~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ecryptfs/keystore.c

Version: ~ [ linux-5.16-rc3 ] ~ [ linux-5.15.5 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.82 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.162 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.218 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.256 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.291 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.293 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /**
  3  * eCryptfs: Linux filesystem encryption layer
  4  * In-kernel key management code.  Includes functions to parse and
  5  * write authentication token-related packets with the underlying
  6  * file.
  7  *
  8  * Copyright (C) 2004-2006 International Business Machines Corp.
  9  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
 10  *              Michael C. Thompson <mcthomps@us.ibm.com>
 11  *              Trevor S. Highland <trevor.highland@gmail.com>
 12  */
 13 
 14 #include <crypto/hash.h>
 15 #include <crypto/skcipher.h>
 16 #include <linux/string.h>
 17 #include <linux/pagemap.h>
 18 #include <linux/key.h>
 19 #include <linux/random.h>
 20 #include <linux/scatterlist.h>
 21 #include <linux/slab.h>
 22 #include "ecryptfs_kernel.h"
 23 
 24 /**
 25  * request_key returned an error instead of a valid key address;
 26  * determine the type of error, make appropriate log entries, and
 27  * return an error code.
 28  */
 29 static int process_request_key_err(long err_code)
 30 {
 31         int rc = 0;
 32 
 33         switch (err_code) {
 34         case -ENOKEY:
 35                 ecryptfs_printk(KERN_WARNING, "No key\n");
 36                 rc = -ENOENT;
 37                 break;
 38         case -EKEYEXPIRED:
 39                 ecryptfs_printk(KERN_WARNING, "Key expired\n");
 40                 rc = -ETIME;
 41                 break;
 42         case -EKEYREVOKED:
 43                 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
 44                 rc = -EINVAL;
 45                 break;
 46         default:
 47                 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
 48                                 "[0x%.16lx]\n", err_code);
 49                 rc = -EINVAL;
 50         }
 51         return rc;
 52 }
 53 
 54 static int process_find_global_auth_tok_for_sig_err(int err_code)
 55 {
 56         int rc = err_code;
 57 
 58         switch (err_code) {
 59         case -ENOENT:
 60                 ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
 61                 break;
 62         case -EINVAL:
 63                 ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
 64                 break;
 65         default:
 66                 rc = process_request_key_err(err_code);
 67                 break;
 68         }
 69         return rc;
 70 }
 71 
 72 /**
 73  * ecryptfs_parse_packet_length
 74  * @data: Pointer to memory containing length at offset
 75  * @size: This function writes the decoded size to this memory
 76  *        address; zero on error
 77  * @length_size: The number of bytes occupied by the encoded length
 78  *
 79  * Returns zero on success; non-zero on error
 80  */
 81 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
 82                                  size_t *length_size)
 83 {
 84         int rc = 0;
 85 
 86         (*length_size) = 0;
 87         (*size) = 0;
 88         if (data[0] < 192) {
 89                 /* One-byte length */
 90                 (*size) = data[0];
 91                 (*length_size) = 1;
 92         } else if (data[0] < 224) {
 93                 /* Two-byte length */
 94                 (*size) = (data[0] - 192) * 256;
 95                 (*size) += data[1] + 192;
 96                 (*length_size) = 2;
 97         } else if (data[0] == 255) {
 98                 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
 99                 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
100                                 "supported\n");
101                 rc = -EINVAL;
102                 goto out;
103         } else {
104                 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
105                 rc = -EINVAL;
106                 goto out;
107         }
108 out:
109         return rc;
110 }
111 
112 /**
113  * ecryptfs_write_packet_length
114  * @dest: The byte array target into which to write the length. Must
115  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
116  * @size: The length to write.
117  * @packet_size_length: The number of bytes used to encode the packet
118  *                      length is written to this address.
119  *
120  * Returns zero on success; non-zero on error.
121  */
122 int ecryptfs_write_packet_length(char *dest, size_t size,
123                                  size_t *packet_size_length)
124 {
125         int rc = 0;
126 
127         if (size < 192) {
128                 dest[0] = size;
129                 (*packet_size_length) = 1;
130         } else if (size < 65536) {
131                 dest[0] = (((size - 192) / 256) + 192);
132                 dest[1] = ((size - 192) % 256);
133                 (*packet_size_length) = 2;
134         } else {
135                 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
136                 rc = -EINVAL;
137                 ecryptfs_printk(KERN_WARNING,
138                                 "Unsupported packet size: [%zd]\n", size);
139         }
140         return rc;
141 }
142 
143 static int
144 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
145                     char **packet, size_t *packet_len)
146 {
147         size_t i = 0;
148         size_t data_len;
149         size_t packet_size_len;
150         char *message;
151         int rc;
152 
153         /*
154          *              ***** TAG 64 Packet Format *****
155          *    | Content Type                       | 1 byte       |
156          *    | Key Identifier Size                | 1 or 2 bytes |
157          *    | Key Identifier                     | arbitrary    |
158          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
159          *    | Encrypted File Encryption Key      | arbitrary    |
160          */
161         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
162                     + session_key->encrypted_key_size);
163         *packet = kmalloc(data_len, GFP_KERNEL);
164         message = *packet;
165         if (!message) {
166                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
167                 rc = -ENOMEM;
168                 goto out;
169         }
170         message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
171         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
172                                           &packet_size_len);
173         if (rc) {
174                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
175                                 "header; cannot generate packet length\n");
176                 goto out;
177         }
178         i += packet_size_len;
179         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
180         i += ECRYPTFS_SIG_SIZE_HEX;
181         rc = ecryptfs_write_packet_length(&message[i],
182                                           session_key->encrypted_key_size,
183                                           &packet_size_len);
184         if (rc) {
185                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
186                                 "header; cannot generate packet length\n");
187                 goto out;
188         }
189         i += packet_size_len;
190         memcpy(&message[i], session_key->encrypted_key,
191                session_key->encrypted_key_size);
192         i += session_key->encrypted_key_size;
193         *packet_len = i;
194 out:
195         return rc;
196 }
197 
198 static int
199 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
200                     struct ecryptfs_message *msg)
201 {
202         size_t i = 0;
203         char *data;
204         size_t data_len;
205         size_t m_size;
206         size_t message_len;
207         u16 checksum = 0;
208         u16 expected_checksum = 0;
209         int rc;
210 
211         /*
212          *              ***** TAG 65 Packet Format *****
213          *         | Content Type             | 1 byte       |
214          *         | Status Indicator         | 1 byte       |
215          *         | File Encryption Key Size | 1 or 2 bytes |
216          *         | File Encryption Key      | arbitrary    |
217          */
218         message_len = msg->data_len;
219         data = msg->data;
220         if (message_len < 4) {
221                 rc = -EIO;
222                 goto out;
223         }
224         if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
225                 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
226                 rc = -EIO;
227                 goto out;
228         }
229         if (data[i++]) {
230                 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
231                                 "[%d]\n", data[i-1]);
232                 rc = -EIO;
233                 goto out;
234         }
235         rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
236         if (rc) {
237                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
238                                 "rc = [%d]\n", rc);
239                 goto out;
240         }
241         i += data_len;
242         if (message_len < (i + m_size)) {
243                 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
244                                 "is shorter than expected\n");
245                 rc = -EIO;
246                 goto out;
247         }
248         if (m_size < 3) {
249                 ecryptfs_printk(KERN_ERR,
250                                 "The decrypted key is not long enough to "
251                                 "include a cipher code and checksum\n");
252                 rc = -EIO;
253                 goto out;
254         }
255         *cipher_code = data[i++];
256         /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
257         session_key->decrypted_key_size = m_size - 3;
258         if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
259                 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
260                                 "the maximum key size [%d]\n",
261                                 session_key->decrypted_key_size,
262                                 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
263                 rc = -EIO;
264                 goto out;
265         }
266         memcpy(session_key->decrypted_key, &data[i],
267                session_key->decrypted_key_size);
268         i += session_key->decrypted_key_size;
269         expected_checksum += (unsigned char)(data[i++]) << 8;
270         expected_checksum += (unsigned char)(data[i++]);
271         for (i = 0; i < session_key->decrypted_key_size; i++)
272                 checksum += session_key->decrypted_key[i];
273         if (expected_checksum != checksum) {
274                 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
275                                 "encryption  key; expected [%x]; calculated "
276                                 "[%x]\n", expected_checksum, checksum);
277                 rc = -EIO;
278         }
279 out:
280         return rc;
281 }
282 
283 
284 static int
285 write_tag_66_packet(char *signature, u8 cipher_code,
286                     struct ecryptfs_crypt_stat *crypt_stat, char **packet,
287                     size_t *packet_len)
288 {
289         size_t i = 0;
290         size_t j;
291         size_t data_len;
292         size_t checksum = 0;
293         size_t packet_size_len;
294         char *message;
295         int rc;
296 
297         /*
298          *              ***** TAG 66 Packet Format *****
299          *         | Content Type             | 1 byte       |
300          *         | Key Identifier Size      | 1 or 2 bytes |
301          *         | Key Identifier           | arbitrary    |
302          *         | File Encryption Key Size | 1 or 2 bytes |
303          *         | File Encryption Key      | arbitrary    |
304          */
305         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
306         *packet = kmalloc(data_len, GFP_KERNEL);
307         message = *packet;
