pm = get_pending_dir_moves(sctx, parent_ino); 3389 if (!pm) 3390 return 0; 3391 3392 INIT_LIST_HEAD(&stack); 3393 tail_append_pending_moves(sctx, pm, &stack); 3394 3395 while (!list_empty(&stack)) { 3396 pm = list_first_entry(&stack, struct pending_dir_move, list); 3397 parent_ino = pm->ino; 3398 ret = apply_dir_move(sctx, pm); 3399 free_pending_move(sctx, pm); 3400 if (ret) 3401 goto out; 3402 pm = get_pending_dir_moves(sctx, parent_ino); 3403 if (pm) 3404 tail_append_pending_moves(sctx, pm, &stack); 3405 } 3406 return 0; 3407 3408 out: 3409 while (!list_empty(&stack)) { 3410 pm = list_first_entry(&stack, struct pending_dir_move, list); 3411 free_pending_move(sctx, pm); 3412 } 3413 return ret; 3414 } 3415 3416 /* 3417 * We might need to delay a directory rename even when no ancestor directory 3418 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3419 * renamed. This happens when we rename a directory to the old name (the name 3420 * in the parent root) of some other unrelated directory that got its rename 3421 * delayed due to some ancestor with higher number that got renamed. 3422 * 3423 * Example: 3424 * 3425 * Parent snapshot: 3426 * . (ino 256) 3427 * |---- a/ (ino 257) 3428 * | |---- file (ino 260) 3429 * | 3430 * |---- b/ (ino 258) 3431 * |---- c/ (ino 259) 3432 * 3433 * Send snapshot: 3434 * . (ino 256) 3435 * |---- a/ (ino 258) 3436 * |---- x/ (ino 259) 3437 * |---- y/ (ino 257) 3438 * |----- file (ino 260) 3439 * 3440 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3441 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3442 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3443 * must issue is: 3444 * 3445 * 1 - rename 259 from 'c' to 'x' 3446 * 2 - rename 257 from 'a' to 'x/y' 3447 * 3 - rename 258 from 'b' to 'a' 3448 * 3449 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3450 * be done right away and < 0 on error. 3451 */ 3452 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3453 struct recorded_ref *parent_ref, 3454 const bool is_orphan) 3455 { 3456 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3457 struct btrfs_path *path; 3458 struct btrfs_key key; 3459 struct btrfs_key di_key; 3460 struct btrfs_dir_item *di; 3461 u64 left_gen; 3462 u64 right_gen; 3463 int ret = 0; 3464 struct waiting_dir_move *wdm; 3465 3466 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3467 return 0; 3468 3469 path = alloc_path_for_send(); 3470 if (!path) 3471 return -ENOMEM; 3472 3473 key.objectid = parent_ref->dir; 3474 key.type = BTRFS_DIR_ITEM_KEY; 3475 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3476 3477 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3478 if (ret < 0) { 3479 goto out; 3480 } else if (ret > 0) { 3481 ret = 0; 3482 goto out; 3483 } 3484 3485 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3486 parent_ref->name_len); 3487 if (!di) { 3488 ret = 0; 3489 goto out; 3490 } 3491 /* 3492 * di_key.objectid has the number of the inode that has a dentry in the 3493 * parent directory with the same name that sctx->cur_ino is being 3494 * renamed to. We need to check if that inode is in the send root as 3495 * well and if it is currently marked as an inode with a pending rename, 3496 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3497 * that it happens after that other inode is renamed. 3498 */ 3499 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3500 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3501 ret = 0; 3502 goto out; 3503 } 3504 3505 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3506 &left_gen, NULL, NULL, NULL, NULL); 3507 if (ret < 0) 3508 goto out; 3509 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3510 &right_gen, NULL, NULL, NULL, NULL); 3511 if (ret < 0) { 3512 if (ret == -ENOENT) 3513 ret = 0; 3514 goto out; 3515 } 3516 3517 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3518 if (right_gen != left_gen) { 3519 ret = 0; 3520 goto out; 3521 } 3522 3523 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3524 if (wdm && !wdm->orphanized) { 3525 ret = add_pending_dir_move(sctx, 3526 sctx->cur_ino, 3527 sctx->cur_inode_gen, 3528 di_key.objectid, 3529 &sctx->new_refs, 3530 &sctx->deleted_refs, 3531 is_orphan); 3532 if (!ret) 3533 ret = 1; 3534 } 3535 out: 3536 btrfs_free_path(path); 3537 return ret; 3538 } 3539 3540 /* 3541 * Check if inode ino2, or any of its ancestors, is inode ino1. 3542 * Return 1 if true, 0 if false and < 0 on error. 3543 */ 3544 static int check_ino_in_path(struct btrfs_root *root, 3545 const u64 ino1, 3546 const u64 ino1_gen, 3547 const u64 ino2, 3548 const u64 ino2_gen, 3549 struct fs_path *fs_path) 3550 { 3551 u64 ino = ino2; 3552 3553 if (ino1 == ino2) 3554 return ino1_gen == ino2_gen; 3555 3556 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3557 u64 parent; 3558 u64 parent_gen; 3559 int ret; 3560 3561 fs_path_reset(fs_path); 3562 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3563 if (ret < 0) 3564 return ret; 3565 if (parent == ino1) 3566 return parent_gen == ino1_gen; 3567 ino = parent; 3568 } 3569 return 0; 3570 } 3571 3572 /* 3573 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3574 * possible path (in case ino2 is not a directory and has multiple hard links). 3575 * Return 1 if true, 0 if false and < 0 on error. 3576 */ 3577 static int is_ancestor(struct btrfs_root *root, 3578 const u64 ino1, 3579 const u64 ino1_gen, 3580 const u64 ino2, 3581 struct fs_path *fs_path) 3582 { 3583 bool free_fs_path = false; 3584 int ret = 0; 3585 struct btrfs_path *path = NULL; 3586 struct btrfs_key key; 3587 3588 if (!fs_path) { 3589 fs_path = fs_path_alloc(); 3590 if (!fs_path) 3591 return -ENOMEM; 3592 free_fs_path = true; 3593 } 3594 3595 path = alloc_path_for_send(); 3596 if (!path) { 3597 ret = -ENOMEM; 3598 goto out; 3599 } 3600 3601 key.objectid = ino2; 3602 key.type = BTRFS_INODE_REF_KEY; 3603 key.offset = 0; 3604 3605 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3606 if (ret < 0) 3607 goto out; 3608 3609 while (true) { 3610 struct extent_buffer *leaf = path->nodes[0]; 3611 int slot = path->slots[0]; 3612 u32 cur_offset = 0; 3613 u32 item_size; 3614 3615 if (slot >= btrfs_header_nritems(leaf)) { 3616 ret = btrfs_next_leaf(root, path); 3617 if (ret < 0) 3618 goto out; 3619 if (ret > 0) 3620 break; 3621 continue; 3622 } 3623 3624 btrfs_item_key_to_cpu(leaf, &key, slot); 3625 if (key.objectid != ino2) 3626 break; 3627 if (key.type != BTRFS_INODE_REF_KEY && 3628 key.type != BTRFS_INODE_EXTREF_KEY) 3629 break; 3630 3631 item_size = btrfs_item_size_nr(leaf, slot); 3632 while (cur_offset < item_size) { 3633 u64 parent; 3634 u64 parent_gen; 3635 3636 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3637 unsigned long ptr; 3638 struct btrfs_inode_extref *extref; 3639 3640 ptr = btrfs_item_ptr_offset(leaf, slot); 3641 extref = (struct btrfs_inode_extref *) 3642 (ptr + cur_offset); 3643 parent = btrfs_inode_extref_parent(leaf, 3644 extref); 3645 cur_offset += sizeof(*extref); 3646 cur_offset += btrfs_inode_extref_name_len(leaf, 3647 extref); 3648 } else { 3649 parent = key.offset; 3650 cur_offset = item_size; 3651 } 3652 3653 ret = get_inode_info(root, parent, NULL, &parent_gen, 3654 NULL, NULL, NULL, NULL); 3655 if (ret < 0) 3656 goto out; 3657 ret = check_ino_in_path(root, ino1, ino1_gen, 3658 parent, parent_gen, fs_path); 3659 if (ret) 3660 goto out; 3661 } 3662 path->slots[0]++; 3663 } 3664 ret = 0; 3665 out: 3666 btrfs_free_path(path); 3667 if (free_fs_path) 3668 fs_path_free(fs_path); 3669 return ret; 3670 } 3671 3672 static int wait_for_parent_move(struct send_ctx *sctx, 3673 struct recorded_ref *parent_ref, 3674 const bool is_orphan) 3675 { 3676 int ret = 0; 3677 u64 ino = parent_ref->dir; 3678 u64 ino_gen = parent_ref->dir_gen; 3679 u64 parent_ino_before, parent_ino_after; 3680 struct fs_path *path_before = NULL; 3681 struct fs_path *path_after = NULL; 3682 int len1, len2; 3683 3684 path_after = fs_path_alloc(); 3685 path_before = fs_path_alloc(); 3686 if (!path_after || !path_before) { 3687 ret = -ENOMEM; 3688 goto out; 3689 } 3690 3691 /* 3692 * Our current directory inode may not yet be renamed/moved because some 3693 * ancestor (immediate or not) has to be renamed/moved first. So find if 3694 * such ancestor exists and make sure our own rename/move happens after 3695 * that ancestor is processed to avoid path build infinite loops (done 3696 * at get_cur_path()). 3697 */ 3698 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3699 u64 parent_ino_after_gen; 3700 3701 if (is_waiting_for_move(sctx, ino)) { 3702 /* 3703 * If the current inode is an ancestor of ino in the 3704 * parent root, we need to delay the rename of the 3705 * current inode, otherwise don't delayed the rename 3706 * because we can end up with a circular dependency 3707 * of renames, resulting in some directories never 3708 * getting the respective rename operations issued in 3709 * the send stream or getting into infinite path build 3710 * loops. 