1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 #include "xattr.h" 27 28 /* 29 * Maximum number of references an extent can have in order for us to attempt to 30 * issue clone operations instead of write operations. This currently exists to 31 * avoid hitting limitations of the backreference walking code (taking a lot of 32 * time and using too much memory for extents with large number of references). 33 */ 34 #define SEND_MAX_EXTENT_REFS 64 35 36 /* 37 * A fs_path is a helper to dynamically build path names with unknown size. 38 * It reallocates the internal buffer on demand. 39 * It allows fast adding of path elements on the right side (normal path) and 40 * fast adding to the left side (reversed path). A reversed path can also be 41 * unreversed if needed. 42 */ 43 struct fs_path { 44 union { 45 struct { 46 char *start; 47 char *end; 48 49 char *buf; 50 unsigned short buf_len:15; 51 unsigned short reversed:1; 52 char inline_buf[]; 53 }; 54 /* 55 * Average path length does not exceed 200 bytes, we'll have 56 * better packing in the slab and higher chance to satisfy 57 * a allocation later during send. 58 */ 59 char pad[256]; 60 }; 61 }; 62 #define FS_PATH_INLINE_SIZE \ 63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 64 65 66 /* reused for each extent */ 67 struct clone_root { 68 struct btrfs_root *root; 69 u64 ino; 70 u64 offset; 71 72 u64 found_refs; 73 }; 74 75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 77 78 struct send_ctx { 79 struct file *send_filp; 80 loff_t send_off; 81 char *send_buf; 82 u32 send_size; 83 u32 send_max_size; 84 u64 total_send_size; 85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 87 88 struct btrfs_root *send_root; 89 struct btrfs_root *parent_root; 90 struct clone_root *clone_roots; 91 int clone_roots_cnt; 92 93 /* current state of the compare_tree call */ 94 struct btrfs_path *left_path; 95 struct btrfs_path *right_path; 96 struct btrfs_key *cmp_key; 97 98 /* 99 * infos of the currently processed inode. In case of deleted inodes, 100 * these are the values from the deleted inode. 101 */ 102 u64 cur_ino; 103 u64 cur_inode_gen; 104 int cur_inode_new; 105 int cur_inode_new_gen; 106 int cur_inode_deleted; 107 u64 cur_inode_size; 108 u64 cur_inode_mode; 109 u64 cur_inode_rdev; 110 u64 cur_inode_last_extent; 111 u64 cur_inode_next_write_offset; 112 bool ignore_cur_inode; 113 114 u64 send_progress; 115 116 struct list_head new_refs; 117 struct list_head deleted_refs; 118 119 struct radix_tree_root name_cache; 120 struct list_head name_cache_list; 121 int name_cache_size; 122 123 struct file_ra_state ra; 124 125 char *read_buf; 126 127 /* 128 * We process inodes by their increasing order, so if before an 129 * incremental send we reverse the parent/child relationship of 130 * directories such that a directory with a lower inode number was 131 * the parent of a directory with a higher inode number, and the one 132 * becoming the new parent got renamed too, we can't rename/move the 133 * directory with lower inode number when we finish processing it - we 134 * must process the directory with higher inode number first, then 135 * rename/move it and then rename/move the directory with lower inode 136 * number. Example follows. 137 * 138 * Tree state when the first send was performed: 139 * 140 * . 141 * |-- a (ino 257) 142 * |-- b (ino 258) 143 * | 144 * | 145 * |-- c (ino 259) 146 * | |-- d (ino 260) 147 * | 148 * |-- c2 (ino 261) 149 * 150 * Tree state when the second (incremental) send is performed: 151 * 152 * . 153 * |-- a (ino 257) 154 * |-- b (ino 258) 155 * |-- c2 (ino 261) 156 * |-- d2 (ino 260) 157 * |-- cc (ino 259) 158 * 159 * The sequence of steps that lead to the second state was: 160 * 161 * mv /a/b/c/d /a/b/c2/d2 162 * mv /a/b/c /a/b/c2/d2/cc 163 * 164 * "c" has lower inode number, but we can't move it (2nd mv operation) 165 * before we move "d", which has higher inode number. 166 * 167 * So we just memorize which move/rename operations must be performed 168 * later when their respective parent is processed and moved/renamed. 169 */ 170 171 /* Indexed by parent directory inode number. */ 172 struct rb_root pending_dir_moves; 173 174 /* 175 * Reverse index, indexed by the inode number of a directory that 176 * is waiting for the move/rename of its immediate parent before its 177 * own move/rename can be performed. 178 */ 179 struct rb_root waiting_dir_moves; 180 181 /* 182 * A directory that is going to be rm'ed might have a child directory 183 * which is in the pending directory moves index above. In this case, 184 * the directory can only be removed after the move/rename of its child 185 * is performed. Example: 186 * 187 * Parent snapshot: 188 * 189 * . (ino 256) 190 * |-- a/ (ino 257) 191 * |-- b/ (ino 258) 192 * |-- c/ (ino 259) 193 * | |-- x/ (ino 260) 194 * | 195 * |-- y/ (ino 261) 196 * 197 * Send snapshot: 198 * 199 * . (ino 256) 200 * |-- a/ (ino 257) 201 * |-- b/ (ino 258) 202 * |-- YY/ (ino 261) 203 * |-- x/ (ino 260) 204 * 205 * Sequence of steps that lead to the send snapshot: 206 * rm -f /a/b/c/foo.txt 207 * mv /a/b/y /a/b/YY 208 * mv /a/b/c/x /a/b/YY 209 * rmdir /a/b/c 210 * 211 * When the child is processed, its move/rename is delayed until its 212 * parent is processed (as explained above), but all other operations 213 * like update utimes, chown, chgrp, etc, are performed and the paths 214 * that it uses for those operations must use the orphanized name of 215 * its parent (the directory we're going to rm later), so we need to 216 * memorize that name. 217 * 218 * Indexed by the inode number of the directory to be deleted. 219 */ 220 struct rb_root orphan_dirs; 221 }; 222 223 struct pending_dir_move { 224 struct rb_node node; 225 struct list_head list; 226 u64 parent_ino; 227 u64 ino; 228 u64 gen; 229 struct list_head update_refs; 230 }; 231 232 struct waiting_dir_move { 233 struct rb_node node; 234 u64 ino; 235 /* 236 * There might be some directory that could not be removed because it 237 * was waiting for this directory inode to be moved first. Therefore 238 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 239 */ 240 u64 rmdir_ino; 241 bool orphanized; 242 }; 243 244 struct orphan_dir_info { 245 struct rb_node node; 246 u64 ino; 247 u64 gen; 248 u64 last_dir_index_offset; 249 }; 250 251 struct name_cache_entry { 252 struct list_head list; 253 /* 254 * radix_tree has only 32bit entries but we need to handle 64bit inums. 255 * We use the lower 32bit of the 64bit inum to store it in the tree. If 256 * more then one inum would fall into the same entry, we use radix_list 257 * to store the additional entries. radix_list is also used to store 258 * entries where two entries have the same inum but different 259 * generations. 260 */ 261 struct list_head radix_list; 262 u64 ino; 263 u64 gen; 264 u64 parent_ino; 265 u64 parent_gen; 266 int ret; 267 int need_later_update; 268 int name_len; 269 char name[]; 270 }; 271 272 #define ADVANCE 1 273 #define ADVANCE_ONLY_NEXT -1 274 275 enum btrfs_compare_tree_result { 276 BTRFS_COMPARE_TREE_NEW, 277 BTRFS_COMPARE_TREE_DELETED, 278 BTRFS_COMPARE_TREE_CHANGED, 279 BTRFS_COMPARE_TREE_SAME, 280 }; 281 typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path, 282 struct btrfs_path *right_path, 283 struct btrfs_key *key, 284 enum btrfs_compare_tree_result result, 285 void *ctx); 286 287 __cold 288 static void inconsistent_snapshot_error(struct send_ctx *sctx, 289 enum btrfs_compare_tree_result result, 290 const char *what) 291 { 292 const char *result_string; 293 294 switch (result) { 295 case BTRFS_COMPARE_TREE_NEW: 296 result_string = "new"; 297 break; 298 case BTRFS_COMPARE_TREE_DELETED: 299 result_string = "deleted"; 300 break; 301 case BTRFS_COMPARE_TREE_CHANGED: 302 result_string = "updated"; 303 break; 304 case BTRFS_COMPARE_TREE_SAME: 305 ASSERT(0); 306 result_string = "unchanged"; 307 break; 308 default: 309 ASSERT(0); 310 result_string = "unexpected"; 311 } 312 313 btrfs_err(sctx->send_root->fs_info, 314 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 315 result_string, what, sctx->cmp_key->objectid, 316 sctx->send_root->root_key.objectid, 317 (sctx->parent_root ? 318 sctx->parent_root->root_key.objectid : 0)); 319 } 320 321 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 322 323 static struct waiting_dir_move * 324 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 325 326 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 327 328 static int need_send_hole(struct send_ctx *sctx) 329 { 330 return (sctx->parent_root && !sctx->cur_inode_new && 331 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 332 S_ISREG(sctx->cur_inode_mode)); 333 } 334 335 static void fs_path_reset(struct fs_path *p) 336 { 337 if (p->reversed) { 338 p->start = p->buf + p->buf_len - 1; 339 p->end = p->start; 340 *p->start = 0; 341 } else { 342 p->start = p->buf; 343 p->end = p->start; 344 *p->start = 0; 345 } 346 } 347 348 static struct fs_path *fs_path_alloc(void) 349 { 350 struct fs_path *p; 351 352 p = kmalloc(sizeof(*p), GFP_KERNEL); 353 if (!p) 354 return NULL; 355 p->reversed = 0; 356 p->buf = p->inline_buf; 357 p->buf_len = FS_PATH_INLINE_SIZE; 358 fs_path_reset(p); 359 return p; 360 } 361 362 static struct fs_path *fs_path_alloc_reversed(void) 363 { 364 struct fs_path *p; 365 366 p = fs_path_alloc(); 367 if (!p) 368 return NULL; 369 p->reversed = 1; 370 fs_path_reset(p); 371 return p; 372 } 373 374 static void fs_path_free(struct fs_path *p) 375 { 376 if (!p) 377 return; 378 if (p->buf != p->inline_buf) 379 kfree(p->buf); 380 kfree(p); 381 } 382 383 static int fs_path_len(struct fs_path *p) 384 { 385 return p->end - p->start; 386 } 387 388 static int fs_path_ensure_buf(struct fs_path *p, int len) 389 { 390 char *tmp_buf; 391 int path_len; 392 int old_buf_len; 393 394 len++; 395 396 if (p->buf_len >= len) 397 return 0; 398 399 if (len > PATH_MAX) { 400 WARN_ON(1); 401 return -ENOMEM; 402 } 403 404 path_len = p->end - p->start; 405 old_buf_len = p->buf_len; 406 407 /* 408 * First time the inline_buf does not suffice 409 */ 410 if (p->buf == p->inline_buf) { 411 tmp_buf = kmalloc(len, GFP_KERNEL); 412 if (tmp_buf) 413 memcpy(tmp_buf, p->buf, old_buf_len); 414 } else { 415 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 416 } 417 if (!tmp_buf) 418 return -ENOMEM; 419 p->buf = tmp_buf; 420 /* 421 * The real size of the buffer is bigger, this will let the fast path 422 * happen most of the time 423 */ 424 p->buf_len = ksize(p->buf); 425 426 if (p->reversed) { 427 tmp_buf = p->buf + old_buf_len - path_len - 1; 428 p->end = p->buf + p->buf_len - 1; 429 p->start = p->end - path_len; 430 memmove(p->start, tmp_buf, path_len + 1); 431 } else { 432 p->start = p->buf; 433 p->end = p->start + path_len; 434 } 435 return 0; 436 } 437 438 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 439 char **prepared) 440 { 441 int ret; 442 int new_len; 443 444 new_len = p->end - p->start + name_len; 445 if (p->start != p->end) 446 new_len++; 447 ret = fs_path_ensure_buf(p, new_len); 448 if (ret < 0) 449 goto out; 450 451 if (p->reversed) { 452 if (p->start != p->end) 453 *--p->start = '/'; 454 p->start -= name_len; 455 *prepared = p->start; 456 } else { 457 if (p->start != p->end) 458 *p->end++ = '/'; 459 *prepared = p->end; 460 p->end += name_len; 461 *p->end = 0; 462 } 463 464 out: 465 return ret; 466 } 467 468 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 469 { 470 int ret; 471 char *prepared; 472 473 ret = fs_path_prepare_for_add(p, name_len, &prepared); 474 if (ret < 0) 475 goto out; 476 memcpy(prepared, name, name_len); 477 478 out: 479 return ret; 480 } 481 482 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 483 { 484 int ret; 485 char *prepared; 486 487 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 488 if (ret < 0) 489 goto out; 490 memcpy(prepared, p2->start, p2->end - p2->start); 491 492 out: 493 return ret; 494 } 495 496 static int fs_path_add_from_extent_buffer(struct fs_path *p, 497 struct extent_buffer *eb, 498 unsigned long off, int len) 499 { 500 int ret; 501 char *prepared; 502 503 ret = fs_path_prepare_for_add(p, len, &prepared); 504 if (ret < 0) 505 goto out; 506 507 read_extent_buffer(eb, prepared, off, len); 508 509 out: 510 return ret; 511 } 512 513 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 514 { 515 int ret; 516 517 p->reversed = from->reversed; 518 fs_path_reset(p); 519 520 ret = fs_path_add_path(p, from); 521 522 return ret; 523 } 524 525 526 static void fs_path_unreverse(struct fs_path *p) 527 { 528 char *tmp; 529 int len; 530 531 if (!p->reversed) 532 return; 533 534 tmp = p->start; 535 len = p->end - p->start; 536 p->start = p->buf; 537 p->end = p->start + len; 538 memmove(p->start, tmp, len + 1); 539 p->reversed = 0; 540 } 541 542 static struct btrfs_path *alloc_path_for_send(void) 543 { 544 struct btrfs_path *path; 545 546 path = btrfs_alloc_path(); 547 if (!path) 548 return NULL; 549 path->search_commit_root = 1; 550 path->skip_locking = 1; 551 path->need_commit_sem = 1; 552 return path; 553 } 554 555 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 556 { 557 int ret; 558 u32 pos = 0; 559 560 while (pos < len) { 561 ret = kernel_write(filp, buf + pos, len - pos, off); 562 /* TODO handle that correctly */ 563 /*if (ret == -ERESTARTSYS) { 564 continue; 565 }*/ 566 if (ret < 0) 567 return ret; 568 if (ret == 0) { 569 return -EIO; 570 } 571 pos += ret; 572 } 573 574 return 0; 575 } 576 577 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 578 { 579 struct btrfs_tlv_header *hdr; 580 int total_len = sizeof(*hdr) + len; 581 int left = sctx->send_max_size - sctx->send_size; 582 583 if (unlikely(left < total_len)) 584 return -EOVERFLOW; 585 586 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 587 hdr->tlv_type = cpu_to_le16(attr); 588 hdr->tlv_len = cpu_to_le16(len); 589 memcpy(hdr + 1, data, len); 590 sctx->send_size += total_len; 591 592 return 0; 593 } 594 595 #define TLV_PUT_DEFINE_INT(bits) \ 596 static int tlv_put_u##bits(struct send_ctx *sctx, \ 597 u##bits attr, u##bits value) \ 598 { \ 599 __le##bits __tmp = cpu_to_le##bits(value); \ 600 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 601 } 602 603 TLV_PUT_DEFINE_INT(64) 604 605 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 606 const char *str, int len) 607 { 608 if (len == -1) 609 len = strlen(str); 610 return tlv_put(sctx, attr, str, len); 611 } 612 613 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 614 const u8 *uuid) 615 { 616 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 617 } 618 619 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 620 struct extent_buffer *eb, 621 struct btrfs_timespec *ts) 622 { 623 struct btrfs_timespec bts; 624 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 625 return tlv_put(sctx, attr, &bts, sizeof(bts)); 626 } 627 628 629 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 630 do { \ 631 ret = tlv_put(sctx, attrtype, data, attrlen); \ 632 if (ret < 0) \ 633 goto tlv_put_failure; \ 634 } while (0) 635 636 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 637 do { \ 638 ret = tlv_put_u##bits(sctx, attrtype, value); \ 639 if (ret < 0) \ 640 goto tlv_put_failure; \ 641 } while (0) 642 643 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 644 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 645 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 646 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 647 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 648 do { \ 649 ret = tlv_put_string(sctx, attrtype, str, len); \ 650 if (ret < 0) \ 651 goto tlv_put_failure; \ 652 } while (0) 653 #define TLV_PUT_PATH(sctx, attrtype, p) \ 654 do { \ 655 ret = tlv_put_string(sctx, attrtype, p->start, \ 656 p->end - p->start); \ 657 if (ret < 0) \ 658 goto tlv_put_failure; \ 659 } while(0) 660 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 661 do { \ 662 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 663 if (ret < 0) \ 664 goto tlv_put_failure; \ 665 } while (0) 666 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 667 do { \ 668 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 669 if (ret < 0) \ 670 goto tlv_put_failure; \ 671 } while (0) 672 673 static int send_header(struct send_ctx *sctx) 674 { 675 struct btrfs_stream_header hdr; 676 677 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 678 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 679 680 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 681 &sctx->send_off); 682 } 683 684 /* 685 * For each command/item we want to send to userspace, we call this function. 686 */ 687 static int begin_cmd(struct send_ctx *sctx, int cmd) 688 { 689 struct btrfs_cmd_header *hdr; 690 691 if (WARN_ON(!sctx->send_buf)) 692 return -EINVAL; 693 694 BUG_ON(sctx->send_size); 695 696 sctx->send_size += sizeof(*hdr); 697 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 698 hdr->cmd = cpu_to_le16(cmd); 699 700 return 0; 701 } 702 703 static int send_cmd(struct send_ctx *sctx) 704 { 705 int ret; 706 struct btrfs_cmd_header *hdr; 707 u32 crc; 708 709 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 710 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 711 hdr->crc = 0; 712 713 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 714 hdr->crc = cpu_to_le32(crc); 715 716 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 717 &sctx->send_off); 718 719 sctx->total_send_size += sctx->send_size; 720 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 721 sctx->send_size = 0; 722 723 return ret; 724 } 725 726 /* 727 * Sends a move instruction to user space 728 */ 729 static int send_rename(struct send_ctx *sctx, 730 struct fs_path *from, struct fs_path *to) 731 { 732 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 733 int ret; 734 735 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 736 737 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 738 if (ret < 0) 739 goto out; 740 741 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 742 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 743 744 ret = send_cmd(sctx); 745 746 tlv_put_failure: 747 out: 748 return ret; 749 } 750 751 /* 752 * Sends a link instruction to user space 753 */ 754 static int send_link(struct send_ctx *sctx, 755 struct fs_path *path, struct fs_path *lnk) 756 { 757 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 758 int ret; 759 760 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 761 762 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 763 if (ret < 0) 764 goto out; 765 766 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 767 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 768 769 ret = send_cmd(sctx); 770 771 tlv_put_failure: 772 out: 773 return ret; 774 } 775 776 /* 777 * Sends an unlink instruction to user space 778 */ 779 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 780 { 781 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 782 int ret; 783 784 btrfs_debug(fs_info, "send_unlink %s", path->start); 785 786 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 787 if (ret < 0) 788 goto out; 789 790 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 791 792 ret = send_cmd(sctx); 793 794 tlv_put_failure: 795 out: 796 return ret; 797 } 798 799 /* 800 * Sends a rmdir instruction to user space 801 */ 802 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 803 { 804 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 805 int ret; 806 807 btrfs_debug(fs_info, "send_rmdir %s", path->start); 808 809 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 810 if (ret < 0) 811 goto out; 812 813 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 814 815 ret = send_cmd(sctx); 816 817 tlv_put_failure: 818 out: 819 return ret; 820 } 821 822 /* 823 * Helper function to retrieve some fields from an inode item. 824 */ 825 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 826 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 827 u64 *gid, u64 *rdev) 828 { 829 int ret; 830 struct btrfs_inode_item *ii; 831 struct btrfs_key key; 832 833 key.objectid = ino; 834 key.type = BTRFS_INODE_ITEM_KEY; 835 key.offset = 0; 836 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 837 if (ret) { 838 if (ret > 0) 839 ret = -ENOENT; 840 return ret; 841 } 842 843 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 844 struct btrfs_inode_item); 845 if (size) 846 *size = btrfs_inode_size(path->nodes[0], ii); 847 if (gen) 848 *gen = btrfs_inode_generation(path->nodes[0], ii); 849 if (mode) 850 *mode = btrfs_inode_mode(path->nodes[0], ii); 851 if (uid) 852 *uid = btrfs_inode_uid(path->nodes[0], ii); 853 if (gid) 854 *gid = btrfs_inode_gid(path->nodes[0], ii); 855 if (rdev) 856 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 857 858 return ret; 859 } 860 861 static int get_inode_info(struct btrfs_root *root, 862 u64 ino, u64 *size, u64 *gen, 863 u64 *mode, u64 *uid, u64 *gid, 864 u64 *rdev) 865 { 866 struct btrfs_path *path; 867 int ret; 868 869 path = alloc_path_for_send(); 870 if (!path) 871 return -ENOMEM; 872 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 873 rdev); 874 btrfs_free_path(path); 875 return ret; 876 } 877 878 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 879 struct fs_path *p, 880 void *ctx); 881 882 /* 883 * Helper function to iterate the entries in ONE btrfs_inode_ref or 884 * btrfs_inode_extref. 