308         if (!message) {
309                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
310                 rc = -ENOMEM;
311                 goto out;
312         }
313         message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
314         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
315                                           &packet_size_len);
316         if (rc) {
317                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
318                                 "header; cannot generate packet length\n");
319                 goto out;
320         }
321         i += packet_size_len;
322         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
323         i += ECRYPTFS_SIG_SIZE_HEX;
324         /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
325         rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
326                                           &packet_size_len);
327         if (rc) {
328                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
329                                 "header; cannot generate packet length\n");
330                 goto out;
331         }
332         i += packet_size_len;
333         message[i++] = cipher_code;
334         memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
335         i += crypt_stat->key_size;
336         for (j = 0; j < crypt_stat->key_size; j++)
337                 checksum += crypt_stat->key[j];
338         message[i++] = (checksum / 256) % 256;
339         message[i++] = (checksum % 256);
340         *packet_len = i;
341 out:
342         return rc;
343 }
344 
345 static int
346 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
347                     struct ecryptfs_message *msg)
348 {
349         size_t i = 0;
350         char *data;
351         size_t data_len;
352         size_t message_len;
353         int rc;
354 
355         /*
356          *              ***** TAG 65 Packet Format *****
357          *    | Content Type                       | 1 byte       |
358          *    | Status Indicator                   | 1 byte       |
359          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
360          *    | Encrypted File Encryption Key      | arbitrary    |
361          */
362         message_len = msg->data_len;
363         data = msg->data;
364         /* verify that everything through the encrypted FEK size is present */
365         if (message_len < 4) {
366                 rc = -EIO;
367                 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
368                        "message length is [%d]\n", __func__, message_len, 4);
369                 goto out;
370         }
371         if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
372                 rc = -EIO;
373                 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
374                        __func__);
375                 goto out;
376         }
377         if (data[i++]) {
378                 rc = -EIO;
379                 printk(KERN_ERR "%s: Status indicator has non zero "
380                        "value [%d]\n", __func__, data[i-1]);
381 
382                 goto out;
383         }
384         rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
385                                           &data_len);
386         if (rc) {
387                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
388                                 "rc = [%d]\n", rc);
389                 goto out;
390         }
391         i += data_len;
392         if (message_len < (i + key_rec->enc_key_size)) {
393                 rc = -EIO;
394                 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
395                        __func__, message_len, (i + key_rec->enc_key_size));
396                 goto out;
397         }
398         if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
399                 rc = -EIO;
400                 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
401                        "the maximum key size [%d]\n", __func__,
402                        key_rec->enc_key_size,
403                        ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
404                 goto out;
405         }
406         memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
407 out:
408         return rc;
409 }
410 
411 /**
412  * ecryptfs_verify_version
413  * @version: The version number to confirm
414  *
415  * Returns zero on good version; non-zero otherwise
416  */
417 static int ecryptfs_verify_version(u16 version)
418 {
419         int rc = 0;
420         unsigned char major;
421         unsigned char minor;
422 
423         major = ((version >> 8) & 0xFF);
424         minor = (version & 0xFF);
425         if (major != ECRYPTFS_VERSION_MAJOR) {
426                 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
427                                 "Expected [%d]; got [%d]\n",
428                                 ECRYPTFS_VERSION_MAJOR, major);
429                 rc = -EINVAL;
430                 goto out;
431         }
432         if (minor != ECRYPTFS_VERSION_MINOR) {
433                 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
434                                 "Expected [%d]; got [%d]\n",
435                                 ECRYPTFS_VERSION_MINOR, minor);
436                 rc = -EINVAL;
437                 goto out;
438         }
439 out:
440         return rc;
441 }
442 
443 /**
444  * ecryptfs_verify_auth_tok_from_key
445  * @auth_tok_key: key containing the authentication token
446  * @auth_tok: authentication token
447  *
448  * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
449  * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
450  */
451 static int
452 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
453                                   struct ecryptfs_auth_tok **auth_tok)
454 {
455         int rc = 0;
456 
457         (*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
458         if (IS_ERR(*auth_tok)) {
459                 rc = PTR_ERR(*auth_tok);
460                 *auth_tok = NULL;
461                 goto out;
462         }
463 
464         if (ecryptfs_verify_version((*auth_tok)->version)) {
465                 printk(KERN_ERR "Data structure version mismatch. Userspace "
466                        "tools must match eCryptfs kernel module with major "
467                        "version [%d] and minor version [%d]\n",
468                        ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
469                 rc = -EINVAL;
470                 goto out;
471         }
472         if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
473             && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
474                 printk(KERN_ERR "Invalid auth_tok structure "
475                        "returned from key query\n");
476                 rc = -EINVAL;
477                 goto out;
478         }
479 out:
480         return rc;
481 }
482 
483 static int
484 ecryptfs_find_global_auth_tok_for_sig(
485         struct key **auth_tok_key,
486         struct ecryptfs_auth_tok **auth_tok,
487         struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
488 {
489         struct ecryptfs_global_auth_tok *walker;
490         int rc = 0;
491 
492         (*auth_tok_key) = NULL;
493         (*auth_tok) = NULL;
494         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
495         list_for_each_entry(walker,
496                             &mount_crypt_stat->global_auth_tok_list,
497                             mount_crypt_stat_list) {
498                 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
499                         continue;
500 
501                 if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
502                         rc = -EINVAL;
503                         goto out;
504                 }
505 
506                 rc = key_validate(walker->global_auth_tok_key);
507                 if (rc) {
508                         if (rc == -EKEYEXPIRED)
509                                 goto out;
510                         goto out_invalid_auth_tok;
511                 }
512 
513                 down_write(&(walker->global_auth_tok_key->sem));
514                 rc = ecryptfs_verify_auth_tok_from_key(
515                                 walker->global_auth_tok_key, auth_tok);
516                 if (rc)
517                         goto out_invalid_auth_tok_unlock;
518 
519                 (*auth_tok_key) = walker->global_auth_tok_key;
520                 key_get(*auth_tok_key);
521                 goto out;
522         }
523         rc = -ENOENT;
524         goto out;
525 out_invalid_auth_tok_unlock:
526         up_write(&(walker->global_auth_tok_key->sem));
527 out_invalid_auth_tok:
528         printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
529         walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
530         key_put(walker->global_auth_tok_key);
531         walker->global_auth_tok_key = NULL;
532 out:
533         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
534         return rc;
535 }
536 
537 /**
538  * ecryptfs_find_auth_tok_for_sig
539  * @auth_tok: Set to the matching auth_tok; NULL if not found
540  * @crypt_stat: inode crypt_stat crypto context
541  * @sig: Sig of auth_tok to find
542  *
543  * For now, this function simply looks at the registered auth_tok's
544  * linked off the mount_crypt_stat, so all the auth_toks that can be
545  * used must be registered at mount time. This function could
546  * potentially try a lot harder to find auth_tok's (e.g., by calling
547  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
548  * that static registration of auth_tok's will no longer be necessary.
549  *
550  * Returns zero on no error; non-zero on error
551  */
552 static int
553 ecryptfs_find_auth_tok_for_sig(
554         struct key **auth_tok_key,
555         struct ecryptfs_auth_tok **auth_tok,
556         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
557         char *sig)
558 {
559         int rc = 0;
560 
561         rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
562                                                    mount_crypt_stat, sig);
563         if (rc == -ENOENT) {
564                 /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
565                  * mount_crypt_stat structure, we prevent to use auth toks that
566                  * are not inserted through the ecryptfs_add_global_auth_tok
567                  * function.
568                  */
569                 if (mount_crypt_stat->flags
570                                 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
571                         return -EINVAL;
572 
573                 rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
574                                                        sig);
575         }
576         return rc;
577 }
578 
579 /**
580  * write_tag_70_packet can gobble a lot of stack space. We stuff most
581  * of the function's parameters in a kmalloc'd struct to help reduce
582  * eCryptfs' overall stack usage.
583  */
584 struct ecryptfs_write_tag_70_packet_silly_stack {
585         u8 cipher_code;
586         size_t max_packet_size;
587         size_t packet_size_len;
588         size_t block_aligned_filename_size;
589         size_t block_size;
590         size_t i;
591         size_t j;
592         size_t num_rand_bytes;
593         struct mutex *tfm_mutex;
594         char *block_aligned_filename;
595         struct ecryptfs_auth_tok *auth_tok;
596         struct scatterlist src_sg[2];
597         struct scatterlist dst_sg[2];
598         struct crypto_skcipher *skcipher_tfm;
599         struct skcipher_request *skcipher_req;
600         char iv[ECRYPTFS_MAX_IV_BYTES];
601         char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
602         char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
603         struct crypto_shash *hash_tfm;
604         struct shash_desc *hash_desc;
605 };
606 
607 /**
608  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
609  * @filename: NULL-terminated filename string
610  *
611  * This is the simplest mechanism for achieving filename encryption in
612  * eCryptfs. It encrypts the given filename with the mount-wide
613  * filename encryption key (FNEK) and stores it in a packet to @dest,
614  * which the callee will encode and write directly into the dentry
615  * name.