3711 */ 3712 ret = is_ancestor(sctx->parent_root, 3713 sctx->cur_ino, sctx->cur_inode_gen, 3714 ino, path_before); 3715 if (ret) 3716 break; 3717 } 3718 3719 fs_path_reset(path_before); 3720 fs_path_reset(path_after); 3721 3722 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3723 &parent_ino_after_gen, path_after); 3724 if (ret < 0) 3725 goto out; 3726 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3727 NULL, path_before); 3728 if (ret < 0 && ret != -ENOENT) { 3729 goto out; 3730 } else if (ret == -ENOENT) { 3731 ret = 0; 3732 break; 3733 } 3734 3735 len1 = fs_path_len(path_before); 3736 len2 = fs_path_len(path_after); 3737 if (ino > sctx->cur_ino && 3738 (parent_ino_before != parent_ino_after || len1 != len2 || 3739 memcmp(path_before->start, path_after->start, len1))) { 3740 u64 parent_ino_gen; 3741 3742 ret = get_inode_info(sctx->parent_root, ino, NULL, 3743 &parent_ino_gen, NULL, NULL, NULL, 3744 NULL); 3745 if (ret < 0) 3746 goto out; 3747 if (ino_gen == parent_ino_gen) { 3748 ret = 1; 3749 break; 3750 } 3751 } 3752 ino = parent_ino_after; 3753 ino_gen = parent_ino_after_gen; 3754 } 3755 3756 out: 3757 fs_path_free(path_before); 3758 fs_path_free(path_after); 3759 3760 if (ret == 1) { 3761 ret = add_pending_dir_move(sctx, 3762 sctx->cur_ino, 3763 sctx->cur_inode_gen, 3764 ino, 3765 &sctx->new_refs, 3766 &sctx->deleted_refs, 3767 is_orphan); 3768 if (!ret) 3769 ret = 1; 3770 } 3771 3772 return ret; 3773 } 3774 3775 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3776 { 3777 int ret; 3778 struct fs_path *new_path; 3779 3780 /* 3781 * Our reference's name member points to its full_path member string, so 3782 * we use here a new path. 3783 */ 3784 new_path = fs_path_alloc(); 3785 if (!new_path) 3786 return -ENOMEM; 3787 3788 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3789 if (ret < 0) { 3790 fs_path_free(new_path); 3791 return ret; 3792 } 3793 ret = fs_path_add(new_path, ref->name, ref->name_len); 3794 if (ret < 0) { 3795 fs_path_free(new_path); 3796 return ret; 3797 } 3798 3799 fs_path_free(ref->full_path); 3800 set_ref_path(ref, new_path); 3801 3802 return 0; 3803 } 3804 3805 /* 3806 * When processing the new references for an inode we may orphanize an existing 3807 * directory inode because its old name conflicts with one of the new references 3808 * of the current inode. Later, when processing another new reference of our 3809 * inode, we might need to orphanize another inode, but the path we have in the 3810 * reference reflects the pre-orphanization name of the directory we previously 3811 * orphanized. For example: 3812 * 3813 * parent snapshot looks like: 3814 * 3815 * . (ino 256) 3816 * |----- f1 (ino 257) 3817 * |----- f2 (ino 258) 3818 * |----- d1/ (ino 259) 3819 * |----- d2/ (ino 260) 3820 * 3821 * send snapshot looks like: 3822 * 3823 * . (ino 256) 3824 * |----- d1 (ino 258) 3825 * |----- f2/ (ino 259) 3826 * |----- f2_link/ (ino 260) 3827 * | |----- f1 (ino 257) 3828 * | 3829 * |----- d2 (ino 258) 3830 * 3831 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3832 * cache it in the name cache. Later when we start processing inode 258, when 3833 * collecting all its new references we set a full path of "d1/d2" for its new 3834 * reference with name "d2". When we start processing the new references we 3835 * start by processing the new reference with name "d1", and this results in 3836 * orphanizing inode 259, since its old reference causes a conflict. Then we 3837 * move on the next new reference, with name "d2", and we find out we must 3838 * orphanize inode 260, as its old reference conflicts with ours - but for the 3839 * orphanization we use a source path corresponding to the path we stored in the 3840 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3841 * receiver fail since the path component "d1/" no longer exists, it was renamed 3842 * to "o259-6-0/" when processing the previous new reference. So in this case we 3843 * must recompute the path in the new reference and use it for the new 3844 * orphanization operation. 3845 */ 3846 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3847 { 3848 char *name; 3849 int ret; 3850 3851 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3852 if (!name) 3853 return -ENOMEM; 3854 3855 fs_path_reset(ref->full_path); 3856 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3857 if (ret < 0) 3858 goto out; 3859 3860 ret = fs_path_add(ref->full_path, name, ref->name_len); 3861 if (ret < 0) 3862 goto out; 3863 3864 /* Update the reference's base name pointer. */ 3865 set_ref_path(ref, ref->full_path); 3866 out: 3867 kfree(name); 3868 return ret; 3869 } 3870 3871 /* 3872 * This does all the move/link/unlink/rmdir magic. 3873 */ 3874 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3875 { 3876 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3877 int ret = 0; 3878 struct recorded_ref *cur; 3879 struct recorded_ref *cur2; 3880 struct list_head check_dirs; 3881 struct fs_path *valid_path = NULL; 3882 u64 ow_inode = 0; 3883 u64 ow_gen; 3884 u64 ow_mode; 3885 int did_overwrite = 0; 3886 int is_orphan = 0; 3887 u64 last_dir_ino_rm = 0; 3888 bool can_rename = true; 3889 bool orphanized_dir = false; 3890 bool orphanized_ancestor = false; 3891 3892 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3893 3894 /* 3895 * This should never happen as the root dir always has the same ref 3896 * which is always '..' 3897 */ 3898 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3899 INIT_LIST_HEAD(&check_dirs); 3900 3901 valid_path = fs_path_alloc(); 3902 if (!valid_path) { 3903 ret = -ENOMEM; 3904 goto out; 3905 } 3906 3907 /* 3908 * First, check if the first ref of the current inode was overwritten 3909 * before. If yes, we know that the current inode was already orphanized 3910 * and thus use the orphan name. If not, we can use get_cur_path to 3911 * get the path of the first ref as it would like while receiving at 3912 * this point in time. 3913 * New inodes are always orphan at the beginning, so force to use the 3914 * orphan name in this case. 3915 * The first ref is stored in valid_path and will be updated if it 3916 * gets moved around. 3917 */ 3918 if (!sctx->cur_inode_new) { 3919 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3920 sctx->cur_inode_gen); 3921 if (ret < 0) 3922 goto out; 3923 if (ret) 3924 did_overwrite = 1; 3925 } 3926 if (sctx->cur_inode_new || did_overwrite) { 3927 ret = gen_unique_name(sctx, sctx->cur_ino, 3928 sctx->cur_inode_gen, valid_path); 3929 if (ret < 0) 3930 goto out; 3931 is_orphan = 1; 3932 } else { 3933 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3934 valid_path); 3935 if (ret < 0) 3936 goto out; 3937 } 3938 3939 /* 3940 * Before doing any rename and link operations, do a first pass on the 3941 * new references to orphanize any unprocessed inodes that may have a 3942 * reference that conflicts with one of the new references of the current 3943 * inode. This needs to happen first because a new reference may conflict 3944 * with the old reference of a parent directory, so we must make sure 3945 * that the path used for link and rename commands don't use an 3946 * orphanized name when an ancestor was not yet orphanized. 3947 * 3948 * Example: 3949 * 3950 * Parent snapshot: 3951 * 3952 * . (ino 256) 3953 * |----- testdir/ (ino 259) 3954 * | |----- a (ino 257) 3955 * | 3956 * |----- b (ino 258) 3957 * 3958 * Send snapshot: 3959 * 3960 * . (ino 256) 3961 * |----- testdir_2/ (ino 259) 3962 * | |----- a (ino 260) 3963 * | 3964 * |----- testdir (ino 257) 3965 * |----- b (ino 257) 3966 * |----- b2 (ino 258) 3967 * 3968 * Processing the new reference for inode 257 with name "b" may happen 3969 * before processing the new reference with name "testdir". If so, we 3970 * must make sure that by the time we send a link command to create the 3971 * hard link "b", inode 259 was already orphanized, since the generated 3972 * path in "valid_path" already contains the orphanized name for 259. 3973 * We are processing inode 257, so only later when processing 259 we do 3974 * the rename operation to change its temporary (orphanized) name to 3975 * "testdir_2". 3976 */ 3977 list_for_each_entry(cur, &sctx->new_refs, list) { 3978 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3979 if (ret < 0) 3980 goto out; 3981 if (ret == inode_state_will_create) 3982 continue; 3983 3984 /* 3985 * Check if this new ref would overwrite the first ref of another 3986 * unprocessed inode. If yes, orphanize the overwritten inode. 