885 * The iterate callback may return a non zero value to stop iteration. This can 886 * be a negative value for error codes or 1 to simply stop it. 887 * 888 * path must point to the INODE_REF or INODE_EXTREF when called. 889 */ 890 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 891 struct btrfs_key *found_key, int resolve, 892 iterate_inode_ref_t iterate, void *ctx) 893 { 894 struct extent_buffer *eb = path->nodes[0]; 895 struct btrfs_item *item; 896 struct btrfs_inode_ref *iref; 897 struct btrfs_inode_extref *extref; 898 struct btrfs_path *tmp_path; 899 struct fs_path *p; 900 u32 cur = 0; 901 u32 total; 902 int slot = path->slots[0]; 903 u32 name_len; 904 char *start; 905 int ret = 0; 906 int num = 0; 907 int index; 908 u64 dir; 909 unsigned long name_off; 910 unsigned long elem_size; 911 unsigned long ptr; 912 913 p = fs_path_alloc_reversed(); 914 if (!p) 915 return -ENOMEM; 916 917 tmp_path = alloc_path_for_send(); 918 if (!tmp_path) { 919 fs_path_free(p); 920 return -ENOMEM; 921 } 922 923 924 if (found_key->type == BTRFS_INODE_REF_KEY) { 925 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 926 struct btrfs_inode_ref); 927 item = btrfs_item_nr(slot); 928 total = btrfs_item_size(eb, item); 929 elem_size = sizeof(*iref); 930 } else { 931 ptr = btrfs_item_ptr_offset(eb, slot); 932 total = btrfs_item_size_nr(eb, slot); 933 elem_size = sizeof(*extref); 934 } 935 936 while (cur < total) { 937 fs_path_reset(p); 938 939 if (found_key->type == BTRFS_INODE_REF_KEY) { 940 iref = (struct btrfs_inode_ref *)(ptr + cur); 941 name_len = btrfs_inode_ref_name_len(eb, iref); 942 name_off = (unsigned long)(iref + 1); 943 index = btrfs_inode_ref_index(eb, iref); 944 dir = found_key->offset; 945 } else { 946 extref = (struct btrfs_inode_extref *)(ptr + cur); 947 name_len = btrfs_inode_extref_name_len(eb, extref); 948 name_off = (unsigned long)&extref->name; 949 index = btrfs_inode_extref_index(eb, extref); 950 dir = btrfs_inode_extref_parent(eb, extref); 951 } 952 953 if (resolve) { 954 start = btrfs_ref_to_path(root, tmp_path, name_len, 955 name_off, eb, dir, 956 p->buf, p->buf_len); 957 if (IS_ERR(start)) { 958 ret = PTR_ERR(start); 959 goto out; 960 } 961 if (start < p->buf) { 962 /* overflow , try again with larger buffer */ 963 ret = fs_path_ensure_buf(p, 964 p->buf_len + p->buf - start); 965 if (ret < 0) 966 goto out; 967 start = btrfs_ref_to_path(root, tmp_path, 968 name_len, name_off, 969 eb, dir, 970 p->buf, p->buf_len); 971 if (IS_ERR(start)) { 972 ret = PTR_ERR(start); 973 goto out; 974 } 975 BUG_ON(start < p->buf); 976 } 977 p->start = start; 978 } else { 979 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 980 name_len); 981 if (ret < 0) 982 goto out; 983 } 984 985 cur += elem_size + name_len; 986 ret = iterate(num, dir, index, p, ctx); 987 if (ret) 988 goto out; 989 num++; 990 } 991 992 out: 993 btrfs_free_path(tmp_path); 994 fs_path_free(p); 995 return ret; 996 } 997 998 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 999 const char *name, int name_len, 1000 const char *data, int data_len, 1001 u8 type, void *ctx); 1002 1003 /* 1004 * Helper function to iterate the entries in ONE btrfs_dir_item. 1005 * The iterate callback may return a non zero value to stop iteration. This can 1006 * be a negative value for error codes or 1 to simply stop it. 1007 * 1008 * path must point to the dir item when called. 1009 */ 1010 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1011 iterate_dir_item_t iterate, void *ctx) 1012 { 1013 int ret = 0; 1014 struct extent_buffer *eb; 1015 struct btrfs_item *item; 1016 struct btrfs_dir_item *di; 1017 struct btrfs_key di_key; 1018 char *buf = NULL; 1019 int buf_len; 1020 u32 name_len; 1021 u32 data_len; 1022 u32 cur; 1023 u32 len; 1024 u32 total; 1025 int slot; 1026 int num; 1027 u8 type; 1028 1029 /* 1030 * Start with a small buffer (1 page). If later we end up needing more 1031 * space, which can happen for xattrs on a fs with a leaf size greater 1032 * then the page size, attempt to increase the buffer. Typically xattr 1033 * values are small. 1034 */ 1035 buf_len = PATH_MAX; 1036 buf = kmalloc(buf_len, GFP_KERNEL); 1037 if (!buf) { 1038 ret = -ENOMEM; 1039 goto out; 1040 } 1041 1042 eb = path->nodes[0]; 1043 slot = path->slots[0]; 1044 item = btrfs_item_nr(slot); 1045 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1046 cur = 0; 1047 len = 0; 1048 total = btrfs_item_size(eb, item); 1049 1050 num = 0; 1051 while (cur < total) { 1052 name_len = btrfs_dir_name_len(eb, di); 1053 data_len = btrfs_dir_data_len(eb, di); 1054 type = btrfs_dir_type(eb, di); 1055 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1056 1057 if (type == BTRFS_FT_XATTR) { 1058 if (name_len > XATTR_NAME_MAX) { 1059 ret = -ENAMETOOLONG; 1060 goto out; 1061 } 1062 if (name_len + data_len > 1063 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1064 ret = -E2BIG; 1065 goto out; 1066 } 1067 } else { 1068 /* 1069 * Path too long 1070 */ 1071 if (name_len + data_len > PATH_MAX) { 1072 ret = -ENAMETOOLONG; 1073 goto out; 1074 } 1075 } 1076 1077 if (name_len + data_len > buf_len) { 1078 buf_len = name_len + data_len; 1079 if (is_vmalloc_addr(buf)) { 1080 vfree(buf); 1081 buf = NULL; 1082 } else { 1083 char *tmp = krealloc(buf, buf_len, 1084 GFP_KERNEL | __GFP_NOWARN); 1085 1086 if (!tmp) 1087 kfree(buf); 1088 buf = tmp; 1089 } 1090 if (!buf) { 1091 buf = kvmalloc(buf_len, GFP_KERNEL); 1092 if (!buf) { 1093 ret = -ENOMEM; 1094 goto out; 1095 } 1096 } 1097 } 1098 1099 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1100 name_len + data_len); 1101 1102 len = sizeof(*di) + name_len + data_len; 1103 di = (struct btrfs_dir_item *)((char *)di + len); 1104 cur += len; 1105 1106 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1107 data_len, type, ctx); 1108 if (ret < 0) 1109 goto out; 1110 if (ret) { 1111 ret = 0; 1112 goto out; 1113 } 1114 1115 num++; 1116 } 1117 1118 out: 1119 kvfree(buf); 1120 return ret; 1121 } 1122 1123 static int __copy_first_ref(int num, u64 dir, int index, 1124 struct fs_path *p, void *ctx) 1125 { 1126 int ret; 1127 struct fs_path *pt = ctx; 1128 1129 ret = fs_path_copy(pt, p); 1130 if (ret < 0) 1131 return ret; 1132 1133 /* we want the first only */ 1134 return 1; 1135 } 1136 1137 /* 1138 * Retrieve the first path of an inode. If an inode has more then one 1139 * ref/hardlink, this is ignored. 1140 */ 1141 static int get_inode_path(struct btrfs_root *root, 1142 u64 ino, struct fs_path *path) 1143 { 1144 int ret; 1145 struct btrfs_key key, found_key; 1146 struct btrfs_path *p; 1147 1148 p = alloc_path_for_send(); 1149 if (!p) 1150 return -ENOMEM; 1151 1152 fs_path_reset(path); 1153 1154 key.objectid = ino; 1155 key.type = BTRFS_INODE_REF_KEY; 1156 key.offset = 0; 1157 1158 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1159 if (ret < 0) 1160 goto out; 1161 if (ret) { 1162 ret = 1; 1163 goto out; 1164 } 1165 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1166 if (found_key.objectid != ino || 1167 (found_key.type != BTRFS_INODE_REF_KEY && 1168 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1169 ret = -ENOENT; 1170 goto out; 1171 } 1172 1173 ret = iterate_inode_ref(root, p, &found_key, 1, 1174 __copy_first_ref, path); 1175 if (ret < 0) 1176 goto out; 1177 ret = 0; 1178 1179 out: 1180 btrfs_free_path(p); 1181 return ret; 1182 } 1183 1184 struct backref_ctx { 1185 struct send_ctx *sctx; 1186 1187 /* number of total found references */ 1188 u64 found; 1189 1190 /* 1191 * used for clones found in send_root. clones found behind cur_objectid 1192 * and cur_offset are not considered as allowed clones. 1193 */ 1194 u64 cur_objectid; 1195 u64 cur_offset; 1196 1197 /* may be truncated in case it's the last extent in a file */ 1198 u64 extent_len; 1199 1200 /* data offset in the file extent item */ 1201 u64 data_offset; 1202 1203 /* Just to check for bugs in backref resolving */ 1204 int found_itself; 1205 }; 1206 1207 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1208 { 1209 u64 root = (u64)(uintptr_t)key; 1210 struct clone_root *cr = (struct clone_root *)elt; 1211 1212 if (root < cr->root->root_key.objectid) 1213 return -1; 1214 if (root > cr->root->root_key.objectid) 1215 return 1; 1216 return 0; 1217 } 1218 1219 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1220 { 1221 struct clone_root *cr1 = (struct clone_root *)e1; 1222 struct clone_root *cr2 = (struct clone_root *)e2; 1223 1224 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1225 return -1; 1226 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1227 return 1; 1228 return 0; 1229 } 1230 1231 /* 1232 * Called for every backref that is found for the current extent. 1233 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1234 */ 1235 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1236 { 1237 struct backref_ctx *bctx = ctx_; 1238 struct clone_root *found; 1239 1240 /* First check if the root is in the list of accepted clone sources */ 1241 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1242 bctx->sctx->clone_roots_cnt, 1243 sizeof(struct clone_root), 1244 __clone_root_cmp_bsearch); 1245 if (!found) 1246 return 0; 1247 1248 if (found->root == bctx->sctx->send_root && 1249 ino == bctx->cur_objectid && 1250 offset == bctx->cur_offset) { 1251 bctx->found_itself = 1; 1252 } 1253 1254 /* 1255 * Make sure we don't consider clones from send_root that are 1256 * behind the current inode/offset. 1257 */ 1258 if (found->root == bctx->sctx->send_root) { 1259 /* 1260 * If the source inode was not yet processed we can't issue a 1261 * clone operation, as the source extent does not exist yet at 1262 * the destination of the stream. 1263 */ 1264 if (ino > bctx->cur_objectid) 1265 return 0; 1266 /* 1267 * We clone from the inode currently being sent as long as the 1268 * source extent is already processed, otherwise we could try 1269 * to clone from an extent that does not exist yet at the 1270 * destination of the stream. 1271 */ 1272 if (ino == bctx->cur_objectid && 1273 offset + bctx->extent_len > 1274 bctx->sctx->cur_inode_next_write_offset) 1275 return 0; 1276 } 1277 1278 bctx->found++; 1279 found->found_refs++; 1280 if (ino < found->ino) { 1281 found->ino = ino; 1282 found->offset = offset; 1283 } else if (found->ino == ino) { 1284 /* 1285 * same extent found more then once in the same file. 1286 */ 1287 if (found->offset > offset + bctx->extent_len) 1288 found->offset = offset; 1289 } 1290 1291 return 0; 1292 } 1293 1294 /* 1295 * Given an inode, offset and extent item, it finds a good clone for a clone 1296 * instruction. Returns -ENOENT when none could be found. The function makes 1297 * sure that the returned clone is usable at the point where sending is at the 1298 * moment. This means, that no clones are accepted which lie behind the current 1299 * inode+offset. 1300 * 1301 * path must point to the extent item when called. 1302 */ 1303 static int find_extent_clone(struct send_ctx *sctx, 1304 struct btrfs_path *path, 1305 u64 ino, u64 data_offset, 1306 u64 ino_size, 1307 struct clone_root **found) 1308 { 1309 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1310 int ret; 1311 int extent_type; 1312 u64 logical; 1313 u64 disk_byte; 1314 u64 num_bytes; 1315 u64 extent_item_pos; 1316 u64 flags = 0; 1317 struct btrfs_file_extent_item *fi; 1318 struct extent_buffer *eb = path->nodes[0]; 1319 struct backref_ctx *backref_ctx = NULL; 1320 struct clone_root *cur_clone_root; 1321 struct btrfs_key found_key; 1322 struct btrfs_path *tmp_path; 1323 struct btrfs_extent_item *ei; 1324 int compressed; 1325 u32 i; 1326 1327 tmp_path = alloc_path_for_send(); 1328 if (!tmp_path) 1329 return -ENOMEM; 1330 1331 /* We only use this path under the commit sem */ 1332 tmp_path->need_commit_sem = 0; 1333 1334 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1335 if (!backref_ctx) { 1336 ret = -ENOMEM; 1337 goto out; 1338 } 1339 1340 if (data_offset >= ino_size) { 1341 /* 1342 * There may be extents that lie behind the file's size. 1343 * I at least had this in combination with snapshotting while 1344 * writing large files. 1345 */ 1346 ret = 0; 1347 goto out; 1348 } 1349 1350 fi = btrfs_item_ptr(eb, path->slots[0], 1351 struct btrfs_file_extent_item); 1352 extent_type = btrfs_file_extent_type(eb, fi); 1353 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1354 ret = -ENOENT; 1355 goto out; 1356 } 1357 compressed = btrfs_file_extent_compression(eb, fi); 1358 1359 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1360 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1361 if (disk_byte == 0) { 1362 ret = -ENOENT; 1363 goto out; 1364 } 1365 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1366 1367 down_read(&fs_info->commit_root_sem); 1368 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1369 &found_key, &flags); 1370 up_read(&fs_info->commit_root_sem); 1371 1372 if (ret < 0) 1373 goto out; 1374 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1375 ret = -EIO; 1376 goto out; 1377 } 1378 1379 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1380 struct btrfs_extent_item); 1381 /* 1382 * Backreference walking (iterate_extent_inodes() below) is currently 1383 * too expensive when an extent has a large number of references, both 1384 * in time spent and used memory. So for now just fallback to write 1385 * operations instead of clone operations when an extent has more than 1386 * a certain amount of references. 1387 */ 1388 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1389 ret = -ENOENT; 1390 goto out; 1391 } 1392 btrfs_release_path(tmp_path); 1393 1394 /* 1395 * Setup the clone roots. 1396 */ 1397 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1398 cur_clone_root = sctx->clone_roots + i; 1399 cur_clone_root->ino = (u64)-1; 1400 cur_clone_root->offset = 0; 1401 cur_clone_root->found_refs = 0; 1402 } 1403 1404 backref_ctx->sctx = sctx; 1405 backref_ctx->found = 0; 1406 backref_ctx->cur_objectid = ino; 1407 backref_ctx->cur_offset = data_offset; 1408 backref_ctx->found_itself = 0; 1409 backref_ctx->extent_len = num_bytes; 1410 /* 1411 * For non-compressed extents iterate_extent_inodes() gives us extent 1412 * offsets that already take into account the data offset, but not for 1413 * compressed extents, since the offset is logical and not relative to 1414 * the physical extent locations. We must take this into account to 1415 * avoid sending clone offsets that go beyond the source file's size, 1416 * which would result in the clone ioctl failing with -EINVAL on the 1417 * receiving end. 1418 */ 1419 if (compressed == BTRFS_COMPRESS_NONE) 1420 backref_ctx->data_offset = 0; 1421 else 1422 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1423 1424 /* 1425 * The last extent of a file may be too large due to page alignment. 1426 * We need to adjust extent_len in this case so that the checks in 1427 * __iterate_backrefs work. 1428 */ 1429 if (data_offset + num_bytes >= ino_size) 1430 backref_ctx->extent_len = ino_size - data_offset; 1431 1432 /* 1433 * Now collect all backrefs. 1434 */ 1435 if (compressed == BTRFS_COMPRESS_NONE) 1436 extent_item_pos = logical - found_key.objectid; 1437 else 1438 extent_item_pos = 0; 1439 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1440 extent_item_pos, 1, __iterate_backrefs, 1441 backref_ctx, false); 1442 1443 if (ret < 0) 1444 goto out; 1445 1446 if (!backref_ctx->found_itself) { 1447 /* found a bug in backref code? */ 1448 ret = -EIO; 1449 btrfs_err(fs_info, 1450 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1451 ino, data_offset, disk_byte, found_key.objectid); 1452 goto out; 1453 } 1454 1455 btrfs_debug(fs_info, 1456 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1457 data_offset, ino, num_bytes, logical); 1458 1459 if (!backref_ctx->found) 1460 btrfs_debug(fs_info, "no clones found"); 1461 1462 cur_clone_root = NULL; 1463 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1464 if (sctx->clone_roots[i].found_refs) { 1465 if (!cur_clone_root) 1466 cur_clone_root = sctx->clone_roots + i; 1467 else if (sctx->clone_roots[i].root == sctx->send_root) 1468 /* prefer clones from send_root over others */ 1469 cur_clone_root = sctx->clone_roots + i; 1470 } 1471 1472 } 1473 1474 if (cur_clone_root) { 1475 *found = cur_clone_root; 1476 ret = 0; 1477 } else { 1478 ret = -ENOENT; 1479 } 1480 1481 out: 1482 btrfs_free_path(tmp_path); 1483 kfree(backref_ctx); 1484 return ret; 1485 } 1486 1487 static int read_symlink(struct btrfs_root *root, 1488 u64 ino, 1489 struct fs_path *dest) 1490 { 1491 int ret; 1492 struct btrfs_path *path; 1493 struct btrfs_key key; 1494 struct btrfs_file_extent_item *ei; 1495 u8 type; 1496 u8 compression; 1497 unsigned long off; 1498 int len; 1499 1500 path = alloc_path_for_send(); 1501 if (!path) 1502 return -ENOMEM; 1503 1504 key.objectid = ino; 1505 key.type = BTRFS_EXTENT_DATA_KEY; 1506 key.offset = 0; 1507 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1508 if (ret < 0) 1509 goto out; 1510 if (ret) { 1511 /* 1512 * An empty symlink inode. Can happen in rare error paths when 1513 * creating a symlink (transaction committed before the inode 1514 * eviction handler removed the symlink inode items and a crash 1515 * happened in between or the subvol was snapshoted in between). 1516 * Print an informative message to dmesg/syslog so that the user 1517 * can delete the symlink. 1518 */ 1519 btrfs_err(root->fs_info, 1520 "Found empty symlink inode %llu at root %llu", 1521 ino, root->root_key.objectid); 1522 ret = -EIO; 1523 goto out; 1524 } 1525 1526 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1527 struct btrfs_file_extent_item); 1528 type = btrfs_file_extent_type(path->nodes[0], ei); 1529 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1530 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1531 BUG_ON(compression); 1532 1533 off = btrfs_file_extent_inline_start(ei); 1534 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1535 1536 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1537 1538 out: 1539 btrfs_free_path(path); 1540 return ret; 1541 } 1542 1543 /* 1544 * Helper function to generate a file name that is unique in the root of 1545 * send_root and parent_root. This is used to generate names for orphan inodes. 