616  */
617 int
618 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
619                              size_t *packet_size,
620                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
621                              char *filename, size_t filename_size)
622 {
623         struct ecryptfs_write_tag_70_packet_silly_stack *s;
624         struct key *auth_tok_key = NULL;
625         int rc = 0;
626 
627         s = kzalloc(sizeof(*s), GFP_KERNEL);
628         if (!s)
629                 return -ENOMEM;
630 
631         (*packet_size) = 0;
632         rc = ecryptfs_find_auth_tok_for_sig(
633                 &auth_tok_key,
634                 &s->auth_tok, mount_crypt_stat,
635                 mount_crypt_stat->global_default_fnek_sig);
636         if (rc) {
637                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
638                        "fnek sig [%s]; rc = [%d]\n", __func__,
639                        mount_crypt_stat->global_default_fnek_sig, rc);
640                 goto out;
641         }
642         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
643                 &s->skcipher_tfm,
644                 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
645         if (unlikely(rc)) {
646                 printk(KERN_ERR "Internal error whilst attempting to get "
647                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
648                        mount_crypt_stat->global_default_fn_cipher_name, rc);
649                 goto out;
650         }
651         mutex_lock(s->tfm_mutex);
652         s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
653         /* Plus one for the \0 separator between the random prefix
654          * and the plaintext filename */
655         s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
656         s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
657         if ((s->block_aligned_filename_size % s->block_size) != 0) {
658                 s->num_rand_bytes += (s->block_size
659                                       - (s->block_aligned_filename_size
660                                          % s->block_size));
661                 s->block_aligned_filename_size = (s->num_rand_bytes
662                                                   + filename_size);
663         }
664         /* Octet 0: Tag 70 identifier
665          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
666          *              and block-aligned encrypted filename size)
667          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
668          * Octet N2-N3: Cipher identifier (1 octet)
669          * Octets N3-N4: Block-aligned encrypted filename
670          *  - Consists of a minimum number of random characters, a \0
671          *    separator, and then the filename */
672         s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
673                               + s->block_aligned_filename_size);
674         if (!dest) {
675                 (*packet_size) = s->max_packet_size;
676                 goto out_unlock;
677         }
678         if (s->max_packet_size > (*remaining_bytes)) {
679                 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
680                        "[%zd] available\n", __func__, s->max_packet_size,
681                        (*remaining_bytes));
682                 rc = -EINVAL;
683                 goto out_unlock;
684         }
685 
686         s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
687         if (!s->skcipher_req) {
688                 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
689                        "skcipher_request_alloc for %s\n", __func__,
690                        crypto_skcipher_driver_name(s->skcipher_tfm));
691                 rc = -ENOMEM;
692                 goto out_unlock;
693         }
694 
695         skcipher_request_set_callback(s->skcipher_req,
696                                       CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
697 
698         s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
699                                             GFP_KERNEL);
700         if (!s->block_aligned_filename) {
701                 rc = -ENOMEM;
702                 goto out_unlock;
703         }
704         dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
705         rc = ecryptfs_write_packet_length(&dest[s->i],
706                                           (ECRYPTFS_SIG_SIZE
707                                            + 1 /* Cipher code */
708                                            + s->block_aligned_filename_size),
709                                           &s->packet_size_len);
710         if (rc) {
711                 printk(KERN_ERR "%s: Error generating tag 70 packet "
712                        "header; cannot generate packet length; rc = [%d]\n",
713                        __func__, rc);
714                 goto out_free_unlock;
715         }
716         s->i += s->packet_size_len;
717         ecryptfs_from_hex(&dest[s->i],
718                           mount_crypt_stat->global_default_fnek_sig,
719                           ECRYPTFS_SIG_SIZE);
720         s->i += ECRYPTFS_SIG_SIZE;
721         s->cipher_code = ecryptfs_code_for_cipher_string(
722                 mount_crypt_stat->global_default_fn_cipher_name,
723                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
724         if (s->cipher_code == 0) {
725                 printk(KERN_WARNING "%s: Unable to generate code for "
726                        "cipher [%s] with key bytes [%zd]\n", __func__,
727                        mount_crypt_stat->global_default_fn_cipher_name,
728                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
729                 rc = -EINVAL;
730                 goto out_free_unlock;
731         }
732         dest[s->i++] = s->cipher_code;
733         /* TODO: Support other key modules than passphrase for
734          * filename encryption */
735         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
736                 rc = -EOPNOTSUPP;
737                 printk(KERN_INFO "%s: Filename encryption only supports "
738                        "password tokens\n", __func__);
739                 goto out_free_unlock;
740         }
741         s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
742         if (IS_ERR(s->hash_tfm)) {
743                         rc = PTR_ERR(s->hash_tfm);
744                         printk(KERN_ERR "%s: Error attempting to "
745                                "allocate hash crypto context; rc = [%d]\n",
746                                __func__, rc);
747                         goto out_free_unlock;
748         }
749 
750         s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
751                                crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
752         if (!s->hash_desc) {
753                 rc = -ENOMEM;
754                 goto out_release_free_unlock;
755         }
756 
757         s->hash_desc->tfm = s->hash_tfm;
758 
759         rc = crypto_shash_digest(s->hash_desc,
760                                  (u8 *)s->auth_tok->token.password.session_key_encryption_key,
761                                  s->auth_tok->token.password.session_key_encryption_key_bytes,
762                                  s->hash);
763         if (rc) {
764                 printk(KERN_ERR
765                        "%s: Error computing crypto hash; rc = [%d]\n",
766                        __func__, rc);
767                 goto out_release_free_unlock;
768         }
769         for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
770                 s->block_aligned_filename[s->j] =
771                         s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
772                 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
773                     == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
774                         rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
775                                                 ECRYPTFS_TAG_70_DIGEST_SIZE,
776                                                 s->tmp_hash);
777                         if (rc) {
778                                 printk(KERN_ERR
779                                        "%s: Error computing crypto hash; "
780                                        "rc = [%d]\n", __func__, rc);
781                                 goto out_release_free_unlock;
782                         }
783                         memcpy(s->hash, s->tmp_hash,
784                                ECRYPTFS_TAG_70_DIGEST_SIZE);
785                 }
786                 if (s->block_aligned_filename[s->j] == '\0')
787                         s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
788         }
789         memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
790                filename_size);
791         rc = virt_to_scatterlist(s->block_aligned_filename,
792                                  s->block_aligned_filename_size, s->src_sg, 2);
793         if (rc < 1) {
794                 printk(KERN_ERR "%s: Internal error whilst attempting to "
795                        "convert filename memory to scatterlist; rc = [%d]. "
796                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
797                        s->block_aligned_filename_size);
798                 goto out_release_free_unlock;
799         }
800         rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
801                                  s->dst_sg, 2);
802         if (rc < 1) {
803                 printk(KERN_ERR "%s: Internal error whilst attempting to "
804                        "convert encrypted filename memory to scatterlist; "
805                        "rc = [%d]. block_aligned_filename_size = [%zd]\n",
806                        __func__, rc, s->block_aligned_filename_size);
807                 goto out_release_free_unlock;
808         }
809         /* The characters in the first block effectively do the job
810          * of the IV here, so we just use 0's for the IV. Note the
811          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
812          * >= ECRYPTFS_MAX_IV_BYTES. */
813         rc = crypto_skcipher_setkey(
814                 s->skcipher_tfm,
815                 s->auth_tok->token.password.session_key_encryption_key,
816                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
817         if (rc < 0) {
818                 printk(KERN_ERR "%s: Error setting key for crypto context; "
819                        "rc = [%d]. s->auth_tok->token.password.session_key_"
820                        "encryption_key = [0x%p]; mount_crypt_stat->"
821                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
822                        rc,
823                        s->auth_tok->token.password.session_key_encryption_key,
824                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
825                 goto out_release_free_unlock;
826         }
827         skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
828                                    s->block_aligned_filename_size, s->iv);
829         rc = crypto_skcipher_encrypt(s->skcipher_req);
830         if (rc) {
831                 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
832                        "rc = [%d]\n", __func__, rc);
833                 goto out_release_free_unlock;
834         }
835         s->i += s->block_aligned_filename_size;
836         (*packet_size) = s->i;
837         (*remaining_bytes) -= (*packet_size);
838 out_release_free_unlock:
839         crypto_free_shash(s->hash_tfm);
840 out_free_unlock:
841         kzfree(s->block_aligned_filename);
842 out_unlock:
843         mutex_unlock(s->tfm_mutex);
844 out:
845         if (auth_tok_key) {
846                 up_write(&(auth_tok_key->sem));
847                 key_put(auth_tok_key);
848         }
849         skcipher_request_free(s->skcipher_req);
850         kzfree(s->hash_desc);
851         kfree(s);
852         return rc;
853 }
854 
855 struct ecryptfs_parse_tag_70_packet_silly_stack {
856         u8 cipher_code;
857         size_t max_packet_size;
858         size_t packet_size_len;
859         size_t parsed_tag_70_packet_size;
860         size_t block_aligned_filename_size;
861         size_t block_size;
862         size_t i;
863         struct mutex *tfm_mutex;
864         char *decrypted_filename;
865         struct ecryptfs_auth_tok *auth_tok;
866         struct scatterlist src_sg[2];
867         struct scatterlist dst_sg[2];
868         struct crypto_skcipher *skcipher_tfm;
869         struct skcipher_request *skcipher_req;
870         char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
871         char iv[ECRYPTFS_MAX_IV_BYTES];
872         char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
873 };
874 
875 /**
876  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
877  * @filename: This function kmalloc's the memory for the filename
878  * @filename_size: This function sets this to the amount of memory
879  *                 kmalloc'd for the filename
880  * @packet_size: This function sets this to the the number of octets
881  *               in the packet parsed
882  * @mount_crypt_stat: The mount-wide cryptographic context
883  * @data: The memory location containing the start of the tag 70
884  *        packet
885  * @max_packet_size: The maximum legal size of the packet to be parsed
886  *                   from @data
887  *
888  * Returns zero on success; non-zero otherwise
889  */
890 int
891 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
892                              size_t *packet_size,
893                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
894                              char *data, size_t max_packet_size)
895 {
896         struct ecryptfs_parse_tag_70_packet_silly_stack *s;
897         struct key *auth_tok_key = NULL;
898         int rc = 0;
899 
900         (*packet_size) = 0;
901         (*filename_size) = 0;
902         (*filename) = NULL;
903         s = kzalloc(sizeof(*s), GFP_KERNEL);
904         if (!s)
905                 return -ENOMEM;
906 
907         if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
908                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
909                        "at least [%d]\n", __func__, max_packet_size,
910                        ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
911                 rc = -EINVAL;
912                 goto out;
913         }
914         /* Octet 0: Tag 70 identifier
915          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
916          *              and block-aligned encrypted filename size)
917          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
918          * Octet N2-N3: Cipher identifier (1 octet)
919          * Octets N3-N4: Block-aligned encrypted filename
920          *  - Consists of a minimum number of random numbers, a \0
921          *    separator, and then the filename */
922         if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
923                 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
924                        "tag [0x%.2x]\n", __func__,
925                        data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
926                 rc = -EINVAL;
927                 goto out;
928         }
929         rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
930                                           &s->parsed_tag_70_packet_size,
931                                           &s->packet_size_len);
932         if (rc) {
933                 printk(KERN_WARNING "%s: Error parsing packet length; "
934                        "rc = [%d]\n", __func__, rc);
935                 goto out;
936         }
937         s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
938                                           - ECRYPTFS_SIG_SIZE - 1);
939         if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
940             > max_packet_size) {
941                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
942                        "size is [%zd]\n", __func__, max_packet_size,
943                        (1 + s->packet_size_len + 1
944                         + s->block_aligned_filename_size));
945                 rc = -EINVAL;
946                 goto out;
947         }
948         (*packet_size) += s->packet_size_len;
949         ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
950                         ECRYPTFS_SIG_SIZE);
951         s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
952         (*packet_size) += ECRYPTFS_SIG_SIZE;
953         s->cipher_code = data[(*packet_size)++];
954         rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
955         if (rc) {
956                 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
957                        __func__, s->cipher_code);
958                 goto out;
959         }
960         rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
961                                             &s->auth_tok, mount_crypt_stat,
962                                             s->fnek_sig_hex);
963         if (rc) {
964                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
965                        "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
