1 /* 2 * Copyright (C) 2017, Microsoft Corporation. 3 * 4 * Author(s): Long Li <longli@microsoft.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 14 * the GNU General Public License for more details. 15 */ 16 #include <linux/module.h> 17 #include <linux/highmem.h> 18 #include "smbdirect.h" 19 #include "cifs_debug.h" 20 #include "cifsproto.h" 21 #include "smb2proto.h" 22 23 static struct smbd_response *get_empty_queue_buffer( 24 struct smbd_connection *info); 25 static struct smbd_response *get_receive_buffer( 26 struct smbd_connection *info); 27 static void put_receive_buffer( 28 struct smbd_connection *info, 29 struct smbd_response *response); 30 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf); 31 static void destroy_receive_buffers(struct smbd_connection *info); 32 33 static void put_empty_packet( 34 struct smbd_connection *info, struct smbd_response *response); 35 static void enqueue_reassembly( 36 struct smbd_connection *info, 37 struct smbd_response *response, int data_length); 38 static struct smbd_response *_get_first_reassembly( 39 struct smbd_connection *info); 40 41 static int smbd_post_recv( 42 struct smbd_connection *info, 43 struct smbd_response *response); 44 45 static int smbd_post_send_empty(struct smbd_connection *info); 46 static int smbd_post_send_data( 47 struct smbd_connection *info, 48 struct kvec *iov, int n_vec, int remaining_data_length); 49 static int smbd_post_send_page(struct smbd_connection *info, 50 struct page *page, unsigned long offset, 51 size_t size, int remaining_data_length); 52 53 static void destroy_mr_list(struct smbd_connection *info); 54 static int allocate_mr_list(struct smbd_connection *info); 55 56 /* SMBD version number */ 57 #define SMBD_V1 0x0100 58 59 /* Port numbers for SMBD transport */ 60 #define SMB_PORT 445 61 #define SMBD_PORT 5445 62 63 /* Address lookup and resolve timeout in ms */ 64 #define RDMA_RESOLVE_TIMEOUT 5000 65 66 /* SMBD negotiation timeout in seconds */ 67 #define SMBD_NEGOTIATE_TIMEOUT 120 68 69 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */ 70 #define SMBD_MIN_RECEIVE_SIZE 128 71 #define SMBD_MIN_FRAGMENTED_SIZE 131072 72 73 /* 74 * Default maximum number of RDMA read/write outstanding on this connection 75 * This value is possibly decreased during QP creation on hardware limit 76 */ 77 #define SMBD_CM_RESPONDER_RESOURCES 32 78 79 /* Maximum number of retries on data transfer operations */ 80 #define SMBD_CM_RETRY 6 81 /* No need to retry on Receiver Not Ready since SMBD manages credits */ 82 #define SMBD_CM_RNR_RETRY 0 83 84 /* 85 * User configurable initial values per SMBD transport connection 86 * as defined in [MS-SMBD] 3.1.1.1 87 * Those may change after a SMBD negotiation 88 */ 89 /* The local peer's maximum number of credits to grant to the peer */ 90 int smbd_receive_credit_max = 255; 91 92 /* The remote peer's credit request of local peer */ 93 int smbd_send_credit_target = 255; 94 95 /* The maximum single message size can be sent to remote peer */ 96 int smbd_max_send_size = 1364; 97 98 /* The maximum fragmented upper-layer payload receive size supported */ 99 int smbd_max_fragmented_recv_size = 1024 * 1024; 100 101 /* The maximum single-message size which can be received */ 102 int smbd_max_receive_size = 8192; 103 104 /* The timeout to initiate send of a keepalive message on idle */ 105 int smbd_keep_alive_interval = 120; 106 107 /* 108 * User configurable initial values for RDMA transport 109 * The actual values used may be lower and are limited to hardware capabilities 110 */ 111 /* Default maximum number of SGEs in a RDMA write/read */ 112 int smbd_max_frmr_depth = 2048; 113 114 /* If payload is less than this byte, use RDMA send/recv not read/write */ 115 int rdma_readwrite_threshold = 4096; 116 117 /* Transport logging functions 118 * Logging are defined as classes. They can be OR'ed to define the actual 119 * logging level via module parameter smbd_logging_class 120 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and 121 * log_rdma_event() 122 */ 123 #define LOG_OUTGOING 0x1 124 #define LOG_INCOMING 0x2 125 #define LOG_READ 0x4 126 #define LOG_WRITE 0x8 127 #define LOG_RDMA_SEND 0x10 128 #define LOG_RDMA_RECV 0x20 129 #define LOG_KEEP_ALIVE 0x40 130 #define LOG_RDMA_EVENT 0x80 131 #define LOG_RDMA_MR 0x100 132 static unsigned int smbd_logging_class; 133 module_param(smbd_logging_class, uint, 0644); 134 MODULE_PARM_DESC(smbd_logging_class, 135 "Logging class for SMBD transport 0x0 to 0x100"); 136 137 #define ERR 0x0 138 #define INFO 0x1 139 static unsigned int smbd_logging_level = ERR; 140 module_param(smbd_logging_level, uint, 0644); 141 MODULE_PARM_DESC(smbd_logging_level, 142 "Logging level for SMBD transport, 0 (default): error, 1: info"); 143 144 #define log_rdma(level, class, fmt, args...) \ 145 do { \ 146 if (level <= smbd_logging_level || class & smbd_logging_class) \ 147 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\ 148 } while (0) 149 150 #define log_outgoing(level, fmt, args...) \ 151 log_rdma(level, LOG_OUTGOING, fmt, ##args) 152 #define log_incoming(level, fmt, args...) \ 153 log_rdma(level, LOG_INCOMING, fmt, ##args) 154 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args) 155 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args) 156 #define log_rdma_send(level, fmt, args...) \ 157 log_rdma(level, LOG_RDMA_SEND, fmt, ##args) 158 #define log_rdma_recv(level, fmt, args...) \ 159 log_rdma(level, LOG_RDMA_RECV, fmt, ##args) 160 #define log_keep_alive(level, fmt, args...) \ 161 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args) 162 #define log_rdma_event(level, fmt, args...) \ 163 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args) 164 #define log_rdma_mr(level, fmt, args...) \ 165 log_rdma(level, LOG_RDMA_MR, fmt, ##args) 166 167 /* 168 * Destroy the transport and related RDMA and memory resources 169 * Need to go through all the pending counters and make sure on one is using 170 * the transport while it is destroyed 171 */ 172 static void smbd_destroy_rdma_work(struct work_struct *work) 173 { 174 struct smbd_response *response; 175 struct smbd_connection *info = 176 container_of(work, struct smbd_connection, destroy_work); 177 unsigned long flags; 178 179 log_rdma_event(INFO, "destroying qp\n"); 180 ib_drain_qp(info->id->qp); 181 rdma_destroy_qp(info->id); 182 183 /* Unblock all I/O waiting on the send queue */ 184 wake_up_interruptible_all(&info->wait_send_queue); 185 186 log_rdma_event(INFO, "cancelling idle timer\n"); 187 cancel_delayed_work_sync(&info->idle_timer_work); 188 log_rdma_event(INFO, "cancelling send immediate work\n"); 189 cancel_delayed_work_sync(&info->send_immediate_work); 190 191 log_rdma_event(INFO, "wait for all send to finish\n"); 192 wait_event(info->wait_smbd_send_pending, 193 info->smbd_send_pending == 0); 194 195 log_rdma_event(INFO, "wait for all recv to finish\n"); 196 wake_up_interruptible(&info->wait_reassembly_queue); 197 wait_event(info->wait_smbd_recv_pending, 198 info->smbd_recv_pending == 0); 199 200 log_rdma_event(INFO, "wait for all send posted to IB to finish\n"); 201 wait_event(info->wait_send_pending, 202 atomic_read(&info->send_pending) == 0); 203 wait_event(info->wait_send_payload_pending, 204 atomic_read(&info->send_payload_pending) == 0); 205 206 log_rdma_event(INFO, "freeing mr list\n"); 207 wake_up_interruptible_all(&info->wait_mr); 208 wait_event(info->wait_for_mr_cleanup, 209 atomic_read(&info->mr_used_count) == 0); 210 destroy_mr_list(info); 211 212 /* It's not posssible for upper layer to get to reassembly */ 213 log_rdma_event(INFO, "drain the reassembly queue\n"); 214 do { 215 spin_lock_irqsave(&info->reassembly_queue_lock, flags); 216 response = _get_first_reassembly(info); 217 if (response) { 218 list_del(&response->list); 219 spin_unlock_irqrestore( 220 &info->reassembly_queue_lock, flags); 221 put_receive_buffer(info, response); 222 } else 223 spin_unlock_irqrestore(&info->reassembly_queue_lock, flags); 224 } while (response); 225 226 info->reassembly_data_length = 0; 227 228 log_rdma_event(INFO, "free receive buffers\n"); 229 wait_event(info->wait_receive_queues, 230 info->count_receive_queue + info->count_empty_packet_queue 231 == info->receive_credit_max); 232 destroy_receive_buffers(info); 233 234 ib_free_cq(info->send_cq); 235 ib_free_cq(info->recv_cq); 236 ib_dealloc_pd(info->pd); 237 rdma_destroy_id(info->id); 238 239 /* free mempools */ 240 mempool_destroy(info->request_mempool); 241 kmem_cache_destroy(info->request_cache); 242 243 mempool_destroy(info->response_mempool); 244 kmem_cache_destroy(info->response_cache); 245 246 info->transport_status = SMBD_DESTROYED; 247 wake_up_all(&info->wait_destroy); 248 } 249 250 static int smbd_process_disconnected(struct smbd_connection *info) 251 { 252 schedule_work(&info->destroy_work); 253 return 0; 254 } 255 256 static void smbd_disconnect_rdma_work(struct work_struct *work) 257 { 258 struct smbd_connection *info = 259 container_of(work, struct smbd_connection, disconnect_work); 260 261 if (info->transport_status == SMBD_CONNECTED) { 262 info->transport_status = SMBD_DISCONNECTING; 263 rdma_disconnect(info->id); 264 } 265 } 266 267 static void smbd_disconnect_rdma_connection(struct smbd_connection *info) 268 { 269 queue_work(info->workqueue, &info->disconnect_work); 270 } 271 272 /* Upcall from RDMA CM */ 273 static int smbd_conn_upcall( 274 struct rdma_cm_id *id, struct rdma_cm_event *event) 275 { 276 struct smbd_connection *info = id->context; 277 278 log_rdma_event(INFO, "event=%d status=%d\n", 279 event->event, event->status); 280 281 switch (event->event) { 282 case RDMA_CM_EVENT_ADDR_RESOLVED: 283 case RDMA_CM_EVENT_ROUTE_RESOLVED: 284 info->ri_rc = 0; 285 complete(&info->ri_done); 286 break; 287 288 case RDMA_CM_EVENT_ADDR_ERROR: 289 info->ri_rc = -EHOSTUNREACH; 290 complete(&info->ri_done); 291 break; 292 293 case RDMA_CM_EVENT_ROUTE_ERROR: 294 info->ri_rc = -ENETUNREACH; 295 complete(&info->ri_done); 296 break; 297 298 case RDMA_CM_EVENT_ESTABLISHED: 299 log_rdma_event(INFO, "connected event=%d\n", event->event); 300 info->transport_status = SMBD_CONNECTED; 301 wake_up_interruptible(&info->conn_wait); 302 break; 303 304 case RDMA_CM_EVENT_CONNECT_ERROR: 305 case RDMA_CM_EVENT_UNREACHABLE: 306 case RDMA_CM_EVENT_REJECTED: 307 log_rdma_event(INFO, "connecting failed event=%d\n", event->event); 308 info->transport_status = SMBD_DISCONNECTED; 309 wake_up_interruptible(&info->conn_wait); 310 break; 