1546 */ 1547 static int gen_unique_name(struct send_ctx *sctx, 1548 u64 ino, u64 gen, 1549 struct fs_path *dest) 1550 { 1551 int ret = 0; 1552 struct btrfs_path *path; 1553 struct btrfs_dir_item *di; 1554 char tmp[64]; 1555 int len; 1556 u64 idx = 0; 1557 1558 path = alloc_path_for_send(); 1559 if (!path) 1560 return -ENOMEM; 1561 1562 while (1) { 1563 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1564 ino, gen, idx); 1565 ASSERT(len < sizeof(tmp)); 1566 1567 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1568 path, BTRFS_FIRST_FREE_OBJECTID, 1569 tmp, strlen(tmp), 0); 1570 btrfs_release_path(path); 1571 if (IS_ERR(di)) { 1572 ret = PTR_ERR(di); 1573 goto out; 1574 } 1575 if (di) { 1576 /* not unique, try again */ 1577 idx++; 1578 continue; 1579 } 1580 1581 if (!sctx->parent_root) { 1582 /* unique */ 1583 ret = 0; 1584 break; 1585 } 1586 1587 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1588 path, BTRFS_FIRST_FREE_OBJECTID, 1589 tmp, strlen(tmp), 0); 1590 btrfs_release_path(path); 1591 if (IS_ERR(di)) { 1592 ret = PTR_ERR(di); 1593 goto out; 1594 } 1595 if (di) { 1596 /* not unique, try again */ 1597 idx++; 1598 continue; 1599 } 1600 /* unique */ 1601 break; 1602 } 1603 1604 ret = fs_path_add(dest, tmp, strlen(tmp)); 1605 1606 out: 1607 btrfs_free_path(path); 1608 return ret; 1609 } 1610 1611 enum inode_state { 1612 inode_state_no_change, 1613 inode_state_will_create, 1614 inode_state_did_create, 1615 inode_state_will_delete, 1616 inode_state_did_delete, 1617 }; 1618 1619 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1620 { 1621 int ret; 1622 int left_ret; 1623 int right_ret; 1624 u64 left_gen; 1625 u64 right_gen; 1626 1627 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1628 NULL, NULL); 1629 if (ret < 0 && ret != -ENOENT) 1630 goto out; 1631 left_ret = ret; 1632 1633 if (!sctx->parent_root) { 1634 right_ret = -ENOENT; 1635 } else { 1636 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1637 NULL, NULL, NULL, NULL); 1638 if (ret < 0 && ret != -ENOENT) 1639 goto out; 1640 right_ret = ret; 1641 } 1642 1643 if (!left_ret && !right_ret) { 1644 if (left_gen == gen && right_gen == gen) { 1645 ret = inode_state_no_change; 1646 } else if (left_gen == gen) { 1647 if (ino < sctx->send_progress) 1648 ret = inode_state_did_create; 1649 else 1650 ret = inode_state_will_create; 1651 } else if (right_gen == gen) { 1652 if (ino < sctx->send_progress) 1653 ret = inode_state_did_delete; 1654 else 1655 ret = inode_state_will_delete; 1656 } else { 1657 ret = -ENOENT; 1658 } 1659 } else if (!left_ret) { 1660 if (left_gen == gen) { 1661 if (ino < sctx->send_progress) 1662 ret = inode_state_did_create; 1663 else 1664 ret = inode_state_will_create; 1665 } else { 1666 ret = -ENOENT; 1667 } 1668 } else if (!right_ret) { 1669 if (right_gen == gen) { 1670 if (ino < sctx->send_progress) 1671 ret = inode_state_did_delete; 1672 else 1673 ret = inode_state_will_delete; 1674 } else { 1675 ret = -ENOENT; 1676 } 1677 } else { 1678 ret = -ENOENT; 1679 } 1680 1681 out: 1682 return ret; 1683 } 1684 1685 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1686 { 1687 int ret; 1688 1689 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1690 return 1; 1691 1692 ret = get_cur_inode_state(sctx, ino, gen); 1693 if (ret < 0) 1694 goto out; 1695 1696 if (ret == inode_state_no_change || 1697 ret == inode_state_did_create || 1698 ret == inode_state_will_delete) 1699 ret = 1; 1700 else 1701 ret = 0; 1702 1703 out: 1704 return ret; 1705 } 1706 1707 /* 1708 * Helper function to lookup a dir item in a dir. 1709 */ 1710 static int lookup_dir_item_inode(struct btrfs_root *root, 1711 u64 dir, const char *name, int name_len, 1712 u64 *found_inode, 1713 u8 *found_type) 1714 { 1715 int ret = 0; 1716 struct btrfs_dir_item *di; 1717 struct btrfs_key key; 1718 struct btrfs_path *path; 1719 1720 path = alloc_path_for_send(); 1721 if (!path) 1722 return -ENOMEM; 1723 1724 di = btrfs_lookup_dir_item(NULL, root, path, 1725 dir, name, name_len, 0); 1726 if (IS_ERR_OR_NULL(di)) { 1727 ret = di ? PTR_ERR(di) : -ENOENT; 1728 goto out; 1729 } 1730 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1731 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1732 ret = -ENOENT; 1733 goto out; 1734 } 1735 *found_inode = key.objectid; 1736 *found_type = btrfs_dir_type(path->nodes[0], di); 1737 1738 out: 1739 btrfs_free_path(path); 1740 return ret; 1741 } 1742 1743 /* 1744 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1745 * generation of the parent dir and the name of the dir entry. 1746 */ 1747 static int get_first_ref(struct btrfs_root *root, u64 ino, 1748 u64 *dir, u64 *dir_gen, struct fs_path *name) 1749 { 1750 int ret; 1751 struct btrfs_key key; 1752 struct btrfs_key found_key; 1753 struct btrfs_path *path; 1754 int len; 1755 u64 parent_dir; 1756 1757 path = alloc_path_for_send(); 1758 if (!path) 1759 return -ENOMEM; 1760 1761 key.objectid = ino; 1762 key.type = BTRFS_INODE_REF_KEY; 1763 key.offset = 0; 1764 1765 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1766 if (ret < 0) 1767 goto out; 1768 if (!ret) 1769 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1770 path->slots[0]); 1771 if (ret || found_key.objectid != ino || 1772 (found_key.type != BTRFS_INODE_REF_KEY && 1773 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1774 ret = -ENOENT; 1775 goto out; 1776 } 1777 1778 if (found_key.type == BTRFS_INODE_REF_KEY) { 1779 struct btrfs_inode_ref *iref; 1780 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1781 struct btrfs_inode_ref); 1782 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1783 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1784 (unsigned long)(iref + 1), 1785 len); 1786 parent_dir = found_key.offset; 1787 } else { 1788 struct btrfs_inode_extref *extref; 1789 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1790 struct btrfs_inode_extref); 1791 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1792 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1793 (unsigned long)&extref->name, len); 1794 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1795 } 1796 if (ret < 0) 1797 goto out; 1798 btrfs_release_path(path); 1799 1800 if (dir_gen) { 1801 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1802 NULL, NULL, NULL); 1803 if (ret < 0) 1804 goto out; 1805 } 1806 1807 *dir = parent_dir; 1808 1809 out: 1810 btrfs_free_path(path); 1811 return ret; 1812 } 1813 1814 static int is_first_ref(struct btrfs_root *root, 1815 u64 ino, u64 dir, 1816 const char *name, int name_len) 1817 { 1818 int ret; 1819 struct fs_path *tmp_name; 1820 u64 tmp_dir; 1821 1822 tmp_name = fs_path_alloc(); 1823 if (!tmp_name) 1824 return -ENOMEM; 1825 1826 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1827 if (ret < 0) 1828 goto out; 1829 1830 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1831 ret = 0; 1832 goto out; 1833 } 1834 1835 ret = !memcmp(tmp_name->start, name, name_len); 1836 1837 out: 1838 fs_path_free(tmp_name); 1839 return ret; 1840 } 1841 1842 /* 1843 * Used by process_recorded_refs to determine if a new ref would overwrite an 1844 * already existing ref. In case it detects an overwrite, it returns the 1845 * inode/gen in who_ino/who_gen. 1846 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1847 * to make sure later references to the overwritten inode are possible. 1848 * Orphanizing is however only required for the first ref of an inode. 1849 * process_recorded_refs does an additional is_first_ref check to see if 1850 * orphanizing is really required. 1851 */ 1852 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1853 const char *name, int name_len, 1854 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1855 { 1856 int ret = 0; 1857 u64 gen; 1858 u64 other_inode = 0; 1859 u8 other_type = 0; 1860 1861 if (!sctx->parent_root) 1862 goto out; 1863 1864 ret = is_inode_existent(sctx, dir, dir_gen); 1865 if (ret <= 0) 1866 goto out; 1867 1868 /* 1869 * If we have a parent root we need to verify that the parent dir was 1870 * not deleted and then re-created, if it was then we have no overwrite 1871 * and we can just unlink this entry. 1872 */ 1873 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1874 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1875 NULL, NULL, NULL); 1876 if (ret < 0 && ret != -ENOENT) 1877 goto out; 1878 if (ret) { 1879 ret = 0; 1880 goto out; 1881 } 1882 if (gen != dir_gen) 1883 goto out; 1884 } 1885 1886 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1887 &other_inode, &other_type); 1888 if (ret < 0 && ret != -ENOENT) 1889 goto out; 1890 if (ret) { 1891 ret = 0; 1892 goto out; 1893 } 1894 1895 /* 1896 * Check if the overwritten ref was already processed. If yes, the ref 1897 * was already unlinked/moved, so we can safely assume that we will not 1898 * overwrite anything at this point in time. 1899 */ 1900 if (other_inode > sctx->send_progress || 1901 is_waiting_for_move(sctx, other_inode)) { 1902 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1903 who_gen, who_mode, NULL, NULL, NULL); 1904 if (ret < 0) 1905 goto out; 1906 1907 ret = 1; 1908 *who_ino = other_inode; 1909 } else { 1910 ret = 0; 1911 } 1912 1913 out: 1914 return ret; 1915 } 1916 1917 /* 1918 * Checks if the ref was overwritten by an already processed inode. This is 1919 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1920 * thus the orphan name needs be used. 1921 * process_recorded_refs also uses it to avoid unlinking of refs that were 1922 * overwritten. 1923 */ 1924 static int did_overwrite_ref(struct send_ctx *sctx, 1925 u64 dir, u64 dir_gen, 1926 u64 ino, u64 ino_gen, 1927 const char *name, int name_len) 1928 { 1929 int ret = 0; 1930 u64 gen; 1931 u64 ow_inode; 1932 u8 other_type; 1933 1934 if (!sctx->parent_root) 1935 goto out; 1936 1937 ret = is_inode_existent(sctx, dir, dir_gen); 1938 if (ret <= 0) 1939 goto out; 1940 1941 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1942 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1943 NULL, NULL, NULL); 1944 if (ret < 0 && ret != -ENOENT) 1945 goto out; 1946 if (ret) { 1947 ret = 0; 1948 goto out; 1949 } 1950 if (gen != dir_gen) 1951 goto out; 1952 } 1953 1954 /* check if the ref was overwritten by another ref */ 1955 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1956 &ow_inode, &other_type); 1957 if (ret < 0 && ret != -ENOENT) 1958 goto out; 1959 if (ret) { 1960 /* was never and will never be overwritten */ 1961 ret = 0; 1962 goto out; 1963 } 1964 1965 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1966 NULL, NULL); 1967 if (ret < 0) 1968 goto out; 1969 1970 if (ow_inode == ino && gen == ino_gen) { 1971 ret = 0; 1972 goto out; 1973 } 1974 1975 /* 1976 * We know that it is or will be overwritten. Check this now. 1977 * The current inode being processed might have been the one that caused 1978 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1979 * the current inode being processed. 1980 */ 1981 if ((ow_inode < sctx->send_progress) || 1982 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1983 gen == sctx->cur_inode_gen)) 1984 ret = 1; 1985 else 1986 ret = 0; 1987 1988 out: 1989 return ret; 1990 } 1991 1992 /* 1993 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1994 * that got overwritten. This is used by process_recorded_refs to determine 1995 * if it has to use the path as returned by get_cur_path or the orphan name. 1996 */ 1997 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1998 { 1999 int ret = 0; 2000 struct fs_path *name = NULL; 2001 u64 dir; 2002 u64 dir_gen; 2003 2004 if (!sctx->parent_root) 2005 goto out; 2006 2007 name = fs_path_alloc(); 2008 if (!name) 2009 return -ENOMEM; 2010 2011 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2012 if (ret < 0) 2013 goto out; 2014 2015 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2016 name->start, fs_path_len(name)); 2017 2018 out: 2019 fs_path_free(name); 2020 return ret; 2021 } 2022 2023 /* 2024 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2025 * so we need to do some special handling in case we have clashes. This function 2026 * takes care of this with the help of name_cache_entry::radix_list. 2027 * In case of error, nce is kfreed. 2028 */ 2029 static int name_cache_insert(struct send_ctx *sctx, 2030 struct name_cache_entry *nce) 2031 { 2032 int ret = 0; 2033 struct list_head *nce_head; 2034 2035 nce_head = radix_tree_lookup(&sctx->name_cache, 2036 (unsigned long)nce->ino); 2037 if (!nce_head) { 2038 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2039 if (!nce_head) { 2040 kfree(nce); 2041 return -ENOMEM; 2042 } 2043 INIT_LIST_HEAD(nce_head); 2044 2045 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2046 if (ret < 0) { 2047 kfree(nce_head); 2048 kfree(nce); 2049 return ret; 2050 } 2051 } 2052 list_add_tail(&nce->radix_list, nce_head); 2053 list_add_tail(&nce->list, &sctx->name_cache_list); 2054 sctx->name_cache_size++; 2055 2056 return ret; 2057 } 2058 2059 static void name_cache_delete(struct send_ctx *sctx, 2060 struct name_cache_entry *nce) 2061 { 2062 struct list_head *nce_head; 2063 2064 nce_head = radix_tree_lookup(&sctx->name_cache, 2065 (unsigned long)nce->ino); 2066 if (!nce_head) { 2067 btrfs_err(sctx->send_root->fs_info, 2068 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2069 nce->ino, sctx->name_cache_size); 2070 } 2071 2072 list_del(&nce->radix_list); 2073 list_del(&nce->list); 2074 sctx->name_cache_size--; 2075 2076 /* 2077 * We may not get to the final release of nce_head if the lookup fails 2078 */ 2079 if (nce_head && list_empty(nce_head)) { 2080 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2081 kfree(nce_head); 2082 } 2083 } 2084 2085 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2086 u64 ino, u64 gen) 2087 { 2088 struct list_head *nce_head; 2089 struct name_cache_entry *cur; 2090 2091 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2092 if (!nce_head) 2093 return NULL; 2094 2095 list_for_each_entry(cur, nce_head, radix_list) { 2096 if (cur->ino == ino && cur->gen == gen) 2097 return cur; 2098 } 2099 return NULL; 2100 } 2101 2102 /* 2103 * Removes the entry from the list and adds it back to the end. This marks the 2104 * entry as recently used so that name_cache_clean_unused does not remove it. 2105 */ 2106 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2107 { 2108 list_del(&nce->list); 2109 list_add_tail(&nce->list, &sctx->name_cache_list); 2110 } 2111 2112 /* 2113 * Remove some entries from the beginning of name_cache_list. 2114 */ 2115 static void name_cache_clean_unused(struct send_ctx *sctx) 2116 { 2117 struct name_cache_entry *nce; 2118 2119 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2120 return; 2121 2122 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2123 nce = list_entry(sctx->name_cache_list.next, 2124 struct name_cache_entry, list); 2125 name_cache_delete(sctx, nce); 2126 kfree(nce); 2127 } 2128 } 2129 2130 static void name_cache_free(struct send_ctx *sctx) 2131 { 2132 struct name_cache_entry *nce; 2133 2134 while (!list_empty(&sctx->name_cache_list)) { 2135 nce = list_entry(sctx->name_cache_list.next, 2136 struct name_cache_entry, list); 2137 name_cache_delete(sctx, nce); 2138 kfree(nce); 2139 } 2140 } 2141 2142 /* 2143 * Used by get_cur_path for each ref up to the root. 2144 * Returns 0 if it succeeded. 2145 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2146 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2147 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2148 * Returns <0 in case of error. 2149 */ 2150 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2151 u64 ino, u64 gen, 2152 u64 *parent_ino, 2153 u64 *parent_gen, 2154 struct fs_path *dest) 2155 { 2156 int ret; 2157 int nce_ret; 2158 struct name_cache_entry *nce = NULL; 2159 2160 /* 2161 * First check if we already did a call to this function with the same 2162 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2163 * return the cached result. 2164 */ 2165 nce = name_cache_search(sctx, ino, gen); 2166 if (nce) { 2167 if (ino < sctx->send_progress && nce->need_later_update) { 2168 name_cache_delete(sctx, nce); 2169 kfree(nce); 2170 nce = NULL; 2171 } else { 2172 name_cache_used(sctx, nce); 2173 *parent_ino = nce->parent_ino; 2174 *parent_gen = nce->parent_gen; 2175 ret = fs_path_add(dest, nce->name, nce->name_len); 2176 if (ret < 0) 2177 goto out; 2178 ret = nce->ret; 2179 goto out; 2180 } 2181 } 2182 2183 /* 2184 * If the inode is not existent yet, add the orphan name and return 1. 2185 * This should only happen for the parent dir that we determine in 2186 * __record_new_ref 2187 */ 2188 ret = is_inode_existent(sctx, ino, gen); 2189 if (ret < 0) 2190 goto out; 2191 2192 if (!ret) { 2193 ret = gen_unique_name(sctx, ino, gen, dest); 2194 if (ret < 0) 2195 goto out; 2196 ret = 1; 2197 goto out_cache; 2198 } 2199 2200 /* 2201 * Depending on whether the inode was already processed or not, use 2202 * send_root or parent_root for ref lookup. 2203 */ 2204 if (ino < sctx->send_progress) 2205 ret = get_first_ref(sctx->send_root, ino, 2206 parent_ino, parent_gen, dest); 2207 else 2208 ret = get_first_ref(sctx->parent_root, ino, 2209 parent_ino, parent_gen, dest); 2210 if (ret < 0) 2211 goto out; 2212 2213 /* 2214 * Check if the ref was overwritten by an inode's ref that was processed 2215 * earlier. If yes, treat as orphan and return 1. 2216 */ 2217 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2218 dest->start, dest->end - dest->start); 2219 if (ret < 0) 2220 goto out; 2221 if (ret) { 2222 fs_path_reset(dest); 2223 ret = gen_unique_name(sctx, ino, gen, dest); 2224 if (ret < 0) 2225 goto out; 2226 ret = 1; 2227 } 2228 2229 out_cache: 2230 /* 2231 * Store the result of the lookup in the name cache. 2232 */ 2233 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2234 if (!nce) { 2235 ret = -ENOMEM; 2236 goto out; 2237 } 2238 2239 nce->ino = ino; 2240 nce->gen = gen; 2241 nce->parent_ino = *parent_ino; 2242 nce->parent_gen = *parent_gen; 2243 nce->name_len = fs_path_len(dest); 2244 nce->ret = ret; 2245 strcpy(nce->name, dest->start); 2246 2247 if (ino < sctx->send_progress) 2248 nce->need_later_update = 0; 2249 else 2250 nce->need_later_update = 1; 2251 2252 nce_ret = name_cache_insert(sctx, nce); 2253 if (nce_ret < 0) 2254 ret = nce_ret; 2255 name_cache_clean_unused(sctx); 2256 2257 out: 2258 return ret; 2259 } 2260 2261 /* 2262 * Magic happens here. This function returns the first ref to an inode as it 2263 * would look like while receiving the stream at this point in time. 2264 * We walk the path up to the root. For every inode in between, we check if it 2265 * was already processed/sent. If yes, we continue with the parent as found 2266 * in send_root. If not, we continue with the parent as found in parent_root. 2267 * If we encounter an inode that was deleted at this point in time, we use the 2268 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2269 * that were not created yet and overwritten inodes/refs. 2270 * 2271 * When do we have orphan inodes: 2272 * 1. When an inode is freshly created and thus no valid refs are available yet 2273 * 2. When a directory lost all it's refs (deleted) but still has dir items 2274 * inside which were not processed yet (pending for move/delete). If anyone 2275 * tried to get the path to the dir items, it would get a path inside that 2276 * orphan directory. 2277 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2278 * of an unprocessed inode. If in that case the first ref would be 2279 * overwritten, the overwritten inode gets "orphanized". Later when we 2280 * process this overwritten inode, it is restored at a new place by moving 2281 * the orphan inode. 