966                        rc);
967                 goto out;
968         }
969         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
970                                                         &s->tfm_mutex,
971                                                         s->cipher_string);
972         if (unlikely(rc)) {
973                 printk(KERN_ERR "Internal error whilst attempting to get "
974                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
975                        s->cipher_string, rc);
976                 goto out;
977         }
978         mutex_lock(s->tfm_mutex);
979         rc = virt_to_scatterlist(&data[(*packet_size)],
980                                  s->block_aligned_filename_size, s->src_sg, 2);
981         if (rc < 1) {
982                 printk(KERN_ERR "%s: Internal error whilst attempting to "
983                        "convert encrypted filename memory to scatterlist; "
984                        "rc = [%d]. block_aligned_filename_size = [%zd]\n",
985                        __func__, rc, s->block_aligned_filename_size);
986                 goto out_unlock;
987         }
988         (*packet_size) += s->block_aligned_filename_size;
989         s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
990                                         GFP_KERNEL);
991         if (!s->decrypted_filename) {
992                 rc = -ENOMEM;
993                 goto out_unlock;
994         }
995         rc = virt_to_scatterlist(s->decrypted_filename,
996                                  s->block_aligned_filename_size, s->dst_sg, 2);
997         if (rc < 1) {
998                 printk(KERN_ERR "%s: Internal error whilst attempting to "
999                        "convert decrypted filename memory to scatterlist; "
1000                        "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1001                        __func__, rc, s->block_aligned_filename_size);
1002                 goto out_free_unlock;
1003         }
1004 
1005         s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1006         if (!s->skcipher_req) {
1007                 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1008                        "skcipher_request_alloc for %s\n", __func__,
1009                        crypto_skcipher_driver_name(s->skcipher_tfm));
1010                 rc = -ENOMEM;
1011                 goto out_free_unlock;
1012         }
1013 
1014         skcipher_request_set_callback(s->skcipher_req,
1015                                       CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1016 
1017         /* The characters in the first block effectively do the job of
1018          * the IV here, so we just use 0's for the IV. Note the
1019          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1020          * >= ECRYPTFS_MAX_IV_BYTES. */
1021         /* TODO: Support other key modules than passphrase for
1022          * filename encryption */
1023         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1024                 rc = -EOPNOTSUPP;
1025                 printk(KERN_INFO "%s: Filename encryption only supports "
1026                        "password tokens\n", __func__);
1027                 goto out_free_unlock;
1028         }
1029         rc = crypto_skcipher_setkey(
1030                 s->skcipher_tfm,
1031                 s->auth_tok->token.password.session_key_encryption_key,
1032                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1033         if (rc < 0) {
1034                 printk(KERN_ERR "%s: Error setting key for crypto context; "
1035                        "rc = [%d]. s->auth_tok->token.password.session_key_"
1036                        "encryption_key = [0x%p]; mount_crypt_stat->"
1037                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1038                        rc,
1039                        s->auth_tok->token.password.session_key_encryption_key,
1040                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
1041                 goto out_free_unlock;
1042         }
1043         skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1044                                    s->block_aligned_filename_size, s->iv);
1045         rc = crypto_skcipher_decrypt(s->skcipher_req);
1046         if (rc) {
1047                 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1048                        "rc = [%d]\n", __func__, rc);
1049                 goto out_free_unlock;
1050         }
1051 
1052         while (s->i < s->block_aligned_filename_size &&
1053                s->decrypted_filename[s->i] != '\0')
1054                 s->i++;
1055         if (s->i == s->block_aligned_filename_size) {
1056                 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1057                        "find valid separator between random characters and "
1058                        "the filename\n", __func__);
1059                 rc = -EINVAL;
1060                 goto out_free_unlock;
1061         }
1062         s->i++;
1063         (*filename_size) = (s->block_aligned_filename_size - s->i);
1064         if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1065                 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1066                        "invalid\n", __func__, (*filename_size));
1067                 rc = -EINVAL;
1068                 goto out_free_unlock;
1069         }
1070         (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1071         if (!(*filename)) {
1072                 rc = -ENOMEM;
1073                 goto out_free_unlock;
1074         }
1075         memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1076         (*filename)[(*filename_size)] = '\0';
1077 out_free_unlock:
1078         kfree(s->decrypted_filename);
1079 out_unlock:
1080         mutex_unlock(s->tfm_mutex);
1081 out:
1082         if (rc) {
1083                 (*packet_size) = 0;
1084                 (*filename_size) = 0;
1085                 (*filename) = NULL;
1086         }
1087         if (auth_tok_key) {
1088                 up_write(&(auth_tok_key->sem));
1089                 key_put(auth_tok_key);
1090         }
1091         skcipher_request_free(s->skcipher_req);
1092         kfree(s);
1093         return rc;
1094 }
1095 
1096 static int
1097 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1098 {
1099         int rc = 0;
1100 
1101         (*sig) = NULL;
1102         switch (auth_tok->token_type) {
1103         case ECRYPTFS_PASSWORD:
1104                 (*sig) = auth_tok->token.password.signature;
1105                 break;
1106         case ECRYPTFS_PRIVATE_KEY:
1107                 (*sig) = auth_tok->token.private_key.signature;
1108                 break;
1109         default:
1110                 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1111                        auth_tok->token_type);
1112                 rc = -EINVAL;
1113         }
1114         return rc;
1115 }
1116 
1117 /**
1118  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1119  * @auth_tok: The key authentication token used to decrypt the session key
1120  * @crypt_stat: The cryptographic context
1121  *
1122  * Returns zero on success; non-zero error otherwise.
1123  */
1124 static int
1125 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1126                                   struct ecryptfs_crypt_stat *crypt_stat)
1127 {
1128         u8 cipher_code = 0;
1129         struct ecryptfs_msg_ctx *msg_ctx;
1130         struct ecryptfs_message *msg = NULL;
1131         char *auth_tok_sig;
1132         char *payload = NULL;
1133         size_t payload_len = 0;
1134         int rc;
1135 
1136         rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1137         if (rc) {
1138                 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1139                        auth_tok->token_type);
1140                 goto out;
1141         }
1142         rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1143                                  &payload, &payload_len);
1144         if (rc) {
1145                 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1146                 goto out;
1147         }
1148         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1149         if (rc) {
1150                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1151                                 "ecryptfsd: %d\n", rc);
1152                 goto out;
1153         }
1154         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1155         if (rc) {
1156                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1157                                 "from the user space daemon\n");
1158                 rc = -EIO;
1159                 goto out;
1160         }
1161         rc = parse_tag_65_packet(&(auth_tok->session_key),
1162                                  &cipher_code, msg);
1163         if (rc) {
1164                 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1165                        rc);
1166                 goto out;
1167         }
1168         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1169         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1170                auth_tok->session_key.decrypted_key_size);
1171         crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1172         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1173         if (rc) {
1174                 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1175                                 cipher_code)
1176                 goto out;
1177         }
1178         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1179         if (ecryptfs_verbosity > 0) {
1180                 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1181                 ecryptfs_dump_hex(crypt_stat->key,
1182                                   crypt_stat->key_size);
1183         }
1184 out:
1185         kfree(msg);
1186         kfree(payload);
1187         return rc;
1188 }
1189 
1190 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1191 {
1192         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1193         struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1194 
1195         list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1196                                  auth_tok_list_head, list) {
1197                 list_del(&auth_tok_list_item->list);
1198                 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1199                                 auth_tok_list_item);
1200         }
1201 }
1202 
1203 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1204 
1205 /**
1206  * parse_tag_1_packet
1207  * @crypt_stat: The cryptographic context to modify based on packet contents
1208  * @data: The raw bytes of the packet.
1209  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1210  *                 a new authentication token will be placed at the
1211  *                 end of this list for this packet.
1212  * @new_auth_tok: Pointer to a pointer to memory that this function
1213  *                allocates; sets the memory address of the pointer to
1214  *                NULL on error. This object is added to the
1215  *                auth_tok_list.
1216  * @packet_size: This function writes the size of the parsed packet
1217  *               into this memory location; zero on error.
1218  * @max_packet_size: The maximum allowable packet size
1219  *
1220  * Returns zero on success; non-zero on error.
1221  */
1222 static int
1223 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1224                    unsigned char *data, struct list_head *auth_tok_list,
1225                    struct ecryptfs_auth_tok **new_auth_tok,
1226                    size_t *packet_size, size_t max_packet_size)
1227 {
1228         size_t body_size;
1229         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1230         size_t length_size;
1231         int rc = 0;
1232 
1233         (*packet_size) = 0;
1234         (*new_auth_tok) = NULL;
1235         /**
1236          * This format is inspired by OpenPGP; see RFC 2440
1237          * packet tag 1
1238          *
1239          * Tag 1 identifier (1 byte)
1240          * Max Tag 1 packet size (max 3 bytes)
1241          * Version (1 byte)
1242          * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1243          * Cipher identifier (1 byte)
1244          * Encrypted key size (arbitrary)
1245          *
1246          * 12 bytes minimum packet size
1247          */
1248         if (unlikely(max_packet_size < 12)) {
1249                 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1250                 rc = -EINVAL;
1251                 goto out;
1252         }
1253         if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1254                 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1255                        ECRYPTFS_TAG_1_PACKET_TYPE);
1256                 rc = -EINVAL;
1257                 goto out;
1258         }
1259         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1260          * at end of function upon failure */
1261         auth_tok_list_item =
1262                 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1263                                   GFP_KERNEL);
1264         if (!auth_tok_list_item) {
1265                 printk(KERN_ERR "Unable to allocate memory\n");
1266                 rc = -ENOMEM;
1267                 goto out;
1268         }
1269         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1270         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1271                                           &length_size);
1272         if (rc) {
1273                 printk(KERN_WARNING "Error parsing packet length; "
1274                        "rc = [%d]\n", rc);
1275                 goto out_free;
1276         }
1277         if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1278                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1279                 rc = -EINVAL;
1280                 goto out_free;
1281         }
1282         (*packet_size) += length_size;
1283         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1284                 printk(KERN_WARNING "Packet size exceeds max\n");
1285                 rc = -EINVAL;
1286                 goto out_free;
1287         }
1288         if (unlikely(data[(*packet_size)++] != 0x03)) {
1289                 printk(KERN_WARNING "Unknown version number [%d]\n",
1290                        data[(*packet_size) - 1]);
1291                 rc = -EINVAL;
1292                 goto out_free;
1293         }
1294         ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1295                         &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1296         *packet_size += ECRYPTFS_SIG_SIZE;
1297         /* This byte is skipped because the kernel does not need to
1298          * know which public key encryption algorithm was used */
1299         (*packet_size)++;
1300         (*new_auth_tok)->session_key.encrypted_key_size =
1301                 body_size - (ECRYPTFS_SIG_SIZE + 2);
1302         if ((*new_auth_tok)->session_key.encrypted_key_size
1303             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1304                 printk(KERN_WARNING "Tag 1 packet contains key larger "
1305                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1306                 rc = -EINVAL;
1307                 goto out;
1308         }
1309         memcpy((*new_auth_tok)->session_key.encrypted_key,
1310                &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1311         (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1312         (*new_auth_tok)->session_key.flags &=
1313                 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1314         (*new_auth_tok)->session_key.flags |=
1315                 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1316         (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1317         (*new_auth_tok)->flags = 0;
1318         (*new_auth_tok)->session_key.flags &=
1319                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1320         (*new_auth_tok)->session_key.flags &=
1321                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1322         list_add(&auth_tok_list_item->list, auth_tok_list);
1323         goto out;
1324 out_free:
1325         (*new_auth_tok) = NULL;
1326         memset(auth_tok_list_item, 0,
1327                sizeof(struct ecryptfs_auth_tok_list_item));
1328         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1329                         auth_tok_list_item);
1330 out:
1331         if (rc)
1332                 (*packet_size) = 0;
1333         return rc;
1334 }
1335 
1336 /**
1337  * parse_tag_3_packet
1338  * @crypt_stat: The cryptographic context to modify based on packet
1339  *              contents.
1340  * @data: The raw bytes of the packet.
1341  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1342  *                 a new authentication token will be placed at the end
1343  *                 of this list for this packet.
1344  * @new_auth_tok: Pointer to a pointer to memory that this function
1345  *                allocates; sets the memory address of the pointer to
1346  *                NULL on error. This object is added to the
1347  *                auth_tok_list.
