~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/volumes.c

Version: ~ [ linux-6.4-rc3 ] ~ [ linux-6.3.4 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.30 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.113 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.180 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.243 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.283 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.315 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2007 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/sched.h>
  7 #include <linux/bio.h>
  8 #include <linux/slab.h>
  9 #include <linux/buffer_head.h>
 10 #include <linux/blkdev.h>
 11 #include <linux/ratelimit.h>
 12 #include <linux/kthread.h>
 13 #include <linux/raid/pq.h>
 14 #include <linux/semaphore.h>
 15 #include <linux/uuid.h>
 16 #include <linux/list_sort.h>
 17 #include "ctree.h"
 18 #include "extent_map.h"
 19 #include "disk-io.h"
 20 #include "transaction.h"
 21 #include "print-tree.h"
 22 #include "volumes.h"
 23 #include "raid56.h"
 24 #include "async-thread.h"
 25 #include "check-integrity.h"
 26 #include "rcu-string.h"
 27 #include "math.h"
 28 #include "dev-replace.h"
 29 #include "sysfs.h"
 30 #include "tree-checker.h"
 31 
 32 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
 33         [BTRFS_RAID_RAID10] = {
 34                 .sub_stripes    = 2,
 35                 .dev_stripes    = 1,
 36                 .devs_max       = 0,    /* 0 == as many as possible */
 37                 .devs_min       = 4,
 38                 .tolerated_failures = 1,
 39                 .devs_increment = 2,
 40                 .ncopies        = 2,
 41                 .nparity        = 0,
 42                 .raid_name      = "raid10",
 43                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
 44                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
 45         },
 46         [BTRFS_RAID_RAID1] = {
 47                 .sub_stripes    = 1,
 48                 .dev_stripes    = 1,
 49                 .devs_max       = 2,
 50                 .devs_min       = 2,
 51                 .tolerated_failures = 1,
 52                 .devs_increment = 2,
 53                 .ncopies        = 2,
 54                 .nparity        = 0,
 55                 .raid_name      = "raid1",
 56                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
 57                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
 58         },
 59         [BTRFS_RAID_DUP] = {
 60                 .sub_stripes    = 1,
 61                 .dev_stripes    = 2,
 62                 .devs_max       = 1,
 63                 .devs_min       = 1,
 64                 .tolerated_failures = 0,
 65                 .devs_increment = 1,
 66                 .ncopies        = 2,
 67                 .nparity        = 0,
 68                 .raid_name      = "dup",
 69                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
 70                 .mindev_error   = 0,
 71         },
 72         [BTRFS_RAID_RAID0] = {
 73                 .sub_stripes    = 1,
 74                 .dev_stripes    = 1,
 75                 .devs_max       = 0,
 76                 .devs_min       = 2,
 77                 .tolerated_failures = 0,
 78                 .devs_increment = 1,
 79                 .ncopies        = 1,
 80                 .nparity        = 0,
 81                 .raid_name      = "raid0",
 82                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
 83                 .mindev_error   = 0,
 84         },
 85         [BTRFS_RAID_SINGLE] = {
 86                 .sub_stripes    = 1,
 87                 .dev_stripes    = 1,
 88                 .devs_max       = 1,
 89                 .devs_min       = 1,
 90                 .tolerated_failures = 0,
 91                 .devs_increment = 1,
 92                 .ncopies        = 1,
 93                 .nparity        = 0,
 94                 .raid_name      = "single",
 95                 .bg_flag        = 0,
 96                 .mindev_error   = 0,
 97         },
 98         [BTRFS_RAID_RAID5] = {
 99                 .sub_stripes    = 1,
100                 .dev_stripes    = 1,
101                 .devs_max       = 0,
102                 .devs_min       = 2,
103                 .tolerated_failures = 1,
104                 .devs_increment = 1,
105                 .ncopies        = 1,
106                 .nparity        = 1,
107                 .raid_name      = "raid5",
108                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
109                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
110         },
111         [BTRFS_RAID_RAID6] = {
112                 .sub_stripes    = 1,
113                 .dev_stripes    = 1,
114                 .devs_max       = 0,
115                 .devs_min       = 3,
116                 .tolerated_failures = 2,
117                 .devs_increment = 1,
118                 .ncopies        = 1,
119                 .nparity        = 2,
120                 .raid_name      = "raid6",
121                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
122                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
123         },
124 };
125 
126 const char *get_raid_name(enum btrfs_raid_types type)
127 {
128         if (type >= BTRFS_NR_RAID_TYPES)
129                 return NULL;
130 
131         return btrfs_raid_array[type].raid_name;
132 }
133 
134 /*
135  * Fill @buf with textual description of @bg_flags, no more than @size_buf
136  * bytes including terminating null byte.
137  */
138 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
139 {
140         int i;
141         int ret;
142         char *bp = buf;
143         u64 flags = bg_flags;
144         u32 size_bp = size_buf;
145 
146         if (!flags) {
147                 strcpy(bp, "NONE");
148                 return;
149         }
150 
151 #define DESCRIBE_FLAG(flag, desc)                                               \
152         do {                                                            \
153                 if (flags & (flag)) {                                   \
154                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
155                         if (ret < 0 || ret >= size_bp)                  \
156                                 goto out_overflow;                      \
157                         size_bp -= ret;                                 \
158                         bp += ret;                                      \
159                         flags &= ~(flag);                               \
160                 }                                                       \
161         } while (0)
162 
163         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
164         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
165         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
166 
167         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
168         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
169                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
170                               btrfs_raid_array[i].raid_name);
171 #undef DESCRIBE_FLAG
172 
173         if (flags) {
174                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
175                 size_bp -= ret;
176         }
177 
178         if (size_bp < size_buf)
179                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
180 
181         /*
182          * The text is trimmed, it's up to the caller to provide sufficiently
183          * large buffer
184          */
185 out_overflow:;
186 }
187 
188 static int init_first_rw_device(struct btrfs_trans_handle *trans);
189 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
190 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
192 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
193 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
194                              enum btrfs_map_op op,
195                              u64 logical, u64 *length,
196                              struct btrfs_bio **bbio_ret,
197                              int mirror_num, int need_raid_map);
198 
199 /*
200  * Device locking
201  * ==============
202  *
203  * There are several mutexes that protect manipulation of devices and low-level
204  * structures like chunks but not block groups, extents or files
205  *
206  * uuid_mutex (global lock)
207  * ------------------------
208  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
209  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
210  * device) or requested by the device= mount option
211  *
212  * the mutex can be very coarse and can cover long-running operations
213  *
214  * protects: updates to fs_devices counters like missing devices, rw devices,
215  * seeding, structure cloning, opening/closing devices at mount/umount time
216  *
217  * global::fs_devs - add, remove, updates to the global list
218  *
219  * does not protect: manipulation of the fs_devices::devices list!
220  *
221  * btrfs_device::name - renames (write side), read is RCU
222  *
223  * fs_devices::device_list_mutex (per-fs, with RCU)
224  * ------------------------------------------------
225  * protects updates to fs_devices::devices, ie. adding and deleting
226  *
227  * simple list traversal with read-only actions can be done with RCU protection
228  *
229  * may be used to exclude some operations from running concurrently without any
230  * modifications to the list (see write_all_supers)
231  *
232  * balance_mutex
233  * -------------
234  * protects balance structures (status, state) and context accessed from
235  * several places (internally, ioctl)
236  *
237  * chunk_mutex
238  * -----------
239  * protects chunks, adding or removing during allocation, trim or when a new
240  * device is added/removed
241  *
242  * cleaner_mutex
243  * -------------
244  * a big lock that is held by the cleaner thread and prevents running subvolume
245  * cleaning together with relocation or delayed iputs
246  *
247  *
248  * Lock nesting
249  * ============
250  *
251  * uuid_mutex
252  *   volume_mutex
253  *     device_list_mutex
254  *       chunk_mutex
255  *     balance_mutex
256  *
257  *
258  * Exclusive operations, BTRFS_FS_EXCL_OP
259  * ======================================
260  *
261  * Maintains the exclusivity of the following operations that apply to the
262  * whole filesystem and cannot run in parallel.
263  *
264  * - Balance (*)
265  * - Device add
266  * - Device remove
267  * - Device replace (*)
268  * - Resize
269  *
270  * The device operations (as above) can be in one of the following states:
271  *
272  * - Running state
273  * - Paused state
274  * - Completed state
275  *
276  * Only device operations marked with (*) can go into the Paused state for the
277  * following reasons:
278  *
279  * - ioctl (only Balance can be Paused through ioctl)
280  * - filesystem remounted as read-only
281  * - filesystem unmounted and mounted as read-only
282  * - system power-cycle and filesystem mounted as read-only
283  * - filesystem or device errors leading to forced read-only
284  *
285  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
286  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
287  * A device operation in Paused or Running state can be canceled or resumed
288  * either by ioctl (Balance only) or when remounted as read-write.
289  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
290  * completed.
291  */
292 
293 DEFINE_MUTEX(uuid_mutex);
294 static LIST_HEAD(fs_uuids);
295 struct list_head *btrfs_get_fs_uuids(void)
296 {
297         return &fs_uuids;
298 }
299 
300 /*
301  * alloc_fs_devices - allocate struct btrfs_fs_devices
302  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
303  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
304  *
305  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
306  * The returned struct is not linked onto any lists and can be destroyed with
307  * kfree() right away.
308  */
309 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
310                                                  const u8 *metadata_fsid)
311 {
312         struct btrfs_fs_devices *fs_devs;
313 
314         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
315         if (!fs_devs)
316                 return ERR_PTR(-ENOMEM);
317 
318         mutex_init(&fs_devs->device_list_mutex);
319 
320         INIT_LIST_HEAD(&fs_devs->devices);
321         INIT_LIST_HEAD(&fs_devs->alloc_list);
322         INIT_LIST_HEAD(&fs_devs->fs_list);
323         if (fsid)
324                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
325 
326         if (metadata_fsid)
327                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
328         else if (fsid)
329                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
330 
331         return fs_devs;
332 }
333 
334 void btrfs_free_device(struct btrfs_device *device)
335 {
336         WARN_ON(!list_empty(&device->post_commit_list));
337         rcu_string_free(device->name);
338         extent_io_tree_release(&device->alloc_state);
339         bio_put(device->flush_bio);
340         kfree(device);
341 }
342 
343 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
344 {
345         struct btrfs_device *device;
346         WARN_ON(fs_devices->opened);
347         while (!list_empty(&fs_devices->devices)) {
348                 device = list_entry(fs_devices->devices.next,
349                                     struct btrfs_device, dev_list);
350                 list_del(&device->dev_list);
351                 btrfs_free_device(device);
352         }
353         kfree(fs_devices);
354 }
355 
356 static void btrfs_kobject_uevent(struct block_device *bdev,
357                                  enum kobject_action action)
358 {
359         int ret;
360 
361         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
362         if (ret)
363                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
364                         action,
365                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
366                         &disk_to_dev(bdev->bd_disk)->kobj);
367 }
368 
369 void __exit btrfs_cleanup_fs_uuids(void)
370 {
371         struct btrfs_fs_devices *fs_devices;
372 
373         while (!list_empty(&fs_uuids)) {
374                 fs_devices = list_entry(fs_uuids.next,
375                                         struct btrfs_fs_devices, fs_list);
376                 list_del(&fs_devices->fs_list);
377                 free_fs_devices(fs_devices);
378         }
379 }
380 
381 /*
382  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
383  * Returned struct is not linked onto any lists and must be destroyed using
384  * btrfs_free_device.
385  */
386 static struct btrfs_device *__alloc_device(void)
387 {
388         struct btrfs_device *dev;
389 
390         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
391         if (!dev)
392                 return ERR_PTR(-ENOMEM);
393 
394         /*
395          * Preallocate a bio that's always going to be used for flushing device
396          * barriers and matches the device lifespan
397          */
398         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
399         if (!dev->flush_bio) {
400                 kfree(dev);
401                 return ERR_PTR(-ENOMEM);
402         }
403 
404         INIT_LIST_HEAD(&dev->dev_list);
405         INIT_LIST_HEAD(&dev->dev_alloc_list);
406         INIT_LIST_HEAD(&dev->post_commit_list);
407 
408         spin_lock_init(&dev->io_lock);
409 
410         atomic_set(&dev->reada_in_flight, 0);
411         atomic_set(&dev->dev_stats_ccnt, 0);
412         btrfs_device_data_ordered_init(dev);
413         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
414         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
415         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
416 
417         return dev;
418 }
419 
420 static noinline struct btrfs_fs_devices *find_fsid(
421                 const u8 *fsid, const u8 *metadata_fsid)
422 {
423         struct btrfs_fs_devices *fs_devices;
424 
425         ASSERT(fsid);
426 
427         if (metadata_fsid) {
428                 /*
429                  * Handle scanned device having completed its fsid change but
430                  * belonging to a fs_devices that was created by first scanning
431                  * a device which didn't have its fsid/metadata_uuid changed
432                  * at all and the CHANGING_FSID_V2 flag set.
433                  */
434                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
435                         if (fs_devices->fsid_change &&
436                             memcmp(metadata_fsid, fs_devices->fsid,
437                                    BTRFS_FSID_SIZE) == 0 &&
438                             memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
439                                    BTRFS_FSID_SIZE) == 0) {
440                                 return fs_devices;
441                         }
442                 }
443                 /*
444                  * Handle scanned device having completed its fsid change but
445                  * belonging to a fs_devices that was created by a device that
446                  * has an outdated pair of fsid/metadata_uuid and
447                  * CHANGING_FSID_V2 flag set.
448                  */
449                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
450                         if (fs_devices->fsid_change &&
451                             memcmp(fs_devices->metadata_uuid,
452                                    fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
453                             memcmp(metadata_fsid, fs_devices->metadata_uuid,
454                                    BTRFS_FSID_SIZE) == 0) {
455                                 return fs_devices;
456                         }
457                 }
458         }
459 
460         /* Handle non-split brain cases */
461         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
462                 if (metadata_fsid) {
463                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
464                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
465                                       BTRFS_FSID_SIZE) == 0)
466                                 return fs_devices;
467                 } else {
468                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
469                                 return fs_devices;
470                 }
471         }
472         return NULL;
473 }
474 
475 static int
476 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
477                       int flush, struct block_device **bdev,
478                       struct buffer_head **bh)
479 {
480         int ret;
481 
482         *bdev = blkdev_get_by_path(device_path, flags, holder);
483 
484         if (IS_ERR(*bdev)) {
485                 ret = PTR_ERR(*bdev);
486                 goto error;
487         }
488 
489         if (flush)
490                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
491         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
492         if (ret) {
493                 blkdev_put(*bdev, flags);
494                 goto error;
495         }
496         invalidate_bdev(*bdev);
497         *bh = btrfs_read_dev_super(*bdev);
498         if (IS_ERR(*bh)) {
499                 ret = PTR_ERR(*bh);
500                 blkdev_put(*bdev, flags);
501                 goto error;
502         }
503 
504         return 0;
505 
506 error:
507         *bdev = NULL;
508         *bh = NULL;
509         return ret;
510 }
511 
512 static void requeue_list(struct btrfs_pending_bios *pending_bios,
513                         struct bio *head, struct bio *tail)
514 {
515 
516         struct bio *old_head;
517 
518         old_head = pending_bios->head;
519         pending_bios->head = head;
520         if (pending_bios->tail)
521                 tail->bi_next = old_head;
522         else
523                 pending_bios->tail = tail;
524 }
525 
526 /*
527  * we try to collect pending bios for a device so we don't get a large
528  * number of procs sending bios down to the same device.  This greatly
529  * improves the schedulers ability to collect and merge the bios.
530  *
531  * But, it also turns into a long list of bios to process and that is sure
532  * to eventually make the worker thread block.  The solution here is to
533  * make some progress and then put this work struct back at the end of
534  * the list if the block device is congested.  This way, multiple devices
535  * can make progress from a single worker thread.
536  */
537 static noinline void run_scheduled_bios(struct btrfs_device *device)
538 {
539         struct btrfs_fs_info *fs_info = device->fs_info;
540         struct bio *pending;
541         struct backing_dev_info *bdi;
542         struct btrfs_pending_bios *pending_bios;
543         struct bio *tail;
544         struct bio *cur;
545         int again = 0;
546         unsigned long num_run;
547         unsigned long batch_run = 0;
548         unsigned long last_waited = 0;
549         int force_reg = 0;
550         int sync_pending = 0;
551         struct blk_plug plug;
552 
553         /*
554          * this function runs all the bios we've collected for
555          * a particular device.  We don't want to wander off to
556          * another device without first sending all of these down.
557          * So, setup a plug here and finish it off before we return
558          */
559         blk_start_plug(&plug);
560 
561         bdi = device->bdev->bd_bdi;
562 
563 loop:
564         spin_lock(&device->io_lock);
565 
566 loop_lock:
567         num_run = 0;
568 
569         /* take all the bios off the list at once and process them
570          * later on (without the lock held).  But, remember the
571          * tail and other pointers so the bios can be properly reinserted
572          * into the list if we hit congestion
573          */
574         if (!force_reg && device->pending_sync_bios.head) {
575                 pending_bios = &device->pending_sync_bios;
576                 force_reg = 1;
577         } else {
578                 pending_bios = &device->pending_bios;
579                 force_reg = 0;
580         }
581 
582         pending = pending_bios->head;
583         tail = pending_bios->tail;
584         WARN_ON(pending && !tail);
585 
586         /*
587          * if pending was null this time around, no bios need processing
588          * at all and we can stop.  Otherwise it'll loop back up again
589          * and do an additional check so no bios are missed.
590          *
591          * device->running_pending is used to synchronize with the
592          * schedule_bio code.
593          */
594         if (device->pending_sync_bios.head == NULL &&
595             device->pending_bios.head == NULL) {
596                 again = 0;
597                 device->running_pending = 0;
598         } else {
599                 again = 1;
600                 device->running_pending = 1;
601         }
602 
603         pending_bios->head = NULL;
604         pending_bios->tail = NULL;
605 
606         spin_unlock(&device->io_lock);
607 
608         while (pending) {
609 
610                 rmb();
611                 /* we want to work on both lists, but do more bios on the
612                  * sync list than the regular list
613                  */
614                 if ((num_run > 32 &&
615                     pending_bios != &device->pending_sync_bios &&
616                     device->pending_sync_bios.head) ||
617                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
618                     device->pending_bios.head)) {
619                         spin_lock(&device->io_lock);
620                         requeue_list(pending_bios, pending, tail);
621                         goto loop_lock;
622                 }
623 
624                 cur = pending;
625                 pending = pending->bi_next;
626                 cur->bi_next = NULL;
627 
628                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
629 
630                 /*
631                  * if we're doing the sync list, record that our
632                  * plug has some sync requests on it
633                  *
634                  * If we're doing the regular list and there are
635                  * sync requests sitting around, unplug before
636                  * we add more
637                  */
638                 if (pending_bios == &device->pending_sync_bios) {
639                         sync_pending = 1;
640                 } else if (sync_pending) {
641                         blk_finish_plug(&plug);
642                         blk_start_plug(&plug);
643                         sync_pending = 0;
644                 }
645 
646                 btrfsic_submit_bio(cur);
647                 num_run++;
648                 batch_run++;
649 
650                 cond_resched();
651 
652                 /*
653                  * we made progress, there is more work to do and the bdi
654                  * is now congested.  Back off and let other work structs
655                  * run instead
656                  */
657                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
658                     fs_info->fs_devices->open_devices > 1) {
659                         struct io_context *ioc;
660 
661                         ioc = current->io_context;
662 
663                         /*
664                          * the main goal here is that we don't want to
665                          * block if we're going to be able to submit
666                          * more requests without blocking.
667                          *
668                          * This code does two great things, it pokes into
669                          * the elevator code from a filesystem _and_
670                          * it makes assumptions about how batching works.
671                          */
672                         if (ioc && ioc->nr_batch_requests > 0 &&
673                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
674                             (last_waited == 0 ||
675                              ioc->last_waited == last_waited)) {
676                                 /*
677                                  * we want to go through our batch of
678                                  * requests and stop.  So, we copy out
679                                  * the ioc->last_waited time and test
680                                  * against it before looping
681                                  */
682                                 last_waited = ioc->last_waited;
683                                 cond_resched();
684                                 continue;
685                         }
686                         spin_lock(&device->io_lock);
687                         requeue_list(pending_bios, pending, tail);
688                         device->running_pending = 1;
689 
690                         spin_unlock(&device->io_lock);
691                         btrfs_queue_work(fs_info->submit_workers,
692                                          &device->work);
693                         goto done;
694                 }
695         }
696 
697         cond_resched();
698         if (again)
699                 goto loop;
700 
701         spin_lock(&device->io_lock);
702         if (device->pending_bios.head || device->pending_sync_bios.head)
703                 goto loop_lock;
704         spin_unlock(&device->io_lock);
705 
706 done:
707         blk_finish_plug(&plug);
708 }
709 
710 static void pending_bios_fn(struct btrfs_work *work)
711 {
712         struct btrfs_device *device;
713 
714         device = container_of(work, struct btrfs_device, work);
715         run_scheduled_bios(device);
716 }
717 
718 static bool device_path_matched(const char *path, struct btrfs_device *device)
719 {
720         int found;
721 
722         rcu_read_lock();
723         found = strcmp(rcu_str_deref(device->name), path);
724         rcu_read_unlock();
725 
726         return found == 0;
727 }
728 
729 /*
730  *  Search and remove all stale (devices which are not mounted) devices.
731  *  When both inputs are NULL, it will search and release all stale devices.
732  *  path:       Optional. When provided will it release all unmounted devices
733  *              matching this path only.
734  *  skip_dev:   Optional. Will skip this device when searching for the stale
735  *              devices.
736  *  Return:     0 for success or if @path is NULL.
737  *              -EBUSY if @path is a mounted device.
738  *              -ENOENT if @path does not match any device in the list.