311 312 case RDMA_CM_EVENT_DEVICE_REMOVAL: 313 case RDMA_CM_EVENT_DISCONNECTED: 314 /* This happenes when we fail the negotiation */ 315 if (info->transport_status == SMBD_NEGOTIATE_FAILED) { 316 info->transport_status = SMBD_DISCONNECTED; 317 wake_up(&info->conn_wait); 318 break; 319 } 320 321 info->transport_status = SMBD_DISCONNECTED; 322 smbd_process_disconnected(info); 323 break; 324 325 default: 326 break; 327 } 328 329 return 0; 330 } 331 332 /* Upcall from RDMA QP */ 333 static void 334 smbd_qp_async_error_upcall(struct ib_event *event, void *context) 335 { 336 struct smbd_connection *info = context; 337 338 log_rdma_event(ERR, "%s on device %s info %p\n", 339 ib_event_msg(event->event), event->device->name, info); 340 341 switch (event->event) { 342 case IB_EVENT_CQ_ERR: 343 case IB_EVENT_QP_FATAL: 344 smbd_disconnect_rdma_connection(info); 345 346 default: 347 break; 348 } 349 } 350 351 static inline void *smbd_request_payload(struct smbd_request *request) 352 { 353 return (void *)request->packet; 354 } 355 356 static inline void *smbd_response_payload(struct smbd_response *response) 357 { 358 return (void *)response->packet; 359 } 360 361 /* Called when a RDMA send is done */ 362 static void send_done(struct ib_cq *cq, struct ib_wc *wc) 363 { 364 int i; 365 struct smbd_request *request = 366 container_of(wc->wr_cqe, struct smbd_request, cqe); 367 368 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n", 369 request, wc->status); 370 371 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) { 372 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n", 373 wc->status, wc->opcode); 374 smbd_disconnect_rdma_connection(request->info); 375 } 376 377 for (i = 0; i < request->num_sge; i++) 378 ib_dma_unmap_single(request->info->id->device, 379 request->sge[i].addr, 380 request->sge[i].length, 381 DMA_TO_DEVICE); 382 383 if (request->has_payload) { 384 if (atomic_dec_and_test(&request->info->send_payload_pending)) 385 wake_up(&request->info->wait_send_payload_pending); 386 } else { 387 if (atomic_dec_and_test(&request->info->send_pending)) 388 wake_up(&request->info->wait_send_pending); 389 } 390 391 mempool_free(request, request->info->request_mempool); 392 } 393 394 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp) 395 { 396 log_rdma_event(INFO, "resp message min_version %u max_version %u " 397 "negotiated_version %u credits_requested %u " 398 "credits_granted %u status %u max_readwrite_size %u " 399 "preferred_send_size %u max_receive_size %u " 400 "max_fragmented_size %u\n", 401 resp->min_version, resp->max_version, resp->negotiated_version, 402 resp->credits_requested, resp->credits_granted, resp->status, 403 resp->max_readwrite_size, resp->preferred_send_size, 404 resp->max_receive_size, resp->max_fragmented_size); 405 } 406 407 /* 408 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7 409 * response, packet_length: the negotiation response message 410 * return value: true if negotiation is a success, false if failed 411 */ 412 static bool process_negotiation_response( 413 struct smbd_response *response, int packet_length) 414 { 415 struct smbd_connection *info = response->info; 416 struct smbd_negotiate_resp *packet = smbd_response_payload(response); 417 418 if (packet_length < sizeof(struct smbd_negotiate_resp)) { 419 log_rdma_event(ERR, 420 "error: packet_length=%d\n", packet_length); 421 return false; 422 } 423 424 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) { 425 log_rdma_event(ERR, "error: negotiated_version=%x\n", 426 le16_to_cpu(packet->negotiated_version)); 427 return false; 428 } 429 info->protocol = le16_to_cpu(packet->negotiated_version); 430 431 if (packet->credits_requested == 0) { 432 log_rdma_event(ERR, "error: credits_requested==0\n"); 433 return false; 434 } 435 info->receive_credit_target = le16_to_cpu(packet->credits_requested); 436 437 if (packet->credits_granted == 0) { 438 log_rdma_event(ERR, "error: credits_granted==0\n"); 439 return false; 440 } 441 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted)); 442 443 atomic_set(&info->receive_credits, 0); 444 445 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) { 446 log_rdma_event(ERR, "error: preferred_send_size=%d\n", 447 le32_to_cpu(packet->preferred_send_size)); 448 return false; 449 } 450 info->max_receive_size = le32_to_cpu(packet->preferred_send_size); 451 452 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) { 453 log_rdma_event(ERR, "error: max_receive_size=%d\n", 454 le32_to_cpu(packet->max_receive_size)); 455 return false; 456 } 457 info->max_send_size = min_t(int, info->max_send_size, 458 le32_to_cpu(packet->max_receive_size)); 459 460 if (le32_to_cpu(packet->max_fragmented_size) < 461 SMBD_MIN_FRAGMENTED_SIZE) { 462 log_rdma_event(ERR, "error: max_fragmented_size=%d\n", 463 le32_to_cpu(packet->max_fragmented_size)); 464 return false; 465 } 466 info->max_fragmented_send_size = 467 le32_to_cpu(packet->max_fragmented_size); 468 info->rdma_readwrite_threshold = 469 rdma_readwrite_threshold > info->max_fragmented_send_size ? 470 info->max_fragmented_send_size : 471 rdma_readwrite_threshold; 472 473 474 info->max_readwrite_size = min_t(u32, 475 le32_to_cpu(packet->max_readwrite_size), 476 info->max_frmr_depth * PAGE_SIZE); 477 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE; 478 479 return true; 480 } 481 482 /* 483 * Check and schedule to send an immediate packet 484 * This is used to extend credtis to remote peer to keep the transport busy 485 */ 486 static void check_and_send_immediate(struct smbd_connection *info) 487 { 488 if (info->transport_status != SMBD_CONNECTED) 489 return; 490 491 info->send_immediate = true; 492 493 /* 494 * Promptly send a packet if our peer is running low on receive 495 * credits 496 */ 497 if (atomic_read(&info->receive_credits) < 498 info->receive_credit_target - 1) 499 queue_delayed_work( 500 info->workqueue, &info->send_immediate_work, 0); 501 } 502 503 static void smbd_post_send_credits(struct work_struct *work) 504 { 505 int ret = 0; 506 int use_receive_queue = 1; 507 int rc; 508 struct smbd_response *response; 509 struct smbd_connection *info = 510 container_of(work, struct smbd_connection, 511 post_send_credits_work); 512 513 if (info->transport_status != SMBD_CONNECTED) { 514 wake_up(&info->wait_receive_queues); 515 return; 516 } 517 518 if (info->receive_credit_target > 519 atomic_read(&info->receive_credits)) { 520 while (true) { 521 if (use_receive_queue) 522 response = get_receive_buffer(info); 523 else 524 response = get_empty_queue_buffer(info); 525 if (!response) { 526 /* now switch to emtpy packet queue */ 527 if (use_receive_queue) { 528 use_receive_queue = 0; 529 continue; 530 } else 531 break; 532 } 533 534 response->type = SMBD_TRANSFER_DATA; 535 response->first_segment = false; 536 rc = smbd_post_recv(info, response); 537 if (rc) { 538 log_rdma_recv(ERR, 539 "post_recv failed rc=%d\n", rc); 540 put_receive_buffer(info, response); 541 break; 542 } 543 544 ret++; 545 } 546 } 547 548 spin_lock(&info->lock_new_credits_offered); 549 info->new_credits_offered += ret; 550 spin_unlock(&info->lock_new_credits_offered); 551 552 atomic_add(ret, &info->receive_credits); 553 554 /* Check if we can post new receive and grant credits to peer */ 555 check_and_send_immediate(info); 556 } 557 558 static void smbd_recv_done_work(struct work_struct *work) 559 { 560 struct smbd_connection *info = 561 container_of(work, struct smbd_connection, recv_done_work); 562 563 /* 564 * We may have new send credits granted from remote peer 565 * If any sender is blcoked on lack of credets, unblock it 566 */ 567 if (atomic_read(&info->send_credits)) 568 wake_up_interruptible(&info->wait_send_queue); 569 570 /* 571 * Check if we need to send something to remote peer to 572 * grant more credits or respond to KEEP_ALIVE packet 573 */ 574 check_and_send_immediate(info); 575 } 576 577 /* Called from softirq, when recv is done */ 578 static void recv_done(struct ib_cq *cq, struct ib_wc *wc) 579 { 580 struct smbd_data_transfer *data_transfer; 581 struct smbd_response *response = 582 container_of(wc->wr_cqe, struct smbd_response, cqe); 583 struct smbd_connection *info = response->info; 584 int data_length = 0; 585 586 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d " 587 "byte_len=%d pkey_index=%x\n", 588 response, response->type, wc->status, wc->opcode, 589 wc->byte_len, wc->pkey_index); 590 591 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) { 592 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n", 593 wc->status, wc->opcode); 594 smbd_disconnect_rdma_connection(info); 595 goto error; 596 } 597 598 ib_dma_sync_single_for_cpu( 599 wc->qp->device, 600 response->sge.addr, 601 response->sge.length, 602 DMA_FROM_DEVICE); 603 604 switch (response->type) { 605 /* SMBD negotiation response */ 606 case SMBD_NEGOTIATE_RESP: 607 dump_smbd_negotiate_resp(smbd_response_payload(response)); 608 info->full_packet_received = true; 609 info->negotiate_done = 610 process_negotiation_response(response, wc->byte_len); 611 complete(&info->negotiate_completion); 612 break; 613 614 /* SMBD data transfer packet */ 615 case SMBD_TRANSFER_DATA: 616 data_transfer = smbd_response_payload(response); 617 data_length = le32_to_cpu(data_transfer->data_length); 618 619 /* 620 * If this is a packet with data playload place the data in 621 * reassembly queue and wake up the reading thread 622 */ 623 if (data_length) { 624 if (info->full_packet_received) 625 response->first_segment = true; 626 627 if (le32_to_cpu(data_transfer->remaining_data_length)) 628 info->full_packet_received = false; 629 else 630 info->full_packet_received = true; 631 632 enqueue_reassembly( 633 info, 634 response, 635 data_length); 636 } else 637 put_empty_packet(info, response); 638 639 if (data_length) 640 wake_up_interruptible(&info->wait_reassembly_queue); 641 642 atomic_dec(&info->receive_credits); 643 info->receive_credit_target = 644 le16_to_cpu(data_transfer->credits_requested); 645 atomic_add(le16_to_cpu(data_transfer->credits_granted), 646 &info->send_credits); 647 648 log_incoming(INFO, "data flags %d data_offset %d " 649 "data_length %d remaining_data_length %d\n", 650 le16_to_cpu(data_transfer->flags), 651 le32_to_cpu(data_transfer->data_offset), 652 le32_to_cpu(data_transfer->data_length), 653 le32_to_cpu(data_transfer->remaining_data_length)); 654 655 /* Send a KEEP_ALIVE response right away if requested */ 656 info->keep_alive_requested = KEEP_ALIVE_NONE; 657 if (le16_to_cpu(data_transfer->flags) & 658 SMB_DIRECT_RESPONSE_REQUESTED) { 659 info->keep_alive_requested = KEEP_ALIVE_PENDING; 660 } 661 662 queue_work(info->workqueue, &info->recv_done_work); 663 return; 664 665 default: 666 log_rdma_recv(ERR, 667 "unexpected response type=%d\n", response->type); 668 } 669 670 error: 671 put_receive_buffer(info, response); 672 } 673 674 static struct rdma_cm_id *smbd_create_id( 675 struct smbd_connection *info, 676 struct sockaddr *dstaddr, int port) 677 { 678 struct rdma_cm_id *id; 679 int rc; 680 __be16 *sport; 681 682 id = rdma_create_id(&init_net, smbd_conn_upcall, info, 683 RDMA_PS_TCP, IB_QPT_RC); 684 if (IS_ERR(id)) { 685 rc = PTR_ERR(id); 686 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc); 687 return id; 688 } 689 690 if (dstaddr->sa_family == AF_INET6) 691 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port; 692 else 693 sport = &((struct sockaddr_in *)dstaddr)->sin_port; 694 695 *sport = htons(port); 696 697 init_completion(&info->ri_done); 698 info->ri_rc = -ETIMEDOUT; 699 700 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr, 701 RDMA_RESOLVE_TIMEOUT); 702 if (rc) { 703 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc); 704 goto out; 705 } 706 wait_for_completion_interruptible_timeout( 707 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 708 rc = info->ri_rc; 709 if (rc) { 710 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc); 711 goto out; 712 } 713 714 info->ri_rc = -ETIMEDOUT; 715 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 716 if (rc) { 717 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc); 718 goto out; 719 } 720 wait_for_completion_interruptible_timeout( 721 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 722 rc = info->ri_rc; 723 if (rc) { 724 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc); 725 goto out; 726 } 727 728 return id; 729 730 out: 731 rdma_destroy_id(id); 732 return ERR_PTR(rc); 733 } 734 735 /* 736 * Test if FRWR (Fast Registration Work Requests) is supported on the device 737 * This implementation requries FRWR on RDMA read/write 738 * return value: true if it is supported 739 */ 740 static bool frwr_is_supported(struct ib_device_attr *attrs) 741 { 742 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 743 return false; 744 if (attrs->max_fast_reg_page_list_len == 0) 745 return false; 746 return true; 747 } 748 749 static int smbd_ia_open( 750 struct smbd_connection *info, 751 struct sockaddr *dstaddr, int port) 752 { 753 int rc; 754 755 info->id = smbd_create_id(info, dstaddr, port); 756 if (IS_ERR(info->id)) { 757 rc = PTR_ERR(info->id); 758 goto out1; 759 } 760 761 if (!frwr_is_supported(&info->id->device->attrs)) { 762 log_rdma_event(ERR, 763 "Fast Registration Work Requests " 764 "(FRWR) is not supported\n"); 765 log_rdma_event(ERR, 766 "Device capability flags = %llx " 767 "max_fast_reg_page_list_len = %u\n", 768 info->id->device->attrs.device_cap_flags, 769 info->id->device->attrs.max_fast_reg_page_list_len); 770 rc = -EPROTONOSUPPORT; 771 goto out2; 772 } 773 info->max_frmr_depth = min_t(int, 774 smbd_max_frmr_depth, 775 info->id->device->attrs.max_fast_reg_page_list_len); 776 info->mr_type = IB_MR_TYPE_MEM_REG; 777 if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG) 778 info->mr_type = IB_MR_TYPE_SG_GAPS; 779 780 info->pd = ib_alloc_pd(info->id->device, 0); 781 if (IS_ERR(info->pd)) { 782 rc = PTR_ERR(info->pd); 783 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc); 784 goto out2; 785 } 786 787 return 0; 788 789 out2: 790 rdma_destroy_id(info->id); 791 info->id = NULL; 792 793 out1: 794 return rc; 795 } 796 797 /* 798 * Send a negotiation request message to the peer 799 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3 800 * After negotiation, the transport is connected and ready for 801 * carrying upper layer SMB payload 802 */ 803 static int smbd_post_send_negotiate_req(struct smbd_connection *info) 804 { 805 struct ib_send_wr send_wr; 806 int rc = -ENOMEM; 807 struct smbd_request *request; 808 struct smbd_negotiate_req *packet; 809 810 request = mempool_alloc(info->request_mempool, GFP_KERNEL); 811 if (!request) 812 return rc; 813 814 request->info = info; 815 816 packet = smbd_request_payload(request); 817 packet->min_version = cpu_to_le16(SMBD_V1); 818 packet->max_version = cpu_to_le16(SMBD_V1); 819 packet->reserved = 0; 820 packet->credits_requested = cpu_to_le16(info->send_credit_target); 821 packet->preferred_send_size = cpu_to_le32(info->max_send_size); 822 packet->max_receive_size = cpu_to_le32(info->max_receive_size); 823 packet->max_fragmented_size = 824 cpu_to_le32(info->max_fragmented_recv_size); 825 826 request->num_sge = 1; 827 request->sge[0].addr = ib_dma_map_single( 828 info->id->device, (void *)packet, 829 sizeof(*packet), DMA_TO_DEVICE); 830 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) { 831 rc = -EIO; 832 goto dma_mapping_failed; 833 } 834 835 request->sge[0].length = sizeof(*packet); 836 request->sge[0].lkey = info->pd->local_dma_lkey; 837 838 ib_dma_sync_single_for_device( 839 info->id->device, request->sge[0].addr, 840 request->sge[0].length, DMA_TO_DEVICE); 841 842 request->cqe.done = send_done; 843 844 send_wr.next = NULL; 845 send_wr.wr_cqe = &request->cqe; 846 send_wr.sg_list = request->sge; 847 send_wr.num_sge = request->num_sge; 848 send_wr.opcode = IB_WR_SEND; 849 send_wr.send_flags = IB_SEND_SIGNALED; 850 851 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n", 852 request->sge[0].addr, 853 request->sge[0].length, request->sge[0].lkey); 854 855 request->has_payload = false; 856 atomic_inc(&info->send_pending); 857 rc = ib_post_send(info->id->qp, &send_wr, NULL); 858 if (!rc) 859 return 0; 860 861 /* if we reach here, post send failed */ 862 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc); 863 atomic_dec(&info->send_pending); 864 ib_dma_unmap_single(info->id->device, request->sge[0].addr, 865 request->sge[0].length, DMA_TO_DEVICE); 866 867 smbd_disconnect_rdma_connection(info); 868 869 dma_mapping_failed: 870 mempool_free(request, info->request_mempool); 871 return rc; 872 } 873 874 /* 875 * Extend the credits to remote peer 876 * This implements [MS-SMBD] 3.1.5.9 877 * The idea is that we should extend credits to remote peer as quickly as 878 * it's allowed, to maintain data flow. We allocate as much receive 879 * buffer as possible, and extend the receive credits to remote peer 880 * return value: the new credtis being granted. 881 */ 882 static int manage_credits_prior_sending(struct smbd_connection *info) 883 { 884 int new_credits; 885 886 spin_lock(&info->lock_new_credits_offered); 887 new_credits = info->new_credits_offered; 888 info->new_credits_offered = 0; 889 spin_unlock(&info->lock_new_credits_offered); 890 891 return new_credits; 892 } 893 894 /* 895 * Check if we need to send a KEEP_ALIVE message 896 * The idle connection timer triggers a KEEP_ALIVE message when expires 897 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send 898 * back a response. 899 * return value: 900 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set 901 * 0: otherwise 902 */ 903 static int manage_keep_alive_before_sending(struct smbd_connection *info) 904 { 905 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) { 906 info->keep_alive_requested = KEEP_ALIVE_SENT; 907 return 1; 908 } 909 return 0; 910 } 911 912 /* 913 * Build and prepare the SMBD packet header 914 * This function waits for avaialbe send credits and build a SMBD packet 915 * header. The caller then optional append payload to the packet after 916 * the header 917 * intput values 918 * size: the size of the payload 919 * remaining_data_length: remaining data to send if this is part of a 920 * fragmented packet 921 * output values 922 * request_out: the request allocated from this function 923 * return values: 0 on success, otherwise actual error code returned 924 */ 925 static int smbd_create_header(struct smbd_connection *info, 926 int size, int remaining_data_length, 927 struct smbd_request **request_out) 928 { 929 struct smbd_request *request; 930 struct smbd_data_transfer *packet; 931 int header_length; 932 int rc; 933 934 /* Wait for send credits. A SMBD packet needs one credit */ 935 rc = wait_event_interruptible(info->wait_send_queue, 936 atomic_read(&info->send_credits) > 0 || 937 info->transport_status != SMBD_CONNECTED); 938 if (rc) 939 return rc; 940 941 if (info->transport_status != SMBD_CONNECTED) { 942 log_outgoing(ERR, "disconnected not sending\n"); 943 return -ENOENT; 944 } 945 atomic_dec(&info->send_credits); 946 947 request = mempool_alloc(info->request_mempool, GFP_KERNEL); 948 if (!request) { 949 rc = -ENOMEM; 950 goto err; 951 } 952 953 request->info = info; 954 955 /* Fill in the packet header */ 956 packet = smbd_request_payload(request); 957 packet->credits_requested = cpu_to_le16(info->send_credit_target); 958 packet->credits_granted = 959 cpu_to_le16(manage_credits_prior_sending(info)); 960 info->send_immediate = false; 961 962 packet->flags = 0; 963 if (manage_keep_alive_before_sending(info)) 964 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED); 965 966 packet->reserved = 0; 967 if (!size) 968 packet->data_offset = 0; 969 else 970 packet->data_offset = cpu_to_le32(24); 971 packet->data_length = cpu_to_le32(size); 972 packet->remaining_data_length = cpu_to_le32(remaining_data_length); 973 packet->padding = 0; 974 975 log_outgoing(INFO, "credits_requested=%d credits_granted=%d " 976 "data_offset=%d data_length=%d remaining_data_length=%d\n", 977 le16_to_cpu(packet->credits_requested), 978 le16_to_cpu(packet->credits_granted), 979 le32_to_cpu(packet->data_offset), 980 le32_to_cpu(packet->data_length), 981 le32_to_cpu(packet->remaining_data_length)); 982 983 /* Map the packet to DMA */ 984 header_length = sizeof(struct smbd_data_transfer); 985 /* If this is a packet without payload, don't send padding */ 986 if (!size) 987 header_length = offsetof(struct smbd_data_transfer, padding); 988 989 request->num_sge = 1; 990 request->sge[0].addr = ib_dma_map_single(info->id->device, 991 (void *)packet, 992 header_length, 993 DMA_BIDIRECTIONAL); 994 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) { 995 mempool_free(request, info->request_mempool); 996 rc = -EIO; 997 goto err; 998 } 999 1000 request->sge[0].length = header_length; 1001 request->sge[0].lkey = info->pd->local_dma_lkey; 1002 1003 *request_out = request; 1004 return 0; 1005 