3987 * If we find an overwritten ref that is not the first ref, 3988 * simply unlink it. 3989 */ 3990 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3991 cur->name, cur->name_len, 3992 &ow_inode, &ow_gen, &ow_mode); 3993 if (ret < 0) 3994 goto out; 3995 if (ret) { 3996 ret = is_first_ref(sctx->parent_root, 3997 ow_inode, cur->dir, cur->name, 3998 cur->name_len); 3999 if (ret < 0) 4000 goto out; 4001 if (ret) { 4002 struct name_cache_entry *nce; 4003 struct waiting_dir_move *wdm; 4004 4005 if (orphanized_dir) { 4006 ret = refresh_ref_path(sctx, cur); 4007 if (ret < 0) 4008 goto out; 4009 } 4010 4011 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4012 cur->full_path); 4013 if (ret < 0) 4014 goto out; 4015 if (S_ISDIR(ow_mode)) 4016 orphanized_dir = true; 4017 4018 /* 4019 * If ow_inode has its rename operation delayed 4020 * make sure that its orphanized name is used in 4021 * the source path when performing its rename 4022 * operation. 4023 */ 4024 if (is_waiting_for_move(sctx, ow_inode)) { 4025 wdm = get_waiting_dir_move(sctx, 4026 ow_inode); 4027 ASSERT(wdm); 4028 wdm->orphanized = true; 4029 } 4030 4031 /* 4032 * Make sure we clear our orphanized inode's 4033 * name from the name cache. This is because the 4034 * inode ow_inode might be an ancestor of some 4035 * other inode that will be orphanized as well 4036 * later and has an inode number greater than 4037 * sctx->send_progress. We need to prevent 4038 * future name lookups from using the old name 4039 * and get instead the orphan name. 4040 */ 4041 nce = name_cache_search(sctx, ow_inode, ow_gen); 4042 if (nce) { 4043 name_cache_delete(sctx, nce); 4044 kfree(nce); 4045 } 4046 4047 /* 4048 * ow_inode might currently be an ancestor of 4049 * cur_ino, therefore compute valid_path (the 4050 * current path of cur_ino) again because it 4051 * might contain the pre-orphanization name of 4052 * ow_inode, which is no longer valid. 4053 */ 4054 ret = is_ancestor(sctx->parent_root, 4055 ow_inode, ow_gen, 4056 sctx->cur_ino, NULL); 4057 if (ret > 0) { 4058 orphanized_ancestor = true; 4059 fs_path_reset(valid_path); 4060 ret = get_cur_path(sctx, sctx->cur_ino, 4061 sctx->cur_inode_gen, 4062 valid_path); 4063 } 4064 if (ret < 0) 4065 goto out; 4066 } else { 4067 /* 4068 * If we previously orphanized a directory that 4069 * collided with a new reference that we already 4070 * processed, recompute the current path because 4071 * that directory may be part of the path. 4072 */ 4073 if (orphanized_dir) { 4074 ret = refresh_ref_path(sctx, cur); 4075 if (ret < 0) 4076 goto out; 4077 } 4078 ret = send_unlink(sctx, cur->full_path); 4079 if (ret < 0) 4080 goto out; 4081 } 4082 } 4083 4084 } 4085 4086 list_for_each_entry(cur, &sctx->new_refs, list) { 4087 /* 4088 * We may have refs where the parent directory does not exist 4089 * yet. This happens if the parent directories inum is higher 4090 * than the current inum. To handle this case, we create the 4091 * parent directory out of order. But we need to check if this 4092 * did already happen before due to other refs in the same dir. 4093 */ 4094 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4095 if (ret < 0) 4096 goto out; 4097 if (ret == inode_state_will_create) { 4098 ret = 0; 4099 /* 4100 * First check if any of the current inodes refs did 4101 * already create the dir. 4102 */ 4103 list_for_each_entry(cur2, &sctx->new_refs, list) { 4104 if (cur == cur2) 4105 break; 4106 if (cur2->dir == cur->dir) { 4107 ret = 1; 4108 break; 4109 } 4110 } 4111 4112 /* 4113 * If that did not happen, check if a previous inode 4114 * did already create the dir. 4115 */ 4116 if (!ret) 4117 ret = did_create_dir(sctx, cur->dir); 4118 if (ret < 0) 4119 goto out; 4120 if (!ret) { 4121 ret = send_create_inode(sctx, cur->dir); 4122 if (ret < 0) 4123 goto out; 4124 } 4125 } 4126 4127 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4128 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4129 if (ret < 0) 4130 goto out; 4131 if (ret == 1) { 4132 can_rename = false; 4133 *pending_move = 1; 4134 } 4135 } 4136 4137 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4138 can_rename) { 4139 ret = wait_for_parent_move(sctx, cur, is_orphan); 4140 if (ret < 0) 4141 goto out; 4142 if (ret == 1) { 4143 can_rename = false; 4144 *pending_move = 1; 4145 } 4146 } 4147 4148 /* 4149 * link/move the ref to the new place. If we have an orphan 4150 * inode, move it and update valid_path. If not, link or move 4151 * it depending on the inode mode. 4152 */ 4153 if (is_orphan && can_rename) { 4154 ret = send_rename(sctx, valid_path, cur->full_path); 4155 if (ret < 0) 4156 goto out; 4157 is_orphan = 0; 4158 ret = fs_path_copy(valid_path, cur->full_path); 4159 if (ret < 0) 4160 goto out; 4161 } else if (can_rename) { 4162 if (S_ISDIR(sctx->cur_inode_mode)) { 4163 /* 4164 * Dirs can't be linked, so move it. For moved 4165 * dirs, we always have one new and one deleted 4166 * ref. The deleted ref is ignored later. 4167 */ 4168 ret = send_rename(sctx, valid_path, 4169 cur->full_path); 4170 if (!ret) 4171 ret = fs_path_copy(valid_path, 4172 cur->full_path); 4173 if (ret < 0) 4174 goto out; 4175 } else { 4176 /* 4177 * We might have previously orphanized an inode 4178 * which is an ancestor of our current inode, 4179 * so our reference's full path, which was 4180 * computed before any such orphanizations, must 4181 * be updated. 4182 */ 4183 if (orphanized_dir) { 4184 ret = update_ref_path(sctx, cur); 4185 if (ret < 0) 4186 goto out; 4187 } 4188 ret = send_link(sctx, cur->full_path, 4189 valid_path); 4190 if (ret < 0) 4191 goto out; 4192 } 4193 } 4194 ret = dup_ref(cur, &check_dirs); 4195 if (ret < 0) 4196 goto out; 4197 } 4198 4199 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4200 /* 4201 * Check if we can already rmdir the directory. If not, 4202 * orphanize it. For every dir item inside that gets deleted 4203 * later, we do this check again and rmdir it then if possible. 4204 * See the use of check_dirs for more details. 4205 */ 4206 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4207 sctx->cur_ino); 4208 if (ret < 0) 4209 goto out; 4210 if (ret) { 4211 ret = send_rmdir(sctx, valid_path); 4212 if (ret < 0) 4213 goto out; 4214 } else if (!is_orphan) { 4215 ret = orphanize_inode(sctx, sctx->cur_ino, 4216 sctx->cur_inode_gen, valid_path); 4217 if (ret < 0) 4218 goto out; 4219 is_orphan = 1; 4220 } 4221 4222 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4223 ret = dup_ref(cur, &check_dirs); 4224 if (ret < 0) 4225 goto out; 4226 } 4227 } else if (S_ISDIR(sctx->cur_inode_mode) && 4228 !list_empty(&sctx->deleted_refs)) { 4229 /* 4230 * We have a moved dir. Add the old parent to check_dirs 4231 */ 4232 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4233 list); 4234 ret = dup_ref(cur, &check_dirs); 4235 if (ret < 0) 4236 goto out; 4237 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4238 /* 4239 * We have a non dir inode. Go through all deleted refs and 4240 * unlink them if they were not already overwritten by other 4241 * inodes. 4242 */ 4243 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4244 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4245 sctx->cur_ino, sctx->cur_inode_gen, 4246 cur->name, cur->name_len); 4247 if (ret < 0) 4248 goto out; 4249 if (!ret) { 4250 /* 4251 * If we orphanized any ancestor before, we need 4252 * to recompute the full path for deleted names, 4253 * since any such path was computed before we 4254 * processed any references and orphanized any 4255 * ancestor inode. 4256 */ 4257 if (orphanized_ancestor) { 4258 ret = update_ref_path(sctx, cur); 4259 if (ret < 0) 4260 goto out; 4261 } 4262 ret = send_unlink(sctx, cur->full_path); 4263 if (ret < 0) 4264 goto out; 4265 } 4266 ret = dup_ref(cur, &check_dirs); 4267 if (ret < 0) 4268 goto out; 4269 } 4270 /* 4271 * If the inode is still orphan, unlink the orphan. This may 4272 * happen when a previous inode did overwrite the first ref 4273 * of this inode and no new refs were added for the current 4274 * inode. Unlinking does not mean that the inode is deleted in 4275 * all cases. There may still be links to this inode in other 4276 * places. 4277 */ 4278 if (is_orphan) { 4279 ret = send_unlink(sctx, valid_path); 4280 if (ret < 0) 4281 goto out; 4282 } 4283 } 4284 4285 /* 4286 * We did collect all parent dirs where cur_inode was once located. We 4287 * now go through all these dirs and check if they are pending for 4288 * deletion and if it's finally possible to perform the rmdir now. 4289 * We also update the inode stats of the parent dirs here. 4290 */ 4291 list_for_each_entry(cur, &check_dirs, list) { 4292 /* 4293 * In case we had refs into dirs that were not processed yet, 4294 * we don't need to do the utime and rmdir logic for these dirs. 4295 * The dir will be processed later. 