739  */
740 static int btrfs_free_stale_devices(const char *path,
741                                      struct btrfs_device *skip_device)
742 {
743         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
744         struct btrfs_device *device, *tmp_device;
745         int ret = 0;
746 
747         if (path)
748                 ret = -ENOENT;
749 
750         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
751 
752                 mutex_lock(&fs_devices->device_list_mutex);
753                 list_for_each_entry_safe(device, tmp_device,
754                                          &fs_devices->devices, dev_list) {
755                         if (skip_device && skip_device == device)
756                                 continue;
757                         if (path && !device->name)
758                                 continue;
759                         if (path && !device_path_matched(path, device))
760                                 continue;
761                         if (fs_devices->opened) {
762                                 /* for an already deleted device return 0 */
763                                 if (path && ret != 0)
764                                         ret = -EBUSY;
765                                 break;
766                         }
767 
768                         /* delete the stale device */
769                         fs_devices->num_devices--;
770                         list_del(&device->dev_list);
771                         btrfs_free_device(device);
772 
773                         ret = 0;
774                         if (fs_devices->num_devices == 0)
775                                 break;
776                 }
777                 mutex_unlock(&fs_devices->device_list_mutex);
778 
779                 if (fs_devices->num_devices == 0) {
780                         btrfs_sysfs_remove_fsid(fs_devices);
781                         list_del(&fs_devices->fs_list);
782                         free_fs_devices(fs_devices);
783                 }
784         }
785 
786         return ret;
787 }
788 
789 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
790                         struct btrfs_device *device, fmode_t flags,
791                         void *holder)
792 {
793         struct request_queue *q;
794         struct block_device *bdev;
795         struct buffer_head *bh;
796         struct btrfs_super_block *disk_super;
797         u64 devid;
798         int ret;
799 
800         if (device->bdev)
801                 return -EINVAL;
802         if (!device->name)
803                 return -EINVAL;
804 
805         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
806                                     &bdev, &bh);
807         if (ret)
808                 return ret;
809 
810         disk_super = (struct btrfs_super_block *)bh->b_data;
811         devid = btrfs_stack_device_id(&disk_super->dev_item);
812         if (devid != device->devid)
813                 goto error_brelse;
814 
815         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
816                 goto error_brelse;
817 
818         device->generation = btrfs_super_generation(disk_super);
819 
820         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
821                 if (btrfs_super_incompat_flags(disk_super) &
822                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
823                         pr_err(
824                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
825                         goto error_brelse;
826                 }
827 
828                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
829                 fs_devices->seeding = 1;
830         } else {
831                 if (bdev_read_only(bdev))
832                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
833                 else
834                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
835         }
836 
837         q = bdev_get_queue(bdev);
838         if (!blk_queue_nonrot(q))
839                 fs_devices->rotating = 1;
840 
841         device->bdev = bdev;
842         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
843         device->mode = flags;
844 
845         fs_devices->open_devices++;
846         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
847             device->devid != BTRFS_DEV_REPLACE_DEVID) {
848                 fs_devices->rw_devices++;
849                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
850         }
851         brelse(bh);
852 
853         return 0;
854 
855 error_brelse:
856         brelse(bh);
857         blkdev_put(bdev, flags);
858 
859         return -EINVAL;
860 }
861 
862 /*
863  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
864  * being created with a disk that has already completed its fsid change.
865  */
866 static struct btrfs_fs_devices *find_fsid_inprogress(
867                                         struct btrfs_super_block *disk_super)
868 {
869         struct btrfs_fs_devices *fs_devices;
870 
871         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
872                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
873                            BTRFS_FSID_SIZE) != 0 &&
874                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
875                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
876                         return fs_devices;
877                 }
878         }
879 
880         return NULL;
881 }
882 
883 
884 static struct btrfs_fs_devices *find_fsid_changed(
885                                         struct btrfs_super_block *disk_super)
886 {
887         struct btrfs_fs_devices *fs_devices;
888 
889         /*
890          * Handles the case where scanned device is part of an fs that had
891          * multiple successful changes of FSID but curently device didn't
892          * observe it. Meaning our fsid will be different than theirs.
893          */
894         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
895                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
896                            BTRFS_FSID_SIZE) != 0 &&
897                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
898                            BTRFS_FSID_SIZE) == 0 &&
899                     memcmp(fs_devices->fsid, disk_super->fsid,
900                            BTRFS_FSID_SIZE) != 0) {
901                         return fs_devices;
902                 }
903         }
904 
905         return NULL;
906 }
907 /*
908  * Add new device to list of registered devices
909  *
910  * Returns:
911  * device pointer which was just added or updated when successful
912  * error pointer when failed
913  */
914 static noinline struct btrfs_device *device_list_add(const char *path,
915                            struct btrfs_super_block *disk_super,
916                            bool *new_device_added)
917 {
918         struct btrfs_device *device;
919         struct btrfs_fs_devices *fs_devices = NULL;
920         struct rcu_string *name;
921         u64 found_transid = btrfs_super_generation(disk_super);
922         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
923         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
924                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
925         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
926                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
927 
928         if (fsid_change_in_progress) {
929                 if (!has_metadata_uuid) {
930                         /*
931                          * When we have an image which has CHANGING_FSID_V2 set
932                          * it might belong to either a filesystem which has
933                          * disks with completed fsid change or it might belong
934                          * to fs with no UUID changes in effect, handle both.
935                          */
936                         fs_devices = find_fsid_inprogress(disk_super);
937                         if (!fs_devices)
938                                 fs_devices = find_fsid(disk_super->fsid, NULL);
939                 } else {
940                         fs_devices = find_fsid_changed(disk_super);
941                 }
942         } else if (has_metadata_uuid) {
943                 fs_devices = find_fsid(disk_super->fsid,
944                                        disk_super->metadata_uuid);
945         } else {
946                 fs_devices = find_fsid(disk_super->fsid, NULL);
947         }
948 
949 
950         if (!fs_devices) {
951                 if (has_metadata_uuid)
952                         fs_devices = alloc_fs_devices(disk_super->fsid,
953                                                       disk_super->metadata_uuid);
954                 else
955                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
956 
957                 if (IS_ERR(fs_devices))
958                         return ERR_CAST(fs_devices);
959 
960                 fs_devices->fsid_change = fsid_change_in_progress;
961 
962                 mutex_lock(&fs_devices->device_list_mutex);
963                 list_add(&fs_devices->fs_list, &fs_uuids);
964 
965                 device = NULL;
966         } else {
967                 mutex_lock(&fs_devices->device_list_mutex);
968                 device = btrfs_find_device(fs_devices, devid,
969                                 disk_super->dev_item.uuid, NULL, false);
970 
971                 /*
972                  * If this disk has been pulled into an fs devices created by
973                  * a device which had the CHANGING_FSID_V2 flag then replace the
974                  * metadata_uuid/fsid values of the fs_devices.
975                  */
976                 if (has_metadata_uuid && fs_devices->fsid_change &&
977                     found_transid > fs_devices->latest_generation) {
978                         memcpy(fs_devices->fsid, disk_super->fsid,
979                                         BTRFS_FSID_SIZE);
980                         memcpy(fs_devices->metadata_uuid,
981                                         disk_super->metadata_uuid, BTRFS_FSID_SIZE);
982 
983                         fs_devices->fsid_change = false;
984                 }
985         }
986 
987         if (!device) {
988                 if (fs_devices->opened) {
989                         mutex_unlock(&fs_devices->device_list_mutex);
990                         return ERR_PTR(-EBUSY);
991                 }
992 
993                 device = btrfs_alloc_device(NULL, &devid,
994                                             disk_super->dev_item.uuid);
995                 if (IS_ERR(device)) {
996                         mutex_unlock(&fs_devices->device_list_mutex);
997                         /* we can safely leave the fs_devices entry around */
998                         return device;
999                 }
1000 
1001                 name = rcu_string_strdup(path, GFP_NOFS);
1002                 if (!name) {
1003                         btrfs_free_device(device);
1004                         mutex_unlock(&fs_devices->device_list_mutex);
1005                         return ERR_PTR(-ENOMEM);
1006                 }
1007                 rcu_assign_pointer(device->name, name);
1008 
1009                 list_add_rcu(&device->dev_list, &fs_devices->devices);
1010                 fs_devices->num_devices++;
1011 
1012                 device->fs_devices = fs_devices;
1013                 *new_device_added = true;
1014 
1015                 if (disk_super->label[0])
1016                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1017                                 disk_super->label, devid, found_transid, path);
1018                 else
1019                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1020                                 disk_super->fsid, devid, found_transid, path);
1021 
1022         } else if (!device->name || strcmp(device->name->str, path)) {
1023                 /*
1024                  * When FS is already mounted.
1025                  * 1. If you are here and if the device->name is NULL that
1026                  *    means this device was missing at time of FS mount.
1027                  * 2. If you are here and if the device->name is different
1028                  *    from 'path' that means either
1029                  *      a. The same device disappeared and reappeared with
1030                  *         different name. or
1031                  *      b. The missing-disk-which-was-replaced, has
1032                  *         reappeared now.
1033                  *
1034                  * We must allow 1 and 2a above. But 2b would be a spurious
1035                  * and unintentional.
1036                  *
1037                  * Further in case of 1 and 2a above, the disk at 'path'
1038                  * would have missed some transaction when it was away and
1039                  * in case of 2a the stale bdev has to be updated as well.
1040                  * 2b must not be allowed at all time.
1041                  */
1042 
1043                 /*
1044                  * For now, we do allow update to btrfs_fs_device through the
1045                  * btrfs dev scan cli after FS has been mounted.  We're still
1046                  * tracking a problem where systems fail mount by subvolume id
1047                  * when we reject replacement on a mounted FS.
1048                  */
1049                 if (!fs_devices->opened && found_transid < device->generation) {
1050                         /*
1051                          * That is if the FS is _not_ mounted and if you
1052                          * are here, that means there is more than one
1053                          * disk with same uuid and devid.We keep the one
1054                          * with larger generation number or the last-in if
1055                          * generation are equal.
1056                          */
1057                         mutex_unlock(&fs_devices->device_list_mutex);
1058                         return ERR_PTR(-EEXIST);
1059                 }
1060 
1061                 /*
1062                  * We are going to replace the device path for a given devid,
1063                  * make sure it's the same device if the device is mounted
1064                  */
1065                 if (device->bdev) {
1066                         struct block_device *path_bdev;
1067 
1068                         path_bdev = lookup_bdev(path);
1069                         if (IS_ERR(path_bdev)) {
1070                                 mutex_unlock(&fs_devices->device_list_mutex);
1071                                 return ERR_CAST(path_bdev);
1072                         }
1073 
1074                         if (device->bdev != path_bdev) {
1075                                 bdput(path_bdev);
1076                                 mutex_unlock(&fs_devices->device_list_mutex);
1077                                 btrfs_warn_in_rcu(device->fs_info,
1078                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1079                                         disk_super->fsid, devid,
1080                                         rcu_str_deref(device->name), path);
1081                                 return ERR_PTR(-EEXIST);
1082                         }
1083                         bdput(path_bdev);
1084                         btrfs_info_in_rcu(device->fs_info,
1085                                 "device fsid %pU devid %llu moved old:%s new:%s",
1086                                 disk_super->fsid, devid,
1087                                 rcu_str_deref(device->name), path);
1088                 }
1089 
1090                 name = rcu_string_strdup(path, GFP_NOFS);
1091                 if (!name) {
1092                         mutex_unlock(&fs_devices->device_list_mutex);
1093                         return ERR_PTR(-ENOMEM);
1094                 }
1095                 rcu_string_free(device->name);
1096                 rcu_assign_pointer(device->name, name);
1097                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1098                         fs_devices->missing_devices--;
1099                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1100                 }
1101         }
1102 
1103         /*
1104          * Unmount does not free the btrfs_device struct but would zero
1105          * generation along with most of the other members. So just update
1106          * it back. We need it to pick the disk with largest generation
1107          * (as above).
1108          */
1109         if (!fs_devices->opened) {
1110                 device->generation = found_transid;
1111                 fs_devices->latest_generation = max_t(u64, found_transid,
1112                                                 fs_devices->latest_generation);
1113         }
1114 
1115         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1116 
1117         mutex_unlock(&fs_devices->device_list_mutex);
1118         return device;
1119 }
1120 
1121 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1122 {
1123         struct btrfs_fs_devices *fs_devices;
1124         struct btrfs_device *device;
1125         struct btrfs_device *orig_dev;
1126 
1127         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1128         if (IS_ERR(fs_devices))
1129                 return fs_devices;
1130 
1131         mutex_lock(&orig->device_list_mutex);
1132         fs_devices->total_devices = orig->total_devices;
1133 
1134         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1135                 struct rcu_string *name;
1136 
1137                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1138                                             orig_dev->uuid);
1139                 if (IS_ERR(device))
1140                         goto error;
1141 
1142                 /*
1143                  * This is ok to do without rcu read locked because we hold the
1144                  * uuid mutex so nothing we touch in here is going to disappear.
1145                  */
1146                 if (orig_dev->name) {
1147                         name = rcu_string_strdup(orig_dev->name->str,
1148                                         GFP_KERNEL);
1149                         if (!name) {
1150                                 btrfs_free_device(device);
1151                                 goto error;
1152                         }
1153                         rcu_assign_pointer(device->name, name);
1154                 }
1155 
1156                 list_add(&device->dev_list, &fs_devices->devices);
1157                 device->fs_devices = fs_devices;
1158                 fs_devices->num_devices++;
1159         }
1160         mutex_unlock(&orig->device_list_mutex);
1161         return fs_devices;
1162 error:
1163         mutex_unlock(&orig->device_list_mutex);
1164         free_fs_devices(fs_devices);
1165         return ERR_PTR(-ENOMEM);
1166 }
1167 
1168 /*
1169  * After we have read the system tree and know devids belonging to
1170  * this filesystem, remove the device which does not belong there.
1171  */
1172 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1173 {
1174         struct btrfs_device *device, *next;
1175         struct btrfs_device *latest_dev = NULL;
1176 
1177         mutex_lock(&uuid_mutex);
1178 again:
1179         /* This is the initialized path, it is safe to release the devices. */
1180         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1181                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1182                                                         &device->dev_state)) {
1183                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1184                              &device->dev_state) &&
1185                              (!latest_dev ||
1186                               device->generation > latest_dev->generation)) {
1187                                 latest_dev = device;
1188                         }
1189                         continue;
1190                 }
1191 
1192                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1193                         /*
1194                          * In the first step, keep the device which has
1195                          * the correct fsid and the devid that is used
1196                          * for the dev_replace procedure.
1197                          * In the second step, the dev_replace state is
1198                          * read from the device tree and it is known
1199                          * whether the procedure is really active or
1200                          * not, which means whether this device is
1201                          * used or whether it should be removed.
1202                          */
1203                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1204                                                   &device->dev_state)) {
1205                                 continue;
1206                         }
1207                 }
1208                 if (device->bdev) {
1209                         blkdev_put(device->bdev, device->mode);
1210                         device->bdev = NULL;
1211                         fs_devices->open_devices--;
1212                 }
1213                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1214                         list_del_init(&device->dev_alloc_list);
1215                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1216                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1217                                       &device->dev_state))
1218                                 fs_devices->rw_devices--;
1219                 }
1220                 list_del_init(&device->dev_list);
1221                 fs_devices->num_devices--;
1222                 btrfs_free_device(device);
1223         }
1224 
1225         if (fs_devices->seed) {
1226                 fs_devices = fs_devices->seed;
1227                 goto again;
1228         }
1229 
1230         fs_devices->latest_bdev = latest_dev->bdev;
1231 
1232         mutex_unlock(&uuid_mutex);
1233 }
1234 
1235 static void btrfs_close_bdev(struct btrfs_device *device)
1236 {
1237         if (!device->bdev)
1238                 return;
1239 
1240         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1241                 sync_blockdev(device->bdev);
1242                 invalidate_bdev(device->bdev);
1243         }
1244 
1245         blkdev_put(device->bdev, device->mode);
1246 }
1247 
1248 static void btrfs_close_one_device(struct btrfs_device *device)
1249 {
1250         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1251         struct btrfs_device *new_device;
1252         struct rcu_string *name;
1253 
1254         if (device->bdev)
1255                 fs_devices->open_devices--;
1256 
1257         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1258             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1259                 list_del_init(&device->dev_alloc_list);
1260                 fs_devices->rw_devices--;
1261         }
1262 
1263         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1264                 fs_devices->missing_devices--;
1265 
1266         btrfs_close_bdev(device);
1267 
1268         new_device = btrfs_alloc_device(NULL, &device->devid,
1269                                         device->uuid);
1270         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1271 
1272         /* Safe because we are under uuid_mutex */
1273         if (device->name) {
1274                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1275                 BUG_ON(!name); /* -ENOMEM */
1276                 rcu_assign_pointer(new_device->name, name);
1277         }
1278 
1279         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1280         new_device->fs_devices = device->fs_devices;
1281 
1282         synchronize_rcu();
1283         btrfs_free_device(device);
1284 }
1285 
1286 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1287 {
1288         struct btrfs_device *device, *tmp;
1289 
1290         if (--fs_devices->opened > 0)
1291                 return 0;
1292 
1293         mutex_lock(&fs_devices->device_list_mutex);
1294         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1295                 btrfs_close_one_device(device);
1296         }
1297         mutex_unlock(&fs_devices->device_list_mutex);
1298 
1299         WARN_ON(fs_devices->open_devices);
1300         WARN_ON(fs_devices->rw_devices);
1301         fs_devices->opened = 0;
1302         fs_devices->seeding = 0;
1303 
1304         return 0;
1305 }
1306 
1307 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1308 {
1309         struct btrfs_fs_devices *seed_devices = NULL;
1310         int ret;
1311 
1312         mutex_lock(&uuid_mutex);
1313         ret = close_fs_devices(fs_devices);
1314         if (!fs_devices->opened) {
1315                 seed_devices = fs_devices->seed;
1316                 fs_devices->seed = NULL;
1317         }
1318         mutex_unlock(&uuid_mutex);
1319 
1320         while (seed_devices) {
1321                 fs_devices = seed_devices;
1322                 seed_devices = fs_devices->seed;
1323                 close_fs_devices(fs_devices);
1324                 free_fs_devices(fs_devices);
1325         }
1326         return ret;
1327 }
1328 
1329 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1330                                 fmode_t flags, void *holder)
1331 {
1332         struct btrfs_device *device;
1333         struct btrfs_device *latest_dev = NULL;
1334         int ret = 0;
1335 
1336         flags |= FMODE_EXCL;
1337 
1338         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1339                 /* Just open everything we can; ignore failures here */
1340                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1341                         continue;
1342 
1343                 if (!latest_dev ||
1344                     device->generation > latest_dev->generation)
1345                         latest_dev = device;
1346         }
1347         if (fs_devices->open_devices == 0) {
1348                 ret = -EINVAL;
1349                 goto out;
1350         }
1351         fs_devices->opened = 1;
1352         fs_devices->latest_bdev = latest_dev->bdev;
1353         fs_devices->total_rw_bytes = 0;
1354 out:
1355         return ret;
1356 }
1357 
1358 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1359 {
1360         struct btrfs_device *dev1, *dev2;
1361 
1362         dev1 = list_entry(a, struct btrfs_device, dev_list);
1363         dev2 = list_entry(b, struct btrfs_device, dev_list);
1364 
1365         if (dev1->devid < dev2->devid)
1366                 return -1;
1367         else if (dev1->devid > dev2->devid)
1368                 return 1;
1369         return 0;
1370 }
1371 
1372 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1373                        fmode_t flags, void *holder)
1374 {
1375         int ret;
1376 
1377         lockdep_assert_held(&uuid_mutex);
1378 
1379         mutex_lock(&fs_devices->device_list_mutex);
1380         if (fs_devices->opened) {
1381                 fs_devices->opened++;
1382                 ret = 0;
1383         } else {
1384                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1385                 ret = open_fs_devices(fs_devices, flags, holder);
1386         }
1387         mutex_unlock(&fs_devices->device_list_mutex);
1388 
1389         return ret;
1390 }
1391 
1392 static void btrfs_release_disk_super(struct page *page)
1393 {
1394         kunmap(page);
1395         put_page(page);
1396 }
1397 
1398 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1399                                  struct page **page,
1400                                  struct btrfs_super_block **disk_super)
1401 {
1402         void *p;
1403         pgoff_t index;
1404 
1405         /* make sure our super fits in the device */
1406         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1407                 return 1;
1408 
1409         /* make sure our super fits in the page */
1410         if (sizeof(**disk_super) > PAGE_SIZE)
1411                 return 1;
1412 
1413         /* make sure our super doesn't straddle pages on disk */
1414         index = bytenr >> PAGE_SHIFT;
1415         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1416                 return 1;
1417 
1418         /* pull in the page with our super */
1419         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1420                                    index, GFP_KERNEL);
1421 
1422         if (IS_ERR_OR_NULL(*page))
1423                 return 1;
1424 
1425         p = kmap(*page);
1426 
1427         /* align our pointer to the offset of the super block */
1428         *disk_super = p + offset_in_page(bytenr);
1429 
1430         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1431             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1432                 btrfs_release_disk_super(*page);
1433                 return 1;
1434         }
1435 
1436         if ((*disk_super)->label[0] &&
1437                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1438                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1439 
1440         return 0;
1441 }
1442 
1443 int btrfs_forget_devices(const char *path)
1444 {
1445         int ret;
1446 
1447         mutex_lock(&uuid_mutex);
1448         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1449         mutex_unlock(&uuid_mutex);
1450 
1451         return ret;
1452 }
1453 
1454 /*
1455  * Look for a btrfs signature on a device. This may be called out of the mount path
1456  * and we are not allowed to call set_blocksize during the scan. The superblock
1457  * is read via pagecache
1458  */
1459 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1460                                            void *holder)
1461 {
1462         struct btrfs_super_block *disk_super;
1463         bool new_device_added = false;
1464         struct btrfs_device *device = NULL;
1465         struct block_device *bdev;
1466         struct page *page;
1467         u64 bytenr;
1468 
1469         lockdep_assert_held(&uuid_mutex);
1470 
1471         /*
1472          * we would like to check all the supers, but that would make
1473          * a btrfs mount succeed after a mkfs from a different FS.