1006 err: 1007 atomic_inc(&info->send_credits); 1008 return rc; 1009 } 1010 1011 static void smbd_destroy_header(struct smbd_connection *info, 1012 struct smbd_request *request) 1013 { 1014 1015 ib_dma_unmap_single(info->id->device, 1016 request->sge[0].addr, 1017 request->sge[0].length, 1018 DMA_TO_DEVICE); 1019 mempool_free(request, info->request_mempool); 1020 atomic_inc(&info->send_credits); 1021 } 1022 1023 /* Post the send request */ 1024 static int smbd_post_send(struct smbd_connection *info, 1025 struct smbd_request *request, bool has_payload) 1026 { 1027 struct ib_send_wr send_wr; 1028 int rc, i; 1029 1030 for (i = 0; i < request->num_sge; i++) { 1031 log_rdma_send(INFO, 1032 "rdma_request sge[%d] addr=%llu length=%u\n", 1033 i, request->sge[i].addr, request->sge[i].length); 1034 ib_dma_sync_single_for_device( 1035 info->id->device, 1036 request->sge[i].addr, 1037 request->sge[i].length, 1038 DMA_TO_DEVICE); 1039 } 1040 1041 request->cqe.done = send_done; 1042 1043 send_wr.next = NULL; 1044 send_wr.wr_cqe = &request->cqe; 1045 send_wr.sg_list = request->sge; 1046 send_wr.num_sge = request->num_sge; 1047 send_wr.opcode = IB_WR_SEND; 1048 send_wr.send_flags = IB_SEND_SIGNALED; 1049 1050 if (has_payload) { 1051 request->has_payload = true; 1052 atomic_inc(&info->send_payload_pending); 1053 } else { 1054 request->has_payload = false; 1055 atomic_inc(&info->send_pending); 1056 } 1057 1058 rc = ib_post_send(info->id->qp, &send_wr, NULL); 1059 if (rc) { 1060 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc); 1061 if (has_payload) { 1062 if (atomic_dec_and_test(&info->send_payload_pending)) 1063 wake_up(&info->wait_send_payload_pending); 1064 } else { 1065 if (atomic_dec_and_test(&info->send_pending)) 1066 wake_up(&info->wait_send_pending); 1067 } 1068 smbd_disconnect_rdma_connection(info); 1069 } else 1070 /* Reset timer for idle connection after packet is sent */ 1071 mod_delayed_work(info->workqueue, &info->idle_timer_work, 1072 info->keep_alive_interval*HZ); 1073 1074 return rc; 1075 } 1076 1077 static int smbd_post_send_sgl(struct smbd_connection *info, 1078 struct scatterlist *sgl, int data_length, int remaining_data_length) 1079 { 1080 int num_sgs; 1081 int i, rc; 1082 struct smbd_request *request; 1083 struct scatterlist *sg; 1084 1085 rc = smbd_create_header( 1086 info, data_length, remaining_data_length, &request); 1087 if (rc) 1088 return rc; 1089 1090 num_sgs = sgl ? sg_nents(sgl) : 0; 1091 for_each_sg(sgl, sg, num_sgs, i) { 1092 request->sge[i+1].addr = 1093 ib_dma_map_page(info->id->device, sg_page(sg), 1094 sg->offset, sg->length, DMA_BIDIRECTIONAL); 1095 if (ib_dma_mapping_error( 1096 info->id->device, request->sge[i+1].addr)) { 1097 rc = -EIO; 1098 request->sge[i+1].addr = 0; 1099 goto dma_mapping_failure; 1100 } 1101 request->sge[i+1].length = sg->length; 1102 request->sge[i+1].lkey = info->pd->local_dma_lkey; 1103 request->num_sge++; 1104 } 1105 1106 rc = smbd_post_send(info, request, data_length); 1107 if (!rc) 1108 return 0; 1109 1110 dma_mapping_failure: 1111 for (i = 1; i < request->num_sge; i++) 1112 if (request->sge[i].addr) 1113 ib_dma_unmap_single(info->id->device, 1114 request->sge[i].addr, 1115 request->sge[i].length, 1116 DMA_TO_DEVICE); 1117 smbd_destroy_header(info, request); 1118 return rc; 1119 } 1120 1121 /* 1122 * Send a page 1123 * page: the page to send 1124 * offset: offset in the page to send 1125 * size: length in the page to send 1126 * remaining_data_length: remaining data to send in this payload 1127 */ 1128 static int smbd_post_send_page(struct smbd_connection *info, struct page *page, 1129 unsigned long offset, size_t size, int remaining_data_length) 1130 { 1131 struct scatterlist sgl; 1132 1133 sg_init_table(&sgl, 1); 1134 sg_set_page(&sgl, page, size, offset); 1135 1136 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length); 1137 } 1138 1139 /* 1140 * Send an empty message 1141 * Empty message is used to extend credits to peer to for keep live 1142 * while there is no upper layer payload to send at the time 1143 */ 1144 static int smbd_post_send_empty(struct smbd_connection *info) 1145 { 1146 info->count_send_empty++; 1147 return smbd_post_send_sgl(info, NULL, 0, 0); 1148 } 1149 1150 /* 1151 * Send a data buffer 1152 * iov: the iov array describing the data buffers 1153 * n_vec: number of iov array 1154 * remaining_data_length: remaining data to send following this packet 1155 * in segmented SMBD packet 1156 */ 1157 static int smbd_post_send_data( 1158 struct smbd_connection *info, struct kvec *iov, int n_vec, 1159 int remaining_data_length) 1160 { 1161 int i; 1162 u32 data_length = 0; 1163 struct scatterlist sgl[SMBDIRECT_MAX_SGE]; 1164 1165 if (n_vec > SMBDIRECT_MAX_SGE) { 1166 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec); 1167 return -ENOMEM; 1168 } 1169 1170 sg_init_table(sgl, n_vec); 1171 for (i = 0; i < n_vec; i++) { 1172 data_length += iov[i].iov_len; 1173 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len); 1174 } 1175 1176 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length); 1177 } 1178 1179 /* 1180 * Post a receive request to the transport 1181 * The remote peer can only send data when a receive request is posted 1182 * The interaction is controlled by send/receive credit system 1183 */ 1184 static int smbd_post_recv( 1185 struct smbd_connection *info, struct smbd_response *response) 1186 { 1187 struct ib_recv_wr recv_wr; 1188 int rc = -EIO; 1189 1190 response->sge.addr = ib_dma_map_single( 1191 info->id->device, response->packet, 1192 info->max_receive_size, DMA_FROM_DEVICE); 1193 if (ib_dma_mapping_error(info->id->device, response->sge.addr)) 1194 return rc; 1195 1196 response->sge.length = info->max_receive_size; 1197 response->sge.lkey = info->pd->local_dma_lkey; 1198 1199 response->cqe.done = recv_done; 1200 1201 recv_wr.wr_cqe = &response->cqe; 1202 recv_wr.next = NULL; 1203 recv_wr.sg_list = &response->sge; 1204 recv_wr.num_sge = 1; 1205 1206 rc = ib_post_recv(info->id->qp, &recv_wr, NULL); 1207 if (rc) { 1208 ib_dma_unmap_single(info->id->device, response->sge.addr, 1209 response->sge.length, DMA_FROM_DEVICE); 1210 smbd_disconnect_rdma_connection(info); 1211 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc); 1212 } 1213 1214 return rc; 1215 } 1216 1217 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */ 1218 static int smbd_negotiate(struct smbd_connection *info) 1219 { 1220 int rc; 1221 struct smbd_response *response = get_receive_buffer(info); 1222 1223 response->type = SMBD_NEGOTIATE_RESP; 1224 rc = smbd_post_recv(info, response); 1225 log_rdma_event(INFO, 1226 "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x " 1227 "iov.lkey=%x\n", 1228 rc, response->sge.addr, 1229 response->sge.length, response->sge.lkey); 1230 if (rc) 1231 return rc; 1232 1233 init_completion(&info->negotiate_completion); 1234 info->negotiate_done = false; 1235 rc = smbd_post_send_negotiate_req(info); 1236 if (rc) 1237 return rc; 1238 1239 rc = wait_for_completion_interruptible_timeout( 1240 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ); 1241 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc); 1242 1243 if (info->negotiate_done) 1244 return 0; 1245 1246 if (rc == 0) 1247 rc = -ETIMEDOUT; 1248 else if (rc == -ERESTARTSYS) 1249 rc = -EINTR; 1250 else 1251 rc = -ENOTCONN; 1252 1253 return rc; 1254 } 1255 1256 static void put_empty_packet( 1257 struct smbd_connection *info, struct smbd_response *response) 1258 { 1259 spin_lock(&info->empty_packet_queue_lock); 1260 list_add_tail(&response->list, &info->empty_packet_queue); 1261 info->count_empty_packet_queue++; 1262 spin_unlock(&info->empty_packet_queue_lock); 1263 1264 queue_work(info->workqueue, &info->post_send_credits_work); 1265 } 1266 1267 /* 1268 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1 1269 * This is a queue for reassembling upper layer payload and present to upper 1270 * layer. All the inncoming payload go to the reassembly queue, regardless of 1271 * if reassembly is required. The uuper layer code reads from the queue for all 1272 * incoming payloads. 1273 * Put a received packet to the reassembly queue 1274 * response: the packet received 1275 * data_length: the size of payload in this packet 1276 */ 1277 static void enqueue_reassembly( 1278 struct smbd_connection *info, 1279 struct smbd_response *response, 1280 int data_length) 1281 { 1282 spin_lock(&info->reassembly_queue_lock); 1283 list_add_tail(&response->list, &info->reassembly_queue); 1284 info->reassembly_queue_length++; 1285 /* 1286 * Make sure reassembly_data_length is updated after list and 1287 * reassembly_queue_length are updated. On the dequeue side 1288 * reassembly_data_length is checked without a lock to determine 1289 * if reassembly_queue_length and list is up to date 1290 */ 1291 virt_wmb(); 1292 info->reassembly_data_length += data_length; 1293 spin_unlock(&info->reassembly_queue_lock); 1294 info->count_reassembly_queue++; 1295 info->count_enqueue_reassembly_queue++; 1296 } 1297 1298 /* 1299 * Get the first entry at the front of reassembly queue 1300 * Caller is responsible for locking 1301 * return value: the first entry if any, NULL if queue is empty 1302 */ 1303 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info) 1304 { 1305 struct smbd_response *ret = NULL; 1306 1307 if (!list_empty(&info->reassembly_queue)) { 1308 ret = list_first_entry( 1309 &info->reassembly_queue, 1310 struct smbd_response, list); 1311 } 1312 return ret; 1313 } 1314 1315 static struct smbd_response *get_empty_queue_buffer( 1316 struct smbd_connection *info) 1317 { 1318 struct smbd_response *ret = NULL; 1319 unsigned long flags; 1320 1321 spin_lock_irqsave(&info->empty_packet_queue_lock, flags); 1322 if (!list_empty(&info->empty_packet_queue)) { 1323 ret = list_first_entry( 1324 &info->empty_packet_queue, 1325 struct smbd_response, list); 1326 list_del(&ret->list); 1327 info->count_empty_packet_queue--; 1328 } 1329 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags); 1330 1331 return ret; 1332 } 1333 1334 /* 1335 * Get a receive buffer 1336 * For each remote send, we need to post a receive. The receive buffers are 1337 * pre-allocated in advance. 1338 * return value: the receive buffer, NULL if none is available 1339 */ 1340 static struct smbd_response *get_receive_buffer(struct smbd_connection *info) 1341 { 1342 struct smbd_response *ret = NULL; 1343 unsigned long flags; 1344 1345 spin_lock_irqsave(&info->receive_queue_lock, flags); 1346 if (!list_empty(&info->receive_queue)) { 1347 ret = list_first_entry( 1348 &info->receive_queue, 1349 struct smbd_response, list); 1350 list_del(&ret->list); 1351 info->count_receive_queue--; 1352 info->count_get_receive_buffer++; 1353 } 1354 spin_unlock_irqrestore(&info->receive_queue_lock, flags); 1355 1356 return ret; 1357 } 1358 1359 /* 1360 * Return a receive buffer 1361 * Upon returning of a receive buffer, we can post new receive and extend 1362 * more receive credits to remote peer. This is done immediately after a 1363 * receive buffer is returned. 1364 */ 1365 static void put_receive_buffer( 1366 struct smbd_connection *info, struct smbd_response *response) 1367 { 1368 unsigned long flags; 1369 1370 ib_dma_unmap_single(info->id->device, response->sge.addr, 1371 response->sge.length, DMA_FROM_DEVICE); 1372 1373 spin_lock_irqsave(&info->receive_queue_lock, flags); 1374 list_add_tail(&response->list, &info->receive_queue); 1375 info->count_receive_queue++; 1376 info->count_put_receive_buffer++; 1377 spin_unlock_irqrestore(&info->receive_queue_lock, flags); 1378 1379 queue_work(info->workqueue, &info->post_send_credits_work); 1380 } 1381 1382 /* Preallocate all receive buffer on transport establishment */ 1383 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf) 1384 { 1385 int i; 1386 struct smbd_response *response; 1387 1388 INIT_LIST_HEAD(&info->reassembly_queue); 1389 spin_lock_init(&info->reassembly_queue_lock); 1390 info->reassembly_data_length = 0; 1391 info->reassembly_queue_length = 0; 1392 1393 INIT_LIST_HEAD(&info->receive_queue); 1394 spin_lock_init(&info->receive_queue_lock); 1395 info->count_receive_queue = 0; 1396 1397 INIT_LIST_HEAD(&info->empty_packet_queue); 1398 spin_lock_init(&info->empty_packet_queue_lock); 1399 info->count_empty_packet_queue = 0; 1400 1401 init_waitqueue_head(&info->wait_receive_queues); 1402 1403 for (i = 0; i < num_buf; i++) { 1404 response = mempool_alloc(info->response_mempool, GFP_KERNEL); 1405 if (!response) 1406 goto allocate_failed; 1407 1408 response->info = info; 1409 list_add_tail(&response->list, &info->receive_queue); 1410 info->count_receive_queue++; 1411 } 1412 1413 return 0; 1414 1415 allocate_failed: 1416 while (!list_empty(&info->receive_queue)) { 1417 response = list_first_entry( 1418 &info->receive_queue, 1419 struct smbd_response, list); 1420 list_del(&response->list); 1421 info->count_receive_queue--; 1422 1423 mempool_free(response, info->response_mempool); 1424 } 1425 return -ENOMEM; 1426 } 1427 1428 static void destroy_receive_buffers(struct smbd_connection *info) 1429 { 1430 struct smbd_response *response; 1431 1432 while ((response = get_receive_buffer(info))) 1433 mempool_free(response, info->response_mempool); 1434 1435 while ((response = get_empty_queue_buffer(info))) 1436 mempool_free(response, info->response_mempool); 1437 } 1438 1439 /* 1440 * Check and send an immediate or keep alive packet 1441 * The condition to send those packets are defined in [MS-SMBD] 3.1.1.1 1442 * Connection.KeepaliveRequested and Connection.SendImmediate 1443 * The idea is to extend credits to server as soon as it becomes available 1444 */ 1445 static void send_immediate_work(struct work_struct *work) 1446 { 1447 struct smbd_connection *info = container_of( 1448 work, struct smbd_connection, 1449 send_immediate_work.work); 1450 1451 if (info->keep_alive_requested == KEEP_ALIVE_PENDING || 1452 info->send_immediate) { 1453 log_keep_alive(INFO, "send an empty message\n"); 1454 smbd_post_send_empty(info); 1455 } 1456 } 1457 1458 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */ 1459 static void idle_connection_timer(struct work_struct *work) 1460 { 1461 struct smbd_connection *info = container_of( 1462 work, struct smbd_connection, 1463 idle_timer_work.work); 1464 1465 if (info->keep_alive_requested != KEEP_ALIVE_NONE) { 1466 log_keep_alive(ERR, 1467 "error status info->keep_alive_requested=%d\n", 1468 info->keep_alive_requested); 1469 smbd_disconnect_rdma_connection(info); 1470 return; 1471 } 1472 1473 log_keep_alive(INFO, "about to send an empty idle message\n"); 1474 smbd_post_send_empty(info); 1475 1476 /* Setup the next idle timeout work */ 1477 queue_delayed_work(info->workqueue, &info->idle_timer_work, 1478 info->keep_alive_interval*HZ); 1479 } 1480 1481 /* Destroy this SMBD connection, called from upper layer */ 1482 void smbd_destroy(struct smbd_connection *info) 1483 { 1484 log_rdma_event(INFO, "destroying rdma session\n"); 1485 1486 /* Kick off the disconnection process */ 1487 smbd_disconnect_rdma_connection(info); 1488 1489 log_rdma_event(INFO, "wait for transport being destroyed\n"); 1490 wait_event(info->wait_destroy, 1491 info->transport_status == SMBD_DESTROYED); 1492 1493 destroy_workqueue(info->workqueue); 1494 kfree(info); 1495 } 1496 1497 /* 1498 * Reconnect this SMBD connection, called from upper layer 1499 * return value: 0 on success, or actual error code 1500 */ 1501 int smbd_reconnect(struct TCP_Server_Info *server) 1502 { 1503 log_rdma_event(INFO, "reconnecting rdma session\n"); 1504 1505 if (!server->smbd_conn) { 1506 log_rdma_event(INFO, "rdma session already destroyed\n"); 1507 goto create_conn; 1508 } 1509 1510 /* 1511 * This is possible if transport is disconnected and we haven't received 1512 * notification from RDMA, but upper layer has detected timeout 1513 */ 1514 if (server->smbd_conn->transport_status == SMBD_CONNECTED) { 1515 log_rdma_event(INFO, "disconnecting transport\n"); 1516 smbd_disconnect_rdma_connection(server->smbd_conn); 1517 } 1518 1519 /* wait until the transport is destroyed */ 1520 if (!wait_event_timeout(server->smbd_conn->wait_destroy, 1521 server->smbd_conn->transport_status == SMBD_DESTROYED, 5*HZ)) 1522 return -EAGAIN; 1523 1524 destroy_workqueue(server->smbd_conn->workqueue); 1525 kfree(server->smbd_conn); 1526 1527 create_conn: 1528 log_rdma_event(INFO, "creating rdma session\n"); 1529 server->smbd_conn = smbd_get_connection( 1530 server, (struct sockaddr *) &server->dstaddr); 1531 log_rdma_event(INFO, "created rdma session info=%p\n", 1532 server->smbd_conn); 1533 1534 return server->smbd_conn ? 0 : -ENOENT; 1535 } 1536 1537 static void destroy_caches_and_workqueue(struct smbd_connection *info) 1538 { 1539 destroy_receive_buffers(info); 1540 destroy_workqueue(info->workqueue); 1541 mempool_destroy(info->response_mempool); 1542 kmem_cache_destroy(info->response_cache); 1543 mempool_destroy(info->request_mempool); 1544 kmem_cache_destroy(info->request_cache); 1545 } 1546 1547 #define MAX_NAME_LEN 80 1548 static int allocate_caches_and_workqueue(struct smbd_connection *info) 1549 { 1550 char name[MAX_NAME_LEN]; 1551 int rc; 1552 1553 snprintf(name, MAX_NAME_LEN, "smbd_request_%p", info); 1554 info->request_cache = 1555 kmem_cache_create( 1556 name, 1557 sizeof(struct smbd_request) + 1558 sizeof(struct smbd_data_transfer), 1559 0, SLAB_HWCACHE_ALIGN, NULL); 1560 if (!info->request_cache) 1561 return -ENOMEM; 1562 1563 info->request_mempool = 1564 mempool_create(info->send_credit_target, mempool_alloc_slab, 1565 mempool_free_slab, info->request_cache); 1566 if (!info->request_mempool) 1567 goto out1; 1568 1569 snprintf(name, MAX_NAME_LEN, "smbd_response_%p", info); 1570 info->response_cache = 1571 kmem_cache_create( 1572 name, 1573 sizeof(struct smbd_response) + 1574 info->max_receive_size, 1575 0, SLAB_HWCACHE_ALIGN, NULL); 1576 if (!info->response_cache) 1577 goto out2; 1578 1579 info->response_mempool = 1580 mempool_create(info->receive_credit_max, mempool_alloc_slab, 1581 mempool_free_slab, info->response_cache); 1582 if (!info->response_mempool) 1583 goto out3; 1584 1585 snprintf(name, MAX_NAME_LEN, "smbd_%p", info); 1586 info->workqueue = create_workqueue(name); 1587 if (!info->workqueue) 1588 goto out4; 1589 1590 rc = allocate_receive_buffers(info, info->receive_credit_max); 1591 if (rc) { 1592 log_rdma_event(ERR, "failed to allocate receive buffers\n"); 1593 goto out5; 1594 } 1595 1596 return 0; 1597 1598 out5: 1599 destroy_workqueue(info->workqueue); 1600 out4: 1601 mempool_destroy(info->response_mempool); 1602 out3: 1603 kmem_cache_destroy(info->response_cache); 1604 out2: 1605 mempool_destroy(info->request_mempool); 1606 out1: 1607 kmem_cache_destroy(info->request_cache); 1608 return -ENOMEM; 1609 } 1610 1611 /* Create a SMBD connection, called by upper layer */ 1612 static struct smbd_connection *_smbd_get_connection( 1613 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port) 1614 { 1615 int rc; 1616 struct smbd_connection *info; 1617 struct rdma_conn_param conn_param; 1618 struct ib_qp_init_attr qp_attr; 1619 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr; 1620 struct ib_port_immutable port_immutable; 1621 u32 ird_ord_hdr[2]; 1622 1623 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL); 1624 if (!info) 1625 return NULL; 1626 1627 info->transport_status = SMBD_CONNECTING; 1628 rc = smbd_ia_open(info, dstaddr, port); 1629 if (rc) { 1630 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc); 1631 goto create_id_failed; 1632 } 1633 1634 if (smbd_send_credit_target > info->id->device->attrs.max_cqe || 1635 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) { 1636 log_rdma_event(ERR, 1637 "consider lowering send_credit_target = %d. " 1638 "Possible CQE overrun, device " 1639 "reporting max_cpe %d max_qp_wr %d\n", 1640 smbd_send_credit_target, 1641 info->id->device->attrs.max_cqe, 1642 info->id->device->attrs.max_qp_wr); 1643 goto config_failed; 1644 } 1645 1646 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe || 1647 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) { 1648 log_rdma_event(ERR, 1649 "consider lowering receive_credit_max = %d. " 1650 "Possible CQE overrun, device " 1651 "reporting max_cpe %d max_qp_wr %d\n", 1652 smbd_receive_credit_max, 1653 info->id->device->attrs.max_cqe, 1654 info->id->device->attrs.max_qp_wr); 1655 goto config_failed; 1656 } 1657 1658 info->receive_credit_max = smbd_receive_credit_max; 1659 info->send_credit_target = smbd_send_credit_target; 1660 info->max_send_size = smbd_max_send_size; 1661 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size; 1662 info->max_receive_size = smbd_max_receive_size; 1663 info->keep_alive_interval = smbd_keep_alive_interval; 1664 1665 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) { 1666 log_rdma_event(ERR, 1667 "warning: device max_send_sge = %d too small\n", 1668 info->id->device->attrs.max_send_sge); 1669 