1348  * @packet_size: This function writes the size of the parsed packet
1349  *               into this memory location; zero on error.
1350  * @max_packet_size: maximum number of bytes to parse
1351  *
1352  * Returns zero on success; non-zero on error.
1353  */
1354 static int
1355 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1356                    unsigned char *data, struct list_head *auth_tok_list,
1357                    struct ecryptfs_auth_tok **new_auth_tok,
1358                    size_t *packet_size, size_t max_packet_size)
1359 {
1360         size_t body_size;
1361         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1362         size_t length_size;
1363         int rc = 0;
1364 
1365         (*packet_size) = 0;
1366         (*new_auth_tok) = NULL;
1367         /**
1368          *This format is inspired by OpenPGP; see RFC 2440
1369          * packet tag 3
1370          *
1371          * Tag 3 identifier (1 byte)
1372          * Max Tag 3 packet size (max 3 bytes)
1373          * Version (1 byte)
1374          * Cipher code (1 byte)
1375          * S2K specifier (1 byte)
1376          * Hash identifier (1 byte)
1377          * Salt (ECRYPTFS_SALT_SIZE)
1378          * Hash iterations (1 byte)
1379          * Encrypted key (arbitrary)
1380          *
1381          * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1382          */
1383         if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1384                 printk(KERN_ERR "Max packet size too large\n");
1385                 rc = -EINVAL;
1386                 goto out;
1387         }
1388         if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1389                 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1390                        ECRYPTFS_TAG_3_PACKET_TYPE);
1391                 rc = -EINVAL;
1392                 goto out;
1393         }
1394         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1395          * at end of function upon failure */
1396         auth_tok_list_item =
1397             kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1398         if (!auth_tok_list_item) {
1399                 printk(KERN_ERR "Unable to allocate memory\n");
1400                 rc = -ENOMEM;
1401                 goto out;
1402         }
1403         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1404         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1405                                           &length_size);
1406         if (rc) {
1407                 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1408                        rc);
1409                 goto out_free;
1410         }
1411         if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1412                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1413                 rc = -EINVAL;
1414                 goto out_free;
1415         }
1416         (*packet_size) += length_size;
1417         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1418                 printk(KERN_ERR "Packet size exceeds max\n");
1419                 rc = -EINVAL;
1420                 goto out_free;
1421         }
1422         (*new_auth_tok)->session_key.encrypted_key_size =
1423                 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1424         if ((*new_auth_tok)->session_key.encrypted_key_size
1425             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1426                 printk(KERN_WARNING "Tag 3 packet contains key larger "
1427                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1428                 rc = -EINVAL;
1429                 goto out_free;
1430         }
1431         if (unlikely(data[(*packet_size)++] != 0x04)) {
1432                 printk(KERN_WARNING "Unknown version number [%d]\n",
1433                        data[(*packet_size) - 1]);
1434                 rc = -EINVAL;
1435                 goto out_free;
1436         }
1437         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1438                                             (u16)data[(*packet_size)]);
1439         if (rc)
1440                 goto out_free;
1441         /* A little extra work to differentiate among the AES key
1442          * sizes; see RFC2440 */
1443         switch(data[(*packet_size)++]) {
1444         case RFC2440_CIPHER_AES_192:
1445                 crypt_stat->key_size = 24;
1446                 break;
1447         default:
1448                 crypt_stat->key_size =
1449                         (*new_auth_tok)->session_key.encrypted_key_size;
1450         }
1451         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1452         if (rc)
1453                 goto out_free;
1454         if (unlikely(data[(*packet_size)++] != 0x03)) {
1455                 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1456                 rc = -ENOSYS;
1457                 goto out_free;
1458         }
1459         /* TODO: finish the hash mapping */
1460         switch (data[(*packet_size)++]) {
1461         case 0x01: /* See RFC2440 for these numbers and their mappings */
1462                 /* Choose MD5 */
1463                 memcpy((*new_auth_tok)->token.password.salt,
1464                        &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1465                 (*packet_size) += ECRYPTFS_SALT_SIZE;
1466                 /* This conversion was taken straight from RFC2440 */
1467                 (*new_auth_tok)->token.password.hash_iterations =
1468                         ((u32) 16 + (data[(*packet_size)] & 15))
1469                                 << ((data[(*packet_size)] >> 4) + 6);
1470                 (*packet_size)++;
1471                 /* Friendly reminder:
1472                  * (*new_auth_tok)->session_key.encrypted_key_size =
1473                  *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1474                 memcpy((*new_auth_tok)->session_key.encrypted_key,
1475                        &data[(*packet_size)],
1476                        (*new_auth_tok)->session_key.encrypted_key_size);
1477                 (*packet_size) +=
1478                         (*new_auth_tok)->session_key.encrypted_key_size;
1479                 (*new_auth_tok)->session_key.flags &=
1480                         ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1481                 (*new_auth_tok)->session_key.flags |=
1482                         ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1483                 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1484                 break;
1485         default:
1486                 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1487                                 "[%d]\n", data[(*packet_size) - 1]);
1488                 rc = -ENOSYS;
1489                 goto out_free;
1490         }
1491         (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1492         /* TODO: Parametarize; we might actually want userspace to
1493          * decrypt the session key. */
1494         (*new_auth_tok)->session_key.flags &=
1495                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1496         (*new_auth_tok)->session_key.flags &=
1497                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1498         list_add(&auth_tok_list_item->list, auth_tok_list);
1499         goto out;
1500 out_free:
1501         (*new_auth_tok) = NULL;
1502         memset(auth_tok_list_item, 0,
1503                sizeof(struct ecryptfs_auth_tok_list_item));
1504         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1505                         auth_tok_list_item);
1506 out:
1507         if (rc)
1508                 (*packet_size) = 0;
1509         return rc;
1510 }
1511 
1512 /**
1513  * parse_tag_11_packet
1514  * @data: The raw bytes of the packet
1515  * @contents: This function writes the data contents of the literal
1516  *            packet into this memory location
1517  * @max_contents_bytes: The maximum number of bytes that this function
1518  *                      is allowed to write into contents
1519  * @tag_11_contents_size: This function writes the size of the parsed
1520  *                        contents into this memory location; zero on
1521  *                        error
1522  * @packet_size: This function writes the size of the parsed packet
1523  *               into this memory location; zero on error
1524  * @max_packet_size: maximum number of bytes to parse
1525  *
1526  * Returns zero on success; non-zero on error.
1527  */
1528 static int
1529 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1530                     size_t max_contents_bytes, size_t *tag_11_contents_size,
1531                     size_t *packet_size, size_t max_packet_size)
1532 {
1533         size_t body_size;
1534         size_t length_size;
1535         int rc = 0;
1536 
1537         (*packet_size) = 0;
1538         (*tag_11_contents_size) = 0;
1539         /* This format is inspired by OpenPGP; see RFC 2440
1540          * packet tag 11
1541          *
1542          * Tag 11 identifier (1 byte)
1543          * Max Tag 11 packet size (max 3 bytes)
1544          * Binary format specifier (1 byte)
1545          * Filename length (1 byte)
1546          * Filename ("_CONSOLE") (8 bytes)
1547          * Modification date (4 bytes)
1548          * Literal data (arbitrary)
1549          *
1550          * We need at least 16 bytes of data for the packet to even be
1551          * valid.
1552          */
1553         if (max_packet_size < 16) {
1554                 printk(KERN_ERR "Maximum packet size too small\n");
1555                 rc = -EINVAL;
1556                 goto out;
1557         }
1558         if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1559                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1560                 rc = -EINVAL;
1561                 goto out;
1562         }
1563         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1564                                           &length_size);
1565         if (rc) {
1566                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1567                 goto out;
1568         }
1569         if (body_size < 14) {
1570                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1571                 rc = -EINVAL;
1572                 goto out;
1573         }
1574         (*packet_size) += length_size;
1575         (*tag_11_contents_size) = (body_size - 14);
1576         if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1577                 printk(KERN_ERR "Packet size exceeds max\n");
1578                 rc = -EINVAL;
1579                 goto out;
1580         }
1581         if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1582                 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1583                        "expected size\n");
1584                 rc = -EINVAL;
1585                 goto out;
1586         }
1587         if (data[(*packet_size)++] != 0x62) {
1588                 printk(KERN_WARNING "Unrecognizable packet\n");
1589                 rc = -EINVAL;
1590                 goto out;
1591         }
1592         if (data[(*packet_size)++] != 0x08) {
1593                 printk(KERN_WARNING "Unrecognizable packet\n");
1594                 rc = -EINVAL;
1595                 goto out;
1596         }
1597         (*packet_size) += 12; /* Ignore filename and modification date */
1598         memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1599         (*packet_size) += (*tag_11_contents_size);
1600 out:
1601         if (rc) {
1602                 (*packet_size) = 0;
1603                 (*tag_11_contents_size) = 0;
1604         }
1605         return rc;
1606 }
1607 
1608 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1609                                       struct ecryptfs_auth_tok **auth_tok,
1610                                       char *sig)
1611 {
1612         int rc = 0;
1613 
1614         (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1615         if (IS_ERR(*auth_tok_key)) {
1616                 (*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1617                 if (IS_ERR(*auth_tok_key)) {
1618                         printk(KERN_ERR "Could not find key with description: [%s]\n",
1619                               sig);
1620                         rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1621                         (*auth_tok_key) = NULL;
1622                         goto out;
1623                 }
1624         }
1625         down_write(&(*auth_tok_key)->sem);
1626         rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1627         if (rc) {
1628                 up_write(&(*auth_tok_key)->sem);
1629                 key_put(*auth_tok_key);
1630                 (*auth_tok_key) = NULL;
1631                 goto out;
1632         }
1633 out:
1634         return rc;
1635 }
1636 
1637 /**
1638  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1639  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1640  * @crypt_stat: The cryptographic context
1641  *
1642  * Returns zero on success; non-zero error otherwise
1643  */
1644 static int
1645 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1646                                          struct ecryptfs_crypt_stat *crypt_stat)
1647 {
1648         struct scatterlist dst_sg[2];
1649         struct scatterlist src_sg[2];
1650         struct mutex *tfm_mutex;
1651         struct crypto_skcipher *tfm;
1652         struct skcipher_request *req = NULL;
1653         int rc = 0;
1654 
1655         if (unlikely(ecryptfs_verbosity > 0)) {
1656                 ecryptfs_printk(
1657                         KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1658                         auth_tok->token.password.session_key_encryption_key_bytes);
1659                 ecryptfs_dump_hex(
1660                         auth_tok->token.password.session_key_encryption_key,
1661                         auth_tok->token.password.session_key_encryption_key_bytes);
1662         }
1663         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1664                                                         crypt_stat->cipher);
1665         if (unlikely(rc)) {
1666                 printk(KERN_ERR "Internal error whilst attempting to get "
1667                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1668                        crypt_stat->cipher, rc);
1669                 goto out;
1670         }
1671         rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1672                                  auth_tok->session_key.encrypted_key_size,
1673                                  src_sg, 2);
1674         if (rc < 1 || rc > 2) {
1675                 printk(KERN_ERR "Internal error whilst attempting to convert "
1676                         "auth_tok->session_key.encrypted_key to scatterlist; "
1677                         "expected rc = 1; got rc = [%d]. "
1678                        "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1679                         auth_tok->session_key.encrypted_key_size);
1680                 goto out;
1681         }
1682         auth_tok->session_key.decrypted_key_size =
1683                 auth_tok->session_key.encrypted_key_size;
1684         rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1685                                  auth_tok->session_key.decrypted_key_size,
1686                                  dst_sg, 2);
1687         if (rc < 1 || rc > 2) {
1688                 printk(KERN_ERR "Internal error whilst attempting to convert "
1689                         "auth_tok->session_key.decrypted_key to scatterlist; "
1690                         "expected rc = 1; got rc = [%d]\n", rc);
1691                 goto out;
1692         }
1693         mutex_lock(tfm_mutex);
1694         req = skcipher_request_alloc(tfm, GFP_KERNEL);
1695         if (!req) {
1696                 mutex_unlock(tfm_mutex);
1697                 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1698                        "skcipher_request_alloc for %s\n", __func__,
1699                        crypto_skcipher_driver_name(tfm));
1700                 rc = -ENOMEM;
1701                 goto out;
1702         }
1703 
1704         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1705                                       NULL, NULL);
1706         rc = crypto_skcipher_setkey(
1707                 tfm, auth_tok->token.password.session_key_encryption_key,
1708                 crypt_stat->key_size);
1709         if (unlikely(rc < 0)) {
1710                 mutex_unlock(tfm_mutex);
1711                 printk(KERN_ERR "Error setting key for crypto context\n");
1712                 rc = -EINVAL;
1713                 goto out;
1714         }
1715         skcipher_request_set_crypt(req, src_sg, dst_sg,
1716                                    auth_tok->session_key.encrypted_key_size,
1717                                    NULL);
1718         rc = crypto_skcipher_decrypt(req);
1719         mutex_unlock(tfm_mutex);
1720         if (unlikely(rc)) {
1721                 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1722                 goto out;
1723         }
1724         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1725         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1726                auth_tok->session_key.decrypted_key_size);
1727         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1728         if (unlikely(ecryptfs_verbosity > 0)) {
1729                 ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1730                                 crypt_stat->key_size);
1731                 ecryptfs_dump_hex(crypt_stat->key,
1732                                   crypt_stat->key_size);
1733         }
1734 out:
1735         skcipher_request_free(req);
1736         return rc;
1737 }
1738 
1739 /**
1740  * ecryptfs_parse_packet_set
1741  * @crypt_stat: The cryptographic context
1742  * @src: Virtual address of region of memory containing the packets
1743  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1744  *
1745  * Get crypt_stat to have the file's session key if the requisite key
1746  * is available to decrypt the session key.