1474          * So, we need to add a special mount option to scan for
1475          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1476          */
1477         bytenr = btrfs_sb_offset(0);
1478         flags |= FMODE_EXCL;
1479 
1480         bdev = blkdev_get_by_path(path, flags, holder);
1481         if (IS_ERR(bdev))
1482                 return ERR_CAST(bdev);
1483 
1484         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1485                 device = ERR_PTR(-EINVAL);
1486                 goto error_bdev_put;
1487         }
1488 
1489         device = device_list_add(path, disk_super, &new_device_added);
1490         if (!IS_ERR(device)) {
1491                 if (new_device_added)
1492                         btrfs_free_stale_devices(path, device);
1493         }
1494 
1495         btrfs_release_disk_super(page);
1496 
1497 error_bdev_put:
1498         blkdev_put(bdev, flags);
1499 
1500         return device;
1501 }
1502 
1503 /*
1504  * Try to find a chunk that intersects [start, start + len] range and when one
1505  * such is found, record the end of it in *start
1506  */
1507 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1508                                     u64 len)
1509 {
1510         u64 physical_start, physical_end;
1511 
1512         lockdep_assert_held(&device->fs_info->chunk_mutex);
1513 
1514         if (!find_first_extent_bit(&device->alloc_state, *start,
1515                                    &physical_start, &physical_end,
1516                                    CHUNK_ALLOCATED, NULL)) {
1517 
1518                 if (in_range(physical_start, *start, len) ||
1519                     in_range(*start, physical_start,
1520                              physical_end - physical_start)) {
1521                         *start = physical_end + 1;
1522                         return true;
1523                 }
1524         }
1525         return false;
1526 }
1527 
1528 
1529 /*
1530  * find_free_dev_extent_start - find free space in the specified device
1531  * @device:       the device which we search the free space in
1532  * @num_bytes:    the size of the free space that we need
1533  * @search_start: the position from which to begin the search
1534  * @start:        store the start of the free space.
1535  * @len:          the size of the free space. that we find, or the size
1536  *                of the max free space if we don't find suitable free space
1537  *
1538  * this uses a pretty simple search, the expectation is that it is
1539  * called very infrequently and that a given device has a small number
1540  * of extents
1541  *
1542  * @start is used to store the start of the free space if we find. But if we
1543  * don't find suitable free space, it will be used to store the start position
1544  * of the max free space.
1545  *
1546  * @len is used to store the size of the free space that we find.
1547  * But if we don't find suitable free space, it is used to store the size of
1548  * the max free space.
1549  */
1550 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1551                                u64 search_start, u64 *start, u64 *len)
1552 {
1553         struct btrfs_fs_info *fs_info = device->fs_info;
1554         struct btrfs_root *root = fs_info->dev_root;
1555         struct btrfs_key key;
1556         struct btrfs_dev_extent *dev_extent;
1557         struct btrfs_path *path;
1558         u64 hole_size;
1559         u64 max_hole_start;
1560         u64 max_hole_size;
1561         u64 extent_end;
1562         u64 search_end = device->total_bytes;
1563         int ret;
1564         int slot;
1565         struct extent_buffer *l;
1566 
1567         /*
1568          * We don't want to overwrite the superblock on the drive nor any area
1569          * used by the boot loader (grub for example), so we make sure to start
1570          * at an offset of at least 1MB.
1571          */
1572         search_start = max_t(u64, search_start, SZ_1M);
1573 
1574         path = btrfs_alloc_path();
1575         if (!path)
1576                 return -ENOMEM;
1577 
1578         max_hole_start = search_start;
1579         max_hole_size = 0;
1580 
1581 again:
1582         if (search_start >= search_end ||
1583                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1584                 ret = -ENOSPC;
1585                 goto out;
1586         }
1587 
1588         path->reada = READA_FORWARD;
1589         path->search_commit_root = 1;
1590         path->skip_locking = 1;
1591 
1592         key.objectid = device->devid;
1593         key.offset = search_start;
1594         key.type = BTRFS_DEV_EXTENT_KEY;
1595 
1596         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1597         if (ret < 0)
1598                 goto out;
1599         if (ret > 0) {
1600                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1601                 if (ret < 0)
1602                         goto out;
1603         }
1604 
1605         while (1) {
1606                 l = path->nodes[0];
1607                 slot = path->slots[0];
1608                 if (slot >= btrfs_header_nritems(l)) {
1609                         ret = btrfs_next_leaf(root, path);
1610                         if (ret == 0)
1611                                 continue;
1612                         if (ret < 0)
1613                                 goto out;
1614 
1615                         break;
1616                 }
1617                 btrfs_item_key_to_cpu(l, &key, slot);
1618 
1619                 if (key.objectid < device->devid)
1620                         goto next;
1621 
1622                 if (key.objectid > device->devid)
1623                         break;
1624 
1625                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1626                         goto next;
1627 
1628                 if (key.offset > search_start) {
1629                         hole_size = key.offset - search_start;
1630 
1631                         /*
1632                          * Have to check before we set max_hole_start, otherwise
1633                          * we could end up sending back this offset anyway.
1634                          */
1635                         if (contains_pending_extent(device, &search_start,
1636                                                     hole_size)) {
1637                                 if (key.offset >= search_start)
1638                                         hole_size = key.offset - search_start;
1639                                 else
1640                                         hole_size = 0;
1641                         }
1642 
1643                         if (hole_size > max_hole_size) {
1644                                 max_hole_start = search_start;
1645                                 max_hole_size = hole_size;
1646                         }
1647 
1648                         /*
1649                          * If this free space is greater than which we need,
1650                          * it must be the max free space that we have found
1651                          * until now, so max_hole_start must point to the start
1652                          * of this free space and the length of this free space
1653                          * is stored in max_hole_size. Thus, we return
1654                          * max_hole_start and max_hole_size and go back to the
1655                          * caller.
1656                          */
1657                         if (hole_size >= num_bytes) {
1658                                 ret = 0;
1659                                 goto out;
1660                         }
1661                 }
1662 
1663                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1664                 extent_end = key.offset + btrfs_dev_extent_length(l,
1665                                                                   dev_extent);
1666                 if (extent_end > search_start)
1667                         search_start = extent_end;
1668 next:
1669                 path->slots[0]++;
1670                 cond_resched();
1671         }
1672 
1673         /*
1674          * At this point, search_start should be the end of
1675          * allocated dev extents, and when shrinking the device,
1676          * search_end may be smaller than search_start.
1677          */
1678         if (search_end > search_start) {
1679                 hole_size = search_end - search_start;
1680 
1681                 if (contains_pending_extent(device, &search_start, hole_size)) {
1682                         btrfs_release_path(path);
1683                         goto again;
1684                 }
1685 
1686                 if (hole_size > max_hole_size) {
1687                         max_hole_start = search_start;
1688                         max_hole_size = hole_size;
1689                 }
1690         }
1691 
1692         /* See above. */
1693         if (max_hole_size < num_bytes)
1694                 ret = -ENOSPC;
1695         else
1696                 ret = 0;
1697 
1698 out:
1699         btrfs_free_path(path);
1700         *start = max_hole_start;
1701         if (len)
1702                 *len = max_hole_size;
1703         return ret;
1704 }
1705 
1706 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1707                          u64 *start, u64 *len)
1708 {
1709         /* FIXME use last free of some kind */
1710         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1711 }
1712 
1713 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1714                           struct btrfs_device *device,
1715                           u64 start, u64 *dev_extent_len)
1716 {
1717         struct btrfs_fs_info *fs_info = device->fs_info;
1718         struct btrfs_root *root = fs_info->dev_root;
1719         int ret;
1720         struct btrfs_path *path;
1721         struct btrfs_key key;
1722         struct btrfs_key found_key;
1723         struct extent_buffer *leaf = NULL;
1724         struct btrfs_dev_extent *extent = NULL;
1725 
1726         path = btrfs_alloc_path();
1727         if (!path)
1728                 return -ENOMEM;
1729 
1730         key.objectid = device->devid;
1731         key.offset = start;
1732         key.type = BTRFS_DEV_EXTENT_KEY;
1733 again:
1734         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1735         if (ret > 0) {
1736                 ret = btrfs_previous_item(root, path, key.objectid,
1737                                           BTRFS_DEV_EXTENT_KEY);
1738                 if (ret)
1739                         goto out;
1740                 leaf = path->nodes[0];
1741                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1742                 extent = btrfs_item_ptr(leaf, path->slots[0],
1743                                         struct btrfs_dev_extent);
1744                 BUG_ON(found_key.offset > start || found_key.offset +
1745                        btrfs_dev_extent_length(leaf, extent) < start);
1746                 key = found_key;
1747                 btrfs_release_path(path);
1748                 goto again;
1749         } else if (ret == 0) {
1750                 leaf = path->nodes[0];
1751                 extent = btrfs_item_ptr(leaf, path->slots[0],
1752                                         struct btrfs_dev_extent);
1753         } else {
1754                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1755                 goto out;
1756         }
1757 
1758         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1759 
1760         ret = btrfs_del_item(trans, root, path);
1761         if (ret) {
1762                 btrfs_handle_fs_error(fs_info, ret,
1763                                       "Failed to remove dev extent item");
1764         } else {
1765                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1766         }
1767 out:
1768         btrfs_free_path(path);
1769         return ret;
1770 }
1771 
1772 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1773                                   struct btrfs_device *device,
1774                                   u64 chunk_offset, u64 start, u64 num_bytes)
1775 {
1776         int ret;
1777         struct btrfs_path *path;
1778         struct btrfs_fs_info *fs_info = device->fs_info;
1779         struct btrfs_root *root = fs_info->dev_root;
1780         struct btrfs_dev_extent *extent;
1781         struct extent_buffer *leaf;
1782         struct btrfs_key key;
1783 
1784         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1785         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1786         path = btrfs_alloc_path();
1787         if (!path)
1788                 return -ENOMEM;
1789 
1790         key.objectid = device->devid;
1791         key.offset = start;
1792         key.type = BTRFS_DEV_EXTENT_KEY;
1793         ret = btrfs_insert_empty_item(trans, root, path, &key,
1794                                       sizeof(*extent));
1795         if (ret)
1796                 goto out;
1797 
1798         leaf = path->nodes[0];
1799         extent = btrfs_item_ptr(leaf, path->slots[0],
1800                                 struct btrfs_dev_extent);
1801         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1802                                         BTRFS_CHUNK_TREE_OBJECTID);
1803         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1804                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1805         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1806 
1807         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1808         btrfs_mark_buffer_dirty(leaf);
1809 out:
1810         btrfs_free_path(path);
1811         return ret;
1812 }
1813 
1814 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1815 {
1816         struct extent_map_tree *em_tree;
1817         struct extent_map *em;
1818         struct rb_node *n;
1819         u64 ret = 0;
1820 
1821         em_tree = &fs_info->mapping_tree.map_tree;
1822         read_lock(&em_tree->lock);
1823         n = rb_last(&em_tree->map.rb_root);
1824         if (n) {
1825                 em = rb_entry(n, struct extent_map, rb_node);
1826                 ret = em->start + em->len;
1827         }
1828         read_unlock(&em_tree->lock);
1829 
1830         return ret;
1831 }
1832 
1833 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1834                                     u64 *devid_ret)
1835 {
1836         int ret;
1837         struct btrfs_key key;
1838         struct btrfs_key found_key;
1839         struct btrfs_path *path;
1840 
1841         path = btrfs_alloc_path();
1842         if (!path)
1843                 return -ENOMEM;
1844 
1845         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1846         key.type = BTRFS_DEV_ITEM_KEY;
1847         key.offset = (u64)-1;
1848 
1849         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1850         if (ret < 0)
1851                 goto error;
1852 
1853         BUG_ON(ret == 0); /* Corruption */
1854 
1855         ret = btrfs_previous_item(fs_info->chunk_root, path,
1856                                   BTRFS_DEV_ITEMS_OBJECTID,
1857                                   BTRFS_DEV_ITEM_KEY);
1858         if (ret) {
1859                 *devid_ret = 1;
1860         } else {
1861                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1862                                       path->slots[0]);
1863                 *devid_ret = found_key.offset + 1;
1864         }
1865         ret = 0;
1866 error:
1867         btrfs_free_path(path);
1868         return ret;
1869 }
1870 
1871 /*
1872  * the device information is stored in the chunk root
1873  * the btrfs_device struct should be fully filled in
1874  */
1875 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876                             struct btrfs_device *device)
1877 {
1878         int ret;
1879         struct btrfs_path *path;
1880         struct btrfs_dev_item *dev_item;
1881         struct extent_buffer *leaf;
1882         struct btrfs_key key;
1883         unsigned long ptr;
1884 
1885         path = btrfs_alloc_path();
1886         if (!path)
1887                 return -ENOMEM;
1888 
1889         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890         key.type = BTRFS_DEV_ITEM_KEY;
1891         key.offset = device->devid;
1892 
1893         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1894                                       &key, sizeof(*dev_item));
1895         if (ret)
1896                 goto out;
1897 
1898         leaf = path->nodes[0];
1899         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1900 
1901         btrfs_set_device_id(leaf, dev_item, device->devid);
1902         btrfs_set_device_generation(leaf, dev_item, 0);
1903         btrfs_set_device_type(leaf, dev_item, device->type);
1904         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1905         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1906         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1907         btrfs_set_device_total_bytes(leaf, dev_item,
1908                                      btrfs_device_get_disk_total_bytes(device));
1909         btrfs_set_device_bytes_used(leaf, dev_item,
1910                                     btrfs_device_get_bytes_used(device));
1911         btrfs_set_device_group(leaf, dev_item, 0);
1912         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1913         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1914         btrfs_set_device_start_offset(leaf, dev_item, 0);
1915 
1916         ptr = btrfs_device_uuid(dev_item);
1917         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1918         ptr = btrfs_device_fsid(dev_item);
1919         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1920                             ptr, BTRFS_FSID_SIZE);
1921         btrfs_mark_buffer_dirty(leaf);
1922 
1923         ret = 0;
1924 out:
1925         btrfs_free_path(path);
1926         return ret;
1927 }
1928 
1929 /*
1930  * Function to update ctime/mtime for a given device path.
1931  * Mainly used for ctime/mtime based probe like libblkid.
1932  */
1933 static void update_dev_time(const char *path_name)
1934 {
1935         struct file *filp;
1936 
1937         filp = filp_open(path_name, O_RDWR, 0);
1938         if (IS_ERR(filp))
1939                 return;
1940         file_update_time(filp);
1941         filp_close(filp, NULL);
1942 }
1943 
1944 static int btrfs_rm_dev_item(struct btrfs_device *device)
1945 {
1946         struct btrfs_root *root = device->fs_info->chunk_root;
1947         int ret;
1948         struct btrfs_path *path;
1949         struct btrfs_key key;
1950         struct btrfs_trans_handle *trans;
1951 
1952         path = btrfs_alloc_path();
1953         if (!path)
1954                 return -ENOMEM;
1955 
1956         trans = btrfs_start_transaction(root, 0);
1957         if (IS_ERR(trans)) {
1958                 btrfs_free_path(path);
1959                 return PTR_ERR(trans);
1960         }
1961         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1962         key.type = BTRFS_DEV_ITEM_KEY;
1963         key.offset = device->devid;
1964 
1965         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1966         if (ret) {
1967                 if (ret > 0)
1968                         ret = -ENOENT;
1969                 btrfs_abort_transaction(trans, ret);
1970                 btrfs_end_transaction(trans);
1971                 goto out;
1972         }
1973 
1974         ret = btrfs_del_item(trans, root, path);
1975         if (ret) {
1976                 btrfs_abort_transaction(trans, ret);
1977                 btrfs_end_transaction(trans);
1978         }
1979 
1980 out:
1981         btrfs_free_path(path);
1982         if (!ret)
1983                 ret = btrfs_commit_transaction(trans);
1984         return ret;
1985 }
1986 
1987 /*
1988  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1989  * filesystem. It's up to the caller to adjust that number regarding eg. device
1990  * replace.
1991  */
1992 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1993                 u64 num_devices)
1994 {
1995         u64 all_avail;
1996         unsigned seq;
1997         int i;
1998 
1999         do {
2000                 seq = read_seqbegin(&fs_info->profiles_lock);
2001 
2002                 all_avail = fs_info->avail_data_alloc_bits |
2003                             fs_info->avail_system_alloc_bits |
2004                             fs_info->avail_metadata_alloc_bits;
2005         } while (read_seqretry(&fs_info->profiles_lock, seq));
2006 
2007         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2008                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2009                         continue;
2010 
2011                 if (num_devices < btrfs_raid_array[i].devs_min) {
2012                         int ret = btrfs_raid_array[i].mindev_error;
2013 
2014                         if (ret)
2015                                 return ret;
2016                 }
2017         }
2018 
2019         return 0;
2020 }
2021 
2022 static struct btrfs_device * btrfs_find_next_active_device(
2023                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2024 {
2025         struct btrfs_device *next_device;
2026 
2027         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2028                 if (next_device != device &&
2029                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2030                     && next_device->bdev)
2031                         return next_device;
2032         }
2033 
2034         return NULL;
2035 }
2036 
2037 /*
2038  * Helper function to check if the given device is part of s_bdev / latest_bdev
2039  * and replace it with the provided or the next active device, in the context
2040  * where this function called, there should be always be another device (or
2041  * this_dev) which is active.
2042  */
2043 void btrfs_assign_next_active_device(struct btrfs_device *device,
2044                                      struct btrfs_device *this_dev)
2045 {
2046         struct btrfs_fs_info *fs_info = device->fs_info;
2047         struct btrfs_device *next_device;
2048 
2049         if (this_dev)
2050                 next_device = this_dev;
2051         else
2052                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2053                                                                 device);
2054         ASSERT(next_device);
2055 
2056         if (fs_info->sb->s_bdev &&
2057                         (fs_info->sb->s_bdev == device->bdev))
2058                 fs_info->sb->s_bdev = next_device->bdev;
2059 
2060         if (fs_info->fs_devices->latest_bdev == device->bdev)
2061                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2062 }
2063 
2064 /*
2065  * Return btrfs_fs_devices::num_devices excluding the device that's being
2066  * currently replaced.
2067  */
2068 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2069 {
2070         u64 num_devices = fs_info->fs_devices->num_devices;
2071 
2072         down_read(&fs_info->dev_replace.rwsem);
2073         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2074                 ASSERT(num_devices > 1);
2075                 num_devices--;
2076         }
2077         up_read(&fs_info->dev_replace.rwsem);
2078 
2079         return num_devices;
2080 }
2081 
2082 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2083                 u64 devid)
2084 {
2085         struct btrfs_device *device;
2086         struct btrfs_fs_devices *cur_devices;
2087         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088         u64 num_devices;
2089         int ret = 0;
2090 
2091         mutex_lock(&uuid_mutex);
2092 
2093         num_devices = btrfs_num_devices(fs_info);
2094 
2095         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2096         if (ret)
2097                 goto out;
2098 
2099         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2100 
2101         if (IS_ERR(device)) {
2102                 if (PTR_ERR(device) == -ENOENT &&
2103                     strcmp(device_path, "missing") == 0)
2104                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2105                 else
2106                         ret = PTR_ERR(device);
2107                 goto out;
2108         }
2109 
2110         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2111                 btrfs_warn_in_rcu(fs_info,
2112                   "cannot remove device %s (devid %llu) due to active swapfile",
2113                                   rcu_str_deref(device->name), device->devid);
2114                 ret = -ETXTBSY;
2115                 goto out;
2116         }
2117 
2118         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2119                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2120                 goto out;
2121         }
2122 
2123         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2124             fs_info->fs_devices->rw_devices == 1) {
2125                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2126                 goto out;
2127         }
2128 
2129         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2130                 mutex_lock(&fs_info->chunk_mutex);
2131                 list_del_init(&device->dev_alloc_list);
2132                 device->fs_devices->rw_devices--;
2133                 mutex_unlock(&fs_info->chunk_mutex);
2134         }
2135 
2136         mutex_unlock(&uuid_mutex);
2137         ret = btrfs_shrink_device(device, 0);
2138         mutex_lock(&uuid_mutex);
2139         if (ret)
2140                 goto error_undo;
2141 
2142         /*
2143          * TODO: the superblock still includes this device in its num_devices
2144          * counter although write_all_supers() is not locked out. This
2145          * could give a filesystem state which requires a degraded mount.
2146          */
2147         ret = btrfs_rm_dev_item(device);
2148         if (ret)
2149                 goto error_undo;
2150 
2151         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2152         btrfs_scrub_cancel_dev(device);
2153 
2154         /*
2155          * the device list mutex makes sure that we don't change
2156          * the device list while someone else is writing out all
2157          * the device supers. Whoever is writing all supers, should
2158          * lock the device list mutex before getting the number of
2159          * devices in the super block (super_copy). Conversely,
2160          * whoever updates the number of devices in the super block
2161          * (super_copy) should hold the device list mutex.
2162          */
2163 
2164         /*
2165          * In normal cases the cur_devices == fs_devices. But in case
2166          * of deleting a seed device, the cur_devices should point to
2167          * its own fs_devices listed under the fs_devices->seed.
2168          */
2169         cur_devices = device->fs_devices;
2170         mutex_lock(&fs_devices->device_list_mutex);
2171         list_del_rcu(&device->dev_list);
2172 
2173         cur_devices->num_devices--;
2174         cur_devices->total_devices--;
2175         /* Update total_devices of the parent fs_devices if it's seed */
2176         if (cur_devices != fs_devices)
2177                 fs_devices->total_devices--;
2178 
2179         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2180                 cur_devices->missing_devices--;
2181 
2182         btrfs_assign_next_active_device(device, NULL);
2183 
2184         if (device->bdev) {
2185                 cur_devices->open_devices--;
2186                 /* remove sysfs entry */
2187                 btrfs_sysfs_rm_device_link(fs_devices, device);
2188         }
2189 
2190         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2191         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2192         mutex_unlock(&fs_devices->device_list_mutex);
2193 
2194         /*
2195          * at this point, the device is zero sized and detached from
2196          * the devices list.  All that's left is to zero out the old
2197          * supers and free the device.