log_rdma_event(ERR, "Queue Pair creation may fail\n"); 1670 } 1671 if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) { 1672 log_rdma_event(ERR, 1673 "warning: device max_recv_sge = %d too small\n", 1674 info->id->device->attrs.max_recv_sge); 1675 log_rdma_event(ERR, "Queue Pair creation may fail\n"); 1676 } 1677 1678 info->send_cq = NULL; 1679 info->recv_cq = NULL; 1680 info->send_cq = ib_alloc_cq(info->id->device, info, 1681 info->send_credit_target, 0, IB_POLL_SOFTIRQ); 1682 if (IS_ERR(info->send_cq)) { 1683 info->send_cq = NULL; 1684 goto alloc_cq_failed; 1685 } 1686 1687 info->recv_cq = ib_alloc_cq(info->id->device, info, 1688 info->receive_credit_max, 0, IB_POLL_SOFTIRQ); 1689 if (IS_ERR(info->recv_cq)) { 1690 info->recv_cq = NULL; 1691 goto alloc_cq_failed; 1692 } 1693 1694 memset(&qp_attr, 0, sizeof(qp_attr)); 1695 qp_attr.event_handler = smbd_qp_async_error_upcall; 1696 qp_attr.qp_context = info; 1697 qp_attr.cap.max_send_wr = info->send_credit_target; 1698 qp_attr.cap.max_recv_wr = info->receive_credit_max; 1699 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE; 1700 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE; 1701 qp_attr.cap.max_inline_data = 0; 1702 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1703 qp_attr.qp_type = IB_QPT_RC; 1704 qp_attr.send_cq = info->send_cq; 1705 qp_attr.recv_cq = info->recv_cq; 1706 qp_attr.port_num = ~0; 1707 1708 rc = rdma_create_qp(info->id, info->pd, &qp_attr); 1709 if (rc) { 1710 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc); 1711 goto create_qp_failed; 1712 } 1713 1714 memset(&conn_param, 0, sizeof(conn_param)); 1715 conn_param.initiator_depth = 0; 1716 1717 conn_param.responder_resources = 1718 info->id->device->attrs.max_qp_rd_atom 1719 < SMBD_CM_RESPONDER_RESOURCES ? 1720 info->id->device->attrs.max_qp_rd_atom : 1721 SMBD_CM_RESPONDER_RESOURCES; 1722 info->responder_resources = conn_param.responder_resources; 1723 log_rdma_mr(INFO, "responder_resources=%d\n", 1724 info->responder_resources); 1725 1726 /* Need to send IRD/ORD in private data for iWARP */ 1727 info->id->device->get_port_immutable( 1728 info->id->device, info->id->port_num, &port_immutable); 1729 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) { 1730 ird_ord_hdr[0] = info->responder_resources; 1731 ird_ord_hdr[1] = 1; 1732 conn_param.private_data = ird_ord_hdr; 1733 conn_param.private_data_len = sizeof(ird_ord_hdr); 1734 } else { 1735 conn_param.private_data = NULL; 1736 conn_param.private_data_len = 0; 1737 } 1738 1739 conn_param.retry_count = SMBD_CM_RETRY; 1740 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY; 1741 conn_param.flow_control = 0; 1742 init_waitqueue_head(&info->wait_destroy); 1743 1744 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n", 1745 &addr_in->sin_addr, port); 1746 1747 init_waitqueue_head(&info->conn_wait); 1748 rc = rdma_connect(info->id, &conn_param); 1749 if (rc) { 1750 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc); 1751 goto rdma_connect_failed; 1752 } 1753 1754 wait_event_interruptible( 1755 info->conn_wait, info->transport_status != SMBD_CONNECTING); 1756 1757 if (info->transport_status != SMBD_CONNECTED) { 1758 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port); 1759 goto rdma_connect_failed; 1760 } 1761 1762 log_rdma_event(INFO, "rdma_connect connected\n"); 1763 1764 rc = allocate_caches_and_workqueue(info); 1765 if (rc) { 1766 log_rdma_event(ERR, "cache allocation failed\n"); 1767 goto allocate_cache_failed; 1768 } 1769 1770 init_waitqueue_head(&info->wait_send_queue); 1771 init_waitqueue_head(&info->wait_reassembly_queue); 1772 1773 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer); 1774 INIT_DELAYED_WORK(&info->send_immediate_work, send_immediate_work); 1775 queue_delayed_work(info->workqueue, &info->idle_timer_work, 1776 info->keep_alive_interval*HZ); 1777 1778 init_waitqueue_head(&info->wait_smbd_send_pending); 1779 info->smbd_send_pending = 0; 1780 1781 init_waitqueue_head(&info->wait_smbd_recv_pending); 1782 info->smbd_recv_pending = 0; 1783 1784 init_waitqueue_head(&info->wait_send_pending); 1785 atomic_set(&info->send_pending, 0); 1786 1787 init_waitqueue_head(&info->wait_send_payload_pending); 1788 atomic_set(&info->send_payload_pending, 0); 1789 1790 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work); 1791 INIT_WORK(&info->destroy_work, smbd_destroy_rdma_work); 1792 INIT_WORK(&info->recv_done_work, smbd_recv_done_work); 1793 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits); 1794 info->new_credits_offered = 0; 1795 spin_lock_init(&info->lock_new_credits_offered); 1796 1797 rc = smbd_negotiate(info); 1798 if (rc) { 1799 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc); 1800 goto negotiation_failed; 1801 } 1802 1803 rc = allocate_mr_list(info); 1804 if (rc) { 1805 log_rdma_mr(ERR, "memory registration allocation failed\n"); 1806 goto allocate_mr_failed; 1807 } 1808 1809 return info; 1810 1811 allocate_mr_failed: 1812 /* At this point, need to a full transport shutdown */ 1813 smbd_destroy(info); 1814 return NULL; 1815 1816 negotiation_failed: 1817 cancel_delayed_work_sync(&info->idle_timer_work); 1818 destroy_caches_and_workqueue(info); 1819 info->transport_status = SMBD_NEGOTIATE_FAILED; 1820 init_waitqueue_head(&info->conn_wait); 1821 rdma_disconnect(info->id); 1822 wait_event(info->conn_wait, 1823 info->transport_status == SMBD_DISCONNECTED); 1824 1825 allocate_cache_failed: 1826 rdma_connect_failed: 1827 rdma_destroy_qp(info->id); 1828 1829 create_qp_failed: 1830 alloc_cq_failed: 1831 if (info->send_cq) 1832 ib_free_cq(info->send_cq); 1833 if (info->recv_cq) 1834 ib_free_cq(info->recv_cq); 1835 1836 config_failed: 1837 ib_dealloc_pd(info->pd); 1838 rdma_destroy_id(info->id); 1839 1840 create_id_failed: 1841 kfree(info); 1842 return NULL; 1843 } 1844 1845 struct smbd_connection *smbd_get_connection( 1846 struct TCP_Server_Info *server, struct sockaddr *dstaddr) 1847 { 1848 struct smbd_connection *ret; 1849 int port = SMBD_PORT; 1850 1851 try_again: 1852 ret = _smbd_get_connection(server, dstaddr, port); 1853 1854 /* Try SMB_PORT if SMBD_PORT doesn't work */ 1855 if (!ret && port == SMBD_PORT) { 1856 port = SMB_PORT; 1857 goto try_again; 1858 } 1859 return ret; 1860 } 1861 1862 /* 1863 * Receive data from receive reassembly queue 1864 * All the incoming data packets are placed in reassembly queue 1865 * buf: the buffer to read data into 1866 * size: the length of data to read 1867 * return value: actual data read 1868 * Note: this implementation copies the data from reassebmly queue to receive 1869 * buffers used by upper layer. This is not the optimal code path. A better way 1870 * to do it is to not have upper layer allocate its receive buffers but rather 1871 * borrow the buffer from reassembly queue, and return it after data is 1872 * consumed. But this will require more changes to upper layer code, and also 1873 * need to consider packet boundaries while they still being reassembled. 1874 */ 1875 static int smbd_recv_buf(struct smbd_connection *info, char *buf, 1876 unsigned int size) 1877 { 1878 struct smbd_response *response; 1879 struct smbd_data_transfer *data_transfer; 1880 int to_copy, to_read, data_read, offset; 1881 u32 data_length, remaining_data_length, data_offset; 1882 int rc; 1883 1884 again: 1885 if (info->transport_status != SMBD_CONNECTED) { 1886 log_read(ERR, "disconnected\n"); 1887 return -ENODEV; 1888 } 1889 1890 /* 1891 * No need to hold the reassembly queue lock all the time as we are 1892 * the only one reading from the front of the queue. The transport 1893 * may add more entries to the back of the queue at the same time 1894 */ 1895 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size, 1896 info->reassembly_data_length); 1897 if (info->reassembly_data_length >= size) { 1898 int queue_length; 1899 int queue_removed = 0; 1900 1901 /* 1902 * Need to make sure reassembly_data_length is read before 1903 * reading reassembly_queue_length and calling 1904 * _get_first_reassembly. This call is lock free 1905 * as we never read at the end of the queue which are being 1906 * updated in SOFTIRQ as more data is received 1907 */ 1908 virt_rmb(); 1909 queue_length = info->reassembly_queue_length; 1910 data_read = 0; 1911 to_read = size; 1912 offset = info->first_entry_offset; 1913 while (data_read < size) { 1914 response = _get_first_reassembly(info); 1915 data_transfer = smbd_response_payload(response); 1916 data_length = le32_to_cpu(data_transfer->data_length); 1917 remaining_data_length = 1918 le32_to_cpu( 1919 data_transfer->remaining_data_length); 1920 data_offset = le32_to_cpu(data_transfer->data_offset); 1921 1922 /* 1923 * The upper layer expects RFC1002 length at the 1924 * beginning of the payload. Return it to indicate 1925 * the total length of the packet. This minimize the 1926 * change to upper layer packet processing logic. This 1927 * will be eventually remove when an intermediate 1928 * transport layer is added 1929 */ 1930 if (response->first_segment && size == 4) { 1931 unsigned int rfc1002_len = 1932 data_length + remaining_data_length; 1933 *((__be32 *)buf) = cpu_to_be32(rfc1002_len); 1934 data_read = 4; 1935 response->first_segment = false; 1936 log_read(INFO, "returning rfc1002 length %d\n", 1937 rfc1002_len); 1938 goto read_rfc1002_done; 1939 } 1940 1941 to_copy = min_t(int, data_length - offset, to_read); 1942 memcpy( 1943 buf + data_read, 1944 (char *)data_transfer + data_offset + offset, 1945 to_copy); 1946 1947 /* move on to the next buffer? */ 1948 if (to_copy == data_length - offset) { 1949 queue_length--; 1950 /* 1951 * No need to lock if we are not at the 1952 * end of the queue 1953 */ 1954 if (queue_length) 1955 list_del(&response->list); 1956 else { 1957 spin_lock_irq( 1958 &info->reassembly_queue_lock); 1959 list_del(&response->list); 1960 spin_unlock_irq( 1961 &info->reassembly_queue_lock); 1962 } 1963 queue_removed++; 1964 info->count_reassembly_queue--; 1965 info->count_dequeue_reassembly_queue++; 1966 put_receive_buffer(info, response); 1967 offset = 0; 1968 log_read(INFO, "put_receive_buffer offset=0\n"); 1969 } else 1970 offset += to_copy; 1971 1972 to_read -= to_copy; 1973 data_read += to_copy; 1974 1975 log_read(INFO, "_get_first_reassembly memcpy %d bytes " 1976 "data_transfer_length-offset=%d after that " 1977 "to_read=%d data_read=%d offset=%d\n", 1978 to_copy, data_length - offset, 1979 to_read, data_read, offset); 1980 } 1981 1982 