1747  *
1748  * Returns Zero if a valid authentication token was retrieved and
1749  * processed; negative value for file not encrypted or for error
1750  * conditions.
1751  */
1752 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1753                               unsigned char *src,
1754                               struct dentry *ecryptfs_dentry)
1755 {
1756         size_t i = 0;
1757         size_t found_auth_tok;
1758         size_t next_packet_is_auth_tok_packet;
1759         struct list_head auth_tok_list;
1760         struct ecryptfs_auth_tok *matching_auth_tok;
1761         struct ecryptfs_auth_tok *candidate_auth_tok;
1762         char *candidate_auth_tok_sig;
1763         size_t packet_size;
1764         struct ecryptfs_auth_tok *new_auth_tok;
1765         unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1766         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1767         size_t tag_11_contents_size;
1768         size_t tag_11_packet_size;
1769         struct key *auth_tok_key = NULL;
1770         int rc = 0;
1771 
1772         INIT_LIST_HEAD(&auth_tok_list);
1773         /* Parse the header to find as many packets as we can; these will be
1774          * added the our &auth_tok_list */
1775         next_packet_is_auth_tok_packet = 1;
1776         while (next_packet_is_auth_tok_packet) {
1777                 size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1778 
1779                 switch (src[i]) {
1780                 case ECRYPTFS_TAG_3_PACKET_TYPE:
1781                         rc = parse_tag_3_packet(crypt_stat,
1782                                                 (unsigned char *)&src[i],
1783                                                 &auth_tok_list, &new_auth_tok,
1784                                                 &packet_size, max_packet_size);
1785                         if (rc) {
1786                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1787                                                 "tag 3 packet\n");
1788                                 rc = -EIO;
1789                                 goto out_wipe_list;
1790                         }
1791                         i += packet_size;
1792                         rc = parse_tag_11_packet((unsigned char *)&src[i],
1793                                                  sig_tmp_space,
1794                                                  ECRYPTFS_SIG_SIZE,
1795                                                  &tag_11_contents_size,
1796                                                  &tag_11_packet_size,
1797                                                  max_packet_size);
1798                         if (rc) {
1799                                 ecryptfs_printk(KERN_ERR, "No valid "
1800                                                 "(ecryptfs-specific) literal "
1801                                                 "packet containing "
1802                                                 "authentication token "
1803                                                 "signature found after "
1804                                                 "tag 3 packet\n");
1805                                 rc = -EIO;
1806                                 goto out_wipe_list;
1807                         }
1808                         i += tag_11_packet_size;
1809                         if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1810                                 ecryptfs_printk(KERN_ERR, "Expected "
1811                                                 "signature of size [%d]; "
1812                                                 "read size [%zd]\n",
1813                                                 ECRYPTFS_SIG_SIZE,
1814                                                 tag_11_contents_size);
1815                                 rc = -EIO;
1816                                 goto out_wipe_list;
1817                         }
1818                         ecryptfs_to_hex(new_auth_tok->token.password.signature,
1819                                         sig_tmp_space, tag_11_contents_size);
1820                         new_auth_tok->token.password.signature[
1821                                 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1822                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1823                         break;
1824                 case ECRYPTFS_TAG_1_PACKET_TYPE:
1825                         rc = parse_tag_1_packet(crypt_stat,
1826                                                 (unsigned char *)&src[i],
1827                                                 &auth_tok_list, &new_auth_tok,
1828                                                 &packet_size, max_packet_size);
1829                         if (rc) {
1830                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1831                                                 "tag 1 packet\n");
1832                                 rc = -EIO;
1833                                 goto out_wipe_list;
1834                         }
1835                         i += packet_size;
1836                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1837                         break;
1838                 case ECRYPTFS_TAG_11_PACKET_TYPE:
1839                         ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1840                                         "(Tag 11 not allowed by itself)\n");
1841                         rc = -EIO;
1842                         goto out_wipe_list;
1843                 default:
1844                         ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1845                                         "of the file header; hex value of "
1846                                         "character is [0x%.2x]\n", i, src[i]);
1847                         next_packet_is_auth_tok_packet = 0;
1848                 }
1849         }
1850         if (list_empty(&auth_tok_list)) {
1851                 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1852                        "eCryptfs file; this is not supported in this version "
1853                        "of the eCryptfs kernel module\n");
1854                 rc = -EINVAL;
1855                 goto out;
1856         }
1857         /* auth_tok_list contains the set of authentication tokens
1858          * parsed from the metadata. We need to find a matching
1859          * authentication token that has the secret component(s)
1860          * necessary to decrypt the EFEK in the auth_tok parsed from
1861          * the metadata. There may be several potential matches, but
1862          * just one will be sufficient to decrypt to get the FEK. */
1863 find_next_matching_auth_tok:
1864         found_auth_tok = 0;
1865         list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1866                 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1867                 if (unlikely(ecryptfs_verbosity > 0)) {
1868                         ecryptfs_printk(KERN_DEBUG,
1869                                         "Considering candidate auth tok:\n");
1870                         ecryptfs_dump_auth_tok(candidate_auth_tok);
1871                 }
1872                 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1873                                                candidate_auth_tok);
1874                 if (rc) {
1875                         printk(KERN_ERR
1876                                "Unrecognized candidate auth tok type: [%d]\n",
1877                                candidate_auth_tok->token_type);
1878                         rc = -EINVAL;
1879                         goto out_wipe_list;
1880                 }
1881                 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1882                                                &matching_auth_tok,
1883                                                crypt_stat->mount_crypt_stat,
1884                                                candidate_auth_tok_sig);
1885                 if (!rc) {
1886                         found_auth_tok = 1;
1887                         goto found_matching_auth_tok;
1888                 }
1889         }
1890         if (!found_auth_tok) {
1891                 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1892                                 "authentication token\n");
1893                 rc = -EIO;
1894                 goto out_wipe_list;
1895         }
1896 found_matching_auth_tok:
1897         if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1898                 memcpy(&(candidate_auth_tok->token.private_key),
1899                        &(matching_auth_tok->token.private_key),
1900                        sizeof(struct ecryptfs_private_key));
1901                 up_write(&(auth_tok_key->sem));
1902                 key_put(auth_tok_key);
1903                 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1904                                                        crypt_stat);
1905         } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1906                 memcpy(&(candidate_auth_tok->token.password),
1907                        &(matching_auth_tok->token.password),
1908                        sizeof(struct ecryptfs_password));
1909                 up_write(&(auth_tok_key->sem));
1910                 key_put(auth_tok_key);
1911                 rc = decrypt_passphrase_encrypted_session_key(
1912                         candidate_auth_tok, crypt_stat);
1913         } else {
1914                 up_write(&(auth_tok_key->sem));
1915                 key_put(auth_tok_key);
1916                 rc = -EINVAL;
1917         }
1918         if (rc) {
1919                 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1920 
1921                 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1922                                 "session key for authentication token with sig "
1923                                 "[%.*s]; rc = [%d]. Removing auth tok "
1924                                 "candidate from the list and searching for "
1925                                 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1926                                 candidate_auth_tok_sig, rc);
1927                 list_for_each_entry_safe(auth_tok_list_item,
1928                                          auth_tok_list_item_tmp,
1929                                          &auth_tok_list, list) {
1930                         if (candidate_auth_tok
1931                             == &auth_tok_list_item->auth_tok) {
1932                                 list_del(&auth_tok_list_item->list);
1933                                 kmem_cache_free(
1934                                         ecryptfs_auth_tok_list_item_cache,
1935                                         auth_tok_list_item);
1936                                 goto find_next_matching_auth_tok;
1937                         }
1938                 }
1939                 BUG();
1940         }
1941         rc = ecryptfs_compute_root_iv(crypt_stat);
1942         if (rc) {
1943                 ecryptfs_printk(KERN_ERR, "Error computing "
1944                                 "the root IV\n");
1945                 goto out_wipe_list;
1946         }
1947         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1948         if (rc) {
1949                 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1950                                 "context for cipher [%s]; rc = [%d]\n",
1951                                 crypt_stat->cipher, rc);
1952         }
1953 out_wipe_list:
1954         wipe_auth_tok_list(&auth_tok_list);
1955 out:
1956         return rc;
1957 }
1958 
1959 static int
1960 pki_encrypt_session_key(struct key *auth_tok_key,
1961                         struct ecryptfs_auth_tok *auth_tok,
1962                         struct ecryptfs_crypt_stat *crypt_stat,
1963                         struct ecryptfs_key_record *key_rec)
1964 {
1965         struct ecryptfs_msg_ctx *msg_ctx = NULL;
1966         char *payload = NULL;
1967         size_t payload_len = 0;
1968         struct ecryptfs_message *msg;
1969         int rc;
1970 
1971         rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1972                                  ecryptfs_code_for_cipher_string(
1973                                          crypt_stat->cipher,
1974                                          crypt_stat->key_size),
1975                                  crypt_stat, &payload, &payload_len);
1976         up_write(&(auth_tok_key->sem));
1977         key_put(auth_tok_key);
1978         if (rc) {
1979                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1980                 goto out;
1981         }
1982         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1983         if (rc) {
1984                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1985                                 "ecryptfsd: %d\n", rc);
1986                 goto out;
1987         }
1988         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1989         if (rc) {
1990                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1991                                 "from the user space daemon\n");
1992                 rc = -EIO;
1993                 goto out;
1994         }
1995         rc = parse_tag_67_packet(key_rec, msg);
1996         if (rc)
1997                 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1998         kfree(msg);
1999 out:
2000         kfree(payload);
2001         return rc;
2002 }
2003 /**
2004  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2005  * @dest: Buffer into which to write the packet
2006  * @remaining_bytes: Maximum number of bytes that can be writtn
2007  * @auth_tok_key: The authentication token key to unlock and put when done with
2008  *                @auth_tok
2009  * @auth_tok: The authentication token used for generating the tag 1 packet
2010  * @crypt_stat: The cryptographic context
2011  * @key_rec: The key record struct for the tag 1 packet
2012  * @packet_size: This function will write the number of bytes that end
2013  *               up constituting the packet; set to zero on error
2014  *
2015  * Returns zero on success; non-zero on error.