2198          */
2199         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2200                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2201 
2202         btrfs_close_bdev(device);
2203         synchronize_rcu();
2204         btrfs_free_device(device);
2205 
2206         if (cur_devices->open_devices == 0) {
2207                 while (fs_devices) {
2208                         if (fs_devices->seed == cur_devices) {
2209                                 fs_devices->seed = cur_devices->seed;
2210                                 break;
2211                         }
2212                         fs_devices = fs_devices->seed;
2213                 }
2214                 cur_devices->seed = NULL;
2215                 close_fs_devices(cur_devices);
2216                 free_fs_devices(cur_devices);
2217         }
2218 
2219 out:
2220         mutex_unlock(&uuid_mutex);
2221         return ret;
2222 
2223 error_undo:
2224         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2225                 mutex_lock(&fs_info->chunk_mutex);
2226                 list_add(&device->dev_alloc_list,
2227                          &fs_devices->alloc_list);
2228                 device->fs_devices->rw_devices++;
2229                 mutex_unlock(&fs_info->chunk_mutex);
2230         }
2231         goto out;
2232 }
2233 
2234 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2235 {
2236         struct btrfs_fs_devices *fs_devices;
2237 
2238         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2239 
2240         /*
2241          * in case of fs with no seed, srcdev->fs_devices will point
2242          * to fs_devices of fs_info. However when the dev being replaced is
2243          * a seed dev it will point to the seed's local fs_devices. In short
2244          * srcdev will have its correct fs_devices in both the cases.
2245          */
2246         fs_devices = srcdev->fs_devices;
2247 
2248         list_del_rcu(&srcdev->dev_list);
2249         list_del(&srcdev->dev_alloc_list);
2250         fs_devices->num_devices--;
2251         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2252                 fs_devices->missing_devices--;
2253 
2254         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2255                 fs_devices->rw_devices--;
2256 
2257         if (srcdev->bdev)
2258                 fs_devices->open_devices--;
2259 }
2260 
2261 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2262 {
2263         struct btrfs_fs_info *fs_info = srcdev->fs_info;
2264         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2265 
2266         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2267                 /* zero out the old super if it is writable */
2268                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2269         }
2270 
2271         btrfs_close_bdev(srcdev);
2272         synchronize_rcu();
2273         btrfs_free_device(srcdev);
2274 
2275         /* if this is no devs we rather delete the fs_devices */
2276         if (!fs_devices->num_devices) {
2277                 struct btrfs_fs_devices *tmp_fs_devices;
2278 
2279                 /*
2280                  * On a mounted FS, num_devices can't be zero unless it's a
2281                  * seed. In case of a seed device being replaced, the replace
2282                  * target added to the sprout FS, so there will be no more
2283                  * device left under the seed FS.
2284                  */
2285                 ASSERT(fs_devices->seeding);
2286 
2287                 tmp_fs_devices = fs_info->fs_devices;
2288                 while (tmp_fs_devices) {
2289                         if (tmp_fs_devices->seed == fs_devices) {
2290                                 tmp_fs_devices->seed = fs_devices->seed;
2291                                 break;
2292                         }
2293                         tmp_fs_devices = tmp_fs_devices->seed;
2294                 }
2295                 fs_devices->seed = NULL;
2296                 close_fs_devices(fs_devices);
2297                 free_fs_devices(fs_devices);
2298         }
2299 }
2300 
2301 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2302 {
2303         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2304 
2305         WARN_ON(!tgtdev);
2306         mutex_lock(&fs_devices->device_list_mutex);
2307 
2308         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2309 
2310         if (tgtdev->bdev)
2311                 fs_devices->open_devices--;
2312 
2313         fs_devices->num_devices--;
2314 
2315         btrfs_assign_next_active_device(tgtdev, NULL);
2316 
2317         list_del_rcu(&tgtdev->dev_list);
2318 
2319         mutex_unlock(&fs_devices->device_list_mutex);
2320 
2321         /*
2322          * The update_dev_time() with in btrfs_scratch_superblocks()
2323          * may lead to a call to btrfs_show_devname() which will try
2324          * to hold device_list_mutex. And here this device
2325          * is already out of device list, so we don't have to hold
2326          * the device_list_mutex lock.
2327          */
2328         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2329 
2330         btrfs_close_bdev(tgtdev);
2331         synchronize_rcu();
2332         btrfs_free_device(tgtdev);
2333 }
2334 
2335 static struct btrfs_device *btrfs_find_device_by_path(
2336                 struct btrfs_fs_info *fs_info, const char *device_path)
2337 {
2338         int ret = 0;
2339         struct btrfs_super_block *disk_super;
2340         u64 devid;
2341         u8 *dev_uuid;
2342         struct block_device *bdev;
2343         struct buffer_head *bh;
2344         struct btrfs_device *device;
2345 
2346         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2347                                     fs_info->bdev_holder, 0, &bdev, &bh);
2348         if (ret)
2349                 return ERR_PTR(ret);
2350         disk_super = (struct btrfs_super_block *)bh->b_data;
2351         devid = btrfs_stack_device_id(&disk_super->dev_item);
2352         dev_uuid = disk_super->dev_item.uuid;
2353         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2354                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2355                                            disk_super->metadata_uuid, true);
2356         else
2357                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2358                                            disk_super->fsid, true);
2359 
2360         brelse(bh);
2361         if (!device)
2362                 device = ERR_PTR(-ENOENT);
2363         blkdev_put(bdev, FMODE_READ);
2364         return device;
2365 }
2366 
2367 /*
2368  * Lookup a device given by device id, or the path if the id is 0.
2369  */
2370 struct btrfs_device *btrfs_find_device_by_devspec(
2371                 struct btrfs_fs_info *fs_info, u64 devid,
2372                 const char *device_path)
2373 {
2374         struct btrfs_device *device;
2375 
2376         if (devid) {
2377                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2378                                            NULL, true);
2379                 if (!device)
2380                         return ERR_PTR(-ENOENT);
2381                 return device;
2382         }
2383 
2384         if (!device_path || !device_path[0])
2385                 return ERR_PTR(-EINVAL);
2386 
2387         if (strcmp(device_path, "missing") == 0) {
2388                 /* Find first missing device */
2389                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2390                                     dev_list) {
2391                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2392                                      &device->dev_state) && !device->bdev)
2393                                 return device;
2394                 }
2395                 return ERR_PTR(-ENOENT);
2396         }
2397 
2398         return btrfs_find_device_by_path(fs_info, device_path);
2399 }
2400 
2401 /*
2402  * does all the dirty work required for changing file system's UUID.
2403  */
2404 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2405 {
2406         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2407         struct btrfs_fs_devices *old_devices;
2408         struct btrfs_fs_devices *seed_devices;
2409         struct btrfs_super_block *disk_super = fs_info->super_copy;
2410         struct btrfs_device *device;
2411         u64 super_flags;
2412 
2413         lockdep_assert_held(&uuid_mutex);
2414         if (!fs_devices->seeding)
2415                 return -EINVAL;
2416 
2417         seed_devices = alloc_fs_devices(NULL, NULL);
2418         if (IS_ERR(seed_devices))
2419                 return PTR_ERR(seed_devices);
2420 
2421         old_devices = clone_fs_devices(fs_devices);
2422         if (IS_ERR(old_devices)) {
2423                 kfree(seed_devices);
2424                 return PTR_ERR(old_devices);
2425         }
2426 
2427         list_add(&old_devices->fs_list, &fs_uuids);
2428 
2429         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2430         seed_devices->opened = 1;
2431         INIT_LIST_HEAD(&seed_devices->devices);
2432         INIT_LIST_HEAD(&seed_devices->alloc_list);
2433         mutex_init(&seed_devices->device_list_mutex);
2434 
2435         mutex_lock(&fs_devices->device_list_mutex);
2436         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2437                               synchronize_rcu);
2438         list_for_each_entry(device, &seed_devices->devices, dev_list)
2439                 device->fs_devices = seed_devices;
2440 
2441         mutex_lock(&fs_info->chunk_mutex);
2442         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2443         mutex_unlock(&fs_info->chunk_mutex);
2444 
2445         fs_devices->seeding = 0;
2446         fs_devices->num_devices = 0;
2447         fs_devices->open_devices = 0;
2448         fs_devices->missing_devices = 0;
2449         fs_devices->rotating = 0;
2450         fs_devices->seed = seed_devices;
2451 
2452         generate_random_uuid(fs_devices->fsid);
2453         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2454         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2455         mutex_unlock(&fs_devices->device_list_mutex);
2456 
2457         super_flags = btrfs_super_flags(disk_super) &
2458                       ~BTRFS_SUPER_FLAG_SEEDING;
2459         btrfs_set_super_flags(disk_super, super_flags);
2460 
2461         return 0;
2462 }
2463 
2464 /*
2465  * Store the expected generation for seed devices in device items.
2466  */
2467 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2468 {
2469         struct btrfs_fs_info *fs_info = trans->fs_info;
2470         struct btrfs_root *root = fs_info->chunk_root;
2471         struct btrfs_path *path;
2472         struct extent_buffer *leaf;
2473         struct btrfs_dev_item *dev_item;
2474         struct btrfs_device *device;
2475         struct btrfs_key key;
2476         u8 fs_uuid[BTRFS_FSID_SIZE];
2477         u8 dev_uuid[BTRFS_UUID_SIZE];
2478         u64 devid;
2479         int ret;
2480 
2481         path = btrfs_alloc_path();
2482         if (!path)
2483                 return -ENOMEM;
2484 
2485         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2486         key.offset = 0;
2487         key.type = BTRFS_DEV_ITEM_KEY;
2488 
2489         while (1) {
2490                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2491                 if (ret < 0)
2492                         goto error;
2493 
2494                 leaf = path->nodes[0];
2495 next_slot:
2496                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2497                         ret = btrfs_next_leaf(root, path);
2498                         if (ret > 0)
2499                                 break;
2500                         if (ret < 0)
2501                                 goto error;
2502                         leaf = path->nodes[0];
2503                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2504                         btrfs_release_path(path);
2505                         continue;
2506                 }
2507 
2508                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2510                     key.type != BTRFS_DEV_ITEM_KEY)
2511                         break;
2512 
2513                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2514                                           struct btrfs_dev_item);
2515                 devid = btrfs_device_id(leaf, dev_item);
2516                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2517                                    BTRFS_UUID_SIZE);
2518                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2519                                    BTRFS_FSID_SIZE);
2520                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2521                                            fs_uuid, true);
2522                 BUG_ON(!device); /* Logic error */
2523 
2524                 if (device->fs_devices->seeding) {
2525                         btrfs_set_device_generation(leaf, dev_item,
2526                                                     device->generation);
2527                         btrfs_mark_buffer_dirty(leaf);
2528                 }
2529 
2530                 path->slots[0]++;
2531                 goto next_slot;
2532         }
2533         ret = 0;
2534 error:
2535         btrfs_free_path(path);
2536         return ret;
2537 }
2538 
2539 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2540 {
2541         struct btrfs_root *root = fs_info->dev_root;
2542         struct request_queue *q;
2543         struct btrfs_trans_handle *trans;
2544         struct btrfs_device *device;
2545         struct block_device *bdev;
2546         struct super_block *sb = fs_info->sb;
2547         struct rcu_string *name;
2548         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2549         u64 orig_super_total_bytes;
2550         u64 orig_super_num_devices;
2551         int seeding_dev = 0;
2552         int ret = 0;
2553         bool unlocked = false;
2554 
2555         if (sb_rdonly(sb) && !fs_devices->seeding)
2556                 return -EROFS;
2557 
2558         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2559                                   fs_info->bdev_holder);
2560         if (IS_ERR(bdev))
2561                 return PTR_ERR(bdev);
2562 
2563         if (fs_devices->seeding) {
2564                 seeding_dev = 1;
2565                 down_write(&sb->s_umount);
2566                 mutex_lock(&uuid_mutex);
2567         }
2568 
2569         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2570 
2571         mutex_lock(&fs_devices->device_list_mutex);
2572         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2573                 if (device->bdev == bdev) {
2574                         ret = -EEXIST;
2575                         mutex_unlock(
2576                                 &fs_devices->device_list_mutex);
2577                         goto error;
2578                 }
2579         }
2580         mutex_unlock(&fs_devices->device_list_mutex);
2581 
2582         device = btrfs_alloc_device(fs_info, NULL, NULL);
2583         if (IS_ERR(device)) {
2584                 /* we can safely leave the fs_devices entry around */
2585                 ret = PTR_ERR(device);
2586                 goto error;
2587         }
2588 
2589         name = rcu_string_strdup(device_path, GFP_KERNEL);
2590         if (!name) {
2591                 ret = -ENOMEM;
2592                 goto error_free_device;
2593         }
2594         rcu_assign_pointer(device->name, name);
2595 
2596         trans = btrfs_start_transaction(root, 0);
2597         if (IS_ERR(trans)) {
2598                 ret = PTR_ERR(trans);
2599                 goto error_free_device;
2600         }
2601 
2602         q = bdev_get_queue(bdev);
2603         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2604         device->generation = trans->transid;
2605         device->io_width = fs_info->sectorsize;
2606         device->io_align = fs_info->sectorsize;
2607         device->sector_size = fs_info->sectorsize;
2608         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2609                                          fs_info->sectorsize);
2610         device->disk_total_bytes = device->total_bytes;
2611         device->commit_total_bytes = device->total_bytes;
2612         device->fs_info = fs_info;
2613         device->bdev = bdev;
2614         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2615         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2616         device->mode = FMODE_EXCL;
2617         device->dev_stats_valid = 1;
2618         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2619 
2620         if (seeding_dev) {
2621                 sb->s_flags &= ~SB_RDONLY;
2622                 ret = btrfs_prepare_sprout(fs_info);
2623                 if (ret) {
2624                         btrfs_abort_transaction(trans, ret);
2625                         goto error_trans;
2626                 }
2627         }
2628 
2629         device->fs_devices = fs_devices;
2630 
2631         mutex_lock(&fs_devices->device_list_mutex);
2632         mutex_lock(&fs_info->chunk_mutex);
2633         list_add_rcu(&device->dev_list, &fs_devices->devices);
2634         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2635         fs_devices->num_devices++;
2636         fs_devices->open_devices++;
2637         fs_devices->rw_devices++;
2638         fs_devices->total_devices++;
2639         fs_devices->total_rw_bytes += device->total_bytes;
2640 
2641         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2642 
2643         if (!blk_queue_nonrot(q))
2644                 fs_devices->rotating = 1;
2645 
2646         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2647         btrfs_set_super_total_bytes(fs_info->super_copy,
2648                 round_down(orig_super_total_bytes + device->total_bytes,
2649                            fs_info->sectorsize));
2650 
2651         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2652         btrfs_set_super_num_devices(fs_info->super_copy,
2653                                     orig_super_num_devices + 1);
2654 
2655         /* add sysfs device entry */
2656         btrfs_sysfs_add_device_link(fs_devices, device);
2657 
2658         /*
2659          * we've got more storage, clear any full flags on the space
2660          * infos
2661          */
2662         btrfs_clear_space_info_full(fs_info);
2663 
2664         mutex_unlock(&fs_info->chunk_mutex);
2665         mutex_unlock(&fs_devices->device_list_mutex);
2666 
2667         if (seeding_dev) {
2668                 mutex_lock(&fs_info->chunk_mutex);
2669                 ret = init_first_rw_device(trans);
2670                 mutex_unlock(&fs_info->chunk_mutex);
2671                 if (ret) {
2672                         btrfs_abort_transaction(trans, ret);
2673                         goto error_sysfs;
2674                 }
2675         }
2676 
2677         ret = btrfs_add_dev_item(trans, device);
2678         if (ret) {
2679                 btrfs_abort_transaction(trans, ret);
2680                 goto error_sysfs;
2681         }
2682 
2683         if (seeding_dev) {
2684                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2685 
2686                 ret = btrfs_finish_sprout(trans);
2687                 if (ret) {
2688                         btrfs_abort_transaction(trans, ret);
2689                         goto error_sysfs;
2690                 }
2691 
2692                 /* Sprouting would change fsid of the mounted root,
2693                  * so rename the fsid on the sysfs
2694                  */
2695                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2696                                                 fs_info->fs_devices->fsid);
2697                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2698                         btrfs_warn(fs_info,
2699                                    "sysfs: failed to create fsid for sprout");
2700         }
2701 
2702         ret = btrfs_commit_transaction(trans);
2703 
2704         if (seeding_dev) {
2705                 mutex_unlock(&uuid_mutex);
2706                 up_write(&sb->s_umount);
2707                 unlocked = true;
2708 
2709                 if (ret) /* transaction commit */
2710                         return ret;
2711 
2712                 ret = btrfs_relocate_sys_chunks(fs_info);
2713                 if (ret < 0)
2714                         btrfs_handle_fs_error(fs_info, ret,
2715                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2716                 trans = btrfs_attach_transaction(root);
2717                 if (IS_ERR(trans)) {
2718                         if (PTR_ERR(trans) == -ENOENT)
2719                                 return 0;
2720                         ret = PTR_ERR(trans);
2721                         trans = NULL;
2722                         goto error_sysfs;
2723                 }
2724                 ret = btrfs_commit_transaction(trans);
2725         }
2726 
2727         /* Update ctime/mtime for libblkid */
2728         update_dev_time(device_path);
2729         return ret;
2730 
2731 error_sysfs:
2732         btrfs_sysfs_rm_device_link(fs_devices, device);
2733         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2734         mutex_lock(&fs_info->chunk_mutex);
2735         list_del_rcu(&device->dev_list);
2736         list_del(&device->dev_alloc_list);
2737         fs_info->fs_devices->num_devices--;
2738         fs_info->fs_devices->open_devices--;
2739         fs_info->fs_devices->rw_devices--;
2740         fs_info->fs_devices->total_devices--;
2741         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2742         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2743         btrfs_set_super_total_bytes(fs_info->super_copy,
2744                                     orig_super_total_bytes);
2745         btrfs_set_super_num_devices(fs_info->super_copy,
2746                                     orig_super_num_devices);
2747         mutex_unlock(&fs_info->chunk_mutex);
2748         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2749 error_trans:
2750         if (seeding_dev)
2751                 sb->s_flags |= SB_RDONLY;
2752         if (trans)
2753                 btrfs_end_transaction(trans);
2754 error_free_device:
2755         btrfs_free_device(device);
2756 error:
2757         blkdev_put(bdev, FMODE_EXCL);
2758         if (seeding_dev && !unlocked) {
2759                 mutex_unlock(&uuid_mutex);
2760                 up_write(&sb->s_umount);
2761         }
2762         return ret;
2763 }
2764 
2765 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2766                                         struct btrfs_device *device)
2767 {
2768         int ret;
2769         struct btrfs_path *path;
2770         struct btrfs_root *root = device->fs_info->chunk_root;
2771         struct btrfs_dev_item *dev_item;
2772         struct extent_buffer *leaf;
2773         struct btrfs_key key;
2774 
2775         path = btrfs_alloc_path();
2776         if (!path)
2777                 return -ENOMEM;
2778 
2779         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2780         key.type = BTRFS_DEV_ITEM_KEY;
2781         key.offset = device->devid;
2782 
2783         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2784         if (ret < 0)
2785                 goto out;
2786 
2787         if (ret > 0) {
2788                 ret = -ENOENT;
2789                 goto out;
2790         }
2791 
2792         leaf = path->nodes[0];
2793         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2794 
2795         btrfs_set_device_id(leaf, dev_item, device->devid);
2796         btrfs_set_device_type(leaf, dev_item, device->type);
2797         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2798         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2799         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2800         btrfs_set_device_total_bytes(leaf, dev_item,
2801                                      btrfs_device_get_disk_total_bytes(device));
2802         btrfs_set_device_bytes_used(leaf, dev_item,
2803                                     btrfs_device_get_bytes_used(device));
2804         btrfs_mark_buffer_dirty(leaf);
2805 
2806 out:
2807         btrfs_free_path(path);
2808         return ret;
2809 }
2810 
2811 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2812                       struct btrfs_device *device, u64 new_size)
2813 {
2814         struct btrfs_fs_info *fs_info = device->fs_info;
2815         struct btrfs_super_block *super_copy = fs_info->super_copy;
2816         u64 old_total;
2817         u64 diff;
2818 
2819         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2820                 return -EACCES;
2821 
2822         new_size = round_down(new_size, fs_info->sectorsize);
2823 
2824         mutex_lock(&fs_info->chunk_mutex);
2825         old_total = btrfs_super_total_bytes(super_copy);
2826         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2827 
2828         if (new_size <= device->total_bytes ||
2829             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2830                 mutex_unlock(&fs_info->chunk_mutex);
2831                 return -EINVAL;
2832         }
2833 
2834         btrfs_set_super_total_bytes(super_copy,
2835                         round_down(old_total + diff, fs_info->sectorsize));
2836         device->fs_devices->total_rw_bytes += diff;
2837 
2838         btrfs_device_set_total_bytes(device, new_size);
2839         btrfs_device_set_disk_total_bytes(device, new_size);
2840         btrfs_clear_space_info_full(device->fs_info);
2841         if (list_empty(&device->post_commit_list))
2842                 list_add_tail(&device->post_commit_list,
2843                               &trans->transaction->dev_update_list);
2844         mutex_unlock(&fs_info->chunk_mutex);
2845 
2846         return btrfs_update_device(trans, device);
2847 }
2848 
2849 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2850 {
2851         struct btrfs_fs_info *fs_info = trans->fs_info;
2852         struct btrfs_root *root = fs_info->chunk_root;
2853         int ret;
2854         struct btrfs_path *path;
2855         struct btrfs_key key;
2856 
2857         path = btrfs_alloc_path();
2858         if (!path)
2859                 return -ENOMEM;
2860 
2861         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2862         key.offset = chunk_offset;
2863         key.type = BTRFS_CHUNK_ITEM_KEY;
2864 
2865         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2866         if (ret < 0)
2867                 goto out;
2868         else if (ret > 0) { /* Logic error or corruption */
2869                 btrfs_handle_fs_error(fs_info, -ENOENT,
2870                                       "Failed lookup while freeing chunk.");
2871                 ret = -ENOENT;
2872                 goto out;
2873         }
2874 
2875         ret = btrfs_del_item(trans, root, path);
2876         if (ret < 0)
2877                 btrfs_handle_fs_error(fs_info, ret,
2878                                       "Failed to delete chunk item.");
2879 out:
2880         btrfs_free_path(path);
2881         return ret;
2882 }
2883 
2884 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2885 {
2886         struct btrfs_super_block *super_copy = fs_info->super_copy;
2887         struct btrfs_disk_key *disk_key;
2888         struct btrfs_chunk *chunk;
2889         u8 *ptr;
2890         int ret = 0;
2891         u32 num_stripes;
2892         u32 array_size;
2893         u32 len = 0;
2894         u32 cur;
2895         struct btrfs_key key;
2896 
2897         mutex_lock(&fs_info->chunk_mutex);
2898         array_size = btrfs_super_sys_array_size(super_copy);
2899 
2900         ptr = super_copy->sys_chunk_array;
2901         cur = 0;
2902 
2903         while (cur < array_size) {
2904                 disk_key = (struct btrfs_disk_key *)ptr;
2905                 btrfs_disk_key_to_cpu(&key, disk_key);
2906 
2907                 len = sizeof(*disk_key);
2908 
2909                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2910                         chunk = (struct btrfs_chunk *)(ptr + len);
2911                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2912                         len += btrfs_chunk_item_size(num_stripes);
2913                 } else {
2914                         ret = -EIO;
2915                         break;
2916                 }
2917                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2918                     key.offset == chunk_offset) {
2919                         memmove(ptr, ptr + len, array_size - (cur + len));
2920                         array_size -= len;
2921                         btrfs_set_super_sys_array_size(super_copy, array_size);
2922                 } else {
2923                         ptr += len;
2924                         cur += len;
2925                 }
2926         }
2927         mutex_unlock(&fs_info->chunk_mutex);
2928         return ret;
2929 }
2930 
2931 /*
2932  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2933  * @logical: Logical block offset in bytes.