4296 */ 4297 if (cur->dir > sctx->cur_ino) 4298 continue; 4299 4300 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4301 if (ret < 0) 4302 goto out; 4303 4304 if (ret == inode_state_did_create || 4305 ret == inode_state_no_change) { 4306 /* TODO delayed utimes */ 4307 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4308 if (ret < 0) 4309 goto out; 4310 } else if (ret == inode_state_did_delete && 4311 cur->dir != last_dir_ino_rm) { 4312 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4313 sctx->cur_ino); 4314 if (ret < 0) 4315 goto out; 4316 if (ret) { 4317 ret = get_cur_path(sctx, cur->dir, 4318 cur->dir_gen, valid_path); 4319 if (ret < 0) 4320 goto out; 4321 ret = send_rmdir(sctx, valid_path); 4322 if (ret < 0) 4323 goto out; 4324 last_dir_ino_rm = cur->dir; 4325 } 4326 } 4327 } 4328 4329 ret = 0; 4330 4331 out: 4332 __free_recorded_refs(&check_dirs); 4333 free_recorded_refs(sctx); 4334 fs_path_free(valid_path); 4335 return ret; 4336 } 4337 4338 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4339 void *ctx, struct list_head *refs) 4340 { 4341 int ret = 0; 4342 struct send_ctx *sctx = ctx; 4343 struct fs_path *p; 4344 u64 gen; 4345 4346 p = fs_path_alloc(); 4347 if (!p) 4348 return -ENOMEM; 4349 4350 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4351 NULL, NULL); 4352 if (ret < 0) 4353 goto out; 4354 4355 ret = get_cur_path(sctx, dir, gen, p); 4356 if (ret < 0) 4357 goto out; 4358 ret = fs_path_add_path(p, name); 4359 if (ret < 0) 4360 goto out; 4361 4362 ret = __record_ref(refs, dir, gen, p); 4363 4364 out: 4365 if (ret) 4366 fs_path_free(p); 4367 return ret; 4368 } 4369 4370 static int __record_new_ref(int num, u64 dir, int index, 4371 struct fs_path *name, 4372 void *ctx) 4373 { 4374 struct send_ctx *sctx = ctx; 4375 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4376 } 4377 4378 4379 static int __record_deleted_ref(int num, u64 dir, int index, 4380 struct fs_path *name, 4381 void *ctx) 4382 { 4383 struct send_ctx *sctx = ctx; 4384 return record_ref(sctx->parent_root, dir, name, ctx, 4385 &sctx->deleted_refs); 4386 } 4387 4388 static int record_new_ref(struct send_ctx *sctx) 4389 { 4390 int ret; 4391 4392 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4393 sctx->cmp_key, 0, __record_new_ref, sctx); 4394 if (ret < 0) 4395 goto out; 4396 ret = 0; 4397 4398 out: 4399 return ret; 4400 } 4401 4402 static int record_deleted_ref(struct send_ctx *sctx) 4403 { 4404 int ret; 4405 4406 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4407 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4408 if (ret < 0) 4409 goto out; 4410 ret = 0; 4411 4412 out: 4413 return ret; 4414 } 4415 4416 struct find_ref_ctx { 4417 u64 dir; 4418 u64 dir_gen; 4419 struct btrfs_root *root; 4420 struct fs_path *name; 4421 int found_idx; 4422 }; 4423 4424 static int __find_iref(int num, u64 dir, int index, 4425 struct fs_path *name, 4426 void *ctx_) 4427 { 4428 struct find_ref_ctx *ctx = ctx_; 4429 u64 dir_gen; 4430 int ret; 4431 4432 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4433 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4434 /* 4435 * To avoid doing extra lookups we'll only do this if everything 4436 * else matches. 4437 */ 4438 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4439 NULL, NULL, NULL); 4440 if (ret) 4441 return ret; 4442 if (dir_gen != ctx->dir_gen) 4443 return 0; 4444 ctx->found_idx = num; 4445 return 1; 4446 } 4447 return 0; 4448 } 4449 4450 static int find_iref(struct btrfs_root *root, 4451 struct btrfs_path *path, 4452 struct btrfs_key *key, 4453 u64 dir, u64 dir_gen, struct fs_path *name) 4454 { 4455 int ret; 4456 struct find_ref_ctx ctx; 4457 4458 ctx.dir = dir; 4459 ctx.name = name; 4460 ctx.dir_gen = dir_gen; 4461 ctx.found_idx = -1; 4462 ctx.root = root; 4463 4464 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4465 if (ret < 0) 4466 return ret; 4467 4468 if (ctx.found_idx == -1) 4469 return -ENOENT; 4470 4471 return ctx.found_idx; 4472 } 4473 4474 static int __record_changed_new_ref(int num, u64 dir, int index, 4475 struct fs_path *name, 4476 void *ctx) 4477 { 4478 u64 dir_gen; 4479 int ret; 4480 struct send_ctx *sctx = ctx; 4481 4482 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4483 NULL, NULL, NULL); 4484 if (ret) 4485 return ret; 4486 4487 ret = find_iref(sctx->parent_root, sctx->right_path, 4488 sctx->cmp_key, dir, dir_gen, name); 4489 if (ret == -ENOENT) 4490 ret = __record_new_ref(num, dir, index, name, sctx); 4491 else if (ret > 0) 4492 ret = 0; 4493 4494 return ret; 4495 } 4496 4497 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4498 struct fs_path *name, 4499 void *ctx) 4500 { 4501 u64 dir_gen; 4502 int ret; 4503 struct send_ctx *sctx = ctx; 4504 4505 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4506 NULL, NULL, NULL); 4507 if (ret) 4508 return ret; 4509 4510 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4511 dir, dir_gen, name); 4512 if (ret == -ENOENT) 4513 ret = __record_deleted_ref(num, dir, index, name, sctx); 4514 else if (ret > 0) 4515 ret = 0; 4516 4517 return ret; 4518 } 4519 4520 static int record_changed_ref(struct send_ctx *sctx) 4521 { 4522 int ret = 0; 4523 4524 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4525 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4526 if (ret < 0) 4527 goto out; 4528 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4529 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4530 if (ret < 0) 4531 goto out; 4532 ret = 0; 4533 4534 out: 4535 return ret; 4536 } 4537 4538 /* 4539 * Record and process all refs at once. Needed when an inode changes the 4540 * generation number, which means that it was deleted and recreated. 4541 */ 4542 static int process_all_refs(struct send_ctx *sctx, 4543 enum btrfs_compare_tree_result cmd) 4544 { 4545 int ret; 4546 struct btrfs_root *root; 4547 struct btrfs_path *path; 4548 struct btrfs_key key; 4549 struct btrfs_key found_key; 4550 struct extent_buffer *eb; 4551 int slot; 4552 iterate_inode_ref_t cb; 4553 int pending_move = 0; 4554 4555 path = alloc_path_for_send(); 4556 if (!path) 4557 return -ENOMEM; 4558 4559 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4560 root = sctx->send_root; 4561 cb = __record_new_ref; 4562 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4563 root = sctx->parent_root; 4564 cb = __record_deleted_ref; 4565 } else { 4566 btrfs_err(sctx->send_root->fs_info, 4567 "Wrong command %d in process_all_refs", cmd); 4568 ret = -EINVAL; 4569 goto out; 4570 } 4571 4572 key.objectid = sctx->cmp_key->objectid; 4573 key.type = BTRFS_INODE_REF_KEY; 4574 key.offset = 0; 4575 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4576 if (ret < 0) 4577 goto out; 4578 4579 while (1) { 4580 eb = path->nodes[0]; 4581 slot = path->slots[0]; 4582 if (slot >= btrfs_header_nritems(eb)) { 4583 ret = btrfs_next_leaf(root, path); 4584 if (ret < 0) 4585 goto out; 4586 else if (ret > 0) 4587 break; 4588 continue; 4589 } 4590 4591 btrfs_item_key_to_cpu(eb, &found_key, slot); 4592 4593 if (found_key.objectid != key.objectid || 4594 (found_key.type != BTRFS_INODE_REF_KEY && 4595 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4596 break; 4597 4598 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4599 if (ret < 0) 4600 goto out; 4601 4602 path->slots[0]++; 4603 } 4604 btrfs_release_path(path); 4605 4606 /* 4607 * We don't actually care about pending_move as we are simply 4608 * re-creating this inode and will be rename'ing it into place once we 4609 * rename the parent directory. 4610 */ 4611 ret = process_recorded_refs(sctx, &pending_move); 4612 out: 4613 btrfs_free_path(path); 4614 return ret; 4615 } 4616 4617 static int send_set_xattr(struct send_ctx *sctx, 4618 struct fs_path *path, 4619 const char *name, int name_len, 4620 const char *data, int data_len) 4621 { 4622 int ret = 0; 4623 4624 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4625 if (ret < 0) 4626 goto out; 4627 4628 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4629 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4630 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4631 4632 ret = send_cmd(sctx); 4633 4634 tlv_put_failure: 4635 out: 4636 return ret; 4637 } 4638 4639 static int send_remove_xattr(struct send_ctx *sctx, 4640 struct fs_path *path, 4641 const char *name, int name_len) 4642 { 4643 int ret = 0; 4644 4645 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4646 if (ret < 0) 4647 goto out; 4648 4649 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4650 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4651 4652 ret = send_cmd(sctx); 4653 4654 tlv_put_failure: 4655 out: 4656 return ret; 4657 } 4658 4659 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4660 const char *name, int name_len, 4661 const char *data, int data_len, 4662 u8 type, void *ctx) 4663 { 4664 int ret; 4665 struct send_ctx *sctx = ctx; 4666 struct fs_path *p; 4667 struct posix_acl_xattr_header dummy_acl; 4668 4669 /* Capabilities are emitted by finish_inode_if_needed */ 4670 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4671 return 0; 4672 4673 p = fs_path_alloc(); 4674 if (!p) 4675 return -ENOMEM; 4676 4677 /* 4678 * This hack is needed because empty acls are stored as zero byte 4679 * data in xattrs. Problem with that is, that receiving these zero byte 4680 * acls will fail later. To fix this, we send a dummy acl list that 4681 * only contains the version number and no entries. 