spin_lock_irq(&info->reassembly_queue_lock); 1983 info->reassembly_data_length -= data_read; 1984 info->reassembly_queue_length -= queue_removed; 1985 spin_unlock_irq(&info->reassembly_queue_lock); 1986 1987 info->first_entry_offset = offset; 1988 log_read(INFO, "returning to thread data_read=%d " 1989 "reassembly_data_length=%d first_entry_offset=%d\n", 1990 data_read, info->reassembly_data_length, 1991 info->first_entry_offset); 1992 read_rfc1002_done: 1993 return data_read; 1994 } 1995 1996 log_read(INFO, "wait_event on more data\n"); 1997 rc = wait_event_interruptible( 1998 info->wait_reassembly_queue, 1999 info->reassembly_data_length >= size || 2000 info->transport_status != SMBD_CONNECTED); 2001 /* Don't return any data if interrupted */ 2002 if (rc) 2003 return -ENODEV; 2004 2005 goto again; 2006 } 2007 2008 /* 2009 * Receive a page from receive reassembly queue 2010 * page: the page to read data into 2011 * to_read: the length of data to read 2012 * return value: actual data read 2013 */ 2014 static int smbd_recv_page(struct smbd_connection *info, 2015 struct page *page, unsigned int page_offset, 2016 unsigned int to_read) 2017 { 2018 int ret; 2019 char *to_address; 2020 void *page_address; 2021 2022 /* make sure we have the page ready for read */ 2023 ret = wait_event_interruptible( 2024 info->wait_reassembly_queue, 2025 info->reassembly_data_length >= to_read || 2026 info->transport_status != SMBD_CONNECTED); 2027 if (ret) 2028 return ret; 2029 2030 /* now we can read from reassembly queue and not sleep */ 2031 page_address = kmap_atomic(page); 2032 to_address = (char *) page_address + page_offset; 2033 2034 log_read(INFO, "reading from page=%p address=%p to_read=%d\n", 2035 page, to_address, to_read); 2036 2037 ret = smbd_recv_buf(info, to_address, to_read); 2038 kunmap_atomic(page_address); 2039 2040 return ret; 2041 } 2042 2043 /* 2044 * Receive data from transport 2045 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC 2046 * return: total bytes read, or 0. SMB Direct will not do partial read. 2047 */ 2048 int smbd_recv(struct smbd_connection *info, struct msghdr *msg) 2049 { 2050 char *buf; 2051 struct page *page; 2052 unsigned int to_read, page_offset; 2053 int rc; 2054 2055 info->smbd_recv_pending++; 2056 2057 if (iov_iter_rw(&msg->msg_iter) == WRITE) { 2058 /* It's a bug in upper layer to get there */ 2059 cifs_dbg(VFS, "CIFS: invalid msg iter dir %u\n", 2060 iov_iter_rw(&msg->msg_iter)); 2061 rc = -EINVAL; 2062 goto out; 2063 } 2064 2065 switch (iov_iter_type(&msg->msg_iter)) { 2066 case ITER_KVEC: 2067 buf = msg->msg_iter.kvec->iov_base; 2068 to_read = msg->msg_iter.kvec->iov_len; 2069 rc = smbd_recv_buf(info, buf, to_read); 2070 break; 2071 2072 case ITER_BVEC: 2073 page = msg->msg_iter.bvec->bv_page; 2074 page_offset = msg->msg_iter.bvec->bv_offset; 2075 to_read = msg->msg_iter.bvec->bv_len; 2076 rc = smbd_recv_page(info, page, page_offset, to_read); 2077 break; 2078 2079 default: 2080 /* It's a bug in upper layer to get there */ 2081 cifs_dbg(VFS, "CIFS: invalid msg type %d\n", 2082 iov_iter_type(&msg->msg_iter)); 2083 rc = -EINVAL; 2084 } 2085 2086 out: 2087 info->smbd_recv_pending--; 2088 wake_up(&info->wait_smbd_recv_pending); 2089 2090 /* SMBDirect will read it all or nothing */ 2091 if (rc > 0) 2092 msg->msg_iter.count = 0; 2093 return rc; 2094 } 2095 2096 /* 2097 * Send data to transport 2098 * Each rqst is transported as a SMBDirect payload 2099 * rqst: the data to write 2100 * return value: 0 if successfully write, otherwise error code 2101 */ 2102 int smbd_send(struct TCP_Server_Info *server, struct smb_rqst *rqst) 2103 { 2104 struct smbd_connection *info = server->smbd_conn; 2105 struct kvec vec; 2106 int nvecs; 2107 int size; 2108 unsigned int buflen, remaining_data_length; 2109 int start, i, j; 2110 int max_iov_size = 2111 info->max_send_size - sizeof(struct smbd_data_transfer); 2112 struct kvec *iov; 2113 int rc; 2114 2115 info->smbd_send_pending++; 2116 if (info->transport_status != SMBD_CONNECTED) { 2117 rc = -ENODEV; 2118 goto done; 2119 } 2120 2121 /* 2122 * Skip the RFC1002 length defined in MS-SMB2 section 2.1 2123 * It is used only for TCP transport in the iov[0] 2124 * In future we may want to add a transport layer under protocol 2125 * layer so this will only be issued to TCP transport 2126 */ 2127 2128 if (rqst->rq_iov[0].iov_len != 4) { 2129 log_write(ERR, "expected the pdu length in 1st iov, but got %zu\n", rqst->rq_iov[0].iov_len); 2130 return -EINVAL; 2131 } 2132 2133 /* 2134 * Add in the page array if there is one. The caller needs to set 2135 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and 2136 * ends at page boundary 2137 */ 2138 buflen = smb_rqst_len(server, rqst); 2139 2140 if (buflen + sizeof(struct smbd_data_transfer) > 2141 info->max_fragmented_send_size) { 2142 log_write(ERR, "payload size %d > max size %d\n", 2143 buflen, info->max_fragmented_send_size); 2144 rc = -EINVAL; 2145 goto done; 2146 } 2147 2148 iov = &rqst->rq_iov[1]; 2149 2150 cifs_dbg(FYI, "Sending smb (RDMA): smb_len=%u\n", buflen); 2151 for (i = 0; i < rqst->rq_nvec-1; i++) 2152 dump_smb(iov[i].iov_base, iov[i].iov_len); 2153 2154 remaining_data_length = buflen; 2155 2156 log_write(INFO, "rqst->rq_nvec=%d rqst->rq_npages=%d rq_pagesz=%d " 2157 "rq_tailsz=%d buflen=%d\n", 2158 rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz, 2159 rqst->rq_tailsz, buflen); 2160 2161 start = i = iov[0].iov_len ? 0 : 1; 2162 buflen = 0; 2163 while (true) { 2164 buflen += iov[i].iov_len; 2165 if (buflen > max_iov_size) { 2166 if (i > start) { 2167 remaining_data_length -= 2168 (buflen-iov[i].iov_len); 2169 log_write(INFO, "sending iov[] from start=%d " 2170 "i=%d nvecs=%d " 2171 "remaining_data_length=%d\n", 2172 start, i, i-start, 2173 remaining_data_length); 2174 rc = smbd_post_send_data( 2175 info, &iov[start], i-start, 2176 remaining_data_length); 2177 if (rc) 2178 goto done; 2179 } else { 2180 /* iov[start] is too big, break it */ 2181 nvecs = (buflen+max_iov_size-1)/max_iov_size; 2182 log_write(INFO, "iov[%d] iov_base=%p buflen=%d" 2183 " break to %d vectors\n", 2184 start, iov[start].iov_base, 2185 buflen, nvecs); 2186 for (j = 0; j < nvecs; j++) { 2187 vec.iov_base = 2188 (char *)iov[start].iov_base + 2189 j*max_iov_size; 2190 vec.iov_len = max_iov_size; 2191 if (j == nvecs-1) 2192 vec.iov_len = 2193 buflen - 2194 max_iov_size*(nvecs-1); 2195 remaining_data_length -= vec.iov_len; 2196 log_write(INFO, 2197 "sending vec j=%d iov_base=%p" 2198 " iov_len=%zu " 2199 "remaining_data_length=%d\n", 2200 j, vec.iov_base, vec.iov_len, 2201 remaining_data_length); 2202 rc = smbd_post_send_data( 2203 info, &vec, 1, 2204 remaining_data_length); 2205 if (rc) 2206 goto done; 2207 } 2208 i++; 2209 if (i == rqst->rq_nvec-1) 2210 break; 2211 } 2212 start = i; 2213 buflen = 0; 2214 } else { 2215 i++; 2216 if (i == rqst->rq_nvec-1) { 2217 /* send out all remaining vecs */ 2218 remaining_data_length -= buflen; 2219 log_write(INFO, 2220 "sending iov[] from start=%d i=%d " 2221 "nvecs=%d remaining_data_length=%d\n", 2222 start, i, i-start, 2223 remaining_data_length); 2224 rc = smbd_post_send_data(info, &iov[start], 2225 i-start, remaining_data_length); 2226 if (rc) 2227 goto done; 2228 break; 2229 } 2230 } 2231 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen); 2232 } 2233 2234 /* now sending pages if there are any */ 2235 for (i = 0; i < rqst->rq_npages; i++) { 2236 unsigned int offset; 2237 2238 rqst_page_get_length(rqst, i, &buflen, &offset); 2239 nvecs = (buflen + max_iov_size - 1) / max_iov_size; 2240 log_write(INFO, "sending pages buflen=%d nvecs=%d\n", 2241 buflen, nvecs); 2242 for (j = 0; j < nvecs; j++) { 2243 size = max_iov_size; 2244 if (j == nvecs-1) 2245 size = buflen - j*max_iov_size; 2246 remaining_data_length -= size; 2247 log_write(INFO, "sending pages i=%d offset=%d size=%d" 2248 " remaining_data_length=%d\n", 2249 i, j*max_iov_size+offset, size, 2250 remaining_data_length); 2251 rc = smbd_post_send_page( 2252 info, rqst->rq_pages[i], 2253 j*max_iov_size + offset, 2254 size, remaining_data_length); 2255 if (rc) 2256 goto done; 2257 } 2258 } 2259 2260 done: 2261 /* 2262 * As an optimization, we don't wait for individual I/O to finish 2263 * before sending the next one. 2264 * Send them all and wait for pending send count to get to 0 2265 * that means all the I/Os have been out and we are good to return 2266 */ 2267 2268 wait_event(info->wait_send_payload_pending, 2269 atomic_read(&info->send_payload_pending) == 0); 2270 2271 info->smbd_send_pending--; 2272 wake_up(&info->wait_smbd_send_pending); 2273 2274 return rc; 2275 } 2276 2277 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc) 2278 { 2279 struct smbd_mr *mr; 2280 struct ib_cqe *cqe; 2281 2282 if (wc->status) { 2283 log_rdma_mr(ERR, "status=%d\n", wc->status); 2284 cqe = wc->wr_cqe; 2285 mr = container_of(cqe, struct smbd_mr, cqe); 2286 smbd_disconnect_rdma_connection(mr->conn); 2287 } 2288 } 2289 2290 /* 2291 * The work queue function that recovers MRs 2292 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used 2293 * again. Both calls are slow, so finish them in a workqueue. This will not 2294 * block I/O path. 2295 * There is one workqueue that recovers MRs, there is no need to lock as the 2296 * I/O requests calling smbd_register_mr will never update the links in the 2297 * mr_list. 2298 */ 2299 static void smbd_mr_recovery_work(struct work_struct *work) 2300 { 2301 struct smbd_connection *info = 2302 container_of(work, struct smbd_connection, mr_recovery_work); 2303 struct smbd_mr *smbdirect_mr; 2304 int rc; 2305 2306 list_for_each_entry(smbdirect_mr, &info->mr_list, list) { 2307 if (smbdirect_mr->state == MR_INVALIDATED) 2308 ib_dma_unmap_sg( 2309 info->id->device, smbdirect_mr->sgl, 2310 smbdirect_mr->sgl_count, 2311 smbdirect_mr->dir); 2312 else if (smbdirect_mr->state == MR_ERROR) { 2313 2314 /* recover this MR entry */ 2315 rc = ib_dereg_mr(smbdirect_mr->mr); 2316 if (rc) { 2317 log_rdma_mr(ERR, 2318 "ib_dereg_mr failed rc=%x\n", 2319 rc); 2320 smbd_disconnect_rdma_connection(info); 2321 continue; 2322 } 2323 2324 smbdirect_mr->mr = ib_alloc_mr( 2325 info->pd, info->mr_type, 2326 info->max_frmr_depth); 2327 if (IS_ERR(smbdirect_mr->mr)) { 2328 log_rdma_mr(ERR, 2329 "ib_alloc_mr failed mr_type=%x " 2330 "max_frmr_depth=%x\n", 2331 info->mr_type, 2332 info->max_frmr_depth); 2333 smbd_disconnect_rdma_connection(info); 2334 continue; 2335 } 2336 } else 2337 /* This MR is being