2282 * 2283 * sctx->send_progress tells this function at which point in time receiving 2284 * would be. 2285 */ 2286 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2287 struct fs_path *dest) 2288 { 2289 int ret = 0; 2290 struct fs_path *name = NULL; 2291 u64 parent_inode = 0; 2292 u64 parent_gen = 0; 2293 int stop = 0; 2294 2295 name = fs_path_alloc(); 2296 if (!name) { 2297 ret = -ENOMEM; 2298 goto out; 2299 } 2300 2301 dest->reversed = 1; 2302 fs_path_reset(dest); 2303 2304 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2305 struct waiting_dir_move *wdm; 2306 2307 fs_path_reset(name); 2308 2309 if (is_waiting_for_rm(sctx, ino)) { 2310 ret = gen_unique_name(sctx, ino, gen, name); 2311 if (ret < 0) 2312 goto out; 2313 ret = fs_path_add_path(dest, name); 2314 break; 2315 } 2316 2317 wdm = get_waiting_dir_move(sctx, ino); 2318 if (wdm && wdm->orphanized) { 2319 ret = gen_unique_name(sctx, ino, gen, name); 2320 stop = 1; 2321 } else if (wdm) { 2322 ret = get_first_ref(sctx->parent_root, ino, 2323 &parent_inode, &parent_gen, name); 2324 } else { 2325 ret = __get_cur_name_and_parent(sctx, ino, gen, 2326 &parent_inode, 2327 &parent_gen, name); 2328 if (ret) 2329 stop = 1; 2330 } 2331 2332 if (ret < 0) 2333 goto out; 2334 2335 ret = fs_path_add_path(dest, name); 2336 if (ret < 0) 2337 goto out; 2338 2339 ino = parent_inode; 2340 gen = parent_gen; 2341 } 2342 2343 out: 2344 fs_path_free(name); 2345 if (!ret) 2346 fs_path_unreverse(dest); 2347 return ret; 2348 } 2349 2350 /* 2351 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2352 */ 2353 static int send_subvol_begin(struct send_ctx *sctx) 2354 { 2355 int ret; 2356 struct btrfs_root *send_root = sctx->send_root; 2357 struct btrfs_root *parent_root = sctx->parent_root; 2358 struct btrfs_path *path; 2359 struct btrfs_key key; 2360 struct btrfs_root_ref *ref; 2361 struct extent_buffer *leaf; 2362 char *name = NULL; 2363 int namelen; 2364 2365 path = btrfs_alloc_path(); 2366 if (!path) 2367 return -ENOMEM; 2368 2369 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2370 if (!name) { 2371 btrfs_free_path(path); 2372 return -ENOMEM; 2373 } 2374 2375 key.objectid = send_root->root_key.objectid; 2376 key.type = BTRFS_ROOT_BACKREF_KEY; 2377 key.offset = 0; 2378 2379 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2380 &key, path, 1, 0); 2381 if (ret < 0) 2382 goto out; 2383 if (ret) { 2384 ret = -ENOENT; 2385 goto out; 2386 } 2387 2388 leaf = path->nodes[0]; 2389 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2390 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2391 key.objectid != send_root->root_key.objectid) { 2392 ret = -ENOENT; 2393 goto out; 2394 } 2395 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2396 namelen = btrfs_root_ref_name_len(leaf, ref); 2397 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2398 btrfs_release_path(path); 2399 2400 if (parent_root) { 2401 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2402 if (ret < 0) 2403 goto out; 2404 } else { 2405 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2406 if (ret < 0) 2407 goto out; 2408 } 2409 2410 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2411 2412 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2413 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2414 sctx->send_root->root_item.received_uuid); 2415 else 2416 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2417 sctx->send_root->root_item.uuid); 2418 2419 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2420 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2421 if (parent_root) { 2422 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2423 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2424 parent_root->root_item.received_uuid); 2425 else 2426 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2427 parent_root->root_item.uuid); 2428 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2429 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2430 } 2431 2432 ret = send_cmd(sctx); 2433 2434 tlv_put_failure: 2435 out: 2436 btrfs_free_path(path); 2437 kfree(name); 2438 return ret; 2439 } 2440 2441 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2442 { 2443 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2444 int ret = 0; 2445 struct fs_path *p; 2446 2447 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2448 2449 p = fs_path_alloc(); 2450 if (!p) 2451 return -ENOMEM; 2452 2453 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2454 if (ret < 0) 2455 goto out; 2456 2457 ret = get_cur_path(sctx, ino, gen, p); 2458 if (ret < 0) 2459 goto out; 2460 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2461 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2462 2463 ret = send_cmd(sctx); 2464 2465 tlv_put_failure: 2466 out: 2467 fs_path_free(p); 2468 return ret; 2469 } 2470 2471 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2472 { 2473 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2474 int ret = 0; 2475 struct fs_path *p; 2476 2477 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2478 2479 p = fs_path_alloc(); 2480 if (!p) 2481 return -ENOMEM; 2482 2483 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2484 if (ret < 0) 2485 goto out; 2486 2487 ret = get_cur_path(sctx, ino, gen, p); 2488 if (ret < 0) 2489 goto out; 2490 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2491 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2492 2493 ret = send_cmd(sctx); 2494 2495 tlv_put_failure: 2496 out: 2497 fs_path_free(p); 2498 return ret; 2499 } 2500 2501 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2502 { 2503 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2504 int ret = 0; 2505 struct fs_path *p; 2506 2507 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2508 ino, uid, gid); 2509 2510 p = fs_path_alloc(); 2511 if (!p) 2512 return -ENOMEM; 2513 2514 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2515 if (ret < 0) 2516 goto out; 2517 2518 ret = get_cur_path(sctx, ino, gen, p); 2519 if (ret < 0) 2520 goto out; 2521 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2522 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2523 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2524 2525 ret = send_cmd(sctx); 2526 2527 tlv_put_failure: 2528 out: 2529 fs_path_free(p); 2530 return ret; 2531 } 2532 2533 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2534 { 2535 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2536 int ret = 0; 2537 struct fs_path *p = NULL; 2538 struct btrfs_inode_item *ii; 2539 struct btrfs_path *path = NULL; 2540 struct extent_buffer *eb; 2541 struct btrfs_key key; 2542 int slot; 2543 2544 btrfs_debug(fs_info, "send_utimes %llu", ino); 2545 2546 p = fs_path_alloc(); 2547 if (!p) 2548 return -ENOMEM; 2549 2550 path = alloc_path_for_send(); 2551 if (!path) { 2552 ret = -ENOMEM; 2553 goto out; 2554 } 2555 2556 key.objectid = ino; 2557 key.type = BTRFS_INODE_ITEM_KEY; 2558 key.offset = 0; 2559 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2560 if (ret > 0) 2561 ret = -ENOENT; 2562 if (ret < 0) 2563 goto out; 2564 2565 eb = path->nodes[0]; 2566 slot = path->slots[0]; 2567 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2568 2569 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2570 if (ret < 0) 2571 goto out; 2572 2573 ret = get_cur_path(sctx, ino, gen, p); 2574 if (ret < 0) 2575 goto out; 2576 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2577 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2578 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2579 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2580 /* TODO Add otime support when the otime patches get into upstream */ 2581 2582 ret = send_cmd(sctx); 2583 2584 tlv_put_failure: 2585 out: 2586 fs_path_free(p); 2587 btrfs_free_path(path); 2588 return ret; 2589 } 2590 2591 /* 2592 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2593 * a valid path yet because we did not process the refs yet. So, the inode 2594 * is created as orphan. 2595 */ 2596 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2597 { 2598 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2599 int ret = 0; 2600 struct fs_path *p; 2601 int cmd; 2602 u64 gen; 2603 u64 mode; 2604 u64 rdev; 2605 2606 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2607 2608 p = fs_path_alloc(); 2609 if (!p) 2610 return -ENOMEM; 2611 2612 if (ino != sctx->cur_ino) { 2613 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2614 NULL, NULL, &rdev); 2615 if (ret < 0) 2616 goto out; 2617 } else { 2618 gen = sctx->cur_inode_gen; 2619 mode = sctx->cur_inode_mode; 2620 rdev = sctx->cur_inode_rdev; 2621 } 2622 2623 if (S_ISREG(mode)) { 2624 cmd = BTRFS_SEND_C_MKFILE; 2625 } else if (S_ISDIR(mode)) { 2626 cmd = BTRFS_SEND_C_MKDIR; 2627 } else if (S_ISLNK(mode)) { 2628 cmd = BTRFS_SEND_C_SYMLINK; 2629 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2630 cmd = BTRFS_SEND_C_MKNOD; 2631 } else if (S_ISFIFO(mode)) { 2632 cmd = BTRFS_SEND_C_MKFIFO; 2633 } else if (S_ISSOCK(mode)) { 2634 cmd = BTRFS_SEND_C_MKSOCK; 2635 } else { 2636 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2637 (int)(mode & S_IFMT)); 2638 ret = -EOPNOTSUPP; 2639 goto out; 2640 } 2641 2642 ret = begin_cmd(sctx, cmd); 2643 if (ret < 0) 2644 goto out; 2645 2646 ret = gen_unique_name(sctx, ino, gen, p); 2647 if (ret < 0) 2648 goto out; 2649 2650 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2652 2653 if (S_ISLNK(mode)) { 2654 fs_path_reset(p); 2655 ret = read_symlink(sctx->send_root, ino, p); 2656 if (ret < 0) 2657 goto out; 2658 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2659 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2660 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2661 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2662 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2663 } 2664 2665 ret = send_cmd(sctx); 2666 if (ret < 0) 2667 goto out; 2668 2669 2670 tlv_put_failure: 2671 out: 2672 fs_path_free(p); 2673 return ret; 2674 } 2675 2676 /* 2677 * We need some special handling for inodes that get processed before the parent 2678 * directory got created. See process_recorded_refs for details. 2679 * This function does the check if we already created the dir out of order. 2680 */ 2681 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2682 { 2683 int ret = 0; 2684 struct btrfs_path *path = NULL; 2685 struct btrfs_key key; 2686 struct btrfs_key found_key; 2687 struct btrfs_key di_key; 2688 struct extent_buffer *eb; 2689 struct btrfs_dir_item *di; 2690 int slot; 2691 2692 path = alloc_path_for_send(); 2693 if (!path) { 2694 ret = -ENOMEM; 2695 goto out; 2696 } 2697 2698 key.objectid = dir; 2699 key.type = BTRFS_DIR_INDEX_KEY; 2700 key.offset = 0; 2701 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2702 if (ret < 0) 2703 goto out; 2704 2705 while (1) { 2706 eb = path->nodes[0]; 2707 slot = path->slots[0]; 2708 if (slot >= btrfs_header_nritems(eb)) { 2709 ret = btrfs_next_leaf(sctx->send_root, path); 2710 if (ret < 0) { 2711 goto out; 2712 } else if (ret > 0) { 2713 ret = 0; 2714 break; 2715 } 2716 continue; 2717 } 2718 2719 btrfs_item_key_to_cpu(eb, &found_key, slot); 2720 if (found_key.objectid != key.objectid || 2721 found_key.type != key.type) { 2722 ret = 0; 2723 goto out; 2724 } 2725 2726 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2727 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2728 2729 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2730 di_key.objectid < sctx->send_progress) { 2731 ret = 1; 2732 goto out; 2733 } 2734 2735 path->slots[0]++; 2736 } 2737 2738 out: 2739 btrfs_free_path(path); 2740 return ret; 2741 } 2742 2743 /* 2744 * Only creates the inode if it is: 2745 * 1. Not a directory 2746 * 2. Or a directory which was not created already due to out of order 2747 * directories. See did_create_dir and process_recorded_refs for details. 2748 */ 2749 static int send_create_inode_if_needed(struct send_ctx *sctx) 2750 { 2751 int ret; 2752 2753 if (S_ISDIR(sctx->cur_inode_mode)) { 2754 ret = did_create_dir(sctx, sctx->cur_ino); 2755 if (ret < 0) 2756 goto out; 2757 if (ret) { 2758 ret = 0; 2759 goto out; 2760 } 2761 } 2762 2763 ret = send_create_inode(sctx, sctx->cur_ino); 2764 if (ret < 0) 2765 goto out; 2766 2767 out: 2768 return ret; 2769 } 2770 2771 struct recorded_ref { 2772 struct list_head list; 2773 char *name; 2774 struct fs_path *full_path; 2775 u64 dir; 2776 u64 dir_gen; 2777 int name_len; 2778 }; 2779 2780 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2781 { 2782 ref->full_path = path; 2783 ref->name = (char *)kbasename(ref->full_path->start); 2784 ref->name_len = ref->full_path->end - ref->name; 2785 } 2786 2787 /* 2788 * We need to process new refs before deleted refs, but compare_tree gives us 2789 * everything mixed. So we first record all refs and later process them. 2790 * This function is a helper to record one ref. 2791 */ 2792 static int __record_ref(struct list_head *head, u64 dir, 2793 u64 dir_gen, struct fs_path *path) 2794 { 2795 struct recorded_ref *ref; 2796 2797 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2798 if (!ref) 2799 return -ENOMEM; 2800 2801 ref->dir = dir; 2802 ref->dir_gen = dir_gen; 2803 set_ref_path(ref, path); 2804 list_add_tail(&ref->list, head); 2805 return 0; 2806 } 2807 2808 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2809 { 2810 struct recorded_ref *new; 2811 2812 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2813 if (!new) 2814 return -ENOMEM; 2815 2816 new->dir = ref->dir; 2817 new->dir_gen = ref->dir_gen; 2818 new->full_path = NULL; 2819 INIT_LIST_HEAD(&new->list); 2820 list_add_tail(&new->list, list); 2821 return 0; 2822 } 2823 2824 static void __free_recorded_refs(struct list_head *head) 2825 { 2826 struct recorded_ref *cur; 2827 2828 while (!list_empty(head)) { 2829 cur = list_entry(head->next, struct recorded_ref, list); 2830 fs_path_free(cur->full_path); 2831 list_del(&cur->list); 2832 kfree(cur); 2833 } 2834 } 2835 2836 static void free_recorded_refs(struct send_ctx *sctx) 2837 { 2838 __free_recorded_refs(&sctx->new_refs); 2839 __free_recorded_refs(&sctx->deleted_refs); 2840 } 2841 2842 /* 2843 * Renames/moves a file/dir to its orphan name. Used when the first 2844 * ref of an unprocessed inode gets overwritten and for all non empty 2845 * directories. 2846 */ 2847 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2848 struct fs_path *path) 2849 { 2850 int ret; 2851 struct fs_path *orphan; 2852 2853 orphan = fs_path_alloc(); 2854 if (!orphan) 2855 return -ENOMEM; 2856 2857 ret = gen_unique_name(sctx, ino, gen, orphan); 2858 if (ret < 0) 2859 goto out; 2860 2861 ret = send_rename(sctx, path, orphan); 2862 2863 out: 2864 fs_path_free(orphan); 2865 return ret; 2866 } 2867 2868 static struct orphan_dir_info * 2869 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2870 { 2871 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2872 struct rb_node *parent = NULL; 2873 struct orphan_dir_info *entry, *odi; 2874 2875 while (*p) { 2876 parent = *p; 2877 entry = rb_entry(parent, struct orphan_dir_info, node); 2878 if (dir_ino < entry->ino) { 2879 p = &(*p)->rb_left; 2880 } else if (dir_ino > entry->ino) { 2881 p = &(*p)->rb_right; 2882 } else { 2883 return entry; 2884 } 2885 } 2886 2887 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2888 if (!odi) 2889 return ERR_PTR(-ENOMEM); 2890 odi->ino = dir_ino; 2891 odi->gen = 0; 2892 odi->last_dir_index_offset = 0; 2893 2894 rb_link_node(&odi->node, parent, p); 2895 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2896 return odi; 2897 } 2898 2899 static struct orphan_dir_info * 2900 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2901 { 2902 struct rb_node *n = sctx->orphan_dirs.rb_node; 2903 struct orphan_dir_info *entry; 2904 2905 while (n) { 2906 entry = rb_entry(n, struct orphan_dir_info, node); 2907 if (dir_ino < entry->ino) 2908 n = n->rb_left; 2909 else if (dir_ino > entry->ino) 2910 n = n->rb_right; 2911 else 2912 return entry; 2913 } 2914 return NULL; 2915 } 2916 2917 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2918 { 2919 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2920 2921 return odi != NULL; 2922 } 2923 2924 static void free_orphan_dir_info(struct send_ctx *sctx, 2925 struct orphan_dir_info *odi) 2926 { 2927 if (!odi) 2928 return; 2929 rb_erase(&odi->node, &sctx->orphan_dirs); 2930 kfree(odi); 2931 } 2932 2933 /* 2934 * Returns 1 if a directory can be removed at this point in time. 2935 * We check this by iterating all dir items and checking if the inode behind 2936 * the dir item was already processed. 2937 */ 2938 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2939 u64 send_progress) 2940 { 2941 int ret = 0; 2942 struct btrfs_root *root = sctx->parent_root; 2943 struct btrfs_path *path; 2944 struct btrfs_key key; 2945 struct btrfs_key found_key; 2946 struct btrfs_key loc; 2947 struct btrfs_dir_item *di; 2948 struct orphan_dir_info *odi = NULL; 2949 2950 /* 2951 * Don't try to rmdir the top/root subvolume dir. 2952 */ 2953 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2954 return 0; 2955 2956 path = alloc_path_for_send(); 2957 if (!path) 2958 return -ENOMEM; 2959 2960 key.objectid = dir; 2961 key.type = BTRFS_DIR_INDEX_KEY; 2962 key.offset = 0; 2963 2964 odi = get_orphan_dir_info(sctx, dir); 2965 if (odi) 2966 key.offset = odi->last_dir_index_offset; 2967 2968 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2969 if (ret < 0) 2970 goto out; 2971 2972 while (1) { 2973 struct waiting_dir_move *dm; 2974 2975 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2976 ret = btrfs_next_leaf(root, path); 2977 if (ret < 0) 2978 goto out; 2979 else if (ret > 0) 2980 break; 2981 continue; 2982 } 2983 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2984 path->slots[0]); 2985 if (found_key.objectid != key.objectid || 2986 found_key.type != key.type) 2987 break; 2988 2989 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2990 struct btrfs_dir_item); 2991 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2992 2993 dm = get_waiting_dir_move(sctx, loc.objectid); 2994 if (dm) { 2995 odi = add_orphan_dir_info(sctx, dir); 2996 if (IS_ERR(odi)) { 2997 ret = PTR_ERR(odi); 2998 goto out; 2999 } 3000 odi->gen = dir_gen; 3001 odi->last_dir_index_offset = found_key.offset; 3002 dm->rmdir_ino = dir; 3003 ret = 0; 3004 goto out; 3005 } 3006 3007 if (loc.objectid > send_progress) { 3008 odi = add_orphan_dir_info(sctx, dir); 3009 if (IS_ERR(odi)) { 3010 ret = PTR_ERR(odi); 3011 goto out; 3012 } 3013 odi->gen = dir_gen; 3014 odi->last_dir_index_offset = found_key.offset; 3015 ret = 0; 3016 goto out; 3017 } 3018 3019 path->slots[0]++; 3020 } 3021 free_orphan_dir_info(sctx, odi); 3022 3023 ret = 1; 3024 3025 out: 3026 btrfs_free_path(path); 3027 return ret; 3028 } 3029 3030 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3031 { 3032 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3033 3034 return entry != NULL; 3035 } 3036 3037 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3038 { 3039 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3040 struct rb_node *parent = NULL; 3041 struct waiting_dir_move *entry, *dm; 3042 3043 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3044 if (!dm) 3045 return -ENOMEM; 3046 dm->ino = ino; 3047 dm->rmdir_ino = 0; 3048 dm->orphanized = orphanized; 3049 3050 while (*p) { 3051 parent = *p; 3052 entry = rb_entry(parent, struct waiting_dir_move, node); 3053 if (ino < entry->ino) { 3054 p = &(*p)->rb_left; 3055 } else if (ino > entry->ino) { 3056 p = &(*p)->rb_right; 3057 } else { 3058 kfree(dm); 3059 return -EEXIST; 3060 } 3061 } 3062 3063 rb_link_node(&dm->node, parent, p); 3064 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3065 return 0; 3066 } 3067 3068 static struct waiting_dir_move * 3069 