4682 */ 4683 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4684 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4685 if (data_len == 0) { 4686 dummy_acl.a_version = 4687 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4688 data = (char *)&dummy_acl; 4689 data_len = sizeof(dummy_acl); 4690 } 4691 } 4692 4693 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4694 if (ret < 0) 4695 goto out; 4696 4697 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4698 4699 out: 4700 fs_path_free(p); 4701 return ret; 4702 } 4703 4704 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4705 const char *name, int name_len, 4706 const char *data, int data_len, 4707 u8 type, void *ctx) 4708 { 4709 int ret; 4710 struct send_ctx *sctx = ctx; 4711 struct fs_path *p; 4712 4713 p = fs_path_alloc(); 4714 if (!p) 4715 return -ENOMEM; 4716 4717 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4718 if (ret < 0) 4719 goto out; 4720 4721 ret = send_remove_xattr(sctx, p, name, name_len); 4722 4723 out: 4724 fs_path_free(p); 4725 return ret; 4726 } 4727 4728 static int process_new_xattr(struct send_ctx *sctx) 4729 { 4730 int ret = 0; 4731 4732 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4733 __process_new_xattr, sctx); 4734 4735 return ret; 4736 } 4737 4738 static int process_deleted_xattr(struct send_ctx *sctx) 4739 { 4740 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4741 __process_deleted_xattr, sctx); 4742 } 4743 4744 struct find_xattr_ctx { 4745 const char *name; 4746 int name_len; 4747 int found_idx; 4748 char *found_data; 4749 int found_data_len; 4750 }; 4751 4752 static int __find_xattr(int num, struct btrfs_key *di_key, 4753 const char *name, int name_len, 4754 const char *data, int data_len, 4755 u8 type, void *vctx) 4756 { 4757 struct find_xattr_ctx *ctx = vctx; 4758 4759 if (name_len == ctx->name_len && 4760 strncmp(name, ctx->name, name_len) == 0) { 4761 ctx->found_idx = num; 4762 ctx->found_data_len = data_len; 4763 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4764 if (!ctx->found_data) 4765 return -ENOMEM; 4766 return 1; 4767 } 4768 return 0; 4769 } 4770 4771 static int find_xattr(struct btrfs_root *root, 4772 struct btrfs_path *path, 4773 struct btrfs_key *key, 4774 const char *name, int name_len, 4775 char **data, int *data_len) 4776 { 4777 int ret; 4778 struct find_xattr_ctx ctx; 4779 4780 ctx.name = name; 4781 ctx.name_len = name_len; 4782 ctx.found_idx = -1; 4783 ctx.found_data = NULL; 4784 ctx.found_data_len = 0; 4785 4786 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4787 if (ret < 0) 4788 return ret; 4789 4790 if (ctx.found_idx == -1) 4791 return -ENOENT; 4792 if (data) { 4793 *data = ctx.found_data; 4794 *data_len = ctx.found_data_len; 4795 } else { 4796 kfree(ctx.found_data); 4797 } 4798 return ctx.found_idx; 4799 } 4800 4801 4802 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4803 const char *name, int name_len, 4804 const char *data, int data_len, 4805 u8 type, void *ctx) 4806 { 4807 int ret; 4808 struct send_ctx *sctx = ctx; 4809 char *found_data = NULL; 4810 int found_data_len = 0; 4811 4812 ret = find_xattr(sctx->parent_root, sctx->right_path, 4813 sctx->cmp_key, name, name_len, &found_data, 4814 &found_data_len); 4815 if (ret == -ENOENT) { 4816 ret = __process_new_xattr(num, di_key, name, name_len, data, 4817 data_len, type, ctx); 4818 } else if (ret >= 0) { 4819 if (data_len != found_data_len || 4820 memcmp(data, found_data, data_len)) { 4821 ret = __process_new_xattr(num, di_key, name, name_len, 4822 data, data_len, type, ctx); 4823 } else { 4824 ret = 0; 4825 } 4826 } 4827 4828 kfree(found_data); 4829 return ret; 4830 } 4831 4832 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4833 const char *name, int name_len, 4834 const char *data, int data_len, 4835 u8 type, void *ctx) 4836 { 4837 int ret; 4838 struct send_ctx *sctx = ctx; 4839 4840 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4841 name, name_len, NULL, NULL); 4842 if (ret == -ENOENT) 4843 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4844 data_len, type, ctx); 4845 else if (ret >= 0) 4846 ret = 0; 4847 4848 return ret; 4849 } 4850 4851 static int process_changed_xattr(struct send_ctx *sctx) 4852 { 4853 int ret = 0; 4854 4855 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4856 __process_changed_new_xattr, sctx); 4857 if (ret < 0) 4858 goto out; 4859 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4860 __process_changed_deleted_xattr, sctx); 4861 4862 out: 4863 return ret; 4864 } 4865 4866 static int process_all_new_xattrs(struct send_ctx *sctx) 4867 { 4868 int ret; 4869 struct btrfs_root *root; 4870 struct btrfs_path *path; 4871 struct btrfs_key key; 4872 struct btrfs_key found_key; 4873 struct extent_buffer *eb; 4874 int slot; 4875 4876 path = alloc_path_for_send(); 4877 if (!path) 4878 return -ENOMEM; 4879 4880 root = sctx->send_root; 4881 4882 key.objectid = sctx->cmp_key->objectid; 4883 key.type = BTRFS_XATTR_ITEM_KEY; 4884 key.offset = 0; 4885 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4886 if (ret < 0) 4887 goto out; 4888 4889 while (1) { 4890 eb = path->nodes[0]; 4891 slot = path->slots[0]; 4892 if (slot >= btrfs_header_nritems(eb)) { 4893 ret = btrfs_next_leaf(root, path); 4894 if (ret < 0) { 4895 goto out; 4896 } else if (ret > 0) { 4897 ret = 0; 4898 break; 4899 } 4900 continue; 4901 } 4902 4903 btrfs_item_key_to_cpu(eb, &found_key, slot); 4904 if (found_key.objectid != key.objectid || 4905 found_key.type != key.type) { 4906 ret = 0; 4907 goto out; 4908 } 4909 4910 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4911 if (ret < 0) 4912 goto out; 4913 4914 path->slots[0]++; 4915 } 4916 4917 out: 4918 btrfs_free_path(path); 4919 return ret; 4920 } 4921 4922 static inline u64 max_send_read_size(const struct send_ctx *sctx) 4923 { 4924 return sctx->send_max_size - SZ_16K; 4925 } 4926 4927 static int put_data_header(struct send_ctx *sctx, u32 len) 4928 { 4929 struct btrfs_tlv_header *hdr; 4930 4931 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 4932 return -EOVERFLOW; 4933 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 4934 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 4935 put_unaligned_le16(len, &hdr->tlv_len); 4936 sctx->send_size += sizeof(*hdr); 4937 return 0; 4938 } 4939 4940 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 4941 { 4942 struct btrfs_root *root = sctx->send_root; 4943 struct btrfs_fs_info *fs_info = root->fs_info; 4944 struct inode *inode; 4945 struct page *page; 4946 pgoff_t index = offset >> PAGE_SHIFT; 4947 pgoff_t last_index; 4948 unsigned pg_offset = offset_in_page(offset); 4949 int ret; 4950 4951 ret = put_data_header(sctx, len); 4952 if (ret) 4953 return ret; 4954 4955 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 4956 if (IS_ERR(inode)) 4957 return PTR_ERR(inode); 4958 4959 last_index = (offset + len - 1) >> PAGE_SHIFT; 4960 4961 /* initial readahead */ 4962 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4963 file_ra_state_init(&sctx->ra, inode->i_mapping); 4964 4965 while (index <= last_index) { 4966 unsigned cur_len = min_t(unsigned, len, 4967 PAGE_SIZE - pg_offset); 4968 4969 page = find_lock_page(inode->i_mapping, index); 4970 if (!page) { 4971 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4972 NULL, index, last_index + 1 - index); 4973 4974 page = find_or_create_page(inode->i_mapping, index, 4975 GFP_KERNEL); 4976 if (!page) { 4977 ret = -ENOMEM; 4978 break; 4979 } 4980 } 4981 4982 if (PageReadahead(page)) { 4983 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4984 NULL, page, index, last_index + 1 - index); 4985 } 4986 4987 if (!PageUptodate(page)) { 4988 btrfs_readpage(NULL, page); 4989 lock_page(page); 4990 if (!PageUptodate(page)) { 4991 unlock_page(page); 4992 put_page(page); 4993 ret = -EIO; 4994 break; 4995 } 4996 } 4997 4998 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 4999 pg_offset, cur_len); 5000 unlock_page(page); 5001 put_page(page); 5002 index++; 5003 pg_offset = 0; 5004 len -= cur_len; 5005 sctx->send_size += cur_len; 5006 } 5007 iput(inode); 5008 return ret; 5009 } 5010 5011 /* 5012 * Read some bytes from the current inode/file and send a write command to 5013 * user space. 5014 */ 5015 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5016 { 5017 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5018 int ret = 0; 5019 struct fs_path *p; 5020 5021 p = fs_path_alloc(); 5022 if (!p) 5023 return -ENOMEM; 5024 5025 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5026 5027 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5028 if (ret < 0) 5029 goto out; 5030 5031 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5032 if (ret < 0) 5033 goto out; 5034 5035 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5036 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5037 ret = put_file_data(sctx, offset, len); 5038 if (ret < 0) 5039 goto out; 5040 5041 ret = send_cmd(sctx); 5042 5043 tlv_put_failure: 5044 out: 5045 fs_path_free(p); 5046 return ret; 5047 } 5048 5049 /* 5050 * Send a clone command to user space. 5051 */ 5052 static int send_clone(struct send_ctx *sctx, 5053 u64 offset, u32 len, 5054 struct clone_root *clone_root) 5055 { 5056 int ret = 0; 5057 struct fs_path *p; 5058 u64 gen; 5059 5060 btrfs_debug(sctx->send_root->fs_info, 5061 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5062 offset, len, clone_root->root->root_key.objectid, 5063 clone_root->ino, clone_root->offset); 5064 5065 p = fs_path_alloc(); 5066 if (!p) 5067 return -ENOMEM; 5068 5069 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5070 if (ret < 0) 5071 goto out; 5072 5073 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5074 if (ret < 0) 5075 goto out; 5076 5077 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5078 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5079 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5080 5081 if (clone_root->root == sctx->send_root) { 5082 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 5083 &gen, NULL, NULL, NULL, NULL); 5084 if (ret < 0) 5085 goto out; 5086 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5087 } else { 5088 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5089 } 5090 if (ret < 0) 5091 goto out; 5092 5093 /* 5094 * If the parent we're using has a received_uuid set then use that as 5095 * our clone source as that is what we will look for when doing a 5096 * receive. 5097 * 5098 * This covers the case that we create a snapshot off of a received 5099 * subvolume and then use that as the parent and try to receive on a 5100 * different host. 5101 */ 5102 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5103 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5104 clone_root->root->root_item.received_uuid); 5105 else 5106 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5107 clone_root->root->root_item.uuid); 5108 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5109 btrfs_root_ctransid(&clone_root->root->root_item)); 5110 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5111 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5112 clone_root->offset); 5113 5114 ret = send_cmd(sctx); 5115 5116 tlv_put_failure: 5117 out: 5118 fs_path_free(p); 5119 return ret; 5120 } 5121 5122 /* 5123 * Send an update extent command to user space. 5124 */ 5125 static int send_update_extent(struct send_ctx *sctx, 5126 u64 offset, u32 len) 5127 { 5128 int ret = 0; 5129 struct fs_path *p; 5130 5131 p = fs_path_alloc(); 5132 if (!p) 5133 return -ENOMEM; 5134 5135 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5136 if (ret < 0) 5137 goto out; 5138 5139 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5140 if (ret < 0) 5141 goto out; 5142 5143 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5144 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5145 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5146 5147 ret = send_cmd(sctx); 5148 5149 tlv_put_failure: 5150 out: 5151 fs_path_free(p); 5152 return ret; 5153 } 5154 5155 static int send_hole(struct send_ctx *sctx, u64 end) 5156 { 5157 struct fs_path *p = NULL; 5158 u64 read_size = max_send_read_size(sctx); 5159 u64 offset = sctx->cur_inode_last_extent; 5160 int ret = 0; 5161 5162 /* 5163 * A hole that starts at EOF or beyond it. Since we do not yet support 5164 * fallocate (for extent preallocation and hole punching), sending a 5165 * write of zeroes starting at EOF or beyond would later require issuing 5166 * a truncate operation which would undo the write and achieve nothing. 5167 */ 5168 if (offset >= sctx->cur_inode_size) 5169 return 0; 5170 5171 /* 5172 * Don't go beyond the inode's i_size due to prealloc extents that start 5173 * after the i_size. 5174 */ 5175 end = min_t(u64, end, sctx->cur_inode_size); 5176 5177 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5178 return send_update_extent(sctx, offset, end - offset); 5179 5180 p = fs_path_alloc(); 5181 if (!p) 5182 return -ENOMEM; 5183 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5184 if (ret < 0) 5185 goto tlv_put_failure; 5186 while (offset < end) { 5187 u64 len = min(end - offset, read_size); 5188 5189 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5190 if (ret < 0) 5191 break; 5192 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5193 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5194 ret = put_data_header(sctx, len); 5195 if (ret < 0) 5196 break; 5197 memset(sctx->send_buf + sctx->send_size, 0, len); 5198 sctx->send_size += len; 5199 ret = send_cmd(sctx); 5200 if (ret < 0) 5201 break; 5202 offset += len; 5203 } 5204 sctx->cur_inode_next_write_offset = offset; 5205 tlv_put_failure: 5206 fs_path_free(p); 5207 return ret; 5208 } 5209 5210 static int send_extent_data(struct send_ctx *sctx, 5211 const u64 offset, 5212 const u64 len) 5213 { 5214 u64 read_size = max_send_read_size(sctx); 5215 u64 sent = 0; 5216 5217 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5218 return send_update_extent(sctx, offset, len); 5219 5220 while (sent < len) { 5221 u64 size = min(len - sent, read_size); 5222 int ret; 5223 5224 ret = send_write(sctx, offset + sent, size); 5225 if (ret < 0) 5226 return ret; 5227 sent += size; 5228 } 5229 return 0; 5230 } 5231 5232 /* 5233 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5234 * found, call send_set_xattr function to emit it. 5235 * 5236 * Return 0 if there isn't a capability, or when the capability was emitted 5237 * successfully, or < 0 if an error occurred. 5238 */ 5239 static int send_capabilities(struct send_ctx *sctx) 5240 { 5241 struct fs_path *fspath = NULL; 5242 struct btrfs_path *path; 5243 struct btrfs_dir_item *di; 5244 struct extent_buffer *leaf; 5245 unsigned long data_ptr; 5246 char *buf = NULL; 5247 int buf_len; 5248 int ret = 0; 5249 5250 path = alloc_path_for_send(); 5251 if (!path) 5252 return -ENOMEM; 5253 5254 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5255 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5256 if (!di) { 5257 /* There is no xattr for this inode */ 5258 goto out; 5259 } else if (IS_ERR(di)) { 5260 ret = PTR_ERR(di); 5261 goto out; 5262 } 5263 5264 leaf = path->nodes[0]; 5265 buf_len = btrfs_dir_data_len(leaf, di); 5266 5267 fspath = fs_path_alloc(); 5268 buf = kmalloc(buf_len, GFP_KERNEL); 5269 if (!fspath || !buf) { 5270 ret = -ENOMEM; 5271 goto out; 5272 } 5273 5274 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5275 if (ret < 0) 5276 goto out; 5277 5278 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5279 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5280 5281 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5282 strlen(XATTR_NAME_CAPS), buf, buf_len); 5283 out: 5284 kfree(buf); 5285 fs_path_free(fspath); 5286 btrfs_free_path(path); 5287 return ret; 5288 } 5289 5290 static int clone_range(struct send_ctx *sctx, 5291 struct clone_root *clone_root, 5292 const u64 disk_byte, 5293 u64 data_offset, 5294 u64 offset, 5295 u64 len) 5296 { 5297 struct btrfs_path *path; 5298 struct btrfs_key key; 5299 int ret; 5300 u64 clone_src_i_size = 0; 5301 5302 /* 5303 * Prevent cloning from a zero offset with a length matching the sector 5304 * size because in some scenarios this will make the receiver fail. 5305 * 5306 * For example, if in the source filesystem the extent at offset 0 5307 * has a length of sectorsize and it was written using direct IO, then 5308 * it can never be an inline extent (even if compression is enabled). 5309 * Then this extent can be cloned in the original filesystem to a non 5310 * zero file offset, but it may not be possible to clone in the 5311 * destination filesystem because it can be inlined due to compression 5312 * on the destination filesystem (as the receiver's write operations are 5313 * always done using buffered IO). The same happens when the original 5314 * filesystem does not have compression enabled but the destination 5315 * filesystem has. 5316 */ 5317 if (clone_root->offset == 0 && 5318 len == sctx->send_root->fs_info->sectorsize) 5319 return send_extent_data(sctx, offset, len); 5320 5321 path = alloc_path_for_send(); 5322 if (!path) 5323 return -ENOMEM; 5324 5325 /* 5326 * There are inodes that have extents that lie behind its i_size. Don't 5327 * accept clones from these extents. 5328 */ 5329 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5330 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5331 btrfs_release_path(path); 5332 if (ret < 0) 5333 goto out; 5334 5335 /* 5336 * We can't send a clone operation for the entire range if we find 5337 * extent items in the respective range in the source file that 5338 * refer to different extents or if we find holes. 5339 * So check for that and do a mix of clone and regular write/copy 5340 * operations if needed. 5341 * 5342 * Example: 5343 * 5344 * mkfs.btrfs -f /dev/sda 5345 * mount /dev/sda /mnt 5346 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5347 * cp --reflink=always /mnt/foo /mnt/bar 5348 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5349 * btrfs subvolume snapshot -r /mnt /mnt/snap 5350 * 5351 * If when we send the snapshot and we are processing file bar (which 5352 * has a higher inode number than foo) we blindly send a clone operation 5353 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5354 * a file bar that matches the content of file foo - iow, doesn't match 5355 * the content from bar in the original filesystem. 5356 */ 5357 key.objectid = clone_root->ino; 5358 key.type = BTRFS_EXTENT_DATA_KEY; 5359 key.offset = clone_root->offset; 5360 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5361 if (ret < 0) 5362 goto out; 5363 if (ret > 0 && path->slots[0] > 0) { 5364 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5365 if (key.objectid == clone_root->ino && 5366 key.type == BTRFS_EXTENT_DATA_KEY) 5367 path->slots[0]--; 5368 } 5369 5370 while (true) { 5371 struct extent_buffer *leaf = path->nodes[0]; 5372 int slot = path->slots[0]; 5373 struct btrfs_file_extent_item *ei; 5374 u8 type; 5375 u64 ext_len; 5376 u64 clone_len; 5377 u64 clone_data_offset; 5378 5379 if (slot >= btrfs_header_nritems(leaf)) { 5380 ret = btrfs_next_leaf(clone_root->root, path); 5381 if (ret < 0) 5382 goto out; 5383 else if (ret > 0) 5384 break; 5385 continue; 5386 } 5387 5388 btrfs_item_key_to_cpu(leaf, &key, slot); 5389 5390 /* 5391 * We might have an implicit trailing hole (NO_HOLES feature 5392 * enabled). We deal with it after leaving this loop. 5393 */ 5394 if (key.objectid != clone_root->ino || 5395 key.type != BTRFS_EXTENT_DATA_KEY) 5396 break; 5397 5398 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5399 type = btrfs_file_extent_type(leaf, ei); 5400 if (type == BTRFS_FILE_EXTENT_INLINE) { 5401 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5402 ext_len = PAGE_ALIGN(ext_len); 5403 } else { 5404 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5405 } 5406 5407 if (key.offset + ext_len <= clone_root->offset) 5408 goto next; 5409 5410 if (key.offset > clone_root->offset) { 5411 /* Implicit hole, NO_HOLES feature enabled. */ 5412 u64 hole_len = key.offset - clone_root->offset; 5413 5414 if (hole_len > len) 5415 hole_len = len; 5416 ret = send_extent_data(sctx, offset, hole_len); 5417 if (ret < 0) 5418 goto out; 5419 5420 len -= hole_len; 5421 if (len == 0) 5422 break; 5423 offset += hole_len; 5424 clone_root->offset += hole_len; 5425 data_offset += hole_len; 5426 } 5427 5428 if (key.offset >= clone_root->offset + len) 5429 break; 5430 5431 if (key.offset >= clone_src_i_size) 5432 break; 5433 5434 if (key.offset + ext_len > clone_src_i_size) 5435 ext_len = clone_src_i_size - key.offset; 5436 5437 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5438 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5439 clone_root->offset = key.offset; 5440 if (clone_data_offset < data_offset && 5441 clone_data_offset + ext_len > data_offset) { 5442 u64 extent_offset; 5443 5444 extent_offset = data_offset - clone_data_offset; 5445 ext_len -= extent_offset; 5446 clone_data_offset += extent_offset; 5447 clone_root->offset += extent_offset; 5448 } 5449 } 5450 5451 clone_len = min_t(u64, ext_len, len); 5452 5453 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5454 clone_data_offset == data_offset) { 5455 const u64 src_end = clone_root->offset + clone_len; 5456 const u64 sectorsize = SZ_64K; 5457 5458 /* 5459 * We can't clone the last block, when its size is not 5460 * sector size aligned, into the middle of a file. If we 5461 * do so, the receiver will get a failure (-EINVAL) when 5462 * trying to clone or will silently corrupt the data in 5463 * the destination file if it's on a kernel without the 5464 * fix introduced by commit ac765f83f1397646 5465 * ("Btrfs: fix data corruption due to cloning of eof 5466 * block). 5467 * 5468 * So issue a clone of the aligned down range plus a 5469 * regular write for the eof block, if we hit that case. 5470 * 5471 * Also, we use the maximum possible sector size, 64K, 5472 * because we don't know what's the sector size of the 5473 * filesystem that receives the stream, so we have to 5474 * assume the largest possible sector size. 5475 */ 5476 if (src_end == clone_src_i_size && 5477 !IS_ALIGNED(src_end, sectorsize) && 5478 offset + clone_len < sctx->cur_inode_size) { 5479 u64 slen; 5480 5481 slen = ALIGN_DOWN(src_end - clone_root->offset, 5482 sectorsize); 5483 if (slen > 0) { 5484 ret = send_clone(sctx, offset, slen, 5485 clone_root); 5486 if (ret < 0) 5487 goto out; 5488 } 5489 ret = send_extent_data(sctx, offset + slen, 5490 clone_len - slen); 5491 } else { 5492 ret = send_clone(sctx, offset, clone_len, 5493 clone_root); 5494 } 5495 } else { 5496 ret = send_extent_data(sctx, offset, clone_len); 5497 } 5498 5499 if (ret < 0) 5500 goto out; 5501 5502 len -= clone_len; 5503 if (len == 0) 5504 break; 5505 offset += clone_len; 5506 clone_root->offset += clone_len; 5507 5508 /* 5509 * If we are cloning from the file we are currently processing, 5510 * and using the send root as the clone root, we must stop once 5511 * the current clone offset reaches the current eof of the file 5512 * at the receiver, otherwise we would issue an invalid clone 5513 * operation (source range going beyond eof) and cause the 5514 * receiver to fail. So if we reach the current eof, bail out 5515 * and fallback to a regular write. 5516 */ 5517 if (clone_root->root == sctx->send_root && 5518 clone_root->ino == sctx->cur_ino && 5519 clone_root->offset >= sctx->cur_inode_next_write_offset) 5520 break; 5521 5522 data_offset += clone_len; 5523 next: 5524 path->slots[0]++; 5525 } 5526 5527 if (len > 0) 5528 ret = send_extent_data(sctx, offset, len); 5529 else 5530 ret = 0; 5531 out: 5532 btrfs_free_path(path); 5533 return ret; 5534 } 5535 5536 static int send_write_or_clone(struct send_ctx *sctx, 5537 struct btrfs_path *path, 5538 struct btrfs_key *key, 5539 struct clone_root *clone_root) 5540 { 5541 int ret = 0; 5542 u64 offset = key->offset; 5543 u64 end; 5544 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5545 5546 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5547 if (offset >= end) 5548 return 0; 5549 5550 if (clone_root && IS_ALIGNED(end, bs)) { 5551 struct btrfs_file_extent_item *ei; 5552 u64 disk_byte; 5553 u64 data_offset; 5554 5555 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5556 struct btrfs_file_extent_item); 5557 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5558 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5559 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5560 offset, end - offset); 5561 } else { 5562 ret = send_extent_data(sctx, offset, end - offset); 5563 } 5564 sctx->cur_inode_next_write_offset = end; 5565 return ret; 5566 } 5567 5568 static int is_extent_unchanged(struct send_ctx *sctx, 5569 struct btrfs_path *left_path, 5570 struct btrfs_key *ekey) 5571 { 5572 int ret = 0; 5573 struct btrfs_key key; 5574 struct btrfs_path *path = NULL; 5575 struct extent_buffer *eb; 5576 int slot; 5577 struct btrfs_key found_key; 5578 struct btrfs_file_extent_item *ei; 5579 u64 left_disknr; 5580 u64 right_disknr; 5581 u64 left_offset; 5582 u64 right_offset; 5583 u64 left_offset_fixed; 5584 u64 left_len; 5585 u64 right_len; 5586 u64 left_gen; 5587 u64 right_gen; 5588 u8 left_type; 5589 u8 right_type; 5590 5591 path = alloc_path_for_send(); 5592 if (!path) 5593 return -ENOMEM; 5594 5595 eb = left_path->nodes[0]; 5596 slot = left_path->slots[0]; 5597 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5598 left_type = btrfs_file_extent_type(eb, ei); 5599 5600 if (left_type != BTRFS_FILE_EXTENT_REG) { 5601 ret = 0; 5602 goto out; 5603 } 5604 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5605 left_len = btrfs_file_extent_num_bytes(eb, ei); 5606 left_offset = btrfs_file_extent_offset(eb, ei); 5607 left_gen = btrfs_file_extent_generation(eb, ei); 5608 5609 /* 5610 * Following comments will refer to these graphics. L is the left 5611 * extents which we are checking at the moment. 1-8 are the right 5612 * extents that we iterate. 5613 * 5614 * |-----L-----| 5615 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5616 * 5617 * |-----L-----| 5618 * |--1--|-2b-|...(same as above) 5619 * 5620 * Alternative situation. Happens on files where extents got split. 5621 * |-----L-----| 5622 * |-----------7-----------|-6-| 5623 * 5624 * Alternative situation. Happens on files which got larger. 5625 * |-----L-----| 5626 * |-8-| 5627 * Nothing follows after 8. 5628 */ 5629 5630 key.objectid = ekey->objectid; 5631 key.type = BTRFS_EXTENT_DATA_KEY; 5632 key.offset = ekey->offset; 5633 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5634 if (ret < 0) 5635 goto out; 5636 if (ret) { 5637 ret = 0; 5638 goto out; 5639 } 5640 5641 /* 5642 * Handle special case where the right side has no extents at all. 5643 */ 5644 eb = path->nodes[0]; 5645 slot = path->slots[0]; 5646 btrfs_item_key_to_cpu(eb, &found_key, slot); 5647 if (found_key.objectid != key.objectid || 5648 found_key.type != key.type) { 5649 /* If we're a hole then just pretend nothing changed */ 5650 ret = (left_disknr) ? 0 : 1; 5651 goto out; 5652 } 5653 5654 /* 5655 * We're now on 2a, 2b or 7. 5656 */ 5657 key = found_key; 5658 while (key.offset < ekey->offset + left_len) { 5659 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5660 right_type = btrfs_file_extent_type(eb, ei); 5661 if (right_type != BTRFS_FILE_EXTENT_REG && 5662 right_type != BTRFS_FILE_EXTENT_INLINE) { 5663 ret = 0; 5664 goto out; 5665 } 5666 5667 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5668 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5669 right_len = PAGE_ALIGN(right_len); 5670 } else { 5671 right_len = btrfs_file_extent_num_bytes(eb, ei); 5672 } 5673 5674 /* 5675 * Are we at extent 8? If yes, we know the extent is changed. 5676 * This may only happen on the first iteration. 5677 */ 5678 if (found_key.offset + right_len <= ekey->offset) { 5679 /* If we're a hole just pretend nothing changed */ 5680 ret = (left_disknr) ? 0 : 1; 5681 goto out; 5682 } 5683 5684 /* 5685 * We just wanted to see if when we have an inline extent, what 5686 * follows it is a regular extent (wanted to check the above 5687 * condition for inline extents too). This should normally not 5688 * happen but it's possible for example when we have an inline 5689 * compressed extent representing data with a size matching 5690 * the page size (currently the same as sector size). 5691 */ 5692 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5693 ret = 0; 5694 goto out; 5695 } 5696 5697 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5698 right_offset = btrfs_file_extent_offset(eb, ei); 5699 right_gen = btrfs_file_extent_generation(eb, ei); 5700 5701 left_offset_fixed = left_offset; 5702 if (key.offset < ekey->offset) { 5703 /* Fix the right offset for 2a and 7. */ 5704 right_offset += ekey->offset - key.offset; 5705 } else { 5706 /* Fix the left offset for all behind 2a and 2b */ 5707 left_offset_fixed += key.offset - ekey->offset; 5708 } 5709 5710 /* 5711 * Check if we have the same extent. 5712 */ 5713 if (left_disknr != right_disknr || 5714 left_offset_fixed != right_offset || 5715 left_gen != right_gen) { 5716 ret = 0; 5717 goto out; 5718 } 5719 5720 /* 5721 * Go to the next extent. 5722 */ 5723 ret = btrfs_next_item(sctx->parent_root, path); 5724 if (ret < 0) 5725 goto out; 5726 if (!ret) { 5727 eb = path->nodes[0]; 5728 slot = path->slots[0]; 5729 btrfs_item_key_to_cpu(eb, &found_key, slot); 5730 } 5731 if (ret || found_key.objectid != key.objectid || 5732 found_key.type != key.type) { 5733 key.offset += right_len; 5734 break; 5735 } 5736 if (found_key.offset != key.offset + right_len) { 5737 ret = 0; 5738 goto out; 5739 } 5740 key = found_key; 5741 } 5742 5743 /* 5744 * We're now behind the left extent (treat as unchanged) or at the end 5745 * of the right side (treat as changed). 5746 */ 5747 if (key.offset >= ekey->offset + left_len) 5748 ret = 1; 5749 else 5750 ret = 0; 5751 5752 5753 out: 5754 btrfs_free_path(path); 5755 return ret; 5756 } 5757 5758 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5759 { 5760 struct btrfs_path *path; 5761 struct btrfs_root *root = sctx->send_root; 5762 struct btrfs_key key; 5763 int ret; 5764 5765 path = alloc_path_for_send(); 5766 if (!path) 5767 return -ENOMEM; 5768 5769 sctx->cur_inode_last_extent = 0; 5770 5771 key.objectid = sctx->cur_ino; 5772 key.type = BTRFS_EXTENT_DATA_KEY; 5773 key.offset = offset; 5774 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5775 if (ret < 0) 5776 goto out; 5777 ret = 0; 5778 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5779 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5780 goto out; 5781 5782 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5783 out: 5784 btrfs_free_path(path); 5785 return ret; 5786 } 5787 5788 static int range_is_hole_in_parent(struct send_ctx *sctx, 5789 const u64 start, 5790 const u64 end) 5791 { 5792 struct btrfs_path *path; 5793 struct btrfs_key key; 5794 struct btrfs_root *root = sctx->parent_root; 5795 u64 search_start = start; 5796 int ret; 5797 5798 path = alloc_path_for_send(); 5799 if (!path) 5800 return -ENOMEM; 5801 5802 key.objectid = sctx->cur_ino; 5803 key.type = BTRFS_EXTENT_DATA_KEY; 5804 key.offset = search_start; 5805 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5806 if (ret < 0) 5807 goto out; 5808 if (ret > 0 && path->slots[0] > 0) 5809 path->slots[0]--; 5810 5811 while (search_start < end) { 5812 struct extent_buffer *leaf = path->nodes[0]; 5813 int slot = path->slots[0]; 5814 struct btrfs_file_extent_item *fi; 5815 u64 extent_end; 5816 5817 if (slot >= btrfs_header_nritems(leaf)) { 5818 ret = btrfs_next_leaf(root, path); 5819 if (ret < 0) 5820 goto out; 5821 else if (ret > 0) 5822 break; 5823 continue; 5824 } 5825 5826 btrfs_item_key_to_cpu(leaf, &key, slot); 5827 if (key.objectid < sctx->cur_ino || 5828 key.type < BTRFS_EXTENT_DATA_KEY) 5829 goto next; 5830 if (key.objectid > sctx->cur_ino || 5831 key.type > BTRFS_EXTENT_DATA_KEY || 5832 key.offset >= end) 5833 break; 5834 5835 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5836 extent_end = btrfs_file_extent_end(path); 5837 if (extent_end <= start) 5838 goto next; 5839 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5840 search_start = extent_end; 5841 goto next; 5842 } 5843 ret = 0; 5844 goto out; 5845 next: 5846 path->slots[0]++; 5847 } 5848 ret = 1; 5849 out: 5850 btrfs_free_path(path); 5851 return ret; 5852 } 5853 5854 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5855 struct btrfs_key *key) 5856 { 5857 int ret = 0; 5858 5859 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5860 return 0; 5861 5862 if (sctx->cur_inode_last_extent == (u64)-1) { 5863 ret = get_last_extent(sctx, key->offset - 1); 5864 if (ret) 5865 return ret; 5866 } 5867 5868 if (path->slots[0] == 0 && 5869 sctx->cur_inode_last_extent < key->offset) { 5870 /* 5871 * We might have skipped entire leafs that contained only 5872 * file extent items for our current inode. These leafs have 5873 * a generation number smaller (older) than the one in the 5874 * current leaf and the leaf our last extent came from, and 5875 * are located between these 2 leafs. 5876 */ 5877 ret = get_last_extent(sctx, key->offset - 1); 5878 if (ret) 5879 return ret; 5880 } 5881 5882 if (sctx->cur_inode_last_extent < key->offset) { 5883 ret = range_is_hole_in_parent(sctx, 5884 sctx->cur_inode_last_extent, 5885 key->offset); 5886 if (ret < 0) 5887 return ret; 5888 else if (ret == 0) 5889 ret = send_hole(sctx, key->offset); 5890 else 5891 ret = 0; 5892 } 5893 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5894 return ret; 5895 } 5896 5897 static int process_extent(struct send_ctx *sctx, 5898 struct btrfs_path *path, 5899 struct btrfs_key *key) 5900 { 5901 struct clone_root *found_clone = NULL; 5902 int ret = 0; 5903 5904 if (