used, don't recover it */ 2338 continue; 2339 2340 smbdirect_mr->state = MR_READY; 2341 2342 /* smbdirect_mr->state is updated by this function 2343 * and is read and updated by I/O issuing CPUs trying 2344 * to get a MR, the call to atomic_inc_return 2345 * implicates a memory barrier and guarantees this 2346 * value is updated before waking up any calls to 2347 * get_mr() from the I/O issuing CPUs 2348 */ 2349 if (atomic_inc_return(&info->mr_ready_count) == 1) 2350 wake_up_interruptible(&info->wait_mr); 2351 } 2352 } 2353 2354 static void destroy_mr_list(struct smbd_connection *info) 2355 { 2356 struct smbd_mr *mr, *tmp; 2357 2358 cancel_work_sync(&info->mr_recovery_work); 2359 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) { 2360 if (mr->state == MR_INVALIDATED) 2361 ib_dma_unmap_sg(info->id->device, mr->sgl, 2362 mr->sgl_count, mr->dir); 2363 ib_dereg_mr(mr->mr); 2364 kfree(mr->sgl); 2365 kfree(mr); 2366 } 2367 } 2368 2369 /* 2370 * Allocate MRs used for RDMA read/write 2371 * The number of MRs will not exceed hardware capability in responder_resources 2372 * All MRs are kept in mr_list. The MR can be recovered after it's used 2373 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes 2374 * as MRs are used and recovered for I/O, but the list links will not change 2375 */ 2376 static int allocate_mr_list(struct smbd_connection *info) 2377 { 2378 int i; 2379 struct smbd_mr *smbdirect_mr, *tmp; 2380 2381 INIT_LIST_HEAD(&info->mr_list); 2382 init_waitqueue_head(&info->wait_mr); 2383 spin_lock_init(&info->mr_list_lock); 2384 atomic_set(&info->mr_ready_count, 0); 2385 atomic_set(&info->mr_used_count, 0); 2386 init_waitqueue_head(&info->wait_for_mr_cleanup); 2387 /* Allocate more MRs (2x) than hardware responder_resources */ 2388 for (i = 0; i < info->responder_resources * 2; i++) { 2389 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL); 2390 if (!smbdirect_mr) 2391 goto out; 2392 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type, 2393 info->max_frmr_depth); 2394 if (IS_ERR(smbdirect_mr->mr)) { 2395 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x " 2396 "max_frmr_depth=%x\n", 2397 info->mr_type, info->max_frmr_depth); 2398 goto out; 2399 } 2400 smbdirect_mr->sgl = kcalloc( 2401 info->max_frmr_depth, 2402 sizeof(struct scatterlist), 2403 GFP_KERNEL); 2404 if (!smbdirect_mr->sgl) { 2405 log_rdma_mr(ERR, "failed to allocate sgl\n"); 2406 ib_dereg_mr(smbdirect_mr->mr); 2407 goto out; 2408 } 2409 smbdirect_mr->state = MR_READY; 2410 smbdirect_mr->conn = info; 2411 2412 list_add_tail(&smbdirect_mr->list, &info->mr_list); 2413 atomic_inc(&info->mr_ready_count); 2414 } 2415 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work); 2416 return 0; 2417 2418 out: 2419 kfree(smbdirect_mr); 2420 2421 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) { 2422 ib_dereg_mr(smbdirect_mr->mr); 2423 kfree(smbdirect_mr->sgl); 2424 kfree(smbdirect_mr); 2425 } 2426 return -ENOMEM; 2427 } 2428 2429 /* 2430 * Get a MR from mr_list. This function waits until there is at least one 2431 * MR available in the list. It may access the list while the 2432 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock 2433 * as they never modify the same places. However, there may be several CPUs 2434 * issueing I/O trying to get MR at the same time, mr_list_lock is used to 2435 * protect this situation. 2436 */ 2437 static struct smbd_mr *get_mr(struct smbd_connection *info) 2438 { 2439 struct smbd_mr *ret; 2440 int rc; 2441 again: 2442 rc = wait_event_interruptible(info->wait_mr, 2443 atomic_read(&info->mr_ready_count) || 2444 info->transport_status != SMBD_CONNECTED); 2445 if (rc) { 2446 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc); 2447 return NULL; 2448 } 2449 2450 if (info->transport_status != SMBD_CONNECTED) { 2451 log_rdma_mr(ERR, "info->transport_status=%x\n", 2452 info->transport_status); 2453 return NULL; 2454 } 2455 2456 spin_lock(&info->mr_list_lock); 2457 list_for_each_entry(ret, &info->mr_list, list) { 2458 if (ret->state == MR_READY) { 2459 ret->state = MR_REGISTERED; 2460 spin_unlock(&info->mr_list_lock); 2461 atomic_dec(&info->mr_ready_count); 2462 atomic_inc(&info->mr_used_count); 2463 return ret; 2464 } 2465 } 2466 2467 spin_unlock(&info->mr_list_lock); 2468 /* 2469 * It is possible that we could fail to get MR because other processes may 2470 * try to acquire a MR at the same time. If this is the case, retry it. 2471 */ 2472 goto again; 2473 } 2474 2475 /* 2476 * Register memory for RDMA read/write 2477 * pages[]: the list of pages to register memory with 2478 * num_pages: the number of pages to register 2479 * tailsz: if non-zero, the bytes to register in the last page 2480 * writing: true if this is a RDMA write (SMB read), false for RDMA read 2481 * need_invalidate: true if this MR needs to be locally invalidated after I/O 2482 * return value: the MR registered, NULL if failed. 2483 */ 2484 struct smbd_mr *smbd_register_mr( 2485 struct smbd_connection *info, struct page *pages[], int num_pages, 2486 int offset, int tailsz, bool writing, bool need_invalidate) 2487 { 2488 struct smbd_mr *smbdirect_mr; 2489 int rc, i; 2490 enum dma_data_direction dir; 2491 struct ib_reg_wr *reg_wr; 2492 2493 if (num_pages > info->max_frmr_depth) { 2494 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n", 2495 num_pages, info->max_frmr_depth); 2496 return NULL; 2497 } 2498 2499 smbdirect_mr = get_mr(info); 2500 if (!smbdirect_mr) { 2501 log_rdma_mr(ERR, "get_mr returning NULL\n"); 2502 return NULL; 2503 } 2504 smbdirect_mr->need_invalidate = need_invalidate; 2505 smbdirect_mr->sgl_count = num_pages; 2506 sg_init_table(smbdirect_mr->sgl, num_pages); 2507 2508 log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n", 2509 num_pages, offset, tailsz); 2510 2511 if (num_pages == 1) { 2512 sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset); 2513 goto skip_multiple_pages; 2514 } 2515 2516 /* We have at least two pages to register */ 2517 sg_set_page( 2518 &smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset); 2519 i = 1; 2520 while (i < num_pages - 1) { 2521 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0); 2522 i++; 2523 } 2524 sg_set_page(&smbdirect_mr->sgl[i], pages[i], 2525 tailsz ? tailsz : PAGE_SIZE, 0); 2526 2527 skip_multiple_pages: 2528 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 2529 smbdirect_mr->dir = dir; 2530 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir); 2531 if (!rc) { 2532 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n", 2533 num_pages, dir, rc); 2534 goto dma_map_error; 2535 } 2536 2537 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages, 2538 NULL, PAGE_SIZE); 2539 if (rc != num_pages) { 2540 log_rdma_mr(ERR, 2541 "ib_map_mr_sg failed rc = %d num_pages = %x\n", 2542 rc, num_pages); 2543 goto map_mr_error; 2544 } 2545 2546 ib_update_fast_reg_key(smbdirect_mr->mr, 2547 ib_inc_rkey(smbdirect_mr->mr->rkey)); 2548 reg_wr = &smbdirect_mr->wr; 2549 reg_wr->wr.opcode = IB_WR_REG_MR; 2550 smbdirect_mr->cqe.done = register_mr_done; 2551 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe; 2552 reg_wr->wr.num_sge = 0; 2553 reg_wr->wr.send_flags = IB_SEND_SIGNALED; 2554 reg_wr->mr = smbdirect_mr->mr; 2555 reg_wr->key = smbdirect_mr->mr->rkey; 2556 reg_wr->access = writing ? 2557 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 2558 IB_ACCESS_REMOTE_READ; 2559 2560 /* 2561 * There is no need for waiting for complemtion on ib_post_send 2562 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution 2563 * on the next ib_post_send when we actaully send I/O to remote peer 2564 */ 2565 rc = ib_post_send(info->id->qp, ®_wr->wr, NULL); 2566 if (!rc) 2567 return smbdirect_mr; 2568 2569 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n", 2570 rc, reg_wr->key); 2571 2572 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/ 2573 map_mr_error: 2574 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl, 2575 smbdirect_mr->sgl_count, smbdirect_mr->dir); 2576 2577 dma_map_error: 2578 smbdirect_mr->state = MR_ERROR; 2579 if (atomic_dec_and_test(&info->mr_used_count)) 2580 wake_up(&info->wait_for_mr_cleanup); 2581 2582 smbd_disconnect_rdma_connection(info); 2583 2584 return NULL; 2585 } 2586 2587 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc) 2588 { 2589 struct smbd_mr *smbdirect_mr; 2590 struct ib_cqe *cqe; 2591 2592 cqe = wc->wr_cqe; 2593 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe); 2594 smbdirect_mr->state = MR_INVALIDATED; 2595 if (wc->status != IB_WC_SUCCESS) { 2596 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status); 2597 smbdirect_mr->state = MR_ERROR; 2598 } 2599 complete(&smbdirect_mr->invalidate_done); 2600 } 2601 2602 /* 2603 * Deregister a MR after I/O is done 2604 * This function may wait if remote invalidation is not used 2605 * and we have to locally invalidate the buffer to prevent data is being 2606 * modified by remote peer after upper layer consumes it 2607 */ 2608 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr) 2609 { 2610 struct ib_send_wr *wr; 2611 struct smbd_connection *info = smbdirect_mr->conn; 2612 int rc = 0; 2613 2614 if (smbdirect_mr->need_invalidate) { 2615 /* Need to finish local invalidation before returning */ 2616 wr = &smbdirect_mr->inv_wr; 2617 wr->opcode = IB_WR_LOCAL_INV; 2618 smbdirect_mr->cqe.done = local_inv_done; 2619 wr->wr_cqe = &smbdirect_mr->cqe; 2620 wr->num_sge = 0; 2621 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey; 2622 wr->send_flags = IB_SEND_SIGNALED; 2623 2624 init_completion(&smbdirect_mr->invalidate_done); 2625 rc = ib_post_send(info->id->qp, wr, NULL); 2626 if (rc) { 2627 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc); 2628 smbd_disconnect_rdma_connection(info); 2629 goto done; 2630 } 2631 wait_for_completion(&smbdirect_mr->invalidate_done); 2632 smbdirect_mr->need_invalidate = false; 2633 } else 2634 /* 2635 * For remote invalidation, just set it to MR_INVALIDATED 2636 * and defer to mr_recovery_work to recover the MR for next use 2637 */ 2638 smbdirect_mr->state = MR_INVALIDATED; 2639 2640 /* 2641 * Schedule the work to do MR recovery for future I/Os 2642 * MR recovery is slow and we don't want it to block the current I/O 2643 */ 2644 queue_work(info->workqueue, &info->mr_recovery_work); 2645 2646 done: 2647 if (atomic_dec_and_test(&info->mr_used_count)) 2648 wake_up(&info->wait_for_mr_cleanup); 2649 2650 return rc; 2651 } 2652
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.