2934  * @length: Length of extent in bytes.
2935  *
2936  * Return: Chunk mapping or ERR_PTR.
2937  */
2938 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2939                                        u64 logical, u64 length)
2940 {
2941         struct extent_map_tree *em_tree;
2942         struct extent_map *em;
2943 
2944         em_tree = &fs_info->mapping_tree.map_tree;
2945         read_lock(&em_tree->lock);
2946         em = lookup_extent_mapping(em_tree, logical, length);
2947         read_unlock(&em_tree->lock);
2948 
2949         if (!em) {
2950                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2951                            logical, length);
2952                 return ERR_PTR(-EINVAL);
2953         }
2954 
2955         if (em->start > logical || em->start + em->len < logical) {
2956                 btrfs_crit(fs_info,
2957                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2958                            logical, length, em->start, em->start + em->len);
2959                 free_extent_map(em);
2960                 return ERR_PTR(-EINVAL);
2961         }
2962 
2963         /* callers are responsible for dropping em's ref. */
2964         return em;
2965 }
2966 
2967 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2968 {
2969         struct btrfs_fs_info *fs_info = trans->fs_info;
2970         struct extent_map *em;
2971         struct map_lookup *map;
2972         u64 dev_extent_len = 0;
2973         int i, ret = 0;
2974         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2975 
2976         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2977         if (IS_ERR(em)) {
2978                 /*
2979                  * This is a logic error, but we don't want to just rely on the
2980                  * user having built with ASSERT enabled, so if ASSERT doesn't
2981                  * do anything we still error out.
2982                  */
2983                 ASSERT(0);
2984                 return PTR_ERR(em);
2985         }
2986         map = em->map_lookup;
2987         mutex_lock(&fs_info->chunk_mutex);
2988         check_system_chunk(trans, map->type);
2989         mutex_unlock(&fs_info->chunk_mutex);
2990 
2991         /*
2992          * Take the device list mutex to prevent races with the final phase of
2993          * a device replace operation that replaces the device object associated
2994          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2995          */
2996         mutex_lock(&fs_devices->device_list_mutex);
2997         for (i = 0; i < map->num_stripes; i++) {
2998                 struct btrfs_device *device = map->stripes[i].dev;
2999                 ret = btrfs_free_dev_extent(trans, device,
3000                                             map->stripes[i].physical,
3001                                             &dev_extent_len);
3002                 if (ret) {
3003                         mutex_unlock(&fs_devices->device_list_mutex);
3004                         btrfs_abort_transaction(trans, ret);
3005                         goto out;
3006                 }
3007 
3008                 if (device->bytes_used > 0) {
3009                         mutex_lock(&fs_info->chunk_mutex);
3010                         btrfs_device_set_bytes_used(device,
3011                                         device->bytes_used - dev_extent_len);
3012                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3013                         btrfs_clear_space_info_full(fs_info);
3014                         mutex_unlock(&fs_info->chunk_mutex);
3015                 }
3016 
3017                 ret = btrfs_update_device(trans, device);
3018                 if (ret) {
3019                         mutex_unlock(&fs_devices->device_list_mutex);
3020                         btrfs_abort_transaction(trans, ret);
3021                         goto out;
3022                 }
3023         }
3024         mutex_unlock(&fs_devices->device_list_mutex);
3025 
3026         ret = btrfs_free_chunk(trans, chunk_offset);
3027         if (ret) {
3028                 btrfs_abort_transaction(trans, ret);
3029                 goto out;
3030         }
3031 
3032         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3033 
3034         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3035                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3036                 if (ret) {
3037                         btrfs_abort_transaction(trans, ret);
3038                         goto out;
3039                 }
3040         }
3041 
3042         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3043         if (ret) {
3044                 btrfs_abort_transaction(trans, ret);
3045                 goto out;
3046         }
3047 
3048 out:
3049         /* once for us */
3050         free_extent_map(em);
3051         return ret;
3052 }
3053 
3054 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3055 {
3056         struct btrfs_root *root = fs_info->chunk_root;
3057         struct btrfs_trans_handle *trans;
3058         int ret;
3059 
3060         /*
3061          * Prevent races with automatic removal of unused block groups.
3062          * After we relocate and before we remove the chunk with offset
3063          * chunk_offset, automatic removal of the block group can kick in,
3064          * resulting in a failure when calling btrfs_remove_chunk() below.
3065          *
3066          * Make sure to acquire this mutex before doing a tree search (dev
3067          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3068          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3069          * we release the path used to search the chunk/dev tree and before
3070          * the current task acquires this mutex and calls us.
3071          */
3072         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3073 
3074         ret = btrfs_can_relocate(fs_info, chunk_offset);
3075         if (ret)
3076                 return -ENOSPC;
3077 
3078         /* step one, relocate all the extents inside this chunk */
3079         btrfs_scrub_pause(fs_info);
3080         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3081         btrfs_scrub_continue(fs_info);
3082         if (ret)
3083                 return ret;
3084 
3085         /*
3086          * We add the kobjects here (and after forcing data chunk creation)
3087          * since relocation is the only place we'll create chunks of a new
3088          * type at runtime.  The only place where we'll remove the last
3089          * chunk of a type is the call immediately below this one.  Even
3090          * so, we're protected against races with the cleaner thread since
3091          * we're covered by the delete_unused_bgs_mutex.
3092          */
3093         btrfs_add_raid_kobjects(fs_info);
3094 
3095         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3096                                                      chunk_offset);
3097         if (IS_ERR(trans)) {
3098                 ret = PTR_ERR(trans);
3099                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3100                 return ret;
3101         }
3102 
3103         /*
3104          * step two, delete the device extents and the
3105          * chunk tree entries
3106          */
3107         ret = btrfs_remove_chunk(trans, chunk_offset);
3108         btrfs_end_transaction(trans);
3109         return ret;
3110 }
3111 
3112 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3113 {
3114         struct btrfs_root *chunk_root = fs_info->chunk_root;
3115         struct btrfs_path *path;
3116         struct extent_buffer *leaf;
3117         struct btrfs_chunk *chunk;
3118         struct btrfs_key key;
3119         struct btrfs_key found_key;
3120         u64 chunk_type;
3121         bool retried = false;
3122         int failed = 0;
3123         int ret;
3124 
3125         path = btrfs_alloc_path();
3126         if (!path)
3127                 return -ENOMEM;
3128 
3129 again:
3130         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3131         key.offset = (u64)-1;
3132         key.type = BTRFS_CHUNK_ITEM_KEY;
3133 
3134         while (1) {
3135                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3136                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3137                 if (ret < 0) {
3138                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3139                         goto error;
3140                 }
3141                 BUG_ON(ret == 0); /* Corruption */
3142 
3143                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3144                                           key.type);
3145                 if (ret)
3146                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3147                 if (ret < 0)
3148                         goto error;
3149                 if (ret > 0)
3150                         break;
3151 
3152                 leaf = path->nodes[0];
3153                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3154 
3155                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3156                                        struct btrfs_chunk);
3157                 chunk_type = btrfs_chunk_type(leaf, chunk);
3158                 btrfs_release_path(path);
3159 
3160                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3161                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3162                         if (ret == -ENOSPC)
3163                                 failed++;
3164                         else
3165                                 BUG_ON(ret);
3166                 }
3167                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3168 
3169                 if (found_key.offset == 0)
3170                         break;
3171                 key.offset = found_key.offset - 1;
3172         }
3173         ret = 0;
3174         if (failed && !retried) {
3175                 failed = 0;
3176                 retried = true;
3177                 goto again;
3178         } else if (WARN_ON(failed && retried)) {
3179                 ret = -ENOSPC;
3180         }
3181 error:
3182         btrfs_free_path(path);
3183         return ret;
3184 }
3185 
3186 /*
3187  * return 1 : allocate a data chunk successfully,
3188  * return <0: errors during allocating a data chunk,
3189  * return 0 : no need to allocate a data chunk.
3190  */
3191 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3192                                       u64 chunk_offset)
3193 {
3194         struct btrfs_block_group_cache *cache;
3195         u64 bytes_used;
3196         u64 chunk_type;
3197 
3198         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3199         ASSERT(cache);
3200         chunk_type = cache->flags;
3201         btrfs_put_block_group(cache);
3202 
3203         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3204                 spin_lock(&fs_info->data_sinfo->lock);
3205                 bytes_used = fs_info->data_sinfo->bytes_used;
3206                 spin_unlock(&fs_info->data_sinfo->lock);
3207 
3208                 if (!bytes_used) {
3209                         struct btrfs_trans_handle *trans;
3210                         int ret;
3211 
3212                         trans = btrfs_join_transaction(fs_info->tree_root);
3213                         if (IS_ERR(trans))
3214                                 return PTR_ERR(trans);
3215 
3216                         ret = btrfs_force_chunk_alloc(trans,
3217                                                       BTRFS_BLOCK_GROUP_DATA);
3218                         btrfs_end_transaction(trans);
3219                         if (ret < 0)
3220                                 return ret;
3221 
3222                         btrfs_add_raid_kobjects(fs_info);
3223 
3224                         return 1;
3225                 }
3226         }
3227         return 0;
3228 }
3229 
3230 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3231                                struct btrfs_balance_control *bctl)
3232 {
3233         struct btrfs_root *root = fs_info->tree_root;
3234         struct btrfs_trans_handle *trans;
3235         struct btrfs_balance_item *item;
3236         struct btrfs_disk_balance_args disk_bargs;
3237         struct btrfs_path *path;
3238         struct extent_buffer *leaf;
3239         struct btrfs_key key;
3240         int ret, err;
3241 
3242         path = btrfs_alloc_path();
3243         if (!path)
3244                 return -ENOMEM;
3245 
3246         trans = btrfs_start_transaction(root, 0);
3247         if (IS_ERR(trans)) {
3248                 btrfs_free_path(path);
3249                 return PTR_ERR(trans);
3250         }
3251 
3252         key.objectid = BTRFS_BALANCE_OBJECTID;
3253         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3254         key.offset = 0;
3255 
3256         ret = btrfs_insert_empty_item(trans, root, path, &key,
3257                                       sizeof(*item));
3258         if (ret)
3259                 goto out;
3260 
3261         leaf = path->nodes[0];
3262         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3263 
3264         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3265 
3266         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3267         btrfs_set_balance_data(leaf, item, &disk_bargs);
3268         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3269         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3270         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3271         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3272 
3273         btrfs_set_balance_flags(leaf, item, bctl->flags);
3274 
3275         btrfs_mark_buffer_dirty(leaf);
3276 out:
3277         btrfs_free_path(path);
3278         err = btrfs_commit_transaction(trans);
3279         if (err && !ret)
3280                 ret = err;
3281         return ret;
3282 }
3283 
3284 static int del_balance_item(struct btrfs_fs_info *fs_info)
3285 {
3286         struct btrfs_root *root = fs_info->tree_root;
3287         struct btrfs_trans_handle *trans;
3288         struct btrfs_path *path;
3289         struct btrfs_key key;
3290         int ret, err;
3291 
3292         path = btrfs_alloc_path();
3293         if (!path)
3294                 return -ENOMEM;
3295 
3296         trans = btrfs_start_transaction(root, 0);
3297         if (IS_ERR(trans)) {
3298                 btrfs_free_path(path);
3299                 return PTR_ERR(trans);
3300         }
3301 
3302         key.objectid = BTRFS_BALANCE_OBJECTID;
3303         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3304         key.offset = 0;
3305 
3306         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3307         if (ret < 0)
3308                 goto out;
3309         if (ret > 0) {
3310                 ret = -ENOENT;
3311                 goto out;
3312         }
3313 
3314         ret = btrfs_del_item(trans, root, path);
3315 out:
3316         btrfs_free_path(path);
3317         err = btrfs_commit_transaction(trans);
3318         if (err && !ret)
3319                 ret = err;
3320         return ret;
3321 }
3322 
3323 /*
3324  * This is a heuristic used to reduce the number of chunks balanced on
3325  * resume after balance was interrupted.
3326  */
3327 static void update_balance_args(struct btrfs_balance_control *bctl)
3328 {
3329         /*
3330          * Turn on soft mode for chunk types that were being converted.
3331          */
3332         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3333                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3334         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3335                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3336         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3337                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3338 
3339         /*
3340          * Turn on usage filter if is not already used.  The idea is
3341          * that chunks that we have already balanced should be
3342          * reasonably full.  Don't do it for chunks that are being
3343          * converted - that will keep us from relocating unconverted
3344          * (albeit full) chunks.
3345          */
3346         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3347             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3348             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3349                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3350                 bctl->data.usage = 90;
3351         }
3352         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3353             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3354             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3355                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3356                 bctl->sys.usage = 90;
3357         }
3358         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3359             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3360             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3361                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3362                 bctl->meta.usage = 90;
3363         }
3364 }
3365 
3366 /*
3367  * Clear the balance status in fs_info and delete the balance item from disk.
3368  */
3369 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3370 {
3371         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3372         int ret;
3373 
3374         BUG_ON(!fs_info->balance_ctl);
3375 
3376         spin_lock(&fs_info->balance_lock);
3377         fs_info->balance_ctl = NULL;
3378         spin_unlock(&fs_info->balance_lock);
3379 
3380         kfree(bctl);
3381         ret = del_balance_item(fs_info);
3382         if (ret)
3383                 btrfs_handle_fs_error(fs_info, ret, NULL);
3384 }
3385 
3386 /*
3387  * Balance filters.  Return 1 if chunk should be filtered out
3388  * (should not be balanced).
3389  */
3390 static int chunk_profiles_filter(u64 chunk_type,
3391                                  struct btrfs_balance_args *bargs)
3392 {
3393         chunk_type = chunk_to_extended(chunk_type) &
3394                                 BTRFS_EXTENDED_PROFILE_MASK;
3395 
3396         if (bargs->profiles & chunk_type)
3397                 return 0;
3398 
3399         return 1;
3400 }
3401 
3402 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3403                               struct btrfs_balance_args *bargs)
3404 {
3405         struct btrfs_block_group_cache *cache;
3406         u64 chunk_used;
3407         u64 user_thresh_min;
3408         u64 user_thresh_max;
3409         int ret = 1;
3410 
3411         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3412         chunk_used = btrfs_block_group_used(&cache->item);
3413 
3414         if (bargs->usage_min == 0)
3415                 user_thresh_min = 0;
3416         else
3417                 user_thresh_min = div_factor_fine(cache->key.offset,
3418                                         bargs->usage_min);
3419 
3420         if (bargs->usage_max == 0)
3421                 user_thresh_max = 1;
3422         else if (bargs->usage_max > 100)
3423                 user_thresh_max = cache->key.offset;
3424         else
3425                 user_thresh_max = div_factor_fine(cache->key.offset,
3426                                         bargs->usage_max);
3427 
3428         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3429                 ret = 0;
3430 
3431         btrfs_put_block_group(cache);
3432         return ret;
3433 }
3434 
3435 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3436                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3437 {
3438         struct btrfs_block_group_cache *cache;
3439         u64 chunk_used, user_thresh;
3440         int ret = 1;
3441 
3442         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3443         chunk_used = btrfs_block_group_used(&cache->item);
3444 
3445         if (bargs->usage_min == 0)
3446                 user_thresh = 1;
3447         else if (bargs->usage > 100)
3448                 user_thresh = cache->key.offset;
3449         else
3450                 user_thresh = div_factor_fine(cache->key.offset,
3451                                               bargs->usage);
3452 
3453         if (chunk_used < user_thresh)
3454                 ret = 0;
3455 
3456         btrfs_put_block_group(cache);
3457         return ret;
3458 }
3459 
3460 static int chunk_devid_filter(struct extent_buffer *leaf,
3461                               struct btrfs_chunk *chunk,
3462                               struct btrfs_balance_args *bargs)
3463 {
3464         struct btrfs_stripe *stripe;
3465         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3466         int i;
3467 
3468         for (i = 0; i < num_stripes; i++) {
3469                 stripe = btrfs_stripe_nr(chunk, i);
3470                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3471                         return 0;
3472         }
3473 
3474         return 1;
3475 }
3476 
3477 /* [pstart, pend) */
3478 static int chunk_drange_filter(struct extent_buffer *leaf,
3479                                struct btrfs_chunk *chunk,
3480                                struct btrfs_balance_args *bargs)
3481 {
3482         struct btrfs_stripe *stripe;
3483         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3484         u64 stripe_offset;
3485         u64 stripe_length;
3486         int factor;
3487         int i;
3488 
3489         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3490                 return 0;
3491 
3492         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3493              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3494                 factor = num_stripes / 2;
3495         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3496                 factor = num_stripes - 1;
3497         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3498                 factor = num_stripes - 2;
3499         } else {
3500                 factor = num_stripes;
3501         }
3502 
3503         for (i = 0; i < num_stripes; i++) {
3504                 stripe = btrfs_stripe_nr(chunk, i);
3505                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3506                         continue;
3507 
3508                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3509                 stripe_length = btrfs_chunk_length(leaf, chunk);
3510                 stripe_length = div_u64(stripe_length, factor);
3511 
3512                 if (stripe_offset < bargs->pend &&
3513                     stripe_offset + stripe_length > bargs->pstart)
3514                         return 0;
3515         }
3516 
3517         return 1;
3518 }
3519 
3520 /* [vstart, vend) */
3521 static int chunk_vrange_filter(struct extent_buffer *leaf,
3522                                struct btrfs_chunk *chunk,
3523                                u64 chunk_offset,
3524                                struct btrfs_balance_args *bargs)
3525 {
3526         if (chunk_offset < bargs->vend &&
3527             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3528                 /* at least part of the chunk is inside this vrange */
3529                 return 0;
3530 
3531         return 1;
3532 }
3533 
3534 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3535                                struct btrfs_chunk *chunk,
3536                                struct btrfs_balance_args *bargs)
3537 {
3538         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3539 
3540         if (bargs->stripes_min <= num_stripes
3541                         && num_stripes <= bargs->stripes_max)
3542                 return 0;
3543 
3544         return 1;
3545 }
3546 
3547 static int chunk_soft_convert_filter(u64 chunk_type,
3548                                      struct btrfs_balance_args *bargs)
3549 {
3550         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3551                 return 0;
3552 
3553         chunk_type = chunk_to_extended(chunk_type) &
3554                                 BTRFS_EXTENDED_PROFILE_MASK;
3555 
3556         if (bargs->target == chunk_type)
3557                 return 1;
3558 
3559         return 0;
3560 }
3561 
3562 static int should_balance_chunk(struct extent_buffer *leaf,
3563                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3564 {
3565         struct btrfs_fs_info *fs_info = leaf->fs_info;
3566         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3567         struct btrfs_balance_args *bargs = NULL;
3568         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3569 
3570         /* type filter */
3571         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3572               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3573                 return 0;
3574         }
3575 
3576         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3577                 bargs = &bctl->data;
3578         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3579                 bargs = &bctl->sys;
3580         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3581                 bargs = &bctl->meta;
3582 
3583         /* profiles filter */
3584         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3585             chunk_profiles_filter(chunk_type, bargs)) {
3586                 return 0;
3587         }
3588 
3589         /* usage filter */
3590         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3591             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3592                 return 0;
3593         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3594             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3595                 return 0;
3596         }
3597 
3598         /* devid filter */
3599         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3600             chunk_devid_filter(leaf, chunk, bargs)) {
3601                 return 0;
3602         }
3603 
3604         /* drange filter, makes sense only with devid filter */
3605         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3606             chunk_drange_filter(leaf, chunk, bargs)) {
3607                 return 0;
3608         }
3609 
3610         /* vrange filter */
3611         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3612             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3613                 return 0;
3614         }
3615 
3616         /* stripes filter */
3617         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3618             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3619                 return 0;
3620         }
3621 
3622         /* soft profile changing mode */
3623         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3624             chunk_soft_convert_filter(chunk_type, bargs)) {
3625                 return 0;
3626         }
3627 
3628         /*
3629          * limited by count, must be the last filter
3630          */
3631         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3632                 if (bargs->limit == 0)
3633                         return 0;
3634                 else
3635                         bargs->limit--;
3636         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3637                 /*
3638                  * Same logic as the 'limit' filter; the minimum cannot be
3639                  * determined here because we do not have the global information
3640                  * about the count of all chunks that satisfy the filters.
3641                  */
3642                 if (bargs->limit_max == 0)
3643                         return 0;
3644                 else
3645                         bargs->limit_max--;
3646         }
3647 
3648         return 1;
3649 }
3650 
3651 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3652 {
3653         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3654         struct btrfs_root *chunk_root = fs_info->chunk_root;
3655         u64 chunk_type;
3656         struct btrfs_chunk *chunk;
3657         struct btrfs_path *path = NULL;
3658         struct btrfs_key key;
3659         struct btrfs_key found_key;
3660         struct extent_buffer *leaf;
3661         int slot;
3662         int ret;
3663         int enospc_errors = 0;
3664         bool counting = true;
3665         /* The single value limit and min/max limits use the same bytes in the */
3666         u64 limit_data = bctl->data.limit;
3667         u64 limit_meta = bctl->meta.limit;
3668         u64 limit_sys = bctl->sys.limit;
3669         u32 count_data = 0;
3670         u32 count_meta = 0;
3671         u32 count_sys = 0;
3672         int chunk_reserved = 0;
3673 
3674         path = btrfs_alloc_path();
3675         if (!path) {
3676                 ret = -ENOMEM;
3677                 goto error;
3678         }
3679 
3680         /* zero out stat counters */
3681         spin_lock(&fs_info->balance_lock);
3682         memset(&bctl->stat, 0, sizeof(bctl->stat));
3683         spin_unlock(&fs_info->balance_lock);
3684 again:
3685         if (!counting) {
3686                 /*
3687                  * The single value limit and min/max limits use the same bytes
3688                  * in the
3689                  */
3690                 bctl->data.limit = limit_data;
3691                 bctl->meta.limit = limit_meta;
3692                 bctl->sys.limit = limit_sys;
3693         }
3694         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3695         key.offset = (u64)-1;
3696         key.type = BTRFS_CHUNK_ITEM_KEY;
3697 
3698         while (1) {
3699                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3700                     atomic_read(&fs_info->balance_cancel_req)) {
3701                         ret = -ECANCELED;
3702                         goto error;
3703                 }
3704 
3705                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3706                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3707                 if (ret < 0) {
3708                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3709                         goto error;
3710                 }
3711 
3712                 /*
3713                  * this shouldn't happen, it means the last relocate
3714                  * failed
3715                  */
3716                 if (ret == 0)
3717                         BUG(); /* FIXME break ? */
3718 
3719                 ret = btrfs_previous_item(chunk_root, path, 0,
3720                                           BTRFS_CHUNK_ITEM_KEY);
3721                 if (ret) {
3722                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3723                         ret = 0;
3724                         break;
3725                 }
3726 
3727                 leaf = path->nodes[0];
3728                 slot = path->slots[0];
3729                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3730 
3731                 if (found_key.objectid != key.objectid) {
3732                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3733                         break;
3734                 }
3735 
3736                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3737                 chunk_type = btrfs_chunk_type(leaf, chunk);
3738 
3739                 if (!counting) {
3740                         spin_lock(&fs_info->balance_lock);
3741                         bctl->stat.considered++;
3742                         spin_unlock(&fs_info->balance_lock);
3743                 }
3744 
3745                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3746 
3747                 btrfs_release_path(path);
3748                 if (!ret) {
3749                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3750                         goto loop;
3751                 }
3752 
3753                 if (counting) {
3754                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3755                         spin_lock(&fs_info->balance_lock);
3756                         bctl->stat.expected++;
3757                         spin_unlock(&fs_info->balance_lock);
3758 
3759                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3760                                 count_data++;
3761                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3762                                 count_sys++;
3763                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3764                                 count_meta++;
3765 
3766                         goto loop;
3767                 }
3768 
3769                 /*
3770                  * Apply limit_min filter, no need to check if the LIMITS
3771                  * filter is used, limit_min is 0 by default
3772                  */
3773                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3774                                         count_data < bctl->data.limit_min)
3775                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3776                                         count_meta < bctl->meta.limit_min)
3777                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3778                                         count_sys < bctl->sys.limit_min)) {
3779                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3780                         goto loop;
3781                 }
3782 
3783                 if (!chunk_reserved) {
3784                         /*
3785                          * We may be relocating the only data chunk we have,
3786                          * which could potentially end up with losing data's
3787                          * raid profile, so lets allocate an empty one in
3788                          * advance.
3789                          */
3790                         ret = btrfs_may_alloc_data_chunk(fs_info,
3791                                                          found_key.offset);
3792                         if (ret < 0) {
3793                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3794                                 goto error;
3795                         } else if (ret == 1) {
3796                                 chunk_reserved = 1;
3797                         }
3798                 }
3799 
3800                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3801                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3802                 if (ret == -ENOSPC) {
3803                         enospc_errors++;
3804                 } else if (ret == -ETXTBSY) {
3805                         btrfs_info(fs_info,
3806            "skipping relocation of block group %llu due to active swapfile",
3807                                    found_key.offset);
3808                         ret = 0;
3809                 } else if (ret) {
3810                         goto error;
3811                 } else {
3812                         spin_lock(&fs_info->balance_lock);
3813                         bctl->stat.completed++;
3814                         spin_unlock(&fs_info->balance_lock);
3815                 }
3816 loop:
3817                 if (found_key.offset == 0)
3818                         break;
3819                 key.offset = found_key.offset - 1;
3820         }
3821 
3822         if (counting) {
3823                 btrfs_release_path(path);
3824                 counting = false;
3825                 goto again;
3826         }
3827 error:
3828         btrfs_free_path(path);
3829         if (enospc_errors) {
3830                 btrfs_info(fs_info, "%d enospc errors during balance",
3831                            enospc_errors);
3832                 if (!ret)
3833                         ret = -ENOSPC;
3834         }
3835 
3836         return ret;
3837 }
3838 
3839 /**
3840  * alloc_profile_is_valid - see if a given profile is valid and reduced
3841  * @flags: profile to validate
3842  * @extended: if true @flags is treated as an extended profile
3843  */
3844 static int alloc_profile_is_valid(u64 flags, int extended)
3845 {
3846         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3847                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3848 
3849         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3850 
3851         /* 1) check that all other bits are zeroed */
3852         if (flags & ~mask)
3853                 return 0;
3854 
3855         /* 2) see if profile is reduced */
3856         if (flags == 0)
3857                 return !extended; /* "" is valid for usual profiles */
3858 
3859         /* true if exactly one bit set */
3860         return is_power_of_2(flags);
3861 }
3862 
3863 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3864 {
3865         /* cancel requested || normal exit path */
3866         return atomic_read(&fs_info->balance_cancel_req) ||
3867                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3868                  atomic_read(&fs_info->balance_cancel_req) == 0);
3869 }
3870 
3871 /* Non-zero return value signifies invalidity */
3872 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3873                 u64 allowed)
3874 {
3875         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3876                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3877                  (bctl_arg->target & ~allowed)));
3878 }
3879 
3880 /*
3881  * Fill @buf with textual description of balance filter flags @bargs, up to
3882  * @size_buf including the terminating null. The output may be trimmed if it
3883  * does not fit into the provided buffer.
3884  */
3885 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3886                                  u32 size_buf)
3887 {
3888         int ret;
3889         u32 size_bp = size_buf;
3890         char *bp = buf;
3891         u64 flags = bargs->flags;
3892         char tmp_buf[128] = {'\0'};
3893 
3894         if (!flags)
3895                 return;
3896 
3897 #define CHECK_APPEND_NOARG(a)                                           \
3898         do {                                                            \
3899                 ret = snprintf(bp, size_bp, (a));                       \
3900                 if (ret < 0 || ret >= size_bp)                          \
3901                         goto out_overflow;                              \
3902                 size_bp -= ret;                                         \
3903                 bp += ret;                                              \
3904         } while (0)
3905 
3906 #define CHECK_APPEND_1ARG(a, v1)                                        \
3907         do {                                                            \
3908                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3909                 if (ret < 0 || ret >= size_bp)                          \
3910                         goto out_overflow;                              \
3911                 size_bp -= ret;                                         \
3912                 bp += ret;                                              \
3913         } while (0)
3914 
3915 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3916         do {                                                            \
3917                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3918                 if (ret < 0 || ret >= size_bp)                          \
3919                         goto out_overflow;                              \
3920                 size_bp -= ret;                                         \
3921                 bp += ret;                                              \
3922         } while (0)
3923 
3924         if (flags & BTRFS_BALANCE_ARGS_CONVERT) {
3925                 int index = btrfs_bg_flags_to_raid_index(bargs->target);
3926 
3927                 CHECK_APPEND_1ARG("convert=%s,", get_raid_name(index));
3928         }
3929 
3930         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3931                 CHECK_APPEND_NOARG("soft,");
3932 
3933         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3934                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3935                                             sizeof(tmp_buf));
3936                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3937         }
3938 
3939         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3940                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3941 
3942         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3943                 CHECK_APPEND_2ARG("usage=%u..%u,",
3944                                   bargs->usage_min, bargs->usage_max);
3945 
3946         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3947                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3948 
3949         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3950                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3951                                   bargs->pstart, bargs->pend);
3952 
3953         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3954                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3955                                   bargs->vstart, bargs->vend);
3956 
3957         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3958                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3959 
3960         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3961                 CHECK_APPEND_2ARG("limit=%u..%u,",
3962                                 bargs->limit_min, bargs->limit_max);
3963 
3964         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3965                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3966                                   bargs->stripes_min, bargs->stripes_max);
3967 
3968 #undef CHECK_APPEND_2ARG
3969 #undef CHECK_APPEND_1ARG
3970 #undef CHECK_APPEND_NOARG
3971 
3972 out_overflow:
3973 
3974         if (size_bp < size_buf)
3975                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3976         else
3977                 buf[0] = '\0';
3978 }
3979 
3980 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3981 {
3982         u32 size_buf = 1024;
3983         char tmp_buf[192] = {'\0'};
3984         char *buf;
3985         char *bp;
3986         u32 size_bp = size_buf;
3987         int ret;
3988         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3989 
3990         buf = kzalloc(size_buf, GFP_KERNEL);
3991         if (!buf)
3992                 return;
3993 
3994         bp = buf;
3995 
3996 #define CHECK_APPEND_1ARG(a, v1)                                        \
3997         do {                                                            \
3998                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3999                 if (ret < 0 || ret >= size_bp)                          \
4000                         goto out_overflow;                              \
4001                 size_bp -= ret;                                         \
4002                 bp += ret;                                              \
4003         } while (0)
4004 
4005         if (bctl->flags & BTRFS_BALANCE_FORCE)
4006                 CHECK_APPEND_1ARG("%s", "-f ");
4007 
4008         if (bctl->flags & BTRFS_BALANCE_DATA) {
4009                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4010                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4011         }
4012 
4013         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4014                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4015                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4016         }
4017 
4018         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4019                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4020                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4021         }
4022 
4023 #undef CHECK_APPEND_1ARG
4024 
4025 out_overflow:
4026 
4027         if (size_bp < size_buf)
4028                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4029         btrfs_info(fs_info, "balance: %s %s",
4030                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4031                    "resume" : "start", buf);
4032 
4033         kfree(buf);
4034 }
4035 
4036 /*
4037  * Should be called with balance mutexe held
4038  */
4039 int btrfs_balance(struct btrfs_fs_info *fs_info,
4040                   struct btrfs_balance_control *bctl,
4041                   struct btrfs_ioctl_balance_args *bargs)
4042 {
4043         u64 meta_target, data_target;
4044         u64 allowed;
4045         int mixed = 0;
4046         int ret;
4047         u64 num_devices;
4048         unsigned seq;
4049         bool reducing_integrity;
4050 
4051         if (btrfs_fs_closing(fs_info) ||
4052             atomic_read(&fs_info->balance_pause_req) ||
4053             atomic_read(&fs_info->balance_cancel_req)) {
4054                 ret = -EINVAL;
4055                 goto out;
4056         }
4057 
4058         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4059         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4060                 mixed = 1;
4061 
4062         /*
4063          * In case of mixed groups both data and meta should be picked,
4064          * and identical options should be given for both of them.
4065          */
4066         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4067         if (mixed && (bctl->flags & allowed)) {
4068                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4069                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4070                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4071                         btrfs_err(fs_info,
4072           "balance: mixed groups data and metadata options must be the same");
4073                         ret = -EINVAL;
4074                         goto out;
4075                 }
4076         }
4077 
4078         num_devices = btrfs_num_devices(fs_info);
4079 
4080         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
4081         if (num_devices > 1)
4082                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
4083         if (num_devices > 2)
4084                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
4085         if (num_devices > 3)
4086                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
4087                             BTRFS_BLOCK_GROUP_RAID6);
4088         if (validate_convert_profile(&bctl->data, allowed)) {
4089                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
4090 
4091                 btrfs_err(fs_info,
4092                           "balance: invalid convert data profile %s",
4093                           get_raid_name(index));
4094                 ret = -EINVAL;
4095                 goto out;
4096         }
4097         if (validate_convert_profile(&bctl->meta, allowed)) {
4098                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
4099 
4100                 btrfs_err(fs_info,
4101                           "balance: invalid convert metadata profile %s",
4102                           get_raid_name(index));
4103                 ret = -EINVAL;
4104                 goto out;
4105         }
4106         if (validate_convert_profile(&bctl->sys, allowed)) {
4107                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
4108 
4109                 btrfs_err(fs_info,
4110                           "balance: invalid convert system profile %s",
4111                           get_raid_name(index));
4112                 ret = -EINVAL;
4113                 goto out;
4114         }
4115 
4116         /* allow to reduce meta or sys integrity only if force set */
4117         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4118                         BTRFS_BLOCK_GROUP_RAID10 |
4119                         BTRFS_BLOCK_GROUP_RAID5 |
4120                         BTRFS_BLOCK_GROUP_RAID6;
4121         do {
4122                 seq = read_seqbegin(&fs_info->profiles_lock);
4123 
4124                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4125                      (fs_info->avail_system_alloc_bits & allowed) &&
4126                      !(bctl->sys.target & allowed)) ||
4127                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4128                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4129                      !(bctl->meta.target & allowed)))
4130                         reducing_integrity = true;
4131                 else
4132                         reducing_integrity = false;
4133 
4134                 /* if we're not converting, the target field is uninitialized */
4135                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4136                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4137                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4138                         bctl->data.target : fs_info->avail_data_alloc_bits;
4139         } while (read_seqretry(&fs_info->profiles_lock, seq));
4140 
4141         if (reducing_integrity) {
4142                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4143                         btrfs_info(fs_info,
4144                                    "balance: force reducing metadata integrity");
4145                 } else {
4146                         btrfs_err(fs_info,
4147           "balance: reduces metadata integrity, use --force if you want this");
4148                         ret = -EINVAL;
4149                         goto out;
4150                 }
4151         }
4152 
4153         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4154                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4155                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
4156                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
4157 
4158                 btrfs_warn(fs_info,
4159         "balance: metadata profile %s has lower redundancy than data profile %s",
4160                            get_raid_name(meta_index), get_raid_name(data_index));
4161         }
4162 
4163         ret = insert_balance_item(fs_info, bctl);
4164         if (ret && ret != -EEXIST)
4165                 goto out;
4166 
4167         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4168                 BUG_ON(ret == -EEXIST);
4169                 BUG_ON(fs_info->balance_ctl);
4170                 spin_lock(&fs_info->balance_lock);
4171                 fs_info->balance_ctl = bctl;
4172                 spin_unlock(&fs_info->balance_lock);
4173         } else {
4174                 BUG_ON(ret != -EEXIST);
4175                 spin_lock(&fs_info->balance_lock);
4176                 update_balance_args(bctl);
4177                 spin_unlock(&fs_info->balance_lock);
4178         }
4179 
4180         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4181         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4182         describe_balance_start_or_resume(fs_info);
4183         mutex_unlock(&fs_info->balance_mutex);
4184 
4185         ret = __btrfs_balance(fs_info);
4186 
4187         mutex_lock(&fs_info->balance_mutex);
4188         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4189                 btrfs_info(fs_info, "balance: paused");
4190         else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4191                 btrfs_info(fs_info, "balance: canceled");
4192         else
4193                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4194 
4195         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4196 
4197         if (bargs) {
4198                 memset(bargs, 0, sizeof(*bargs));
4199                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4200         }
4201 
4202         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4203             balance_need_close(fs_info)) {
4204                 reset_balance_state(fs_info);
4205                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4206         }
4207 
4208         wake_up(&fs_info->balance_wait_q);
4209 
4210         return ret;
4211 out:
4212         if (bctl->flags & BTRFS_BALANCE_RESUME)
4213                 reset_balance_state(fs_info);
4214         else
4215                 kfree(bctl);
4216         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4217 
4218         return ret;
4219 }
4220 
4221 static int balance_kthread(void *data)
4222 {
4223         struct btrfs_fs_info *fs_info = data;
4224         int ret = 0;
4225 
4226         mutex_lock(&fs_info->balance_mutex);
4227         if (fs_info->balance_ctl)
4228                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4229         mutex_unlock(&fs_info->balance_mutex);
4230 
4231         return ret;
4232 }
4233 
4234 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4235 {
4236         struct task_struct *tsk;
4237 
4238         mutex_lock(&fs_info->balance_mutex);
4239         if (!fs_info->balance_ctl) {
4240                 mutex_unlock(&fs_info->balance_mutex);
4241                 return 0;
4242         }
4243         mutex_unlock(&fs_info->balance_mutex);
4244 
4245         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4246                 btrfs_info(fs_info, "balance: resume skipped");
4247                 return 0;
4248         }
4249 
4250         /*
4251          * A ro->rw remount sequence should continue with the paused balance
4252          * regardless of who pauses it, system or the user as of now, so set
4253          * the resume flag.
4254          */
4255         spin_lock(&fs_info->balance_lock);
4256         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4257         spin_unlock(&fs_info->balance_lock);
4258 
4259         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4260         return PTR_ERR_OR_ZERO(tsk);
4261 }
4262 
4263 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4264 {
4265         struct btrfs_balance_control *bctl;
4266         struct btrfs_balance_item *item;
4267         struct btrfs_disk_balance_args disk_bargs;
4268         struct btrfs_path *path;
4269         struct extent_buffer *leaf;
4270         struct btrfs_key key;
4271         int ret;
4272 
4273         path = btrfs_alloc_path();
4274         if (!path)
4275                 return -ENOMEM;
4276 
4277         key.objectid = BTRFS_BALANCE_OBJECTID;
4278         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4279         key.offset = 0;
4280 
4281         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4282         if (ret < 0)
4283                 goto out;
4284         if (ret > 0) { /* ret = -ENOENT; */
4285                 ret = 0;
4286                 goto out;
4287         }
4288 
4289         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4290         if (!bctl) {
4291                 ret = -ENOMEM;
4292                 goto out;
4293         }
4294 
4295         leaf = path->nodes[0];
4296         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4297 
4298         bctl->flags = btrfs_balance_flags(leaf, item);
4299         bctl->flags |= BTRFS_BALANCE_RESUME;
4300 
4301         btrfs_balance_data(leaf, item, &disk_bargs);
4302         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4303         btrfs_balance_meta(leaf, item, &disk_bargs);
4304         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4305         btrfs_balance_sys(leaf, item, &disk_bargs);
4306         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4307 
4308         /*
4309          * This should never happen, as the paused balance state is recovered
4310          * during mount without any chance of other exclusive ops to collide.
4311          *
4312          * This gives the exclusive op status to balance and keeps in paused
4313          * state until user intervention (cancel or umount). If the ownership
4314          * cannot be assigned, show a message but do not fail. The balance
4315          * is in a paused state and must have fs_info::balance_ctl properly
4316          * set up.
4317          */
4318         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4319                 btrfs_warn(fs_info,
4320         "balance: cannot set exclusive op status, resume manually");
4321 
4322         mutex_lock(&fs_info->balance_mutex);
4323         BUG_ON(fs_info->balance_ctl);
4324         spin_lock(&fs_info->balance_lock);
4325         fs_info->balance_ctl = bctl;
4326         spin_unlock(&fs_info->balance_lock);
4327         mutex_unlock(&fs_info->balance_mutex);
4328 out:
4329         btrfs_free_path(path);
4330         return ret;
4331 }
4332 
4333 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4334 {
4335         int ret = 0;
4336 
4337         mutex_lock(&fs_info->balance_mutex);
4338         if (!fs_info->balance_ctl) {
4339                 mutex_unlock(&fs_info->balance_mutex);
4340                 return -ENOTCONN;
4341         }
4342 
4343         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4344                 atomic_inc(&fs_info->balance_pause_req);
4345                 mutex_unlock(&fs_info->balance_mutex);
4346 
4347                 wait_event(fs_info->balance_wait_q,
4348                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4349 
4350                 mutex_lock(&fs_info->balance_mutex);
4351                 /* we are good with balance_ctl ripped off from under us */
4352                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4353                 atomic_dec(&fs_info->balance_pause_req);
4354         } else {
4355                 ret = -ENOTCONN;
4356         }
4357 
4358         mutex_unlock(&fs_info->balance_mutex);
4359         return ret;
4360 }
4361 
4362 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4363 {
4364         mutex_lock(&fs_info->balance_mutex);
4365         if (!fs_info->balance_ctl) {
4366                 mutex_unlock(&fs_info->balance_mutex);
4367                 return -ENOTCONN;
4368         }
4369 
4370         /*
4371          * A paused balance with the item stored on disk can be resumed at
4372          * mount time if the mount is read-write. Otherwise it's still paused
4373          * and we must not allow cancelling as it deletes the item.
4374          */
4375         if (sb_rdonly(fs_info->sb)) {
4376                 mutex_unlock(&fs_info->balance_mutex);
4377                 return -EROFS;
4378         }
4379 
4380         atomic_inc(&fs_info->balance_cancel_req);
4381         /*
4382          * if we are running just wait and return, balance item is
4383          * deleted in btrfs_balance in this case
4384          */
4385         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4386                 mutex_unlock(&fs_info->balance_mutex);
4387                 wait_event(fs_info->balance_wait_q,
4388                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4389                 mutex_lock(&fs_info->balance_mutex);
4390         } else {
4391                 mutex_unlock(&fs_info->balance_mutex);
4392                 /*
4393                  * Lock released to allow other waiters to continue, we'll
4394                  * reexamine the status again.
4395                  */
4396                 mutex_lock(&fs_info->balance_mutex);
4397 
4398                 if (fs_info->balance_ctl) {
4399                         reset_balance_state(fs_info);
4400                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4401                         btrfs_info(fs_info, "balance: canceled");
4402                 }
4403         }
4404 
4405         BUG_ON(fs_info->balance_ctl ||
4406                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4407         atomic_dec(&fs_info->balance_cancel_req);
4408         mutex_unlock(&fs_info->balance_mutex);
4409         return 0;
4410 }
4411 
4412 static int btrfs_uuid_scan_kthread(void *data)
4413 {
4414         struct btrfs_fs_info *fs_info = data;
4415         struct btrfs_root *root = fs_info->tree_root;
4416         struct btrfs_key key;
4417         struct btrfs_path *path = NULL;
4418         int ret = 0;
4419         struct extent_buffer *eb;
4420         int slot;
4421         struct btrfs_root_item root_item;
4422         u32 item_size;
4423         struct btrfs_trans_handle *trans = NULL;
4424 
4425         path = btrfs_alloc_path();
4426         if (!path) {
4427                 ret = -ENOMEM;
4428                 goto out;
4429         }
4430 
4431         key.objectid = 0;
4432         key.type = BTRFS_ROOT_ITEM_KEY;
4433         key.offset = 0;
4434 
4435         while (1) {
4436                 ret = btrfs_search_forward(root, &key, path,
4437                                 BTRFS_OLDEST_GENERATION);
4438                 if (ret) {
4439                         if (ret > 0)
4440                                 ret = 0;
4441                         break;
4442                 }
4443 
4444                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4445                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4446                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4447                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4448                         goto skip;
4449 
4450                 eb = path->nodes[0];
4451                 slot = path->slots[0];
4452                 item_size = btrfs_item_size_nr(eb, slot);
4453                 if (item_size < sizeof(root_item))
4454                         goto skip;
4455 
4456                 read_extent_buffer(eb, &root_item,
4457                                    btrfs_item_ptr_offset(eb, slot),
4458                                    (int)sizeof(root_item));
4459                 if (btrfs_root_refs(&root_item) == 0)
4460                         goto skip;
4461 
4462                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4463                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4464                         if (trans)
4465                                 goto update_tree;
4466 
4467                         btrfs_release_path(path);
4468                         /*
4469                          * 1 - subvol uuid item
4470                          * 1 - received_subvol uuid item
4471                          */
4472                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4473                         if (IS_ERR(trans)) {
4474                                 ret = PTR_ERR(trans);
4475                                 break;
4476                         }
4477                         continue;
4478                 } else {
4479                         goto skip;
4480                 }
4481 update_tree:
4482                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4483                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4484                                                   BTRFS_UUID_KEY_SUBVOL,
4485                                                   key.objectid);
4486                         if (ret < 0) {
4487                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4488                                         ret);
4489                                 break;
4490                         }
4491                 }
4492 
4493                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4494                         ret = btrfs_uuid_tree_add(trans,
4495                                                   root_item.received_uuid,
4496                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4497                                                   key.objectid);
4498                         if (ret < 0) {
4499                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4500                                         ret);
4501                                 break;
4502                         }
4503                 }
4504 
4505 skip:
4506                 if (trans) {
4507                         ret = btrfs_end_transaction(trans);
4508                         trans = NULL;
4509                         if (ret)
4510                                 break;
4511                 }
4512 
4513                 btrfs_release_path(path);
4514                 if (key.offset < (u64)-1) {
4515                         key.offset++;
4516                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4517                         key.offset = 0;
4518                         key.type = BTRFS_ROOT_ITEM_KEY;
4519                 } else if (key.objectid < (u64)-1) {
4520                         key.offset = 0;
4521                         key.type = BTRFS_ROOT_ITEM_KEY;
4522                         key.objectid++;
4523                 } else {
4524                         break;
4525                 }
4526                 cond_resched();
4527         }
4528 
4529 out:
4530         btrfs_free_path(path);
4531         if (trans && !IS_ERR(trans))
4532                 btrfs_end_transaction(trans);
4533         if (ret)
4534                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4535         else
4536                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4537         up(&fs_info->uuid_tree_rescan_sem);
4538         return 0;
4539 }
4540 
4541 /*
4542  * Callback for btrfs_uuid_tree_iterate().
4543  * returns:
4544  * 0    check succeeded, the entry is not outdated.
4545  * < 0  if an error occurred.
4546  * > 0  if the check failed, which means the caller shall remove the entry.
4547  */
4548 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4549                                        u8 *uuid, u8 type, u64 subid)
4550 {
4551         struct btrfs_key key;
4552         int ret = 0;
4553         struct btrfs_root *subvol_root;
4554 
4555         if (type != BTRFS_UUID_KEY_SUBVOL &&
4556             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4557                 goto out;
4558 
4559         key.objectid = subid;
4560         key.type = BTRFS_ROOT_ITEM_KEY;
4561         key.offset = (u64)-1;
4562         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4563         if (IS_ERR(subvol_root)) {
4564                 ret = PTR_ERR(subvol_root);
4565                 if (ret == -ENOENT)
4566                         ret = 1;
4567                 goto out;
4568         }
4569 
4570         switch (type) {
4571         case BTRFS_UUID_KEY_SUBVOL:
4572                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4573                         ret = 1;
4574                 break;
4575         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4576                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4577                            BTRFS_UUID_SIZE))
4578                         ret = 1;
4579                 break;
4580         }
4581 
4582 out:
4583         return ret;
4584 }
4585 
4586 static int btrfs_uuid_rescan_kthread(void *data)
4587 {
4588         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4589         int ret;
4590 
4591         /*
4592          * 1st step is to iterate through the existing UUID tree and
4593          * to delete all entries that contain outdated data.
4594          * 2nd step is to add all missing entries to the UUID tree.
4595          */
4596         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4597         if (ret < 0) {
4598                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4599                 up(&fs_info->uuid_tree_rescan_sem);
4600                 return ret;
4601         }
4602         return btrfs_uuid_scan_kthread(data);
4603 }
4604 
4605 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4606 {
4607         struct btrfs_trans_handle *trans;
4608         struct btrfs_root *tree_root = fs_info->tree_root;
4609         struct btrfs_root *uuid_root;
4610         struct task_struct *task;
4611         int ret;
4612 
4613         /*
4614          * 1 - root node
4615          * 1 - root item
4616          */
4617         trans = btrfs_start_transaction(tree_root, 2);
4618         if (IS_ERR(trans))
4619                 return PTR_ERR(trans);
4620 
4621         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4622         if (IS_ERR(uuid_root)) {
4623                 ret = PTR_ERR(uuid_root);
4624                 btrfs_abort_transaction(trans, ret);
4625                 btrfs_end_transaction(trans);
4626                 return ret;
4627         }
4628 
4629         fs_info->uuid_root = uuid_root;
4630 
4631         ret = btrfs_commit_transaction(trans);
4632         if (ret)
4633                 return ret;
4634 
4635         down(&fs_info->uuid_tree_rescan_sem);
4636         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4637         if (IS_ERR(task)) {
4638                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4639                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4640                 up(&fs_info->uuid_tree_rescan_sem);
4641                 return PTR_ERR(task);
4642         }
4643 
4644         return 0;
4645 }
4646 
4647 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4648 {
4649         struct task_struct *task;
4650 
4651         down(&fs_info->uuid_tree_rescan_sem);
4652         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4653         if (IS_ERR(task)) {
4654                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4655                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4656                 up(&fs_info->uuid_tree_rescan_sem);
4657                 return PTR_ERR(task);
4658         }
4659 
4660         return 0;
4661 }
4662 
4663 /*
4664  * shrinking a device means finding all of the device extents past
4665  * the new size, and then following the back refs to the chunks.
4666  * The chunk relocation code actually frees the device extent
4667  */
4668 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4669 {
4670         struct btrfs_fs_info *fs_info = device->fs_info;
4671         struct btrfs_root *root = fs_info->dev_root;
4672         struct btrfs_trans_handle *trans;
4673         struct btrfs_dev_extent *dev_extent = NULL;
4674         struct btrfs_path *path;
4675         u64 length;
4676         u64 chunk_offset;
4677         int ret;
4678         int slot;
4679         int failed = 0;
4680         bool retried = false;
4681         struct extent_buffer *l;
4682         struct btrfs_key key;
4683         struct btrfs_super_block *super_copy = fs_info->super_copy;
4684         u64 old_total = btrfs_super_total_bytes(super_copy);
4685         u64 old_size = btrfs_device_get_total_bytes(device);
4686         u64 diff;
4687         u64 start;
4688 
4689         new_size = round_down(new_size, fs_info->sectorsize);
4690         start = new_size;
4691         diff = round_down(old_size - new_size, fs_info->sectorsize);
4692 
4693         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4694                 return -EINVAL;
4695 
4696         path = btrfs_alloc_path();
4697         if (!path)
4698                 return -ENOMEM;
4699 
4700         path->reada = READA_BACK;
4701 
4702         trans = btrfs_start_transaction(root, 0);
4703         if (IS_ERR(trans)) {
4704                 btrfs_free_path(path);
4705                 return PTR_ERR(trans);
4706         }
4707 
4708         mutex_lock(&fs_info->chunk_mutex);
4709 
4710         btrfs_device_set_total_bytes(device, new_size);
4711         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4712                 device->fs_devices->total_rw_bytes -= diff;
4713                 atomic64_sub(diff, &fs_info->free_chunk_space);
4714         }
4715 
4716         /*
4717          * Once the device's size has been set to the new size, ensure all
4718          * in-memory chunks are synced to disk so that the loop below sees them
4719          * and relocates them accordingly.
4720          */
4721         if (contains_pending_extent(device, &start, diff)) {
4722                 mutex_unlock(&fs_info->chunk_mutex);
4723                 ret = btrfs_commit_transaction(trans);
4724                 if (ret)
4725                         goto done;
4726         } else {
4727                 mutex_unlock(&fs_info->chunk_mutex);
4728                 btrfs_end_transaction(trans);
4729         }
4730 
4731 again:
4732         key.objectid = device->devid;
4733         key.offset = (u64)-1;
4734         key.type = BTRFS_DEV_EXTENT_KEY;
4735 
4736         do {
4737                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4738                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4739                 if (ret < 0) {
4740                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4741                         goto done;
4742                 }
4743 
4744                 ret = btrfs_previous_item(root, path, 0, key.type);
4745                 if (ret)
4746                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4747                 if (ret < 0)
4748                         goto done;
4749                 if (ret) {
4750                         ret = 0;
4751                         btrfs_release_path(path);
4752                         break;
4753                 }
4754 
4755                 l = path->nodes[0];
4756                 slot = path->slots[0];
4757                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4758 
4759                 if (key.objectid != device->devid) {
4760                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4761                         btrfs_release_path(path);
4762                         break;
4763                 }
4764 
4765                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4766                 length = btrfs_dev_extent_length(l, dev_extent);
4767 
4768                 if (key.offset + length <= new_size) {
4769                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4770                         btrfs_release_path(path);
4771                         break;
4772                 }
4773 
4774                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4775                 btrfs_release_path(path);
4776 
4777                 /*
4778                  * We may be relocating the only data chunk we have,
4779                  * which could potentially end up with losing data's
4780                  * raid profile, so lets allocate an empty one in
4781                  * advance.
4782                  */
4783                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4784                 if (ret < 0) {
4785                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4786                         goto done;
4787                 }
4788 
4789                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4790                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4791                 if (ret == -ENOSPC) {
4792                         failed++;
4793                 } else if (ret) {
4794                         if (ret == -ETXTBSY) {
4795                                 btrfs_warn(fs_info,
4796                    "could not shrink block group %llu due to active swapfile",
4797                                            chunk_offset);
4798                         }
4799                         goto done;
4800                 }
4801         } while (key.offset-- > 0);
4802 
4803         if (failed && !retried) {
4804                 failed = 0;
4805                 retried = true;
4806                 goto again;
4807         } else if (failed && retried) {
4808                 ret = -ENOSPC;
4809                 goto done;
4810         }
4811 
4812         /* Shrinking succeeded, else we would be at "done". */
4813         trans = btrfs_start_transaction(root, 0);
4814         if (IS_ERR(trans)) {
4815                 ret = PTR_ERR(trans);
4816                 goto done;
4817         }
4818 
4819         mutex_lock(&fs_info->chunk_mutex);
4820         btrfs_device_set_disk_total_bytes(device, new_size);
4821         if (list_empty(&device->post_commit_list))
4822                 list_add_tail(&device->post_commit_list,
4823                               &trans->transaction->dev_update_list);
4824 
4825         WARN_ON(diff > old_total);
4826         btrfs_set_super_total_bytes(super_copy,
4827                         round_down(old_total - diff, fs_info->sectorsize));
4828         mutex_unlock(&fs_info->chunk_mutex);
4829 
4830         /* Now btrfs_update_device() will change the on-disk size. */
4831         ret = btrfs_update_device(trans, device);
4832         if (ret < 0) {
4833                 btrfs_abort_transaction(trans, ret);
4834                 btrfs_end_transaction(trans);
4835         } else {
4836                 ret = btrfs_commit_transaction(trans);
4837         }
4838 done:
4839         btrfs_free_path(path);
4840         if (ret) {
4841                 mutex_lock(&fs_info->chunk_mutex);
4842                 btrfs_device_set_total_bytes(device, old_size);
4843                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4844                         device->fs_devices->total_rw_bytes += diff;
4845                 atomic64_add(diff, &fs_info->free_chunk_space);
4846                 mutex_unlock(&fs_info->chunk_mutex);
4847         }
4848         return ret;
4849 }
4850 
4851 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4852                            struct btrfs_key *key,
4853                            struct btrfs_chunk *chunk, int item_size)
4854 {
4855         struct btrfs_super_block *super_copy = fs_info->super_copy;
4856         struct btrfs_disk_key disk_key;
4857         u32 array_size;
4858         u8 *ptr;
4859 
4860         mutex_lock(&fs_info->chunk_mutex);
4861         array_size = btrfs_super_sys_array_size(super_copy);
4862         if (array_size + item_size + sizeof(disk_key)
4863                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4864                 mutex_unlock(&fs_info->chunk_mutex);
4865                 return -EFBIG;
4866         }
4867 
4868         ptr = super_copy->sys_chunk_array + array_size;
4869         btrfs_cpu_key_to_disk(&disk_key, key);
4870         memcpy(ptr, &disk_key, sizeof(disk_key));
4871         ptr += sizeof(disk_key);
4872         memcpy(ptr, chunk, item_size);
4873         item_size += sizeof(disk_key);
4874         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4875         mutex_unlock(&fs_info->chunk_mutex);
4876 
4877         return 0;
4878 }
4879 
4880 /*
4881  * sort the devices in descending order by max_avail, total_avail
4882  */
4883 static int btrfs_cmp_device_info(const void *a, const void *b)
4884 {
4885         const struct btrfs_device_info *di_a = a;
4886         const struct btrfs_device_info *di_b = b;
4887 
4888         if (di_a->max_avail > di_b->max_avail)
4889                 return -1;
4890         if (di_a->max_avail < di_b->max_avail)
4891                 return 1;
4892         if (di_a->total_avail > di_b->total_avail)
4893                 return -1;
4894         if (di_a->total_avail < di_b->total_avail)
4895                 return 1;
4896         return 0;
4897 }
4898 
4899 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4900 {
4901         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4902                 return;
4903 
4904         btrfs_set_fs_incompat(info, RAID56);
4905 }
4906 
4907 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4908                                u64 start, u64 type)
4909 {
4910         struct btrfs_fs_info *info = trans->fs_info;
4911         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4912         struct btrfs_device *device;
4913         struct map_lookup *map = NULL;
4914         struct extent_map_tree *em_tree;
4915         struct extent_map *em;
4916         struct btrfs_device_info *devices_info = NULL;
4917         u64 total_avail;
4918         int num_stripes;        /* total number of stripes to allocate */
4919         int data_stripes;       /* number of stripes that count for
4920                                    block group size */
4921         int sub_stripes;        /* sub_stripes info for map */
4922         int dev_stripes;        /* stripes per dev */
4923         int devs_max;           /* max devs to use */
4924         int devs_min;           /* min devs needed */
4925         int devs_increment;     /* ndevs has to be a multiple of this */
4926         int ncopies;            /* how many copies to data has */
4927         int nparity;            /* number of stripes worth of bytes to
4928                                    store parity information */
4929         int ret;
4930         u64 max_stripe_size;
4931         u64 max_chunk_size;
4932         u64 stripe_size;
4933         u64 chunk_size;
4934         int ndevs;
4935         int i;
4936         int j;
4937         int index;
4938 
4939         BUG_ON(!alloc_profile_is_valid(type, 0));
4940 
4941         if (list_empty(&fs_devices->alloc_list)) {
4942                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4943                         btrfs_debug(info, "%s: no writable device", __func__);
4944                 return -ENOSPC;
4945         }
4946 
4947         index = btrfs_bg_flags_to_raid_index(type);
4948 
4949         sub_stripes = btrfs_raid_array[index].sub_stripes;
4950         dev_stripes = btrfs_raid_array[index].dev_stripes;
4951         devs_max = btrfs_raid_array[index].devs_max;
4952         devs_min = btrfs_raid_array[index].devs_min;
4953         devs_increment = btrfs_raid_array[index].devs_increment;
4954         ncopies = btrfs_raid_array[index].ncopies;
4955         nparity = btrfs_raid_array[index].nparity;
4956 
4957         if (type & BTRFS_BLOCK_GROUP_DATA) {
4958                 max_stripe_size = SZ_1G;
4959                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4960                 if (!devs_max)
4961                         devs_max = BTRFS_MAX_DEVS(info);
4962         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4963                 /* for larger filesystems, use larger metadata chunks */
4964                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4965                         max_stripe_size = SZ_1G;
4966                 else
4967                         max_stripe_size = SZ_256M;
4968                 max_chunk_size = max_stripe_size;
4969                 if (!devs_max)
4970                         devs_max = BTRFS_MAX_DEVS(info);
4971         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4972                 max_stripe_size = SZ_32M;
4973                 max_chunk_size = 2 * max_stripe_size;
4974                 if (!devs_max)
4975                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4976         } else {
4977                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4978                        type);
4979                 BUG();
4980         }
4981 
4982         /* We don't want a chunk larger than 10% of writable space */
4983         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4984                              max_chunk_size);
4985 
4986         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4987                                GFP_NOFS);
4988         if (!devices_info)
4989                 return -ENOMEM;
4990 
4991         /*
4992          * in the first pass through the devices list, we gather information
4993          * about the available holes on each device.
4994          */
4995         ndevs = 0;
4996         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4997                 u64 max_avail;
4998                 u64 dev_offset;
4999 
5000                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5001                         WARN(1, KERN_ERR
5002                                "BTRFS: read-only device in alloc_list\n");
5003                         continue;
5004                 }
5005 
5006                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5007                                         &device->dev_state) ||
5008                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5009                         continue;
5010 
5011                 if (device->total_bytes > device->bytes_used)
5012                         total_avail = device->total_bytes - device->bytes_used;
5013                 else
5014                         total_avail = 0;
5015 
5016                 /* If there is no space on this device, skip it. */
5017                 if (total_avail == 0)
5018                         continue;
5019 
5020                 ret = find_free_dev_extent(device,
5021                                            max_stripe_size * dev_stripes,
5022                                            &dev_offset, &max_avail);
5023                 if (ret && ret != -ENOSPC)
5024                         goto error;
5025 
5026                 if (ret == 0)
5027                         max_avail = max_stripe_size * dev_stripes;
5028 
5029                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5030                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5031                                 btrfs_debug(info,
5032                         "%s: devid %llu has no free space, have=%llu want=%u",
5033                                             __func__, device->devid, max_avail,
5034                                             BTRFS_STRIPE_LEN * dev_stripes);
5035                         continue;
5036                 }
5037 
5038                 if (ndevs == fs_devices->rw_devices) {
5039                         WARN(1, "%s: found more than %llu devices\n",
5040                              __func__, fs_devices->rw_devices);
5041                         break;
5042                 }
5043                 devices_info[ndevs].dev_offset = dev_offset;
5044                 devices_info[ndevs].max_avail = max_avail;
5045                 devices_info[ndevs].total_avail = total_avail;
5046                 devices_info[ndevs].dev = device;
5047                 ++ndevs;
5048         }
5049 
5050         /*
5051          * now sort the devices by hole size / available space
5052          */
5053         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5054              btrfs_cmp_device_info, NULL);
5055 
5056         /* round down to number of usable stripes */
5057         ndevs = round_down(ndevs, devs_increment);
5058 
5059         if (ndevs < devs_min) {
5060                 ret = -ENOSPC;
5061                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5062                         btrfs_debug(info,
5063         "%s: not enough devices with free space: have=%d minimum required=%d",
5064                                     __func__, ndevs, devs_min);
5065                 }
5066                 goto error;
5067         }
5068 
5069         ndevs = min(ndevs, devs_max);
5070 
5071         /*
5072          * The primary goal is to maximize the number of stripes, so use as
5073          * many devices as possible, even if the stripes are not maximum sized.