2016  */
2017 static int
2018 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2019                    struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2020                    struct ecryptfs_crypt_stat *crypt_stat,
2021                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
2022 {
2023         size_t i;
2024         size_t encrypted_session_key_valid = 0;
2025         size_t packet_size_length;
2026         size_t max_packet_size;
2027         int rc = 0;
2028 
2029         (*packet_size) = 0;
2030         ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2031                           ECRYPTFS_SIG_SIZE);
2032         encrypted_session_key_valid = 0;
2033         for (i = 0; i < crypt_stat->key_size; i++)
2034                 encrypted_session_key_valid |=
2035                         auth_tok->session_key.encrypted_key[i];
2036         if (encrypted_session_key_valid) {
2037                 memcpy(key_rec->enc_key,
2038                        auth_tok->session_key.encrypted_key,
2039                        auth_tok->session_key.encrypted_key_size);
2040                 up_write(&(auth_tok_key->sem));
2041                 key_put(auth_tok_key);
2042                 goto encrypted_session_key_set;
2043         }
2044         if (auth_tok->session_key.encrypted_key_size == 0)
2045                 auth_tok->session_key.encrypted_key_size =
2046                         auth_tok->token.private_key.key_size;
2047         rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2048                                      key_rec);
2049         if (rc) {
2050                 printk(KERN_ERR "Failed to encrypt session key via a key "
2051                        "module; rc = [%d]\n", rc);
2052                 goto out;
2053         }
2054         if (ecryptfs_verbosity > 0) {
2055                 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2056                 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2057         }
2058 encrypted_session_key_set:
2059         /* This format is inspired by OpenPGP; see RFC 2440
2060          * packet tag 1 */
2061         max_packet_size = (1                         /* Tag 1 identifier */
2062                            + 3                       /* Max Tag 1 packet size */
2063                            + 1                       /* Version */
2064                            + ECRYPTFS_SIG_SIZE       /* Key identifier */
2065                            + 1                       /* Cipher identifier */
2066                            + key_rec->enc_key_size); /* Encrypted key size */
2067         if (max_packet_size > (*remaining_bytes)) {
2068                 printk(KERN_ERR "Packet length larger than maximum allowable; "
2069                        "need up to [%td] bytes, but there are only [%td] "
2070                        "available\n", max_packet_size, (*remaining_bytes));
2071                 rc = -EINVAL;
2072                 goto out;
2073         }
2074         dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2075         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2076                                           (max_packet_size - 4),
2077                                           &packet_size_length);
2078         if (rc) {
2079                 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2080                                 "header; cannot generate packet length\n");
2081                 goto out;
2082         }
2083         (*packet_size) += packet_size_length;
2084         dest[(*packet_size)++] = 0x03; /* version 3 */
2085         memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2086         (*packet_size) += ECRYPTFS_SIG_SIZE;
2087         dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2088         memcpy(&dest[(*packet_size)], key_rec->enc_key,
2089                key_rec->enc_key_size);
2090         (*packet_size) += key_rec->enc_key_size;
2091 out:
2092         if (rc)
2093                 (*packet_size) = 0;
2094         else
2095                 (*remaining_bytes) -= (*packet_size);
2096         return rc;
2097 }
2098 
2099 /**
2100  * write_tag_11_packet
2101  * @dest: Target into which Tag 11 packet is to be written
2102  * @remaining_bytes: Maximum packet length
2103  * @contents: Byte array of contents to copy in
2104  * @contents_length: Number of bytes in contents
2105  * @packet_length: Length of the Tag 11 packet written; zero on error
2106  *
2107  * Returns zero on success; non-zero on error.
2108  */
2109 static int
2110 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2111                     size_t contents_length, size_t *packet_length)
2112 {
2113         size_t packet_size_length;
2114         size_t max_packet_size;
2115         int rc = 0;
2116 
2117         (*packet_length) = 0;
2118         /* This format is inspired by OpenPGP; see RFC 2440
2119          * packet tag 11 */
2120         max_packet_size = (1                   /* Tag 11 identifier */
2121                            + 3                 /* Max Tag 11 packet size */
2122                            + 1                 /* Binary format specifier */
2123                            + 1                 /* Filename length */
2124                            + 8                 /* Filename ("_CONSOLE") */
2125                            + 4                 /* Modification date */
2126                            + contents_length); /* Literal data */
2127         if (max_packet_size > (*remaining_bytes)) {
2128                 printk(KERN_ERR "Packet length larger than maximum allowable; "
2129                        "need up to [%td] bytes, but there are only [%td] "
2130                        "available\n", max_packet_size, (*remaining_bytes));
2131                 rc = -EINVAL;
2132                 goto out;
2133         }
2134         dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2135         rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2136                                           (max_packet_size - 4),
2137                                           &packet_size_length);
2138         if (rc) {
2139                 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2140                        "generate packet length. rc = [%d]\n", rc);
2141                 goto out;
2142         }
2143         (*packet_length) += packet_size_length;
2144         dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2145         dest[(*packet_length)++] = 8;
2146         memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2147         (*packet_length) += 8;
2148         memset(&dest[(*packet_length)], 0x00, 4);
2149         (*packet_length) += 4;
2150         memcpy(&dest[(*packet_length)], contents, contents_length);
2151         (*packet_length) += contents_length;
2152  out:
2153         if (rc)
2154                 (*packet_length) = 0;
2155         else
2156                 (*remaining_bytes) -= (*packet_length);
2157         return rc;
2158 }
2159 
2160 /**
2161  * write_tag_3_packet
2162  * @dest: Buffer into which to write the packet
2163  * @remaining_bytes: Maximum number of bytes that can be written
2164  * @auth_tok: Authentication token
2165  * @crypt_stat: The cryptographic context
2166  * @key_rec: encrypted key
2167  * @packet_size: This function will write the number of bytes that end
2168  *               up constituting the packet; set to zero on error
2169  *
2170  * Returns zero on success; non-zero on error.
2171  */
2172 static int
2173 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2174                    struct ecryptfs_auth_tok *auth_tok,
2175                    struct ecryptfs_crypt_stat *crypt_stat,
2176                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
2177 {
2178         size_t i;
2179         size_t encrypted_session_key_valid = 0;
2180         char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2181         struct scatterlist dst_sg[2];
2182         struct scatterlist src_sg[2];
2183         struct mutex *tfm_mutex = NULL;
2184         u8 cipher_code;
2185         size_t packet_size_length;
2186         size_t max_packet_size;
2187         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2188                 crypt_stat->mount_crypt_stat;
2189         struct crypto_skcipher *tfm;
2190         struct skcipher_request *req;
2191         int rc = 0;
2192 
2193         (*packet_size) = 0;
2194         ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2195                           ECRYPTFS_SIG_SIZE);
2196         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2197                                                         crypt_stat->cipher);
2198         if (unlikely(rc)) {
2199                 printk(KERN_ERR "Internal error whilst attempting to get "
2200                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2201                        crypt_stat->cipher, rc);
2202                 goto out;
2203         }
2204         if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2205                 printk(KERN_WARNING "No key size specified at mount; "
2206                        "defaulting to [%d]\n",
2207                        crypto_skcipher_default_keysize(tfm));
2208                 mount_crypt_stat->global_default_cipher_key_size =
2209                         crypto_skcipher_default_keysize(tfm);
2210         }
2211         if (crypt_stat->key_size == 0)
2212                 crypt_stat->key_size =
2213                         mount_crypt_stat->global_default_cipher_key_size;
2214         if (auth_tok->session_key.encrypted_key_size == 0)
2215                 auth_tok->session_key.encrypted_key_size =
2216                         crypt_stat->key_size;
2217         if (crypt_stat->key_size == 24
2218             && strcmp("aes", crypt_stat->cipher) == 0) {
2219                 memset((crypt_stat->key + 24), 0, 8);
2220                 auth_tok->session_key.encrypted_key_size = 32;
2221         } else
2222                 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2223         key_rec->enc_key_size =
2224                 auth_tok->session_key.encrypted_key_size;
2225         encrypted_session_key_valid = 0;
2226         for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2227                 encrypted_session_key_valid |=
2228                         auth_tok->session_key.encrypted_key[i];
2229         if (encrypted_session_key_valid) {
2230                 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2231                                 "using auth_tok->session_key.encrypted_key, "
2232                                 "where key_rec->enc_key_size = [%zd]\n",
2233                                 key_rec->enc_key_size);
2234                 memcpy(key_rec->enc_key,
2235                        auth_tok->session_key.encrypted_key,
2236                        key_rec->enc_key_size);
2237                 goto encrypted_session_key_set;
2238         }
2239         if (auth_tok->token.password.flags &
2240             ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2241                 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2242                                 "session key encryption key of size [%d]\n",
2243                                 auth_tok->token.password.