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3070 { 3071 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3072 struct waiting_dir_move *entry; 3073 3074 while (n) { 3075 entry = rb_entry(n, struct waiting_dir_move, node); 3076 if (ino < entry->ino) 3077 n = n->rb_left; 3078 else if (ino > entry->ino) 3079 n = n->rb_right; 3080 else 3081 return entry; 3082 } 3083 return NULL; 3084 } 3085 3086 static void free_waiting_dir_move(struct send_ctx *sctx, 3087 struct waiting_dir_move *dm) 3088 { 3089 if (!dm) 3090 return; 3091 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3092 kfree(dm); 3093 } 3094 3095 static int add_pending_dir_move(struct send_ctx *sctx, 3096 u64 ino, 3097 u64 ino_gen, 3098 u64 parent_ino, 3099 struct list_head *new_refs, 3100 struct list_head *deleted_refs, 3101 const bool is_orphan) 3102 { 3103 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3104 struct rb_node *parent = NULL; 3105 struct pending_dir_move *entry = NULL, *pm; 3106 struct recorded_ref *cur; 3107 int exists = 0; 3108 int ret; 3109 3110 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3111 if (!pm) 3112 return -ENOMEM; 3113 pm->parent_ino = parent_ino; 3114 pm->ino = ino; 3115 pm->gen = ino_gen; 3116 INIT_LIST_HEAD(&pm->list); 3117 INIT_LIST_HEAD(&pm->update_refs); 3118 RB_CLEAR_NODE(&pm->node); 3119 3120 while (*p) { 3121 parent = *p; 3122 entry = rb_entry(parent, struct pending_dir_move, node); 3123 if (parent_ino < entry->parent_ino) { 3124 p = &(*p)->rb_left; 3125 } else if (parent_ino > entry->parent_ino) { 3126 p = &(*p)->rb_right; 3127 } else { 3128 exists = 1; 3129 break; 3130 } 3131 } 3132 3133 list_for_each_entry(cur, deleted_refs, list) { 3134 ret = dup_ref(cur, &pm->update_refs); 3135 if (ret < 0) 3136 goto out; 3137 } 3138 list_for_each_entry(cur, new_refs, list) { 3139 ret = dup_ref(cur, &pm->update_refs); 3140 if (ret < 0) 3141 goto out; 3142 } 3143 3144 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3145 if (ret) 3146 goto out; 3147 3148 if (exists) { 3149 list_add_tail(&pm->list, &entry->list); 3150 } else { 3151 rb_link_node(&pm->node, parent, p); 3152 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3153 } 3154 ret = 0; 3155 out: 3156 if (ret) { 3157 __free_recorded_refs(&pm->update_refs); 3158 kfree(pm); 3159 } 3160 return ret; 3161 } 3162 3163 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3164 u64 parent_ino) 3165 { 3166 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3167 struct pending_dir_move *entry; 3168 3169 while (n) { 3170 entry = rb_entry(n, struct pending_dir_move, node); 3171 if (parent_ino < entry->parent_ino) 3172 n = n->rb_left; 3173 else if (parent_ino > entry->parent_ino) 3174 n = n->rb_right; 3175 else 3176 return entry; 3177 } 3178 return NULL; 3179 } 3180 3181 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3182 u64 ino, u64 gen, u64 *ancestor_ino) 3183 { 3184 int ret = 0; 3185 u64 parent_inode = 0; 3186 u64 parent_gen = 0; 3187 u64 start_ino = ino; 3188 3189 *ancestor_ino = 0; 3190 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3191 fs_path_reset(name); 3192 3193 if (is_waiting_for_rm(sctx, ino)) 3194 break; 3195 if (is_waiting_for_move(sctx, ino)) { 3196 if (*ancestor_ino == 0) 3197 *ancestor_ino = ino; 3198 ret = get_first_ref(sctx->parent_root, ino, 3199 &parent_inode, &parent_gen, name); 3200 } else { 3201 ret = __get_cur_name_and_parent(sctx, ino, gen, 3202 &parent_inode, 3203 &parent_gen, name); 3204 if (ret > 0) { 3205 ret = 0; 3206 break; 3207 } 3208 } 3209 if (ret < 0) 3210 break; 3211 if (parent_inode == start_ino) { 3212 ret = 1; 3213 if (*ancestor_ino == 0) 3214 *ancestor_ino = ino; 3215 break; 3216 } 3217 ino = parent_inode; 3218 gen = parent_gen; 3219 } 3220 return ret; 3221 } 3222 3223 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3224 { 3225 struct fs_path *from_path = NULL; 3226 struct fs_path *to_path = NULL; 3227 struct fs_path *name = NULL; 3228 u64 orig_progress = sctx->send_progress; 3229 struct recorded_ref *cur; 3230 u64 parent_ino, parent_gen; 3231 struct waiting_dir_move *dm = NULL; 3232 u64 rmdir_ino = 0; 3233 u64 ancestor; 3234 bool is_orphan; 3235 int ret; 3236 3237 name = fs_path_alloc(); 3238 from_path = fs_path_alloc(); 3239 if (!name || !from_path) { 3240 ret = -ENOMEM; 3241 goto out; 3242 } 3243 3244 dm = get_waiting_dir_move(sctx, pm->ino); 3245 ASSERT(dm); 3246 rmdir_ino = dm->rmdir_ino; 3247 is_orphan = dm->orphanized; 3248 free_waiting_dir_move(sctx, dm); 3249 3250 if (is_orphan) { 3251 ret = gen_unique_name(sctx, pm->ino, 3252 pm->gen, from_path); 3253 } else { 3254 ret = get_first_ref(sctx->parent_root, pm->ino, 3255 &parent_ino, &parent_gen, name); 3256 if (ret < 0) 3257 goto out; 3258 ret = get_cur_path(sctx, parent_ino, parent_gen, 3259 from_path); 3260 if (ret < 0) 3261 goto out; 3262 ret = fs_path_add_path(from_path, name); 3263 } 3264 if (ret < 0) 3265 goto out; 3266 3267 sctx->send_progress = sctx->cur_ino + 1; 3268 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3269 if (ret < 0) 3270 goto out; 3271 if (ret) { 3272 LIST_HEAD(deleted_refs); 3273 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3274 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3275 &pm->update_refs, &deleted_refs, 3276 is_orphan); 3277 if (ret < 0) 3278 goto out; 3279 if (rmdir_ino) { 3280 dm = get_waiting_dir_move(sctx, pm->ino); 3281 ASSERT(dm); 3282 dm->rmdir_ino = rmdir_ino; 3283 } 3284 goto out; 3285 } 3286 fs_path_reset(name); 3287 to_path = name; 3288 name = NULL; 3289 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3290 if (ret < 0) 3291 goto out; 3292 3293 ret = send_rename(sctx, from_path, to_path); 3294 if (ret < 0) 3295 goto out; 3296 3297 if (rmdir_ino) { 3298 struct orphan_dir_info *odi; 3299 u64 gen; 3300 3301 odi = get_orphan_dir_info(sctx, rmdir_ino); 3302 if (!odi) { 3303 /* already deleted */ 3304 goto finish; 3305 } 3306 gen = odi->gen; 3307 3308 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3309 if (ret < 0) 3310 goto out; 3311 if (!ret) 3312 goto finish; 3313 3314 name = fs_path_alloc(); 3315 if (!name) { 3316 ret = -ENOMEM; 3317 goto out; 3318 } 3319 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3320 if (ret < 0) 3321 goto out; 3322 ret = send_rmdir(sctx, name); 3323 if (ret < 0) 3324 goto out; 3325 } 3326 3327 finish: 3328 ret = send_utimes(sctx, pm->ino, pm->gen); 3329 if (ret < 0) 3330 goto out; 3331 3332 /* 3333 * After rename/move, need to update the utimes of both new parent(s) 3334 * and old parent(s). 3335 */ 3336 list_for_each_entry(cur, &pm->update_refs, list) { 3337 /* 3338 * The parent inode might have been deleted in the send snapshot 3339 */ 3340 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3341 NULL, NULL, NULL, NULL, NULL); 3342 if (ret == -ENOENT) { 3343 ret = 0; 3344 continue; 3345 } 3346 if (ret < 0) 3347 goto out; 3348 3349 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3350 if (ret < 0) 3351 goto out; 3352 } 3353 3354 out: 3355 fs_path_free(name); 3356 fs_path_free(from_path); 3357 fs_path_free(to_path); 3358 sctx->send_progress = orig_progress; 3359 3360 return ret; 3361 } 3362 3363 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3364 { 3365 if (!list_empty(&m->list)) 3366 list_del(&m->list); 3367 if (!RB_EMPTY_NODE(&m->node)) 3368 rb_erase(&m->node, &sctx->pending_dir_moves); 3369 __free_recorded_refs(&m->update_refs); 3370 kfree(m); 3371 } 3372 3373 static void tail_append_pending_moves(struct send_ctx *sctx, 3374 struct pending_dir_move *moves, 3375 struct list_head *stack) 3376 { 3377 if (list_empty(&moves->list)) { 3378 list_add_tail(&moves->list, stack); 3379 } else { 3380 LIST_HEAD(list); 3381 list_splice_init(&moves->list, &list); 3382 list_add_tail(&moves->list, stack); 3383 list_splice_tail(&list, stack); 3384 } 3385 if (!RB_EMPTY_NODE(&moves->node)) { 3386 rb_erase(&moves->node, &sctx->pending_dir_moves); 3387 RB_CLEAR_NODE(&moves->node); 3388 } 3389 } 3390 3391 static int apply_children_dir_moves(struct send_ctx *sctx) 3392 { 3393 struct pending_dir_move *pm; 3394 struct list_head stack; 3395 u64 parent_ino = sctx->cur_ino; 3396 int ret = 0; 3397 3398 pm = get_pending_dir_moves(sctx, parent_ino); 3399 if (!pm) 3400 return 0; 3401 3402 INIT_LIST_HEAD(&stack); 3403 tail_append_pending_moves(sctx, pm, &stack); 3404 3405 while (!list_empty(&stack)) { 3406 pm = list_first_entry(&stack, struct pending_dir_move, list); 3407 parent_ino = pm->ino; 3408 ret = apply_dir_move(sctx, pm); 3409 free_pending_move(sctx, pm); 3410 if (ret) 3411 goto out; 3412 pm = get_pending_dir_moves(sctx, parent_ino); 3413 if (pm) 3414 tail_append_pending_moves(sctx, pm, &stack); 3415 } 3416 return 0; 3417 3418 out: 3419 while (!list_empty(&stack)) { 3420 pm = list_first_entry(&stack, struct pending_dir_move, list); 3421 free_pending_move(sctx, pm); 3422 } 3423 return ret; 3424 } 3425 3426 /* 3427 * We might need to delay a directory rename even when no ancestor directory 3428 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3429 * renamed. This happens when we rename a directory to the old name (the name 3430 * in the parent root) of some other unrelated directory that got its rename 3431 * delayed due to some ancestor with higher number that got renamed. 3432 * 3433 * Example: 3434 * 3435 * Parent snapshot: 3436 * . (ino 256) 3437 * |---- a/ (ino 257) 3438 * | |---- file (ino 260) 3439 * | 3440 * |---- b/ (ino 258) 3441 * |---- c/ (ino 259) 3442 * 3443 * Send snapshot: 3444 * . (ino 256) 3445 * |---- a/ (ino 258) 3446 * |---- x/ (ino 259) 3447 * |---- y/ (ino 257) 3448 * |----- file (ino 260) 3449 * 3450 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3451 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3452 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3453 * must issue is: 3454 * 3455 * 1 - rename 259 from 'c' to 'x' 3456 * 2 - rename 257 from 'a' to 'x/y' 3457 * 3 - rename 258 from 'b' to 'a' 3458 * 3459 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3460 * be done right away and < 0 on error. 3461 */ 3462 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3463 struct recorded_ref *parent_ref, 3464 const bool is_orphan) 3465 { 3466 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3467 struct btrfs_path *path; 3468 struct btrfs_key key; 3469 struct btrfs_key di_key; 3470 struct btrfs_dir_item *di; 3471 u64 left_gen; 3472 u64 right_gen; 3473 int ret = 0; 3474 struct waiting_dir_move *wdm; 3475 3476 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3477 return 0; 3478 3479 path = alloc_path_for_send(); 3480 if (!path) 3481 return -ENOMEM; 3482 3483 key.objectid = parent_ref->dir; 3484 key.type = BTRFS_DIR_ITEM_KEY; 3485 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3486 3487 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3488 if (ret < 0) { 3489 goto out; 3490 } else if (ret > 0) { 3491 ret = 0; 3492 goto out; 3493 } 3494 3495 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3496 parent_ref->name_len); 3497 if (!di) { 3498 ret = 0; 3499 goto out; 3500 } 3501 /* 3502 * di_key.objectid has the number of the inode that has a dentry in the 3503 * parent directory with the same name that sctx->cur_ino is being 3504 * renamed to. We need to check if that inode is in the send root as 3505 * well and if it is currently marked as an inode with a pending rename, 3506 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3507 * that it happens after that other inode is renamed. 3508 */ 3509 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3510 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3511 ret = 0; 3512 goto out; 3513 } 3514 3515 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3516 &left_gen, NULL, NULL, NULL, NULL); 3517 if (ret < 0) 3518 goto out; 3519 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3520 &right_gen, NULL, NULL, NULL, NULL); 3521 if (ret < 0) { 3522 if (ret == -ENOENT) 3523 ret = 0; 3524 goto out; 3525 } 3526 3527 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3528 if (right_gen != left_gen) { 3529 ret = 0; 3530 goto out; 3531 } 3532 3533 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3534 if (wdm && !wdm->orphanized) { 3535 ret = add_pending_dir_move(sctx, 3536 sctx->cur_ino, 3537 sctx->cur_inode_gen, 3538 di_key.objectid, 3539 &sctx->new_refs, 3540 &sctx->deleted_refs, 3541 is_orphan); 3542 if (!ret) 3543 ret = 1; 3544 } 3545 out: 3546 btrfs_free_path(path); 3547 return ret; 3548 } 3549 3550 /* 3551 * Check if inode ino2, or any of its ancestors, is inode ino1. 3552 * Return 1 if true, 0 if false and < 0 on error. 3553 */ 3554 static int check_ino_in_path(struct btrfs_root *root, 3555 const u64 ino1, 3556 const u64 ino1_gen, 3557 const u64 ino2, 3558 const u64 ino2_gen, 3559 struct fs_path *fs_path) 3560 { 3561 u64 ino = ino2; 3562 3563 if (ino1 == ino2) 3564 return ino1_gen == ino2_gen; 3565 3566 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3567 u64 parent; 3568 u64 parent_gen; 3569 int ret; 3570 3571 fs_path_reset(fs_path); 3572 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3573 if (ret < 0) 3574 return ret; 3575 if (parent == ino1) 3576 return parent_gen == ino1_gen; 3577 ino = parent; 3578 } 3579 return 0; 3580 } 3581 3582 /* 3583 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3584 * possible path (in case ino2 is not a directory and has multiple hard links). 3585 * Return 1 if true, 0 if false and < 0 on error. 3586 */ 3587 static int is_ancestor(struct btrfs_root *root, 3588 const u64 ino1, 3589 const u64 ino1_gen, 3590 const u64 ino2, 3591 struct fs_path *fs_path) 3592 { 3593 bool free_fs_path = false; 3594 int ret = 0; 3595 struct btrfs_path *path = NULL; 3596 struct btrfs_key key; 3597 3598 if (!fs_path) { 3599 fs_path = fs_path_alloc(); 3600 if (!fs_path) 3601 return -ENOMEM; 3602 free_fs_path = true; 3603 } 3604 3605 path = alloc_path_for_send(); 3606 if (!path) { 3607 ret = -ENOMEM; 3608 goto out; 3609 } 3610 3611 key.objectid = ino2; 3612 key.type = BTRFS_INODE_REF_KEY; 3613 key.offset = 0; 3614 3615 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3616 if (ret < 0) 3617 goto out; 3618 3619 while (true) { 3620 struct extent_buffer *leaf = path->nodes[0]; 3621 int slot = path->slots[0]; 3622 u32 cur_offset = 0; 3623 u32 item_size; 3624 3625 if (slot >= btrfs_header_nritems(leaf)) { 3626 ret = btrfs_next_leaf(root, path); 3627 if (ret < 0) 3628 goto out; 3629 if (ret > 0) 3630 break; 3631 continue; 3632 } 3633 3634 btrfs_item_key_to_cpu(leaf, &key, slot); 3635 if (key.objectid != ino2) 3636 break; 3637 if (key.type != BTRFS_INODE_REF_KEY && 3638 key.type != BTRFS_INODE_EXTREF_KEY) 3639 break; 3640 3641 item_size = btrfs_item_size_nr(leaf, slot); 3642 while (cur_offset < item_size) { 3643 u64 parent; 3644 u64 parent_gen; 3645 3646 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3647 unsigned long ptr; 3648 struct btrfs_inode_extref *extref; 3649 3650 ptr = btrfs_item_ptr_offset(leaf, slot); 3651 extref = (struct btrfs_inode_extref *) 3652 (ptr + cur_offset); 3653 parent = btrfs_inode_extref_parent(leaf, 3654 extref); 3655 cur_offset += sizeof(*extref); 3656 cur_offset += btrfs_inode_extref_name_len(leaf, 3657 extref); 3658 } else { 3659 parent = key.offset; 3660 cur_offset = item_size; 3661 } 3662 3663 ret = get_inode_info(root, parent, NULL, &parent_gen, 3664 NULL, NULL, NULL, NULL); 3665 if (ret < 0) 3666 goto out; 3667 ret = check_ino_in_path(root, ino1, ino1_gen, 3668 parent, parent_gen, fs_path); 3669 if (ret) 3670 goto out; 3671 } 3672 path->slots[0]++; 3673 } 3674 ret = 0; 3675 out: 3676 btrfs_free_path(path); 3677 if (free_fs_path) 3678 fs_path_free(fs_path); 3679 return ret; 3680 } 3681 3682 static int wait_for_parent_move(struct send_ctx *sctx, 3683 struct recorded_ref *parent_ref, 3684 const bool is_orphan) 3685 { 3686 int ret = 0; 3687 u64 ino = parent_ref->dir; 3688 u64 ino_gen = parent_ref->dir_gen; 3689 u64 parent_ino_before, parent_ino_after; 3690 struct fs_path *path_before = NULL; 3691 struct fs_path *path_after = NULL; 3692 int len1, len2; 3693 3694 path_after = fs_path_alloc(); 3695 path_before = fs_path_alloc(); 3696 if (!path_after || !path_before) { 3697 ret = -ENOMEM; 3698 goto out; 3699 } 3700 3701 /* 3702 * Our current directory inode may not yet be renamed/moved because some 3703 * ancestor (immediate or not) has to be renamed/moved first. So find if 3704 * such ancestor exists and make sure our own rename/move happens after 3705 * that ancestor is processed to avoid path build infinite loops (done 3706 * at get_cur_path()). 3707 */ 3708 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3709 u64 parent_ino_after_gen; 3710 3711 if (is_waiting_for_move(sctx, ino)) { 3712 /* 3713 * If the current inode is an ancestor of ino in the 3714 * parent root, we need to delay the rename of the 3715 * current inode, otherwise don't delayed the rename 3716 * because we can end up with a circular dependency 3717 * of renames, resulting in some directories never 3718 * getting the respective rename operations issued in 3719 * the send stream or getting into infinite path build 3720 * loops. 3721 */ 3722 ret = is_ancestor(sctx->parent_root, 3723 sctx->cur_ino, sctx->cur_inode_gen, 3724 ino, path_before); 3725 if (ret) 3726 break; 3727 } 3728 3729 fs_path_reset(path_before); 3730 fs_path_reset(path_after); 3731 3732 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3733 &parent_ino_after_gen, path_after); 3734 if (ret < 0) 3735 goto out; 3736 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3737 NULL, path_before); 3738 if (ret < 0 && ret != -ENOENT) { 3739 goto out; 3740 } else if (ret == -ENOENT) { 3741 ret = 0; 3742 break; 3743 } 3744 3745 len1 = fs_path_len(path_before); 3746 len2 = fs_path_len(path_after); 3747 if (ino > sctx->cur_ino && 3748 (parent_ino_before != parent_ino_after || len1 != len2 || 3749 memcmp(path_before->start, path_after->start, len1))) { 3750 u64 parent_ino_gen; 3751 3752 ret = get_inode_info(sctx->parent_root, ino, NULL, 3753 &parent_ino_gen, NULL, NULL, NULL, 3754 NULL); 3755 if (ret < 0) 3756 goto out; 3757 if (ino_gen == parent_ino_gen) { 3758 ret = 1; 3759 break; 3760 } 3761 } 3762 ino = parent_ino_after; 3763 ino_gen = parent_ino_after_gen; 3764 } 3765 3766 out: 3767 fs_path_free(path_before); 3768 fs_path_free(path_after); 3769 3770 if (ret == 1) { 3771 ret = add_pending_dir_move(sctx, 3772 sctx->cur_ino, 3773 sctx->cur_inode_gen, 3774 ino, 3775 &sctx->new_refs, 3776 &sctx->deleted_refs, 3777 is_orphan); 3778 if (!ret) 3779 ret = 1; 3780 } 3781 3782 return ret; 3783 } 3784 3785 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3786 { 3787 int ret; 3788 struct fs_path *new_path; 3789 3790 /* 3791 * Our reference's name member points to its full_path member string, so 3792 * we use here a new path. 3793 */ 3794 new_path = fs_path_alloc(); 3795 if (!new_path) 3796 return -ENOMEM; 3797 3798 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3799 if (ret < 0) { 3800 fs_path_free(new_path); 3801 return ret; 3802 } 3803 ret = fs_path_add(new_path, ref->name, ref->name_len); 3804 if (ret < 0) { 3805 fs_path_free(new_path); 3806 return ret; 3807 } 3808 3809 fs_path_free(ref->full_path); 3810 set_ref_path(ref, new_path); 3811 3812 return 0; 3813 } 3814 3815 /* 3816 * This does all the move/link/unlink/rmdir magic. 3817 */ 3818 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3819 { 3820 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3821 int ret = 0; 3822 struct recorded_ref *cur; 3823 struct recorded_ref *cur2; 3824 struct list_head check_dirs; 3825 struct fs_path *valid_path = NULL; 3826 u64 ow_inode = 0; 3827 u64 ow_gen; 3828 u64 ow_mode; 3829 int did_overwrite = 0; 3830 int is_orphan = 0; 3831 u64 last_dir_ino_rm = 0; 3832 bool can_rename = true; 3833 bool orphanized_dir = false; 3834 bool orphanized_ancestor = false; 3835 3836 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3837 3838 /* 3839 * This should never happen as the root dir always has the same ref 3840 * which is always '..' 3841 */ 3842 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3843 INIT_LIST_HEAD(&check_dirs); 3844 3845 valid_path = fs_path_alloc(); 3846 if (!valid_path) { 3847 ret = -ENOMEM; 3848 goto out; 3849 } 3850 3851 /* 3852 * First, check if the first ref of the current inode was overwritten 3853 * before. If yes, we know that the current inode was already orphanized 3854 * and thus use the orphan name. If not, we can use get_cur_path to 3855 * get the path of the first ref as it would like while receiving at 3856 * this point in time. 3857 * New inodes are always orphan at the beginning, so force to use the 3858 * orphan name in this case. 3859 * The first ref is stored in valid_path and will be updated if it 3860 * gets moved around. 3861 */ 3862 if (!sctx->cur_inode_new) { 3863 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3864 sctx->cur_inode_gen); 3865 if (ret < 0) 3866 goto out; 3867 if (ret) 3868 did_overwrite = 1; 3869 } 3870 if (sctx->cur_inode_new || did_overwrite) { 3871 ret = gen_unique_name(sctx, sctx->cur_ino, 3872 sctx->cur_inode_gen, valid_path); 3873 if (ret < 0) 3874 goto out; 3875 is_orphan = 1; 3876 } else { 3877 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3878 valid_path); 3879 if (ret < 0) 3880 goto out; 3881 } 3882 3883 list_for_each_entry(cur, &sctx->new_refs, list) { 3884 /* 3885 * We may have refs where the parent directory does not exist 3886 * yet. This happens if the parent directories inum is higher 3887 * than the current inum. To handle this case, we create the 3888 * parent directory out of order. But we need to check if this 3889 * did already happen before due to other refs in the same dir. 3890 */ 3891 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3892 if (ret < 0) 3893 goto out; 3894 if (ret == inode_state_will_create) { 3895 ret = 0; 3896 /* 3897 * First check if any of the current inodes refs did 3898 * already create the dir. 3899 */ 3900 list_for_each_entry(cur2, &sctx->new_refs, list) { 3901 if (cur == cur2) 3902 break; 3903 if (cur2->dir == cur->dir) { 3904 ret = 1; 3905 break; 3906 } 3907 } 3908 3909 /* 3910 * If that did not happen, check if a previous inode 3911 * did already create the dir. 3912 */ 3913 if (!ret) 3914 ret = did_create_dir(sctx, cur->dir); 3915 if (ret < 0) 3916 goto out; 3917 if (!ret) { 3918 ret = send_create_inode(sctx, cur->dir); 3919 if (ret < 0) 3920 goto out; 3921 } 3922 } 3923 3924 /* 3925 * Check if this new ref would overwrite the first ref of 3926 * another unprocessed inode. If yes, orphanize the 3927 * overwritten inode. If we find an overwritten ref that is 3928 * not the first ref, simply unlink it. 3929 */ 3930 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3931 cur->name, cur->name_len, 3932 &ow_inode, &ow_gen, &ow_mode); 3933 if (ret < 0) 3934 goto out; 3935 if (ret) { 3936 ret = is_first_ref(sctx->parent_root, 3937 ow_inode, cur->dir, cur->name, 3938 cur->name_len); 3939 if (ret < 0) 3940 goto out; 3941 if (ret) { 3942 struct name_cache_entry *nce; 3943 struct waiting_dir_move *wdm; 3944 3945 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3946 cur->full_path); 3947 if (ret < 0) 3948 goto out; 3949 if (S_ISDIR(ow_mode)) 3950 orphanized_dir = true; 3951 3952 /* 3953 * If ow_inode has its rename operation delayed 3954 * make sure that its orphanized name is used in 3955 * the source path when performing its rename 3956 * operation. 3957 */ 3958 if (is_waiting_for_move(sctx, ow_inode)) { 3959 wdm = get_waiting_dir_move(sctx, 3960 ow_inode); 3961 ASSERT(wdm); 3962 wdm->orphanized = true; 3963 } 3964 3965 /* 3966 * Make sure we clear our orphanized inode's 3967 * name from the name cache. This is because the 3968 * inode ow_inode might be an ancestor of some 3969 * other inode that will be orphanized as well 3970 * later and has an inode number greater than 3971 * sctx->send_progress. We need to prevent 3972 * future name lookups from using the old name 3973 * and get instead the orphan name. 3974 */ 3975 nce = name_cache_search(sctx, ow_inode, ow_gen); 3976 if (nce) { 3977 name_cache_delete(sctx, nce); 3978 kfree(nce); 3979 } 3980 3981 /* 3982 * ow_inode might currently be an ancestor of 3983 * cur_ino, therefore compute valid_path (the 3984 * current path of cur_ino) again because it 3985 * might contain the pre-orphanization name of 3986 * ow_inode, which is no longer valid. 3987 */ 3988 ret = is_ancestor(sctx->parent_root, 3989 ow_inode, ow_gen, 3990 sctx->cur_ino, NULL); 3991 if (ret > 0) { 3992 orphanized_ancestor = true; 3993 fs_path_reset(valid_path); 3994 ret = get_cur_path(sctx, sctx->cur_ino, 3995 sctx->cur_inode_gen, 3996 valid_path); 3997 } 3998 if (ret < 0) 3999 goto out; 4000 } else { 4001 ret = send_unlink(sctx, cur->full_path); 4002 if (ret < 0) 4003 goto out; 4004 } 4005 } 4006 4007 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4008 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4009 if (ret < 0) 4010 goto out; 4011 if (ret == 1) { 4012 can_rename = false; 4013 *pending_move = 1; 4014 } 4015 } 4016 4017 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4018 can_rename) { 4019 ret = wait_for_parent_move(sctx, cur, is_orphan); 4020 if (ret < 0) 4021 goto out; 4022 if (ret == 1) { 4023 can_rename = false; 4024 *pending_move = 1; 4025 } 4026 } 4027 4028 /* 4029 * link/move the ref to the new place. If we have an orphan 4030 * inode, move it and update valid_path. If not, link or move 4031 * it depending on the inode mode. 4032 */ 4033 if (is_orphan && can_rename) { 4034 ret = send_rename(sctx, valid_path, cur->full_path); 4035 if (ret < 0) 4036 goto out; 4037 is_orphan = 0; 4038 ret = fs_path_copy(valid_path, cur->full_path); 4039 if (ret < 0) 4040 goto out; 4041 } else if (can_rename) { 4042 if (S_ISDIR(sctx->cur_inode_mode)) { 4043 /* 4044 * Dirs can't be linked, so move it. For moved 4045 * dirs, we always have one new and one deleted 4046 * ref. The deleted ref is ignored later. 4047 */ 4048 ret = send_rename(sctx, valid_path, 4049 cur->full_path); 4050 if (!ret) 4051 ret = fs_path_copy(valid_path, 4052 cur->full_path); 4053 if (ret < 0) 4054 goto out; 4055 } else { 4056 /* 4057 * We might have previously orphanized an inode 4058 * which is an ancestor of our current inode, 4059 * so our reference's full path, which was 4060 * computed before any such orphanizations, must 4061 * be updated. 4062 */ 4063 if (orphanized_dir) { 4064 ret = update_ref_path(sctx, cur); 4065 if (ret < 0) 4066 goto out; 4067 } 4068 ret = send_link(sctx, cur->full_path, 4069 valid_path); 4070 if (ret < 0) 4071 goto out; 4072 } 4073 } 4074 ret = dup_ref(cur, &check_dirs); 4075 if (ret < 0) 4076 goto out; 4077 } 4078 4079 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4080 /* 4081 * Check if we can already rmdir the directory. If not, 4082 * orphanize it. For every dir item inside that gets deleted 4083 * later, we do this check again and rmdir it then if possible. 4084 * See the use of check_dirs for more details. 4085 */ 4086 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4087 sctx->cur_ino); 4088 if (ret < 0) 4089 goto out; 4090 if (ret) { 4091 ret = send_rmdir(sctx, valid_path); 4092 if (ret < 0) 4093 goto out; 4094 } else if (!is_orphan) { 4095 ret = orphanize_inode(sctx, sctx->cur_ino, 4096 sctx->cur_inode_gen, valid_path); 4097 if (ret < 0) 4098 goto out; 4099 is_orphan = 1; 4100 } 4101 4102 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4103 ret = dup_ref(cur, &check_dirs); 4104 if (ret < 0) 4105 goto out; 4106 } 4107 } else if (S_ISDIR(sctx->cur_inode_mode) && 4108 !list_empty(&sctx->deleted_refs)) { 4109 /* 4110 * We have a moved dir. Add the old parent to check_dirs 4111 */ 4112 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4113 list); 4114 ret = dup_ref(cur, &check_dirs); 4115 if (ret < 0) 4116 goto out; 4117 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4118 /* 4119 * We have a non dir inode. Go through all deleted refs and 4120 * unlink them if they were not already overwritten by other 4121 * inodes. 4122 */ 4123 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4124 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4125 sctx->cur_ino, sctx->cur_inode_gen, 4126 cur->name, cur->name_len); 4127 if (ret < 0) 4128 goto out; 4129 if (!ret) { 4130 /* 4131 * If we orphanized any ancestor before, we need 4132 * to recompute the full path for deleted names, 4133 * since any such path was computed before we 4134 * processed any references and orphanized any 4135 * ancestor inode. 4136 */ 4137 if (orphanized_ancestor) { 4138 ret = update_ref_path(sctx, cur); 4139 if (ret < 0) 4140 goto out; 4141 } 4142 ret = send_unlink(sctx, cur->full_path); 4143 if (ret < 0) 4144 goto out; 4145 } 4146 ret = dup_ref(cur, &check_dirs); 4147 if (ret < 0) 4148 goto out; 4149 } 4150 /* 4151 * If the inode is still orphan, unlink the orphan. This may 4152 * happen when a previous inode did overwrite the first ref 4153 * of this inode and no new refs were added for the current 4154 * inode. Unlinking does not mean that the inode is deleted in 4155 * all cases. There may still be links to this inode in other 4156 * places. 4157 */ 4158 if (is_orphan) { 4159 ret = send_unlink(sctx, valid_path); 4160 if (ret < 0) 4161 goto out; 4162 } 4163 } 4164 4165 /* 4166 * We did collect all parent dirs where cur_inode was once located. We 4167 * now go through all these dirs and check if they are pending for 4168 * deletion and if it's finally possible to perform the rmdir now. 4169 * We also update the inode stats of the parent dirs here. 4170 */ 4171 list_for_each_entry(cur, &check_dirs, list) { 4172 /* 4173 * In case we had refs into dirs that were not processed yet, 4174 * we don't need to do the utime and rmdir logic for these dirs. 4175 * The dir will be processed later. 4176 */ 4177 if (cur->dir > sctx->cur_ino) 4178 continue; 4179 4180 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4181 if (ret < 0) 4182 goto out; 4183 4184 if (ret == inode_state_did_create || 4185 ret == inode_state_no_change) { 4186 /* TODO delayed utimes */ 4187 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4188 if (ret < 0) 4189 goto out; 4190 } else if (ret == inode_state_did_delete && 4191 cur->dir != last_dir_ino_rm) { 4192 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4193 sctx->cur_ino); 4194 if (ret < 0) 4195 goto out; 4196 if (ret) { 4197 ret = get_cur_path(sctx, cur->dir, 4198 cur->dir_gen, valid_path); 4199 if (ret < 0) 4200 goto out; 4201 ret = send_rmdir(sctx, valid_path); 4202 if (ret < 0) 4203 goto out; 4204 last_dir_ino_rm = cur->dir; 4205 } 4206 } 4207 } 4208 4209 ret = 0; 4210 4211 out: 4212 __free_recorded_refs(&check_dirs); 4213 free_recorded_refs(sctx); 4214 fs_path_free(valid_path); 4215 return ret; 4216 } 4217 4218 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4219 void *ctx, struct list_head *refs) 4220 { 4221 int ret = 0; 4222 struct send_ctx *sctx = ctx; 4223 struct fs_path *p; 4224 u64 gen; 4225 4226 p = fs_path_alloc(); 4227 if (!p) 4228 return -ENOMEM; 4229 4230 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4231 NULL, NULL); 4232 if (ret < 0) 4233 goto out; 4234 4235 ret = get_cur_path(sctx, dir, gen, p); 4236 if (ret < 0) 4237 goto out; 4238 ret = fs_path_add_path(p, name); 4239 if (ret < 0) 4240 goto out; 4241 4242 ret = __record_ref(refs, dir, gen, p); 4243 4244 out: 4245 if (ret) 4246 fs_path_free(p); 4247 return ret; 4248 } 4249 4250 static int __record_new_ref(int num, u64 dir, int index, 4251 struct fs_path *name, 4252 void *ctx) 4253 { 4254 struct send_ctx *sctx = ctx; 4255 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4256 } 4257 4258 4259 static int __record_deleted_ref(int num, u64 dir, int index, 4260 struct fs_path *name, 4261 void *ctx) 4262 { 4263 struct send_ctx *sctx = ctx; 4264 return record_ref(sctx->parent_root, dir, name, ctx, 4265 &sctx->deleted_refs); 4266 } 4267 4268 static int record_new_ref(struct send_ctx *sctx) 4269 { 4270 int ret; 4271 4272 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4273 sctx->cmp_key, 0, __record_new_ref, sctx); 4274 if (ret < 0) 4275 goto out; 4276 ret = 0; 4277 4278 out: 4279 return ret; 4280 } 4281 4282 static int record_deleted_ref(struct send_ctx *sctx) 4283 { 4284 int ret; 4285 4286 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4287 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4288 if (ret < 0) 4289 goto out; 4290 ret = 0; 4291 4292 out: 4293 return ret; 4294 } 4295 4296 struct find_ref_ctx { 4297 u64 dir; 4298 u64 dir_gen; 4299 struct btrfs_root *root; 4300 struct fs_path *name; 4301 int found_idx; 4302 }; 4303 4304 static int __find_iref(int num, u64 dir, int index, 4305 struct fs_path *name, 4306 void *ctx_) 4307 { 4308 struct find_ref_ctx *ctx = ctx_; 4309 u64 dir_gen; 4310 int ret; 4311 4312 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4313 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4314 /* 4315 * To avoid doing extra lookups we'll only do this if everything 4316 * else matches. 4317 */ 4318 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4319 NULL, NULL, NULL); 4320 if (ret) 4321 return ret; 4322 if (dir_gen != ctx->dir_gen) 4323 return 0; 4324 ctx->found_idx = num; 4325 return 1; 4326 } 4327 return 0; 4328 } 4329 4330 static int find_iref(struct btrfs_root *root, 4331 struct btrfs_path *path, 4332 struct btrfs_key *key, 4333 u64 dir, u64 dir_gen, struct fs_path *name) 4334 { 4335 int ret; 4336 struct find_ref_ctx ctx; 4337 4338 ctx.dir = dir; 4339 ctx.name = name; 4340 ctx.dir_gen = dir_gen; 4341 ctx.found_idx = -1; 4342 ctx.root = root; 4343 4344 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4345 if (ret < 0) 4346 return ret; 4347 4348 if (ctx.found_idx == -1) 4349 return -ENOENT; 4350 4351 return ctx.found_idx; 4352 } 4353 4354 static int __record_changed_new_ref(int num, u64 dir, int index, 4355 struct fs_path *name, 4356 void *ctx) 4357 { 4358 u64 dir_gen; 4359 int ret; 4360 struct send_ctx *sctx = ctx; 4361 4362 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4363 NULL, NULL, NULL); 4364 if (ret) 4365 return ret; 4366 4367 ret = find_iref(sctx->parent_root, sctx->right_path, 4368 sctx->cmp_key, dir, dir_gen, name); 4369 if (ret == -ENOENT) 4370 ret = __record_new_ref(num, dir, index, name, sctx); 4371 else if (ret > 0) 4372 ret = 0; 4373 4374 return ret; 4375 } 4376 4377 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4378 struct fs_path *name, 4379 void *ctx) 4380 { 4381 u64 dir_gen; 4382 int ret; 4383 struct send_ctx *sctx = ctx; 4384 4385 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4386 NULL, NULL, NULL); 4387 if (ret) 4388 return ret; 4389 4390 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4391 dir, dir_gen, name); 4392 if (ret == -ENOENT) 4393 ret = __record_deleted_ref(num, dir, index, name, sctx); 4394 else if (ret > 0) 4395 ret = 0; 4396 4397 return ret; 4398 } 4399 4400 static int record_changed_ref(struct send_ctx *sctx) 4401 { 4402 int ret = 0; 4403 4404 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4405 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4406 if (ret < 0) 4407 goto out; 4408 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4409 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4410 if (ret < 0) 4411 goto out; 4412 ret = 0; 4413 4414 out: 4415 return ret; 4416 } 4417 4418 /* 4419 * Record and process all refs at once. Needed when an inode changes the 4420 * generation number, which means that it was deleted and recreated. 4421 */ 4422 static int process_all_refs(struct send_ctx *sctx, 4423 enum btrfs_compare_tree_result cmd) 4424 { 4425 int ret; 4426 struct btrfs_root *root; 4427 struct btrfs_path *path; 4428 struct btrfs_key key; 4429 struct btrfs_key found_key; 4430 struct extent_buffer *eb; 4431 int slot; 4432 iterate_inode_ref_t cb; 4433 int pending_move = 0; 4434 4435 path = alloc_path_for_send(); 4436 if (!path) 4437 return -ENOMEM; 4438 4439 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4440 root = sctx->send_root; 4441 cb = __record_new_ref; 4442 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4443 root = sctx->parent_root; 4444 cb = __record_deleted_ref; 4445 } else { 4446 btrfs_err(sctx->send_root->fs_info, 4447 "Wrong command %d in process_all_refs", cmd); 4448 ret = -EINVAL; 4449 goto out; 4450 } 4451 4452 key.objectid = sctx->cmp_key->objectid; 4453 key.type = BTRFS_INODE_REF_KEY; 4454 key.offset = 0; 4455 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4456 if (ret < 0) 4457 goto out; 4458 4459 while (1) { 4460 eb = path->nodes[0]; 4461 slot = path->slots[0]; 4462 if (slot >= btrfs_header_nritems(eb)) { 4463 ret = btrfs_next_leaf(root, path); 4464 if (ret < 0) 4465 goto out; 4466 else if (ret > 0) 4467 break; 4468 continue; 4469 } 4470 4471 btrfs_item_key_to_cpu(eb, &found_key, slot); 4472 4473 if (found_key.objectid != key.objectid || 4474 (found_key.type != BTRFS_INODE_REF_KEY && 4475 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4476 break; 4477 4478 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4479 if (ret < 0) 4480 goto out; 4481 4482 path->slots[0]++; 4483 } 4484 btrfs_release_path(path); 4485 4486 /* 4487 * We don't actually care about pending_move as we are simply 4488 * re-creating this inode and will be rename'ing it into place once we 4489 * rename the parent directory. 4490 */ 4491 ret = process_recorded_refs(sctx, &pending_move); 4492 out: 4493 btrfs_free_path(path); 4494 return ret; 4495 } 4496 4497 static int send_set_xattr(struct send_ctx *sctx, 4498 struct fs_path *path, 4499 const char *name, int name_len, 4500 const char *data, int data_len) 4501 { 4502 int ret = 0; 4503 4504 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4505 if (ret < 0) 4506 goto out; 4507 4508 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4509 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4510 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4511 4512 ret = send_cmd(sctx); 4513 4514 tlv_put_failure: 4515 out: 4516 return ret; 4517 } 4518 4519 static int send_remove_xattr(struct send_ctx *sctx, 4520 struct fs_path *path, 4521 const char *name, int name_len) 4522 { 4523 int ret = 0; 4524 4525 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4526 if (ret < 0) 4527 goto out; 4528 4529 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4530 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4531 4532 ret = send_cmd(sctx); 4533 4534 tlv_put_failure: 4535 out: 4536 return ret; 4537 } 4538 4539 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4540 const char *name, int name_len, 4541 const char *data, int data_len, 4542 u8 type, void *ctx) 4543 { 4544 int ret; 4545 struct send_ctx *sctx = ctx; 4546 struct fs_path *p; 4547 struct posix_acl_xattr_header dummy_acl; 4548 4549 /* Capabilities are emitted by finish_inode_if_needed */ 4550 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4551 return 0; 4552 4553 p = fs_path_alloc(); 4554 if (!p) 4555 return -ENOMEM; 4556 4557 /* 4558 * This hack is needed because empty acls are stored as zero byte 4559 * data in xattrs. Problem with that is, that receiving these zero byte 4560 * acls will fail later. To fix this, we send a dummy acl list that 4561 * only contains the version number and no entries. 4562 */ 4563 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4564 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4565 if (data_len == 0) { 4566 dummy_acl.a_version = 4567 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4568 data = (char *)&dummy_acl; 4569 data_len = sizeof(dummy_acl); 4570 } 4571 } 4572 4573 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4574 if (ret < 0) 4575 goto out; 4576 4577 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4578 4579 out: 4580 fs_path_free(p); 4581 return ret; 4582 } 4583 4584 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4585 const char *name, int name_len, 4586 const char *data, int data_len, 4587 u8 type, void *ctx) 4588 { 4589 int ret; 4590 struct send_ctx *sctx = ctx; 4591 struct fs_path *p; 4592 4593 p = fs_path_alloc(); 4594 if (!p) 4595 return -ENOMEM; 4596 4597 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4598 if (ret < 0) 4599 goto out; 4600 4601 ret = send_remove_xattr(sctx, p, name, name_len); 4602 4603 out: 4604 fs_path_free(p); 4605 return ret; 4606 } 4607 4608 static int process_new_xattr(struct send_ctx *sctx) 4609 { 4610 int ret = 0; 4611 4612 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4613 __process_new_xattr, sctx); 4614 4615 return ret; 4616 } 4617 4618 static int process_deleted_xattr(struct send_ctx *sctx) 4619 { 4620 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4621 __process_deleted_xattr, sctx); 4622 } 4623 4624 struct find_xattr_ctx { 4625 const char *name; 4626 int name_len; 4627 int found_idx; 4628 char *found_data; 4629 int found_data_len; 4630 }; 4631 4632 static int __find_xattr(int num, struct btrfs_key *di_key, 4633 const char *name, int name_len, 4634 const char *data, int data_len, 4635 u8 type, void *vctx) 4636 { 4637 struct find_xattr_ctx *ctx = vctx; 4638 4639 if (name_len == ctx->name_len && 4640 strncmp(name, ctx->name, name_len) == 0) { 4641 ctx->found_idx = num; 4642 ctx->found_data_len = data_len; 4643 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4644 if (!ctx->found_data) 4645 return -ENOMEM; 4646 return 1; 4647 } 4648 return 0; 4649 } 4650 4651 static int find_xattr(struct btrfs_root *root, 4652 struct btrfs_path *path, 4653 struct btrfs_key *key, 4654 const char *name, int name_len, 4655 char **data, int *data_len) 4656 { 4657 int ret; 4658 struct find_xattr_ctx ctx; 4659 4660 ctx.name = name; 4661 ctx.name_len = name_len; 4662 ctx.found_idx = -1; 4663 ctx.found_data = NULL; 4664 ctx.found_data_len = 0; 4665 4666 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4667 if (ret < 0) 4668 return ret; 4669 4670 if (ctx.found_idx == -1) 4671 return -ENOENT; 4672 if (data) { 4673 *data = ctx.found_data; 4674 *data_len = ctx.found_data_len; 4675 } else { 4676 kfree(ctx.found_data); 4677 } 4678 return ctx.found_idx; 4679 } 4680 4681 4682 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4683 const char *name, int name_len, 4684 const char *data, int data_len, 4685 u8 type, void *ctx) 4686 { 4687 int ret; 4688 struct send_ctx *sctx = ctx; 4689 char *found_data = NULL; 4690 int found_data_len = 0; 4691 4692 ret = find_xattr(sctx->parent_root, sctx->right_path, 4693 sctx->cmp_key, name, name_len, &found_data, 4694 &found_data_len); 4695 if (ret == -ENOENT) { 4696 ret = __process_new_xattr(num, di_key, name, name_len, data, 4697 data_len, type, ctx); 4698 } else if (ret >= 0) { 4699 if (data_len != found_data_len || 4700 memcmp(data, found_data, data_len)) { 4701 ret = __process_new_xattr(num, di_key, name, name_len, 4702 data, data_len, type, ctx); 4703 } else { 4704 ret = 0; 4705 } 4706 } 4707 4708 kfree(found_data); 4709 return ret; 4710 } 4711 4712 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4713 const char *name, int name_len, 4714 const char *data, int data_len, 4715 u8 type, void *ctx) 4716 { 4717 int ret; 4718 struct send_ctx *sctx = ctx; 4719 4720 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4721 name, name_len, NULL, NULL); 4722 if (ret == -ENOENT) 4723 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4724 data_len, type, ctx); 4725 else if (ret >= 0) 4726 ret = 0; 4727 4728 return ret; 4729 } 4730 4731 static int process_changed_xattr(struct send_ctx *sctx) 4732 { 4733 int ret = 0; 4734 4735 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4736 __process_changed_new_xattr, sctx); 4737 if (ret < 0) 4738 goto out; 4739 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4740 __process_changed_deleted_xattr, sctx); 4741 4742 out: 4743 return ret; 4744 } 4745 4746 static int process_all_new_xattrs(struct send_ctx *sctx) 4747 { 4748 int ret; 4749 struct btrfs_root *root; 4750 struct btrfs_path *path; 4751 struct btrfs_key key; 4752 struct btrfs_key found_key; 4753 struct extent_buffer *eb; 4754 int slot; 4755 4756 path = alloc_path_for_send(); 4757 if (!path) 4758 return -ENOMEM; 4759 4760 root = sctx->send_root; 4761 4762 key.objectid = sctx->cmp_key->objectid; 4763 key.type = BTRFS_XATTR_ITEM_KEY; 4764 key.offset = 0; 4765 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4766 if (ret < 0) 4767 goto out; 4768 4769 while (1) { 4770 eb = path->nodes[0]; 4771 slot = path->slots[0]; 4772 if (slot >= btrfs_header_nritems(eb)) { 4773 ret = btrfs_next_leaf(root, path); 4774 if (ret < 0) { 4775 goto out; 4776 } else if (ret > 0) { 4777 ret = 0; 4778 break; 4779 } 4780 continue; 4781 } 4782 4783 btrfs_item_key_to_cpu(eb, &found_key, slot); 4784 if (found_key.objectid != key.objectid || 4785 found_key.type != key.type) { 4786 ret = 0; 4787 goto out; 4788 } 4789 4790 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4791 if (ret < 0) 4792 goto out; 4793 4794 path->slots[0]++; 4795 } 4796 4797 out: 4798 btrfs_free_path(path); 4799 return ret; 4800 } 4801 4802 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4803 { 4804 struct btrfs_root *root = sctx->send_root; 4805 struct btrfs_fs_info *fs_info = root->fs_info; 4806 struct inode *inode; 4807 struct page *page; 4808 char *addr; 4809 struct btrfs_key key; 4810 pgoff_t index = offset >> PAGE_SHIFT; 4811 pgoff_t last_index; 4812 unsigned pg_offset = offset_in_page(offset); 4813 ssize_t ret = 0; 4814 4815 key.objectid = sctx->cur_ino; 4816 key.type = BTRFS_INODE_ITEM_KEY; 4817 key.offset = 0; 4818 4819 inode = btrfs_iget(fs_info->sb, &key, root); 4820 if (IS_ERR(inode)) 4821 return PTR_ERR(inode); 4822 4823 if (offset + len > i_size_read(inode)) { 4824 if (offset > i_size_read(inode)) 4825 len = 0; 4826 else 4827 len = offset - i_size_read(inode); 4828 } 4829 if (len == 0) 4830 goto out; 4831 4832 last_index = (offset + len - 1) >> PAGE_SHIFT; 4833 4834 /* initial readahead */ 4835 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4836 file_ra_state_init(&sctx->ra, inode->i_mapping); 4837 4838 while (index <= last_index) { 4839 unsigned cur_len = min_t(unsigned, len, 4840 PAGE_SIZE - pg_offset); 4841 4842 page = find_lock_page(inode->i_mapping, index); 4843 if (!page) { 4844 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4845 NULL, index, last_index + 1 - index); 4846 4847 page = find_or_create_page(inode->i_mapping, index, 4848 GFP_KERNEL); 4849 if (!page) { 4850 ret = -ENOMEM; 4851 break; 4852 } 4853 } 4854 4855 if (PageReadahead(page)) { 4856 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4857 NULL, page, index, last_index + 1 - index); 4858 } 4859 4860 if (!PageUptodate(page)) { 4861 btrfs_readpage(NULL, page); 4862 lock_page(page); 4863 if (!PageUptodate(page)) { 4864 unlock_page(page); 4865 put_page(page); 4866 ret = -EIO; 4867 break; 4868 } 4869 } 4870 4871 addr = kmap(page); 4872 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4873 kunmap(page); 4874 unlock_page(page); 4875 put_page(page); 4876 index++; 4877 pg_offset = 0; 4878 len -= cur_len; 4879 ret += cur_len; 4880 } 4881 out: 4882 iput(inode); 4883 return ret; 4884 } 4885 4886 /* 4887 * Read some bytes from the current inode/file and send a write command to 4888 * user space. 4889 */ 4890 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4891 { 4892 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4893 int ret = 0; 4894 struct fs_path *p; 4895 ssize_t num_read = 0; 4896 4897 p = fs_path_alloc(); 4898 if (!p) 4899 return -ENOMEM; 4900 4901 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4902 4903 num_read = fill_read_buf(sctx, offset, len); 4904 if (num_read <= 0) { 4905 if (num_read < 0) 4906 ret = num_read; 4907 goto out; 4908 } 4909 4910 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4911 if (ret < 0) 4912 goto out; 4913 4914 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4915 if (ret < 0) 4916 goto out; 4917 4918 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4919 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4920 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4921 4922 ret = send_cmd(sctx); 4923 4924 tlv_put_failure: 4925 out: 4926 fs_path_free(p); 4927 if (ret < 0) 4928 return ret; 4929 return num_read; 4930 } 4931 4932 /* 4933 * Send a clone command to user space. 4934 */ 4935 static int send_clone(struct send_ctx *sctx, 4936 u64 offset, u32 len, 4937 struct clone_root *clone_root) 4938 { 4939 int ret = 0; 4940 struct fs_path *p; 4941 u64 gen; 4942 4943 btrfs_debug(sctx->send_root->fs_info, 4944 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4945 offset, len, clone_root->root->root_key.objectid, 4946 clone_root->ino, clone_root->offset); 4947 4948 p = fs_path_alloc(); 4949 if (!p) 4950 return -ENOMEM; 4951 4952 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4953 if (ret < 0) 4954 goto out; 4955 4956 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4957 if (ret < 0) 4958 goto out; 4959 4960 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4961 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4962 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4963 4964 if (clone_root->root == sctx->send_root) { 4965 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4966 &gen, NULL, NULL, NULL, NULL); 4967 if (ret < 0) 4968 goto out; 4969 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4970 } else { 4971 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4972 } 4973 if (ret < 0) 4974 goto out; 4975 4976 /* 4977 * If the parent we're using has a received_uuid set then use that as 4978 * our clone source as that is what we will look for when doing a 4979 * receive. 4980 * 4981 * This covers the case that we create a snapshot off of a received 4982 * subvolume and then use that as the parent and try to receive on a 4983 * different host. 4984 */ 4985 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4986 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4987 clone_root->root->root_item.received_uuid); 4988 else 4989 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4990 clone_root->root->root_item.uuid); 4991 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4992 le64_to_cpu(clone_root->root->root_item.ctransid)); 4993 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4994 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4995 clone_root->offset); 4996 4997 ret = send_cmd(sctx); 4998 4999 tlv_put_failure: 5000 out: 5001 fs_path_free(p); 5002 return ret; 5003 } 5004 5005 /* 5006 * Send an update extent command to user space. 5007 */ 5008 static int send_update_extent(struct send_ctx *sctx, 5009 u64 offset, u32 len) 5010 { 5011 int ret = 0; 5012 struct fs_path *p; 5013 5014 p = fs_path_alloc(); 5015 if (!p) 5016 return -ENOMEM; 5017 5018 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5019 if (ret < 0) 5020 goto out; 5021 5022 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5023 if (ret < 0) 5024 goto out; 5025 5026 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5027 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5028 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5029 5030 ret = send_cmd(sctx); 5031 5032 tlv_put_failure: 5033 out: 5034 fs_path_free(p); 5035 return ret; 5036 } 5037 5038 static int send_hole(struct send_ctx *sctx, u64 end) 5039 { 5040 struct fs_path *p = NULL; 5041 u64 offset = sctx->cur_inode_last_extent; 5042 u64 len; 5043 int ret = 0; 5044 5045 /* 5046 * A hole that starts at EOF or beyond it. Since we do not yet support 5047 * fallocate (for extent preallocation and hole punching), sending a 5048 * write of zeroes starting at EOF or beyond would later require issuing 5049 * a truncate operation which would undo the write and achieve nothing. 5050 */ 5051 if (offset >= sctx->cur_inode_size) 5052 return 0; 5053 5054 /* 5055 * Don't go beyond the inode's i_size due to prealloc extents that start 5056 * after the i_size. 5057 */ 5058 end = min_t(u64, end, sctx->cur_inode_size); 5059 5060 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5061 return send_update_extent(sctx, offset, end - offset); 5062 5063 p = fs_path_alloc(); 5064 if (!p) 5065 return -ENOMEM; 5066 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5067 if (ret < 0) 5068 goto tlv_put_failure; 5069 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 5070 while (offset < end) { 5071 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 5072 5073 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5074 if (ret < 0) 5075 break; 5076 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5077 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5078 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 5079 ret = send_cmd(sctx); 5080 if (ret < 0) 5081 break; 5082 offset += len; 5083 } 5084 sctx->cur_inode_next_write_offset = offset; 5085 tlv_put_failure: 5086 fs_path_free(p); 5087 return ret; 5088 } 5089 5090 static int send_extent_data(struct send_ctx *sctx, 5091 const u64 offset, 5092 const u64 len) 5093 { 5094 u64 sent = 0; 5095 5096 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5097 return send_update_extent(sctx, offset, len); 5098 5099 while (sent < len) { 5100 u64 size = len - sent; 5101 int ret; 5102 5103 if (size > BTRFS_SEND_READ_SIZE) 5104 size = BTRFS_SEND_READ_SIZE; 5105 ret = send_write(sctx, offset + sent, size); 5106 if (ret < 0) 5107 return ret; 5108 if (!ret) 5109 break; 5110 sent += ret; 5111 } 5112 return 0; 5113 } 5114 5115 /* 5116 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5117 * found, call send_set_xattr function to emit it. 5118 * 5119 * Return 0 if there isn't a capability, or when the capability was emitted 5120 * successfully, or < 0 if an error occurred. 5121 */ 5122 static int send_capabilities(struct send_ctx *sctx) 5123 { 5124 struct fs_path *fspath = NULL; 5125 struct btrfs_path *path; 5126 struct btrfs_dir_item *di; 5127 struct extent_buffer *leaf; 5128 unsigned long data_ptr; 5129 char *buf = NULL; 5130 int buf_len; 5131 int ret = 0; 5132 5133 path = alloc_path_for_send(); 5134 if (!path) 5135 return -ENOMEM; 5136 5137 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5138 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5139 if (!di) { 5140 /* There is no xattr for this inode */ 5141 goto out; 5142 } else if (IS_ERR(di)) { 5143 ret = PTR_ERR(di); 5144 goto out; 5145 } 5146 5147 leaf = path->nodes[0]; 5148 buf_len = btrfs_dir_data_len(leaf, di); 5149 5150 fspath = fs_path_alloc(); 5151 buf = kmalloc(buf_len, GFP_KERNEL); 5152 if (!fspath || !buf) { 5153 ret = -ENOMEM; 5154 goto out; 5155 } 5156 5157 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5158 if (ret < 0) 5159 goto out; 5160 5161 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5162 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5163 5164 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5165 strlen(XATTR_NAME_CAPS), buf, buf_len); 5166 out: 5167 kfree(buf); 5168 fs_path_free(fspath); 5169 btrfs_free_path(path); 5170 return ret; 5171 } 5172 5173 static int clone_range(struct send_ctx *sctx, 5174 struct clone_root *clone_root, 5175 const u64 disk_byte, 5176 u64 data_offset, 5177 u64 offset, 5178 u64 len) 5179 { 5180 struct btrfs_path *path; 5181 struct btrfs_key key; 5182 int ret; 5183 u64 clone_src_i_size = 0; 5184 5185 /* 5186 * Prevent cloning from a zero offset with a length matching the sector 5187 * size because in some scenarios this will make the receiver fail. 5188 * 5189 * For example, if in the source filesystem the extent at offset 0 5190 * has a length of sectorsize and it was written using direct IO, then 5191 * it can never be an inline extent (even if compression is enabled). 5192 * Then this extent can be cloned in the original filesystem to a non 5193 * zero file offset, but it may not be possible to clone in the 5194 * destination filesystem because it can be inlined due to compression 5195 * on the destination filesystem (as the receiver's write operations are 5196 * always done using buffered IO). The same happens when the original 5197 * filesystem does not have compression enabled but the destination 5198 * filesystem has. 5199 */ 5200 if (clone_root->offset == 0 && 5201 len == sctx->send_root->fs_info->sectorsize) 5202 return send_extent_data(sctx, offset, len); 5203 5204 path = alloc_path_for_send(); 5205 if (!path) 5206 return -ENOMEM; 5207 5208 /* 5209 * There are inodes that have extents that lie behind its i_size. Don't 5210 * accept clones from these extents. 5211 */ 5212 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5213 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5214 btrfs_release_path(path); 5215 if (ret < 0) 5216 goto out; 5217 5218 /* 5219 * We can't send a clone operation for the entire range if we find 5220 * extent items in the respective range in the source file that 5221 * refer to different extents or if we find holes. 5222 * So check for that and do a mix of clone and regular write/copy 5223 * operations if needed. 5224 * 5225 * Example: 5226 * 5227 * mkfs.btrfs -f /dev/sda 5228 * mount /dev/sda /mnt 5229 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5230 * cp --reflink=always /mnt/foo /mnt/bar 5231 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5232 * btrfs subvolume snapshot -r /mnt /mnt/snap 5233 * 5234 * If when we send the snapshot and we are processing file bar (which 5235 * has a higher inode number than foo) we blindly send a clone operation 5236 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5237 * a file bar that matches the content of file foo - iow, doesn't match 5238 * the content from bar in the original filesystem. 5239 */ 5240 key.objectid = clone_root->ino; 5241 key.type = BTRFS_EXTENT_DATA_KEY; 5242 key.offset = clone_root->offset; 5243 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5244 if (ret < 0) 5245 goto out; 5246 if (ret > 0 && path->slots[0] > 0) { 5247 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5248 if (key.objectid == clone_root->ino && 5249 key.type == BTRFS_EXTENT_DATA_KEY) 5250 path->slots[0]--; 5251 } 5252 5253 while (true) { 5254 struct extent_buffer *leaf = path->nodes[0]; 5255 int slot = path->slots[0]; 5256 struct btrfs_file_extent_item *ei; 5257 u8 type; 5258 u64 ext_len; 5259 u64 clone_len; 5260 u64 clone_data_offset; 5261 5262 if (slot >= btrfs_header_nritems(leaf)) { 5263 ret = btrfs_next_leaf(clone_root->root, path); 5264 if (ret < 0) 5265 goto out; 5266 else if (ret > 0) 5267 break; 5268 continue; 5269 } 5270 5271 btrfs_item_key_to_cpu(leaf, &key, slot); 5272 5273 /* 5274 * We might have an implicit trailing hole (NO_HOLES feature 5275 * enabled). We deal with it after leaving this loop. 5276 */ 5277 if (key.objectid != clone_root->ino || 5278 key.type != BTRFS_EXTENT_DATA_KEY) 5279 break; 5280 5281 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5282 type = btrfs_file_extent_type(leaf, ei); 5283 if (type == BTRFS_FILE_EXTENT_INLINE) { 5284 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5285 ext_len = PAGE_ALIGN(ext_len); 5286 } else { 5287 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5288 } 5289 5290 if (key.offset + ext_len <= clone_root->offset) 5291 goto next; 5292 5293 if (key.offset > clone_root->offset) { 5294 /* Implicit hole, NO_HOLES feature enabled. */ 5295 u64 hole_len = key.offset - clone_root->offset; 5296 5297 if (hole_len > len) 5298 hole_len = len; 5299 ret = send_extent_data(sctx, offset, hole_len); 5300 if (ret < 0) 5301 goto out; 5302 5303 len -= hole_len; 5304 if (len == 0) 5305 break; 5306 offset += hole_len; 5307 clone_root->offset += hole_len; 5308 data_offset += hole_len; 5309 } 5310 5311 if (key.offset >= clone_root->offset + len) 5312 break; 5313 5314 if (key.offset >= clone_src_i_size) 5315 break; 5316 5317 if (key.offset + ext_len > clone_src_i_size) 5318 ext_len = clone_src_i_size - key.offset; 5319 5320 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5321 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5322 clone_root->offset = key.offset; 5323 if (clone_data_offset < data_offset && 5324 clone_data_offset + ext_len > data_offset) { 5325 u64 extent_offset; 5326 5327 extent_offset = data_offset - clone_data_offset; 5328 ext_len -= extent_offset; 5329 clone_data_offset += extent_offset; 5330 clone_root->offset += extent_offset; 5331 } 5332 } 5333 5334 clone_len = min_t(u64, ext_len, len); 5335 5336 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5337 clone_data_offset == data_offset) { 5338 const u64 src_end = clone_root->offset + clone_len; 5339 const u64 sectorsize = SZ_64K; 5340 5341 /* 5342 * We can't clone the last block, when its size is not 5343 * sector size aligned, into the middle of a file. If we 5344 * do so, the receiver will get a failure (-EINVAL) when 5345 * trying to clone or will silently corrupt the data in 5346 * the destination file if it's on a kernel without the 5347 * fix introduced by commit ac765f83f1397646 5348 * ("Btrfs: fix data corruption due to cloning of eof 5349 * block). 5350 * 5351 * So issue a clone of the aligned down range plus a 5352 * regular write for the eof block, if we hit that case. 5353 * 5354 * Also, we use the maximum possible sector size, 64K, 5355 * because we don't know what's the sector size of the 5356 * filesystem that receives the stream, so we have to 5357 * assume the largest possible sector size. 5358 */ 5359 if (src_end == clone_src_i_size && 5360 !IS_ALIGNED(src_end, sectorsize) && 5361 offset + clone_len < sctx->cur_inode_size) { 5362 u64 slen; 5363 5364 slen = ALIGN_DOWN(src_end - clone_root->offset, 5365 sectorsize); 5366 if (slen > 0) { 5367 ret = send_clone(sctx, offset, slen, 5368 clone_root); 5369 if (ret < 0) 5370 goto out; 5371 } 5372 ret = send_extent_data(sctx, offset + slen, 5373 clone_len - slen); 5374 } else { 5375 ret = send_clone(sctx, offset, clone_len, 5376 clone_root); 5377 } 5378 } else { 5379 ret = send_extent_data(sctx, offset, clone_len); 5380 } 5381 5382 if (ret < 0) 5383 goto out; 5384 5385 len -= clone_len; 5386 if (len == 0) 5387 break; 5388 offset += clone_len; 5389 clone_root->offset += clone_len; 5390 data_offset += clone_len; 5391 next: 5392 path->slots[0]++; 5393 } 5394 5395 if (len > 0) 5396 ret = send_extent_data(sctx, offset, len); 5397 else 5398 ret = 0; 5399 out: 5400 btrfs_free_path(path); 5401 return ret; 5402 } 5403 5404 static int send_write_or_clone(struct send_ctx *sctx, 5405 struct btrfs_path *path, 5406 struct btrfs_key *key, 5407 struct clone_root *clone_root) 5408 { 5409 int ret = 0; 5410 struct btrfs_file_extent_item *ei; 5411 u64 offset = key->offset; 5412 u64 len; 5413 u8 type; 5414 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5415 5416 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5417 struct btrfs_file_extent_item); 5418 type = btrfs_file_extent_type(path->nodes[0], ei); 5419 if (type == BTRFS_FILE_EXTENT_INLINE) { 5420 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 5421 /* 5422 * it is possible the inline item won't cover the whole page, 5423 * but there may be items after this page. Make 5424 * sure to send the whole thing 5425 */ 5426 len = PAGE_ALIGN(len); 5427 } else { 5428 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5429 } 5430 5431 if (offset >= sctx->cur_inode_size) { 5432 ret = 0; 5433 goto out; 5434 } 5435 if (offset + len > sctx->cur_inode_size) 5436 len = sctx->cur_inode_size - offset; 5437 if (len == 0) { 5438 ret = 0; 5439 goto out; 5440 } 5441 5442 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5443 u64 disk_byte; 5444 u64 data_offset; 5445 5446 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5447 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5448 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5449 offset, len); 5450 } else { 5451 ret = send_extent_data(sctx, offset, len); 5452 } 5453 sctx->cur_inode_next_write_offset = offset + len; 5454 out: 5455 return ret; 5456 } 5457 5458 static int is_extent_unchanged(struct send_ctx *sctx, 5459 struct btrfs_path *left_path, 5460 struct btrfs_key *ekey) 5461 { 5462 int ret = 0; 5463 struct btrfs_key key; 5464 struct btrfs_path *path = NULL; 5465 struct extent_buffer *eb; 5466 int slot; 5467 struct btrfs_key found_key; 5468 struct btrfs_file_extent_item *ei; 5469 u64 left_disknr; 5470 u64 right_disknr; 5471 u64 left_offset; 5472 u64 right_offset; 5473 u64 left_offset_fixed; 5474 u64 left_len; 5475 u64 right_len; 5476 u64 left_gen; 5477 u64 right_gen; 5478 u8 left_type; 5479 u8 right_type; 5480 5481 path = alloc_path_for_send(); 5482 if (!path) 5483 return -ENOMEM; 5484 5485 eb = left_path->nodes[0]; 5486 slot = left_path->slots[0]; 5487 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5488 left_type = btrfs_file_extent_type(eb, ei); 5489 5490 if (left_type != BTRFS_FILE_EXTENT_REG) { 5491 ret = 0; 5492 goto out; 5493 } 5494 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5495 left_len = btrfs_file_extent_num_bytes(eb, ei); 5496 left_offset = btrfs_file_extent_offset(eb, ei); 5497 left_gen = btrfs_file_extent_generation(eb, ei); 5498 5499 /* 5500 * Following comments will refer to these graphics. L is the left 5501 * extents which we are checking at the moment. 1-8 are the right 5502 * extents that we iterate. 5503 * 5504 * |-----L-----| 5505 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5506 * 5507 * |-----L-----| 5508 * |--1--|-2b-|...(same as above) 5509 * 5510 * Alternative situation. Happens on files where extents got split. 5511 * |-----L-----| 5512 * |-----------7-----------|-6-| 5513 * 5514 * Alternative situation. Happens on files which got larger. 5515 * |-----L-----| 5516 * |-8-| 5517 * Nothing follows after 8. 5518 */ 5519 5520 key.objectid = ekey->objectid; 5521 key.type = BTRFS_EXTENT_DATA_KEY; 5522 key.offset = ekey->offset; 5523 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5524 if (ret < 0) 5525 goto out; 5526 if (ret) { 5527 ret = 0; 5528 goto out; 5529 } 5530 5531 /* 5532 * Handle special case where the right side has no extents at all. 5533 */ 5534 eb = path->nodes[0]; 5535 slot = path->slots[0]; 5536 btrfs_item_key_to_cpu(eb, &found_key, slot); 5537 if (found_key.objectid != key.objectid || 5538 found_key.type != key.type) { 5539 /* If we're a hole then just pretend nothing changed */ 5540 ret = (left_disknr) ? 0 : 1; 5541 goto out; 5542 } 5543 5544 /* 5545 * We're now on 2a, 2b or 7. 5546 */ 5547 key = found_key; 5548 while (key.offset < ekey->offset + left_len) { 5549 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5550 right_type = btrfs_file_extent_type(eb, ei); 5551 if (right_type != BTRFS_FILE_EXTENT_REG && 5552 right_type != BTRFS_FILE_EXTENT_INLINE) { 5553 ret = 0; 5554 goto out; 5555 } 5556 5557 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5558 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5559 right_len = PAGE_ALIGN(right_len); 5560 } else { 5561 right_len = btrfs_file_extent_num_bytes(eb, ei); 5562 } 5563 5564 /* 5565 * Are we at extent 8? If yes, we know the extent is changed. 5566 * This may only happen on the first iteration. 5567 */ 5568 if (found_key.offset + right_len <= ekey->offset) { 5569 /* If we're a hole just pretend nothing changed */ 5570 ret = (left_disknr) ? 0 : 1; 5571 goto out; 5572 } 5573 5574 /* 5575 * We just wanted to see if when we have an inline extent, what 5576 * follows it is a regular extent (wanted to check the above 5577 * condition for inline extents too). This should normally not 5578 * happen but it's possible for example when we have an inline 5579 * compressed extent representing data with a size matching 5580 * the page size (currently the same as sector size). 5581 */ 5582 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5583 ret = 0; 5584 goto out; 5585 } 5586 5587 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5588 right_offset = btrfs_file_extent_offset(eb, ei); 5589 right_gen = btrfs_file_extent_generation(eb, ei); 5590 5591 left_offset_fixed = left_offset; 5592 if (key.offset < ekey->offset) { 5593 /* Fix the right offset for 2a and 7. */ 5594 right_offset += ekey->offset - key.offset; 5595 } else { 5596 /* Fix the left offset for all behind 2a and 2b */ 5597 left_offset_fixed += key.offset - ekey->offset; 5598 } 5599 5600 /* 5601 * Check if we have the same extent. 5602 */ 5603 if (left_disknr != right_disknr || 5604 left_offset_fixed != right_offset || 5605 left_gen != right_gen) { 5606 ret = 0; 5607 goto out; 5608 } 5609 5610 /* 5611 * Go to the next extent. 5612 */ 5613 ret = btrfs_next_item(sctx->parent_root, path); 5614 if (ret < 0) 5615 goto out; 5616 if (!ret) { 5617 eb = path->nodes[0]; 5618 slot = path->slots[0]; 5619 btrfs_item_key_to_cpu(eb, &found_key, slot); 5620 } 5621 if (ret || found_key.objectid != key.objectid || 5622 found_key.type != key.type) { 5623 key.offset += right_len; 5624 break; 5625 } 5626 if (found_key.offset != key.offset + right_len) { 5627 ret = 0; 5628 goto out; 5629 } 5630 key = found_key; 5631 } 5632 5633 /* 5634 * We're now behind the left extent (treat as unchanged) or at the end 5635 * of the right side (treat as changed). 5636 */ 5637 if (key.offset >= ekey->offset + left_len) 5638 ret = 1; 5639 else 5640 ret = 0; 5641 5642 5643 out: 5644 btrfs_free_path(path); 5645 return ret; 5646 } 5647 5648 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5649 { 5650 struct btrfs_path *path; 5651 struct btrfs_root *root = sctx->send_root; 5652 struct btrfs_key key; 5653 int ret; 5654 5655 path = alloc_path_for_send(); 5656 if (!path) 5657 return -ENOMEM; 5658 5659 sctx->cur_inode_last_extent = 0; 5660 5661 key.objectid = sctx->cur_ino; 5662 key.type = BTRFS_EXTENT_DATA_KEY; 5663 key.offset = offset; 5664 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5665 if (ret < 0) 5666 goto out; 5667 ret = 0; 5668 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5669 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5670 goto out; 5671 5672 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5673 out: 5674 btrfs_free_path(path); 5675 return ret; 5676 } 5677 5678 static int range_is_hole_in_parent(struct send_ctx *sctx, 5679 const u64 start, 5680 const u64 end) 5681 { 5682 struct btrfs_path *path; 5683 struct btrfs_key key; 5684 struct btrfs_root *root = sctx->parent_root; 5685 u64 search_start = start; 5686 int ret; 5687 5688 path = alloc_path_for_send(); 5689 if (!path) 5690 return -ENOMEM; 5691 5692 key.objectid = sctx->cur_ino; 5693 key.type = BTRFS_EXTENT_DATA_KEY; 5694 key.offset = search_start; 5695 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5696 if (ret < 0) 5697 goto out; 5698 if (ret > 0 && path->slots[0] > 0) 5699 path->slots[0]--; 5700 5701 while (search_start < end) { 5702 struct extent_buffer *leaf = path->nodes[0]; 5703 int slot = path->slots[0]; 5704 struct btrfs_file_extent_item *fi; 5705 u64 extent_end; 5706 5707 if (slot >= btrfs_header_nritems(leaf)) { 5708 ret = btrfs_next_leaf(root, path); 5709 if (ret < 0) 5710 goto out; 5711 else if (ret > 0) 5712 break; 5713 continue; 5714 } 5715 5716 btrfs_item_key_to_cpu(leaf, &key, slot); 5717 if (key.objectid < sctx->cur_ino || 5718 key.type < BTRFS_EXTENT_DATA_KEY) 5719 goto next; 5720 if (key.objectid > sctx->cur_ino || 5721 key.type > BTRFS_EXTENT_DATA_KEY || 5722 key.offset >= end) 5723 break; 5724 5725 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5726 extent_end = btrfs_file_extent_end(path); 5727 if (extent_end <= start) 5728 goto next; 5729 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5730 search_start = extent_end; 5731 goto next; 5732 } 5733 ret = 0; 5734 goto out; 5735 next: 5736 path->slots[0]++; 5737 } 5738 ret = 1; 5739 out: 5740 btrfs_free_path(path); 5741 return ret; 5742 } 5743 5744 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5745 struct btrfs_key *key) 5746 { 5747 int ret = 0; 5748 5749 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5750 return 0; 5751 5752 if (sctx->cur_inode_last_extent == (u64)-1) { 5753 ret = get_last_extent(sctx, key->offset - 1); 5754 if (ret) 5755 return ret; 5756 } 5757 5758 if (path->slots[0] == 0 && 5759 sctx->cur_inode_last_extent < key->offset) { 5760 /* 5761 * We might have skipped entire leafs that contained only 5762 * file extent items for our current inode. These leafs have 5763 * a generation number smaller (older) than the one in the 5764 * current leaf and the leaf our last extent came from, and 5765 * are located between these 2 leafs. 5766 */ 5767 ret = get_last_extent(sctx, key->offset - 1); 5768 if (ret) 5769 return ret; 5770 } 5771 5772 if (sctx->cur_inode_last_extent < key->offset) { 5773 ret = range_is_hole_in_parent(sctx, 5774 sctx->cur_inode_last_extent, 5775 key->offset); 5776 if (ret < 0) 5777 return ret; 5778 else if (ret == 0) 5779 ret = send_hole(sctx, key->offset); 5780 else 5781 ret = 0; 5782 } 5783 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5784 return ret; 5785 } 5786 5787 static int process_extent(struct send_ctx *sctx, 5788 struct btrfs_path *path, 5789 struct btrfs_key *key) 5790 { 5791 struct clone_root *found_clone = NULL; 5792 int ret = 0; 5793 5794 if (S_ISLNK(sctx->cur_inode_mode)) 5795 return 0; 5796 5797 if (sctx->parent_root && !sctx->cur_inode_new) { 5798 ret = is_extent_unchanged(sctx, path, key); 5799 if (ret < 0) 5800 goto out; 5801 if (ret) { 5802 ret = 0; 5803 goto out_hole; 5804 } 5805 } else { 5806 struct btrfs_file_extent_item *ei; 5807 u8 type; 5808 5809 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5810 struct btrfs_file_extent_item); 5811 type = btrfs_file_extent_type(path->nodes[0], ei); 5812 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5813 type == BTRFS_FILE_EXTENT_REG) { 5814 /* 5815 * The send spec does not have a prealloc command yet, 5816 * so just leave a hole for prealloc'ed extents until 5817 * we have enough commands queued up to justify rev'ing 5818 * the send spec. 5819 */ 5820 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5821 ret = 0; 5822 goto out; 5823 } 5824 5825 /* Have a hole, just skip it. */ 5826 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5827 ret = 0; 5828 goto out; 5829 } 5830 } 5831 } 5832 5833 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5834 sctx->cur_inode_size, &found_clone); 5835 if (ret != -ENOENT && ret < 0) 5836 goto out; 5837 5838 ret = send_write_or_clone(sctx, path, key, found_clone); 5839 if (ret) 5840 goto out; 5841 out_hole: 5842 ret = maybe_send_hole(sctx, path, key); 5843 out: 5844 return ret; 5845 } 5846 5847 static int process_all_extents(struct send_ctx *sctx) 5848 { 5849 int ret; 5850 struct btrfs_root *root; 5851 struct btrfs_path *path; 5852 struct btrfs_key key; 5853 struct btrfs_key found_key; 5854 struct extent_buffer *eb; 5855 int slot; 5856 5857 root = sctx->send_root; 5858 path = alloc_path_for_send(); 5859 if (!path) 5860 return -ENOMEM; 5861 5862 key.objectid = sctx->cmp_key->objectid; 5863 key.type = BTRFS_EXTENT_DATA_KEY; 5864 key.offset = 0; 5865 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5866 if (ret < 0) 5867 goto out; 5868 5869 while (1) { 5870 eb = path->nodes[0]; 5871 slot = path->slots[0]; 5872 5873 if (slot >= btrfs_header_nritems(eb)) { 5874 ret = btrfs_next_leaf(root, path); 5875 if (ret < 0) { 5876 goto out; 5877 } else if (ret > 0) { 5878 ret = 0; 5879 break; 5880 } 5881 continue; 5882 } 5883 5884 btrfs_item_key_to_cpu(eb, &found_key, slot); 5885 5886 if (found_key.objectid != key.objectid || 5887 found_key.type != key.type) { 5888 ret = 0; 5889 goto out; 5890 } 5891 5892 ret = process_extent(sctx, path, &found_key); 5893 if (ret < 0) 5894 goto out; 5895 5896 path->slots[0]++; 5897 } 5898 5899 out: 5900 btrfs_free_path(path); 5901 return ret; 5902 } 5903 5904 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5905 int *pending_move, 5906 int *refs_processed) 5907 { 5908 int ret = 0; 5909 5910 if (sctx->cur_ino == 0) 5911 goto out; 5912 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5913 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5914 goto out; 5915 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5916 goto out; 5917 5918 ret = process_recorded_refs(sctx, pending_move); 5919 if (ret < 0) 5920 goto out; 5921 5922 *refs_processed = 1; 5923 out: 5924 return ret; 5925 } 5926 5927 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5928 { 5929 int ret = 0; 5930 u64 left_mode; 5931 u64 left_uid; 5932 u64 left_gid; 5933 u64 right_mode; 5934 u64 right_uid; 5935 u64 right_gid; 5936 int need_chmod = 0; 5937 int need_chown = 0; 5938 int need_truncate = 1; 5939 int pending_move = 0; 5940 int refs_processed = 0; 5941 5942 if (sctx->ignore_cur_inode) 5943 return 0; 5944 5945 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5946 &refs_processed); 5947 if (ret < 0) 5948 goto out; 5949 5950 /* 5951 * We have processed the refs and thus need to advance send_progress. 5952 * Now, calls to get_cur_xxx will take the updated refs of the current 5953 * inode into account. 5954 * 5955 * On the other hand, if our current inode is a directory and couldn't 5956 * be moved/renamed because its parent was renamed/moved too and it has 5957 * a higher inode number, we can only move/rename our current inode 5958 * after we moved/renamed its parent. Therefore in this case operate on 5959 * the old path (pre move/rename) of our current inode, and the 5960 * move/rename will be performed later. 5961 */ 5962 if (refs_processed && !pending_move) 5963 sctx->send_progress = sctx->cur_ino + 1; 5964 5965 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5966 goto out; 5967 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5968 goto out; 5969 5970 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5971 &left_mode, &left_uid, &left_gid, NULL); 5972 if (ret < 0) 5973 goto out; 5974 5975 if (!sctx->parent_root || sctx->cur_inode_new) { 5976 need_chown = 1; 5977 if (!S_ISLNK(sctx->cur_inode_mode)) 5978 need_chmod = 1; 5979 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 5980 need_truncate = 0; 5981 } else { 5982 u64 old_size; 5983 5984 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5985 &old_size, NULL, &right_mode, &right_uid, 5986 &right_gid, NULL); 5987 if (ret < 0) 5988 goto out; 5989 5990 if (left_uid != right_uid || left_gid != right_gid) 5991 need_chown = 1; 5992 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5993 need_chmod = 1; 5994 if ((old_size == sctx->cur_inode_size) || 5995 (sctx->cur_inode_size > old_size && 5996 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 5997 need_truncate = 0; 5998 } 5999 6000 if (S_ISREG(sctx->cur_inode_mode)) { 6001 if (need_send_hole(sctx)) { 6002 if (sctx->cur_inode_last_extent == (u64)-1 || 6003 sctx->cur_inode_last_extent < 6004 sctx->cur_inode_size) { 6005 ret = get_last_extent(sctx, (u64)-1); 6006 if (ret) 6007 goto out; 6008 } 6009 if (sctx->cur_inode_last_extent < 6010 sctx->cur_inode_size) { 6011 ret = send_hole(sctx, sctx->cur_inode_size); 6012 if (ret) 6013 goto out; 6014 } 6015 } 6016 if (need_truncate) { 6017 ret = send_truncate(sctx, sctx->cur_ino, 6018 sctx->cur_inode_gen, 6019 sctx->cur_inode_size); 6020 if (ret < 0) 6021 goto out; 6022 } 6023 } 6024 6025 if (need_chown) { 6026 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6027 left_uid, left_gid); 6028 if (ret < 0) 6029 goto out; 6030 } 6031 if (need_c