5074          *
5075          * The DUP profile stores more than one stripe per device, the
5076          * max_avail is the total size so we have to adjust.
5077          */
5078         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5079         num_stripes = ndevs * dev_stripes;
5080 
5081         /*
5082          * this will have to be fixed for RAID1 and RAID10 over
5083          * more drives
5084          */
5085         data_stripes = (num_stripes - nparity) / ncopies;
5086 
5087         /*
5088          * Use the number of data stripes to figure out how big this chunk
5089          * is really going to be in terms of logical address space,
5090          * and compare that answer with the max chunk size. If it's higher,
5091          * we try to reduce stripe_size.
5092          */
5093         if (stripe_size * data_stripes > max_chunk_size) {
5094                 /*
5095                  * Reduce stripe_size, round it up to a 16MB boundary again and
5096                  * then use it, unless it ends up being even bigger than the
5097                  * previous value we had already.
5098                  */
5099                 stripe_size = min(round_up(div_u64(max_chunk_size,
5100                                                    data_stripes), SZ_16M),
5101                                   stripe_size);
5102         }
5103 
5104         /* align to BTRFS_STRIPE_LEN */
5105         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5106 
5107         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5108         if (!map) {
5109                 ret = -ENOMEM;
5110                 goto error;
5111         }
5112         map->num_stripes = num_stripes;
5113 
5114         for (i = 0; i < ndevs; ++i) {
5115                 for (j = 0; j < dev_stripes; ++j) {
5116                         int s = i * dev_stripes + j;
5117                         map->stripes[s].dev = devices_info[i].dev;
5118                         map->stripes[s].physical = devices_info[i].dev_offset +
5119                                                    j * stripe_size;
5120                 }
5121         }
5122         map->stripe_len = BTRFS_STRIPE_LEN;
5123         map->io_align = BTRFS_STRIPE_LEN;
5124         map->io_width = BTRFS_STRIPE_LEN;
5125         map->type = type;
5126         map->sub_stripes = sub_stripes;
5127 
5128         chunk_size = stripe_size * data_stripes;
5129 
5130         trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5131 
5132         em = alloc_extent_map();
5133         if (!em) {
5134                 kfree(map);
5135                 ret = -ENOMEM;
5136                 goto error;
5137         }
5138         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5139         em->map_lookup = map;
5140         em->start = start;
5141         em->len = chunk_size;
5142         em->block_start = 0;
5143         em->block_len = em->len;
5144         em->orig_block_len = stripe_size;
5145 
5146         em_tree = &info->mapping_tree.map_tree;
5147         write_lock(&em_tree->lock);
5148         ret = add_extent_mapping(em_tree, em, 0);
5149         if (ret) {
5150                 write_unlock(&em_tree->lock);
5151                 free_extent_map(em);
5152                 goto error;
5153         }
5154         write_unlock(&em_tree->lock);
5155 
5156         ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5157         if (ret)
5158                 goto error_del_extent;
5159 
5160         for (i = 0; i < map->num_stripes; i++) {
5161                 struct btrfs_device *dev = map->stripes[i].dev;
5162 
5163                 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5164                 if (list_empty(&dev->post_commit_list))
5165                         list_add_tail(&dev->post_commit_list,
5166                                       &trans->transaction->dev_update_list);
5167         }
5168 
5169         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5170 
5171         free_extent_map(em);
5172         check_raid56_incompat_flag(info, type);
5173 
5174         kfree(devices_info);
5175         return 0;
5176 
5177 error_del_extent:
5178         write_lock(&em_tree->lock);
5179         remove_extent_mapping(em_tree, em);
5180         write_unlock(&em_tree->lock);
5181 
5182         /* One for our allocation */
5183         free_extent_map(em);
5184         /* One for the tree reference */
5185         free_extent_map(em);
5186 error:
5187         kfree(devices_info);
5188         return ret;
5189 }
5190 
5191 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5192                              u64 chunk_offset, u64 chunk_size)
5193 {
5194         struct btrfs_fs_info *fs_info = trans->fs_info;
5195         struct btrfs_root *extent_root = fs_info->extent_root;
5196         struct btrfs_root *chunk_root = fs_info->chunk_root;
5197         struct btrfs_key key;
5198         struct btrfs_device *device;
5199         struct btrfs_chunk *chunk;
5200         struct btrfs_stripe *stripe;
5201         struct extent_map *em;
5202         struct map_lookup *map;
5203         size_t item_size;
5204         u64 dev_offset;
5205         u64 stripe_size;
5206         int i = 0;
5207         int ret = 0;
5208 
5209         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5210         if (IS_ERR(em))
5211                 return PTR_ERR(em);
5212 
5213         map = em->map_lookup;
5214         item_size = btrfs_chunk_item_size(map->num_stripes);
5215         stripe_size = em->orig_block_len;
5216 
5217         chunk = kzalloc(item_size, GFP_NOFS);
5218         if (!chunk) {
5219                 ret = -ENOMEM;
5220                 goto out;
5221         }
5222 
5223         /*
5224          * Take the device list mutex to prevent races with the final phase of
5225          * a device replace operation that replaces the device object associated
5226          * with the map's stripes, because the device object's id can change
5227          * at any time during that final phase of the device replace operation
5228          * (dev-replace.c:btrfs_dev_replace_finishing()).
5229          */
5230         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5231         for (i = 0; i < map->num_stripes; i++) {
5232                 device = map->stripes[i].dev;
5233                 dev_offset = map->stripes[i].physical;
5234 
5235                 ret = btrfs_update_device(trans, device);
5236                 if (ret)
5237                         break;
5238                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5239                                              dev_offset, stripe_size);
5240                 if (ret)
5241                         break;
5242         }
5243         if (ret) {
5244                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5245                 goto out;
5246         }
5247 
5248         stripe = &chunk->stripe;
5249         for (i = 0; i < map->num_stripes; i++) {
5250                 device = map->stripes[i].dev;
5251                 dev_offset = map->stripes[i].physical;
5252 
5253                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5254                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5255                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5256                 stripe++;
5257         }
5258         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5259 
5260         btrfs_set_stack_chunk_length(chunk, chunk_size);
5261         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5262         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5263         btrfs_set_stack_chunk_type(chunk, map->type);
5264         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5265         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5266         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5267         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5268         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5269 
5270         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5271         key.type = BTRFS_CHUNK_ITEM_KEY;
5272         key.offset = chunk_offset;
5273 
5274         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5275         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5276                 /*
5277                  * TODO: Cleanup of inserted chunk root in case of
5278                  * failure.
5279                  */
5280                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5281         }
5282 
5283 out:
5284         kfree(chunk);
5285         free_extent_map(em);
5286         return ret;
5287 }
5288 
5289 /*
5290  * Chunk allocation falls into two parts. The first part does work
5291  * that makes the new allocated chunk usable, but does not do any operation
5292  * that modifies the chunk tree. The second part does the work that
5293  * requires modifying the chunk tree. This division is important for the
5294  * bootstrap process of adding storage to a seed btrfs.
5295  */
5296 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5297 {
5298         u64 chunk_offset;
5299 
5300         lockdep_assert_held(&trans->fs_info->chunk_mutex);
5301         chunk_offset = find_next_chunk(trans->fs_info);
5302         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5303 }
5304 
5305 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5306 {
5307         struct btrfs_fs_info *fs_info = trans->fs_info;
5308         u64 chunk_offset;
5309         u64 sys_chunk_offset;
5310         u64 alloc_profile;
5311         int ret;
5312 
5313         chunk_offset = find_next_chunk(fs_info);
5314         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5315         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5316         if (ret)
5317                 return ret;
5318 
5319         sys_chunk_offset = find_next_chunk(fs_info);
5320         alloc_profile = btrfs_system_alloc_profile(fs_info);
5321         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5322         return ret;
5323 }
5324 
5325 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5326 {
5327         int max_errors;
5328 
5329         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5330                          BTRFS_BLOCK_GROUP_RAID10 |
5331                          BTRFS_BLOCK_GROUP_RAID5)) {
5332                 max_errors = 1;
5333         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5334                 max_errors = 2;
5335         } else {
5336                 max_errors = 0;
5337         }
5338 
5339         return max_errors;
5340 }
5341 
5342 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5343 {
5344         struct extent_map *em;
5345         struct map_lookup *map;
5346         int readonly = 0;
5347         int miss_ndevs = 0;
5348         int i;
5349 
5350         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5351         if (IS_ERR(em))
5352                 return 1;
5353 
5354         map = em->map_lookup;
5355         for (i = 0; i < map->num_stripes; i++) {
5356                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5357                                         &map->stripes[i].dev->dev_state)) {
5358                         miss_ndevs++;
5359                         continue;
5360                 }
5361                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5362                                         &map->stripes[i].dev->dev_state)) {
5363                         readonly = 1;
5364                         goto end;
5365                 }
5366         }
5367 
5368         /*
5369          * If the number of missing devices is larger than max errors,
5370          * we can not write the data into that chunk successfully, so
5371          * set it readonly.
5372          */
5373         if (miss_ndevs > btrfs_chunk_max_errors(map))
5374                 readonly = 1;
5375 end:
5376         free_extent_map(em);
5377         return readonly;
5378 }
5379 
5380 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5381 {
5382         extent_map_tree_init(&tree->map_tree);
5383 }
5384 
5385 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5386 {
5387         struct extent_map *em;
5388 
5389         while (1) {
5390                 write_lock(&tree->map_tree.lock);
5391                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5392                 if (em)
5393                         remove_extent_mapping(&tree->map_tree, em);
5394                 write_unlock(&tree->map_tree.lock);
5395                 if (!em)
5396                         break;
5397                 /* once for us */
5398                 free_extent_map(em);
5399                 /* once for the tree */
5400                 free_extent_map(em);
5401         }
5402 }
5403 
5404 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5405 {
5406         struct extent_map *em;
5407         struct map_lookup *map;
5408         int ret;
5409 
5410         em = btrfs_get_chunk_map(fs_info, logical, len);
5411         if (IS_ERR(em))
5412                 /*
5413                  * We could return errors for these cases, but that could get
5414                  * ugly and we'd probably do the same thing which is just not do
5415                  * anything else and exit, so return 1 so the callers don't try
5416                  * to use other copies.
5417                  */
5418                 return 1;
5419 
5420         map = em->map_lookup;
5421         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5422                 ret = map->num_stripes;
5423         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5424                 ret = map->sub_stripes;
5425         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5426                 ret = 2;
5427         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5428                 /*
5429                  * There could be two corrupted data stripes, we need
5430                  * to loop retry in order to rebuild the correct data.
5431                  *
5432                  * Fail a stripe at a time on every retry except the
5433                  * stripe under reconstruction.
5434                  */
5435                 ret = map->num_stripes;
5436         else
5437                 ret = 1;
5438         free_extent_map(em);
5439 
5440         down_read(&fs_info->dev_replace.rwsem);
5441         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5442             fs_info->dev_replace.tgtdev)
5443                 ret++;
5444         up_read(&fs_info->dev_replace.rwsem);
5445 
5446         return ret;
5447 }
5448 
5449 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5450                                     u64 logical)
5451 {
5452         struct extent_map *em;
5453         struct map_lookup *map;
5454         unsigned long len = fs_info->sectorsize;
5455 
5456         em = btrfs_get_chunk_map(fs_info, logical, len);
5457 
5458         if (!WARN_ON(IS_ERR(em))) {
5459                 map = em->map_lookup;
5460                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5461                         len = map->stripe_len * nr_data_stripes(map);
5462                 free_extent_map(em);
5463         }
5464         return len;
5465 }
5466 
5467 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5468 {
5469         struct extent_map *em;
5470         struct map_lookup *map;
5471         int ret = 0;
5472 
5473         em = btrfs_get_chunk_map(fs_info, logical, len);
5474 
5475         if(!WARN_ON(IS_ERR(em))) {
5476                 map = em->map_lookup;
5477                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5478                         ret = 1;
5479                 free_extent_map(em);
5480         }
5481         return ret;
5482 }
5483 
5484 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5485                             struct map_lookup *map, int first,
5486                             int dev_replace_is_ongoing)
5487 {
5488         int i;
5489         int num_stripes;
5490         int preferred_mirror;
5491         int tolerance;
5492         struct btrfs_device *srcdev;
5493 
5494         ASSERT((map->type &
5495                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5496 
5497         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5498                 num_stripes = map->sub_stripes;
5499         else
5500                 num_stripes = map->num_stripes;
5501 
5502         preferred_mirror = first + current->pid % num_stripes;
5503 
5504         if (dev_replace_is_ongoing &&
5505             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5506              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5507                 srcdev = fs_info->dev_replace.srcdev;
5508         else
5509                 srcdev = NULL;
5510 
5511         /*
5512          * try to avoid the drive that is the source drive for a
5513          * dev-replace procedure, only choose it if no other non-missing
5514          * mirror is available
5515          */
5516         for (tolerance = 0; tolerance < 2; tolerance++) {
5517                 if (map->stripes[preferred_mirror].dev->bdev &&
5518                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5519                         return preferred_mirror;
5520                 for (i = first; i < first + num_stripes; i++) {
5521                         if (map->stripes[i].dev->bdev &&
5522                             (tolerance || map->stripes[i].dev != srcdev))
5523                                 return i;
5524                 }
5525         }
5526 
5527         /* we couldn't find one that doesn't fail.  Just return something
5528          * and the io error handling code will clean up eventually
5529          */
5530         return preferred_mirror;
5531 }
5532 
5533 static inline int parity_smaller(u64 a, u64 b)
5534 {
5535         return a > b;
5536 }
5537 
5538 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5539 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5540 {
5541         struct btrfs_bio_stripe s;
5542         int i;
5543         u64 l;
5544         int again = 1;
5545 
5546         while (again) {
5547                 again = 0;
5548                 for (i = 0; i < num_stripes - 1; i++) {
5549                         if (parity_smaller(bbio->raid_map[i],
5550                                            bbio->raid_map[i+1])) {
5551                                 s = bbio->stripes[i];
5552                                 l = bbio->raid_map[i];
5553                                 bbio->stripes[i] = bbio->stripes[i+1];
5554                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5555                                 bbio->stripes[i+1] = s;
5556                                 bbio->raid_map[i+1] = l;
5557 
5558                                 again = 1;
5559                         }
5560                 }
5561         }
5562 }
5563 
5564 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5565 {
5566         struct btrfs_bio *bbio = kzalloc(
5567                  /* the size of the btrfs_bio */
5568                 sizeof(struct btrfs_bio) +
5569                 /* plus the variable array for the stripes */
5570                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5571                 /* plus the variable array for the tgt dev */
5572                 sizeof(int) * (real_stripes) +
5573                 /*
5574                  * plus the raid_map, which includes both the tgt dev
5575                  * and the stripes
5576                  */
5577                 sizeof(u64) * (total_stripes),
5578                 GFP_NOFS|__GFP_NOFAIL);
5579 
5580         atomic_set(&bbio->error, 0);
5581         refcount_set(&bbio->refs, 1);
5582 
5583         return bbio;
5584 }
5585 
5586 void btrfs_get_bbio(struct btrfs_bio *bbio)
5587 {
5588         WARN_ON(!refcount_read(&bbio->refs));
5589         refcount_inc(&bbio->refs);
5590 }
5591 
5592 void btrfs_put_bbio(struct btrfs_bio *bbio)
5593 {
5594         if (!bbio)
5595                 return;
5596         if (refcount_dec_and_test(&bbio->refs))
5597                 kfree(bbio);
5598 }
5599 
5600 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5601 /*
5602  * Please note that, discard won't be sent to target device of device
5603  * replace.
5604  */
5605 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5606                                          u64 logical, u64 length,
5607                                          struct btrfs_bio **bbio_ret)
5608 {
5609         struct extent_map *em;
5610         struct map_lookup *map;
5611         struct btrfs_bio *bbio;
5612         u64 offset;
5613         u64 stripe_nr;
5614         u64 stripe_nr_end;
5615         u64 stripe_end_offset;
5616         u64 stripe_cnt;
5617         u64 stripe_len;
5618         u64 stripe_offset;
5619         u64 num_stripes;
5620         u32 stripe_index;
5621         u32 factor = 0;
5622         u32 sub_stripes = 0;
5623         u64 stripes_per_dev = 0;
5624         u32 remaining_stripes = 0;
5625         u32 last_stripe = 0;
5626         int ret = 0;
5627         int i;
5628 
5629         /* discard always return a bbio */
5630         ASSERT(bbio_ret);
5631 
5632         em = btrfs_get_chunk_map(fs_info, logical, length);
5633         if (IS_ERR(em))
5634                 return PTR_ERR(em);
5635 
5636         map = em->map_lookup;
5637         /* we don't discard raid56 yet */
5638         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5639                 ret = -EOPNOTSUPP;
5640                 goto out;
5641         }
5642 
5643         offset = logical - em->start;
5644         length = min_t(u64, em->len - offset, length);
5645 
5646         stripe_len = map->stripe_len;
5647         /*
5648          * stripe_nr counts the total number of stripes we have to stride
5649          * to get to this block
5650          */
5651         stripe_nr = div64_u64(offset, stripe_len);
5652 
5653         /* stripe_offset is the offset of this block in its stripe */
5654         stripe_offset = offset - stripe_nr * stripe_len;
5655 
5656         stripe_nr_end = round_up(offset + length, map->stripe_len);
5657         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5658         stripe_cnt = stripe_nr_end - stripe_nr;
5659         stripe_end_offset = stripe_nr_end * map->stripe_len -
5660                             (offset + length);
5661         /*
5662          * after this, stripe_nr is the number of stripes on this
5663          * device we have to walk to find the data, and stripe_index is
5664          * the number of our device in the stripe array
5665          */
5666         num_stripes = 1;
5667         stripe_index = 0;
5668         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5669                          BTRFS_BLOCK_GROUP_RAID10)) {
5670                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5671                         sub_stripes = 1;
5672                 else
5673                         sub_stripes = map->sub_stripes;
5674 
5675                 factor = map->num_stripes / sub_stripes;
5676                 num_stripes = min_t(u64, map->num_stripes,
5677                                     sub_stripes * stripe_cnt);
5678                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5679                 stripe_index *= sub_stripes;
5680                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5681                                               &remaining_stripes);
5682                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5683                 last_stripe *= sub_stripes;
5684         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5685                                 BTRFS_BLOCK_GROUP_DUP)) {
5686                 num_stripes = map->num_stripes;
5687         } else {
5688                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5689                                         &stripe_index);
5690         }
5691 
5692         bbio = alloc_btrfs_bio(num_stripes, 0);
5693         if (!bbio) {
5694                 ret = -ENOMEM;
5695                 goto out;
5696         }
5697 
5698         for (i = 0; i < num_stripes; i++) {
5699                 bbio->stripes[i].physical =
5700                         map->stripes[stripe_index].physical +
5701                         stripe_offset + stripe_nr * map->stripe_len;
5702                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5703 
5704                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5705                                  BTRFS_BLOCK_GROUP_RAID10)) {
5706                         bbio->stripes[i].length = stripes_per_dev *
5707                                 map->stripe_len;
5708 
5709                         if (i / sub_stripes < remaining_stripes)
5710                                 bbio->stripes[i].length +=
5711                                         map->stripe_len;
5712 
5713                         /*
5714                          * Special for the first stripe and
5715                          * the last stripe:
5716                          *
5717                          * |-------|...|-------|
5718                          *     |----------|
5719                          *    off     end_off
5720                          */
5721                         if (i < sub_stripes)
5722                                 bbio->stripes[i].length -=
5723                                         stripe_offset;
5724 
5725                         if (stripe_index >= last_stripe &&
5726                             stripe_index <= (last_stripe +
5727                                              sub_stripes - 1))
5728                                 bbio->stripes[i].length -=
5729                                         stripe_end_offset;
5730 
5731                         if (i == sub_stripes - 1)
5732                                 stripe_offset = 0;
5733                 } else {
5734                         bbio->stripes[i].length = length;
5735                 }
5736 
5737                 stripe_index++;
5738                 if (stripe_index == map->num_stripes) {
5739                         stripe_index = 0;
5740                         stripe_nr++;
5741                 }
5742         }
5743 
5744         *bbio_ret = bbio;
5745         bbio->map_type = map->type;
5746         bbio->num_stripes = num_stripes;
5747 out:
5748         free_extent_map(em);
5749         return ret;
5750 }
5751 
5752 /*
5753  * In dev-replace case, for repair case (that's the only case where the mirror
5754  * is selected explicitly when calling btrfs_map_block), blocks left of the
5755  * left cursor can also be read from the target drive.
5756  *
5757  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5758  * array of stripes.
5759  * For READ, it also needs to be supported using the same mirror number.
5760  *
5761  * If the requested block is not left of the left cursor, EIO is returned. This
5762  * can happen because btrfs_num_copies() returns one more in the dev-replace
5763  * case.
5764  */
5765 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5766                                          u64 logical, u64 length,
5767                                          u64 srcdev_devid, int *mirror_num,
5768                                          u64 *physical)
5769 {
5770         struct btrfs_bio *bbio = NULL;
5771         int num_stripes;
5772         int index_srcdev = 0;
5773         int found = 0;
5774         u64 physical_of_found = 0;
5775         int i;
5776         int ret = 0;
5777 
5778         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5779                                 logical, &length, &bbio, 0, 0);
5780         if (ret) {
5781                 ASSERT(bbio == NULL);
5782                 return ret;
5783         }
5784 
5785         num_stripes = bbio->num_stripes;
5786         if (*mirror_num > num_stripes) {
5787                 /*
5788                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5789                  * that means that the requested area is not left