2244                                 session_key_encryption_key_bytes);
2245                 memcpy(session_key_encryption_key,
2246                        auth_tok->token.password.session_key_encryption_key,
2247                        crypt_stat->key_size);
2248                 ecryptfs_printk(KERN_DEBUG,
2249                                 "Cached session key encryption key:\n");
2250                 if (ecryptfs_verbosity > 0)
2251                         ecryptfs_dump_hex(session_key_encryption_key, 16);
2252         }
2253         if (unlikely(ecryptfs_verbosity > 0)) {
2254                 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2255                 ecryptfs_dump_hex(session_key_encryption_key, 16);
2256         }
2257         rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2258                                  src_sg, 2);
2259         if (rc < 1 || rc > 2) {
2260                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2261                                 "for crypt_stat session key; expected rc = 1; "
2262                                 "got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2263                                 rc, key_rec->enc_key_size);
2264                 rc = -ENOMEM;
2265                 goto out;
2266         }
2267         rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2268                                  dst_sg, 2);
2269         if (rc < 1 || rc > 2) {
2270                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2271                                 "for crypt_stat encrypted session key; "
2272                                 "expected rc = 1; got rc = [%d]. "
2273                                 "key_rec->enc_key_size = [%zd]\n", rc,
2274                                 key_rec->enc_key_size);
2275                 rc = -ENOMEM;
2276                 goto out;
2277         }
2278         mutex_lock(tfm_mutex);
2279         rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2280                                     crypt_stat->key_size);
2281         if (rc < 0) {
2282                 mutex_unlock(tfm_mutex);
2283                 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2284                                 "context; rc = [%d]\n", rc);
2285                 goto out;
2286         }
2287 
2288         req = skcipher_request_alloc(tfm, GFP_KERNEL);
2289         if (!req) {
2290                 mutex_unlock(tfm_mutex);
2291                 ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2292                                 "attempting to skcipher_request_alloc for "
2293                                 "%s\n", crypto_skcipher_driver_name(tfm));
2294                 rc = -ENOMEM;
2295                 goto out;
2296         }
2297 
2298         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2299                                       NULL, NULL);
2300 
2301         rc = 0;
2302         ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2303                         crypt_stat->key_size);
2304         skcipher_request_set_crypt(req, src_sg, dst_sg,
2305                                    (*key_rec).enc_key_size, NULL);
2306         rc = crypto_skcipher_encrypt(req);
2307         mutex_unlock(tfm_mutex);
2308         skcipher_request_free(req);
2309         if (rc) {
2310                 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2311                 goto out;
2312         }
2313         ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2314         if (ecryptfs_verbosity > 0) {
2315                 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2316                                 key_rec->enc_key_size);
2317                 ecryptfs_dump_hex(key_rec->enc_key,
2318                                   key_rec->enc_key_size);
2319         }
2320 encrypted_session_key_set:
2321         /* This format is inspired by OpenPGP; see RFC 2440
2322          * packet tag 3 */
2323         max_packet_size = (1                         /* Tag 3 identifier */
2324                            + 3                       /* Max Tag 3 packet size */
2325                            + 1                       /* Version */
2326                            + 1                       /* Cipher code */
2327                            + 1                       /* S2K specifier */
2328                            + 1                       /* Hash identifier */
2329                            + ECRYPTFS_SALT_SIZE      /* Salt */
2330                            + 1                       /* Hash iterations */
2331                            + key_rec->enc_key_size); /* Encrypted key size */
2332         if (max_packet_size > (*remaining_bytes)) {
2333                 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2334                        "there are only [%td] available\n", max_packet_size,
2335                        (*remaining_bytes));
2336                 rc = -EINVAL;
2337                 goto out;
2338         }
2339         dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2340         /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2341          * to get the number of octets in the actual Tag 3 packet */
2342         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2343                                           (max_packet_size - 4),
2344                                           &packet_size_length);
2345         if (rc) {
2346                 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2347                        "generate packet length. rc = [%d]\n", rc);
2348                 goto out;
2349         }
2350         (*packet_size) += packet_size_length;
2351         dest[(*packet_size)++] = 0x04; /* version 4 */
2352         /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2353          * specified with strings */
2354         cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2355                                                       crypt_stat->key_size);
2356         if (cipher_code == 0) {
2357                 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2358                                 "cipher [%s]\n", crypt_stat->cipher);
2359                 rc = -EINVAL;
2360                 goto out;
2361         }
2362         dest[(*packet_size)++] = cipher_code;
2363         dest[(*packet_size)++] = 0x03;  /* S2K */
2364         dest[(*packet_size)++] = 0x01;  /* MD5 (TODO: parameterize) */
2365         memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2366                ECRYPTFS_SALT_SIZE);
2367         (*packet_size) += ECRYPTFS_SALT_SIZE;   /* salt */
2368         dest[(*packet_size)++] = 0x60;  /* hash iterations (65536) */
2369         memcpy(&dest[(*packet_size)], key_rec->enc_key,
2370                key_rec->enc_key_size);
2371         (*packet_size) += key_rec->enc_key_size;
2372 out:
2373         if (rc)
2374                 (*packet_size) = 0;
2375         else
2376                 (*remaining_bytes) -= (*packet_size);
2377         return rc;
2378 }
2379 
2380 struct kmem_cache *ecryptfs_key_record_cache;
2381 
2382 /**
2383  * ecryptfs_generate_key_packet_set
2384  * @dest_base: Virtual address from which to write the key record set
2385  * @crypt_stat: The cryptographic context from which the
2386  *              authentication tokens will be retrieved
2387  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2388  *                   for the global parameters
2389  * @len: The amount written
2390  * @max: The maximum amount of data allowed to be written
2391  *
2392  * Generates a key packet set and writes it to the virtual address
2393  * passed in.
2394  *
2395  * Returns zero on success; non-zero on error.
2396  */
2397 int
2398 ecryptfs_generate_key_packet_set(char *dest_base,
2399                                  struct ecryptfs_crypt_stat *crypt_stat,
2400                                  struct dentry *ecryptfs_dentry, size_t *len,
2401                                  size_t max)
2402 {
2403         struct ecryptfs_auth_tok *auth_tok;
2404         struct key *auth_tok_key = NULL;
2405         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2406                 &ecryptfs_superblock_to_private(
2407                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
2408         size_t written;
2409         struct ecryptfs_key_record *key_rec;
2410         struct ecryptfs_key_sig *key_sig;
2411         int rc = 0;
2412 
2413         (*len) = 0;
2414         mutex_lock(&crypt_stat->keysig_list_mutex);
2415         key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2416         if (!key_rec) {
2417                 rc = -ENOMEM;
2418                 goto out;
2419         }
2420         list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2421                             crypt_stat_list) {
2422                 memset(key_rec, 0, sizeof(*key_rec));
2423                 rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2424                                                            &auth_tok,
2425                                                            mount_crypt_stat,
2426                                                            key_sig->keysig);
2427                 if (rc) {
2428                         printk(KERN_WARNING "Unable to retrieve auth tok with "
2429                                "sig = [%s]\n", key_sig->keysig);
2430                         rc = process_find_global_auth_tok_for_sig_err(rc);
2431                         goto out_free;
2432                 }
2433                 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2434                         rc = write_tag_3_packet((dest_base + (*len)),
2435                                                 &max, auth_tok,
2436                                                 crypt_stat, key_rec,
2437                                                 &written);
2438                         up_write(&(auth_tok_key->sem));
2439                         key_put(auth_tok_key);
2440                         if (rc) {
2441                                 ecryptfs_printk(KERN_WARNING, "Error "
2442                                                 "writing tag 3 packet\n");
2443                                 goto out_free;
2444                         }
2445                         (*len) += written;
2446                         /* Write auth tok signature packet */
2447                         rc = write_tag_11_packet((dest_base + (*len)), &max,
2448                                                  key_rec->sig,
2449                                                  ECRYPTFS_SIG_SIZE, &written);
2450                         if (rc) {
2451                                 ecryptfs_printk(KERN_ERR, "Error writing "
2452                                                 "auth tok signature packet\n");
2453                                 goto out_free;
2454                         }
2455                         (*len) += written;
2456                 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2457                         rc = write_tag_1_packet(dest_base + (*len), &max,
2458                                                 auth_tok_key, auth_tok,
2459                                                 crypt_stat, key_rec, &written);
2460                         if (rc) {
2461                                 ecryptfs_printk(KERN_WARNING, "Error "
2462                                                 "writing tag 1 packet\n");
2463                                 goto out_free;
2464                         }
2465                         (*len) += written;
2466                 } else {
2467                         up_write(&(auth_tok_key->sem));
2468                         key_put(auth_tok_key);
2469                         ecryptfs_printk(KERN_WARNING, "Unsupported "
2470                                         "authentication token type\n");
2471                         rc = -EINVAL;
2472                         goto out_free;
2473                 }
2474         }
2475         if (likely(max > 0)) {
2476                 dest_base[(*len)] = 0x00;
2477         } else {
2478                 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2479                 rc = -EIO;
2480         }
2481 out_free:
2482         kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2483 out:
2484         if (rc)
2485                 (*len) = 0;
2486         mutex_unlock(&crypt_stat->keysig_list_mutex);
2487         return rc;
2488 }
2489 
2490 struct kmem_cache *ecryptfs_key_sig_cache;
2491 
2492 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2493 {
2494         struct ecryptfs_key_sig *new_key_sig;
2495 
2496         new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2497         if (!new_key_sig)
2498                 return -ENOMEM;
2499 
2500         memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2501         new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2502         /* Caller must hold keysig_list_mutex */
2503         list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2504 
2505         return 0;
2506 }
2507 
2508 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2509 
2510 int
2511 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2512                              char *sig, u32 global_auth_tok_flags)
2513 {
2514         struct ecryptfs_global_auth_tok *new_auth_tok;
2515 
2516         new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2517                                         GFP_KERNEL);
2518         if (!new_auth_tok)
2519                 return -ENOMEM;
2520 
2521         memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2522         new_auth_tok->flags = global_auth_tok_flags;
2523         new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2524         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2525         list_add(&new_auth_tok->mount_crypt_stat_list,
2526                  &mount_crypt_stat->global_auth_tok_list);
2527         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2528         return 0;
2529 }
2530 
2531 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp