1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/mm.h> 30 #include <linux/vmacache.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/tracehook.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 #include <linux/io_uring.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/mmu_context.h> 69 #include <asm/tlb.h> 70 71 #include <trace/events/task.h> 72 #include "internal.h" 73 74 #include <trace/events/sched.h> 75 76 static int bprm_creds_from_file(struct linux_binprm *bprm); 77 78 int suid_dumpable = 0; 79 80 static LIST_HEAD(formats); 81 static DEFINE_RWLOCK(binfmt_lock); 82 83 void __register_binfmt(struct linux_binfmt * fmt, int insert) 84 { 85 BUG_ON(!fmt); 86 if (WARN_ON(!fmt->load_binary)) 87 return; 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * may_open() has already checked for this, so it should be 147 * impossible to trip now. But we need to be extra cautious 148 * and check again at the very end too. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path))) 153 goto exit; 154 155 fsnotify_open(file); 156 157 error = -ENOEXEC; 158 159 read_lock(&binfmt_lock); 160 list_for_each_entry(fmt, &formats, lh) { 161 if (!fmt->load_shlib) 162 continue; 163 if (!try_module_get(fmt->module)) 164 continue; 165 read_unlock(&binfmt_lock); 166 error = fmt->load_shlib(file); 167 read_lock(&binfmt_lock); 168 put_binfmt(fmt); 169 if (error != -ENOEXEC) 170 break; 171 } 172 read_unlock(&binfmt_lock); 173 exit: 174 fput(file); 175 out: 176 return error; 177 } 178 #endif /* #ifdef CONFIG_USELIB */ 179 180 #ifdef CONFIG_MMU 181 /* 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 183 * use a lot of memory, account these pages in current->mm temporary 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 185 * change the counter back via acct_arg_size(0). 186 */ 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 188 { 189 struct mm_struct *mm = current->mm; 190 long diff = (long)(pages - bprm->vma_pages); 191 192 if (!mm || !diff) 193 return; 194 195 bprm->vma_pages = pages; 196 add_mm_counter(mm, MM_ANONPAGES, diff); 197 } 198 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 200 int write) 201 { 202 struct page *page; 203 int ret; 204 unsigned int gup_flags = FOLL_FORCE; 205 206 #ifdef CONFIG_STACK_GROWSUP 207 if (write) { 208 ret = expand_downwards(bprm->vma, pos); 209 if (ret < 0) 210 return NULL; 211 } 212 #endif 213 214 if (write) 215 gup_flags |= FOLL_WRITE; 216 217 /* 218 * We are doing an exec(). 'current' is the process 219 * doing the exec and bprm->mm is the new process's mm. 220 */ 221 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 222 &page, NULL, NULL); 223 if (ret <= 0) 224 return NULL; 225 226 if (write) 227 acct_arg_size(bprm, vma_pages(bprm->vma)); 228 229 return page; 230 } 231 232 static void put_arg_page(struct page *page) 233 { 234 put_page(page); 235 } 236 237 static void free_arg_pages(struct linux_binprm *bprm) 238 { 239 } 240 241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 242 struct page *page) 243 { 244 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 245 } 246 247 static int __bprm_mm_init(struct linux_binprm *bprm) 248 { 249 int err; 250 struct vm_area_struct *vma = NULL; 251 struct mm_struct *mm = bprm->mm; 252 253 bprm->vma = vma = vm_area_alloc(mm); 254 if (!vma) 255 return -ENOMEM; 256 vma_set_anonymous(vma); 257 258 if (mmap_write_lock_killable(mm)) { 259 err = -EINTR; 260 goto err_free; 261 } 262 263 /* 264 * Place the stack at the largest stack address the architecture 265 * supports. Later, we'll move this to an appropriate place. We don't 266 * use STACK_TOP because that can depend on attributes which aren't 267 * configured yet. 268 */ 269 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 270 vma->vm_end = STACK_TOP_MAX; 271 vma->vm_start = vma->vm_end - PAGE_SIZE; 272 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 273 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 274 275 err = insert_vm_struct(mm, vma); 276 if (err) 277 goto err; 278 279 mm->stack_vm = mm->total_vm = 1; 280 mmap_write_unlock(mm); 281 bprm->p = vma->vm_end - sizeof(void *); 282 return 0; 283 err: 284 mmap_write_unlock(mm); 285 err_free: 286 bprm->vma = NULL; 287 vm_area_free(vma); 288 return err; 289 } 290 291 static bool valid_arg_len(struct linux_binprm *bprm, long len) 292 { 293 return len <= MAX_ARG_STRLEN; 294 } 295 296 #else 297 298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 299 { 300 } 301 302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 303 int write) 304 { 305 struct page *page; 306 307 page = bprm->page[pos / PAGE_SIZE]; 308 if (!page && write) { 309 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 310 if (!page) 311 return NULL; 312 bprm->page[pos / PAGE_SIZE] = page; 313 } 314 315 return page; 316 } 317 318 static void put_arg_page(struct page *page) 319 { 320 } 321 322 static void free_arg_page(struct linux_binprm *bprm, int i) 323 { 324 if (bprm->page[i]) { 325 __free_page(bprm->page[i]); 326 bprm->page[i] = NULL; 327 } 328 } 329 330 static void free_arg_pages(struct linux_binprm *bprm) 331 { 332 int i; 333 334 for (i = 0; i < MAX_ARG_PAGES; i++) 335 free_arg_page(bprm, i); 336 } 337 338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 339 struct page *page) 340 { 341 } 342 343 static int __bprm_mm_init(struct linux_binprm *bprm) 344 { 345 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 346 return 0; 347 } 348 349 static bool valid_arg_len(struct linux_binprm *bprm, long len) 350 { 351 return len <= bprm->p; 352 } 353 354 #endif /* CONFIG_MMU */ 355 356 /* 357 * Create a new mm_struct and populate it with a temporary stack 358 * vm_area_struct. We don't have enough context at this point to set the stack 359 * flags, permissions, and offset, so we use temporary values. We'll update 360 * them later in setup_arg_pages(). 361 */ 362 static int bprm_mm_init(struct linux_binprm *bprm) 363 { 364 int err; 365 struct mm_struct *mm = NULL; 366 367 bprm->mm = mm = mm_alloc(); 368 err = -ENOMEM; 369 if (!mm) 370 goto err; 371 372 /* Save current stack limit for all calculations made during exec. */ 373 task_lock(current->group_leader); 374 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 375 task_unlock(current->group_leader); 376 377 err = __bprm_mm_init(bprm); 378 if (err) 379 goto err; 380 381 return 0; 382 383 err: 384 if (mm) { 385 bprm->mm = NULL; 386 mmdrop(mm); 387 } 388 389 return err; 390 } 391 392 struct user_arg_ptr { 393 #ifdef CONFIG_COMPAT 394 bool is_compat; 395 #endif 396 union { 397 const char __user *const __user *native; 398 #ifdef CONFIG_COMPAT 399 const compat_uptr_t __user *compat; 400 #endif 401 } ptr; 402 }; 403 404 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 405 { 406 const char __user *native; 407 408 #ifdef CONFIG_COMPAT 409 if (unlikely(argv.is_compat)) { 410 compat_uptr_t compat; 411 412 if (get_user(compat, argv.ptr.compat + nr)) 413 return ERR_PTR(-EFAULT); 414 415 return compat_ptr(compat); 416 } 417 #endif 418 419 if (get_user(native, argv.ptr.native + nr)) 420 return ERR_PTR(-EFAULT); 421 422 return native; 423 } 424 425 /* 426 * count() counts the number of strings in array ARGV. 427 */ 428 static int count(struct user_arg_ptr argv, int max) 429 { 430 int i = 0; 431 432 if (argv.ptr.native != NULL) { 433 for (;;) { 434 const char __user *p = get_user_arg_ptr(argv, i); 435 436 if (!p) 437 break; 438 439 if (IS_ERR(p)) 440 return -EFAULT; 441 442 if (i >= max) 443 return -E2BIG; 444 ++i; 445 446 if (fatal_signal_pending(current)) 447 return -ERESTARTNOHAND; 448 cond_resched(); 449 } 450 } 451 return i; 452 } 453 454 static int count_strings_kernel(const char *const *argv) 455 { 456 int i; 457 458 if (!argv) 459 return 0; 460 461 for (i = 0; argv[i]; ++i) { 462 if (i >= MAX_ARG_STRINGS) 463 return -E2BIG; 464 if (fatal_signal_pending(current)) 465 return -ERESTARTNOHAND; 466 cond_resched(); 467 } 468 return i; 469 } 470 471 static int bprm_stack_limits(struct linux_binprm *bprm) 472 { 473 unsigned long limit, ptr_size; 474 475 /* 476 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 477 * (whichever is smaller) for the argv+env strings. 478 * This ensures that: 479 * - the remaining binfmt code will not run out of stack space, 480 * - the program will have a reasonable amount of stack left 481 * to work from. 482 */ 483 limit = _STK_LIM / 4 * 3; 484 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 485 /* 486 * We've historically supported up to 32 pages (ARG_MAX) 487 * of argument strings even with small stacks 488 */ 489 limit = max_t(unsigned long, limit, ARG_MAX); 490 /* 491 * We must account for the size of all the argv and envp pointers to 492 * the argv and envp strings, since they will also take up space in 493 * the stack. They aren't stored until much later when we can't 494 * signal to the parent that the child has run out of stack space. 495 * Instead, calculate it here so it's possible to fail gracefully. 496 */ 497 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 498 if (limit <= ptr_size) 499 return -E2BIG; 500 limit -= ptr_size; 501 502 bprm->argmin = bprm->p - limit; 503 return 0; 504 } 505 506 /* 507 * 'copy_strings()' copies argument/environment strings from the old 508 * processes's memory to the new process's stack. The call to get_user_pages() 509 * ensures the destination page is created and not swapped out. 510 */ 511 static int copy_strings(int argc, struct user_arg_ptr argv, 512 struct linux_binprm *bprm) 513 { 514 struct page *kmapped_page = NULL; 515 char *kaddr = NULL; 516 unsigned long kpos = 0; 517 int ret; 518 519 while (argc-- > 0) { 520 const char __user *str; 521 int len; 522 unsigned long pos; 523 524 ret = -EFAULT; 525 str = get_user_arg_ptr(argv, argc); 526 if (IS_ERR(str)) 527 goto out; 528 529 len = strnlen_user(str, MAX_ARG_STRLEN); 530 if (!len) 531 goto out; 532 533 ret = -E2BIG; 534 if (!valid_arg_len(bprm, len)) 535 goto out; 536 537 /* We're going to work our way backwords. */ 538 pos = bprm->p; 539 str += len; 540 bprm->p -= len; 541 #ifdef CONFIG_MMU 542 if (bprm->p < bprm->argmin) 543 goto out; 544 #endif 545 546 while (len > 0) { 547 int offset, bytes_to_copy; 548 549 if (fatal_signal_pending(current)) { 550 ret = -ERESTARTNOHAND; 551 goto out; 552 } 553 cond_resched(); 554 555 offset = pos % PAGE_SIZE; 556 if (offset == 0) 557 offset = PAGE_SIZE; 558 559 bytes_to_copy = offset; 560 if (bytes_to_copy > len) 561 bytes_to_copy = len; 562 563 offset -= bytes_to_copy; 564 pos -= bytes_to_copy; 565 str -= bytes_to_copy; 566 len -= bytes_to_copy; 567 568 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 569 struct page *page; 570 571 page = get_arg_page(bprm, pos, 1); 572 if (!page) { 573 ret = -E2BIG; 574 goto out; 575 } 576 577 if (kmapped_page) { 578 flush_kernel_dcache_page(kmapped_page); 579 kunmap(kmapped_page); 580 put_arg_page(kmapped_page); 581 } 582 kmapped_page = page; 583 kaddr = kmap(kmapped_page); 584 kpos = pos & PAGE_MASK; 585 flush_arg_page(bprm, kpos, kmapped_page); 586 } 587 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 588 ret = -EFAULT; 589 goto out; 590 } 591 } 592 } 593 ret = 0; 594 out: 595 if (kmapped_page) { 596 flush_kernel_dcache_page(kmapped_page); 597 kunmap(kmapped_page); 598 put_arg_page(kmapped_page); 599 } 600 return ret; 601 } 602 603 /* 604 * Copy and argument/environment string from the kernel to the processes stack. 605 */ 606 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 607 { 608 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 609 unsigned long pos = bprm->p; 610 611 if (len == 0) 612 return -EFAULT; 613 if (!valid_arg_len(bprm, len)) 614 return -E2BIG; 615 616 /* We're going to work our way backwards. */ 617 arg += len; 618 bprm->p -= len; 619 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 620 return -E2BIG; 621 622 while (len > 0) { 623 unsigned int bytes_to_copy = min_t(unsigned int, len, 624 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 625 struct page *page; 626 char *kaddr; 627 628 pos -= bytes_to_copy; 629 arg -= bytes_to_copy; 630 len -= bytes_to_copy; 631 632 page = get_arg_page(bprm, pos, 1); 633 if (!page) 634 return -E2BIG; 635 kaddr = kmap_atomic(page); 636 flush_arg_page(bprm, pos & PAGE_MASK, page); 637 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 638 flush_kernel_dcache_page(page); 639 kunmap_atomic(kaddr); 640 put_arg_page(page); 641 } 642 643 return 0; 644 } 645 EXPORT_SYMBOL(copy_string_kernel); 646 647 static int copy_strings_kernel(int argc, const char *const *argv, 648 struct linux_binprm *bprm) 649 { 650 while (argc-- > 0) { 651 int ret = copy_string_kernel(argv[argc], bprm); 652 if (ret < 0) 653 return ret; 654 if (fatal_signal_pending(current)) 655 return -ERESTARTNOHAND; 656 cond_resched(); 657 } 658 return 0; 659 } 660 661 #ifdef CONFIG_MMU 662 663 /* 664 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 665 * the binfmt code determines where the new stack should reside, we shift it to 666 * its final location. The process proceeds as follows: 667 * 668 * 1) Use shift to calculate the new vma endpoints. 669 * 2) Extend vma to cover both the old and new ranges. This ensures the 670 * arguments passed to subsequent functions are consistent. 671 * 3) Move vma's page tables to the new range. 672 * 4) Free up any cleared pgd range. 673 * 5) Shrink the vma to cover only the new range. 674 */ 675 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 676 { 677 struct mm_struct *mm = vma->vm_mm; 678 unsigned long old_start = vma->vm_start; 679 unsigned long old_end = vma->vm_end; 680 unsigned long length = old_end - old_start; 681 unsigned long new_start = old_start - shift; 682 unsigned long new_end = old_end - shift; 683 struct mmu_gather tlb; 684 685 BUG_ON(new_start > new_end); 686 687 /* 688 * ensure there are no vmas between where we want to go 689 * and where we are 690 */ 691 if (vma != find_vma(mm, new_start)) 692 return -EFAULT; 693 694 /* 695 * cover the whole range: [new_start, old_end) 696 */ 697 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 698 return -ENOMEM; 699 700 /* 701 * move the page tables downwards, on failure we rely on 702 * process cleanup to remove whatever mess we made. 703 */ 704 if (length != move_page_tables(vma, old_start, 705 vma, new_start, length, false)) 706 return -ENOMEM; 707 708 lru_add_drain(); 709 tlb_gather_mmu(&tlb, mm, old_start, old_end); 710 if (new_end > old_start) { 711 /* 712 * when the old and new regions overlap clear from new_end. 713 */ 714 free_pgd_range(&tlb, new_end, old_end, new_end, 715 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 716 } else { 717 /* 718 * otherwise, clean from old_start; this is done to not touch 719 * the address space in [new_end, old_start) some architectures 720 * have constraints on va-space that make this illegal (IA64) - 721 * for the others its just a little faster. 722 */ 723 free_pgd_range(&tlb, old_start, old_end, new_end, 724 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 725 } 726 tlb_finish_mmu(&tlb, old_start, old_end); 727 728 /* 729 * Shrink the vma to just the new range. Always succeeds. 730 */ 731 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 732 733 return 0; 734 } 735 736 /* 737 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 738 * the stack is optionally relocated, and some extra space is added. 739 */ 740 int setup_arg_pages(struct linux_binprm *bprm, 741 unsigned long stack_top, 742 int executable_stack) 743 { 744 unsigned long ret; 745 unsigned long stack_shift; 746 struct mm_struct *mm = current->mm; 747 struct vm_area_struct *vma = bprm->vma; 748 struct vm_area_struct *prev = NULL; 749 unsigned long vm_flags; 750 unsigned long stack_base; 751 unsigned long stack_size; 752 unsigned long stack_expand; 753 unsigned long rlim_stack; 754 755 #ifdef CONFIG_STACK_GROWSUP 756 /* Limit stack size */ 757 stack_base = bprm->rlim_stack.rlim_max; 758 if (stack_base > STACK_SIZE_MAX) 759 stack_base = STACK_SIZE_MAX; 760 761 /* Add space for stack randomization. */ 762 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 763 764 /* Make sure we didn't let the argument array grow too large. */ 765 if (vma->vm_end - vma->vm_start > stack_base) 766 return -ENOMEM; 767 768 stack_base = PAGE_ALIGN(stack_top - stack_base); 769 770 stack_shift = vma->vm_start - stack_base; 771 mm->arg_start = bprm->p - stack_shift; 772 bprm->p = vma->vm_end - stack_shift; 773 #else 774 stack_top = arch_align_stack(stack_top); 775 stack_top = PAGE_ALIGN(stack_top); 776 777 if (unlikely(stack_top < mmap_min_addr) || 778 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 779 return -ENOMEM; 780 781 stack_shift = vma->vm_end - stack_top; 782 783 bprm->p -= stack_shift; 784 mm->arg_start = bprm->p; 785 #endif 786 787 if (bprm->loader) 788 bprm->loader -= stack_shift; 789 bprm->exec -= stack_shift; 790 791 if (mmap_write_lock_killable(mm)) 792 return -EINTR; 793 794 vm_flags = VM_STACK_FLAGS; 795 796 /* 797 * Adjust stack execute permissions; explicitly enable for 798 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 799 * (arch default) otherwise. 800 */ 801 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 802 vm_flags |= VM_EXEC; 803 else if (executable_stack == EXSTACK_DISABLE_X) 804 vm_flags &= ~VM_EXEC; 805 vm_flags |= mm->def_flags; 806 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 807 808 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 809 vm_flags); 810 if (ret) 811 goto out_unlock; 812 BUG_ON(prev != vma); 813 814 if (unlikely(vm_flags & VM_EXEC)) { 815 pr_warn_once("process '%pD4' started with executable stack\n", 816 bprm->file); 817 } 818 819 /* Move stack pages down in memory. */ 820 if (stack_shift) { 821 ret = shift_arg_pages(vma, stack_shift); 822 if (ret) 823 goto out_unlock; 824 } 825 826 /* mprotect_fixup is overkill to remove the temporary stack flags */ 827 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 828 829 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 830 stack_size = vma->vm_end - vma->vm_start; 831 /* 832 * Align this down to a page boundary as expand_stack 833 * will align it up. 834 */ 835 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 836 #ifdef CONFIG_STACK_GROWSUP 837 if (stack_size + stack_expand > rlim_stack) 838 stack_base = vma->vm_start + rlim_stack; 839 else 840 stack_base = vma->vm_end + stack_expand; 841 #else 842 if (stack_size + stack_expand > rlim_stack) 843 stack_base = vma->vm_end - rlim_stack; 844 else 845 stack_base = vma->vm_start - stack_expand; 846 #endif 847 current->mm->start_stack = bprm->p; 848 ret = expand_stack(vma, stack_base); 849 if (ret) 850 ret = -EFAULT; 851 852 out_unlock: 853 mmap_write_unlock(mm); 854 return ret; 855 } 856 EXPORT_SYMBOL(setup_arg_pages); 857 858 #else 859 860 /* 861 * Transfer the program arguments and environment from the holding pages 862 * onto the stack. The provided stack pointer is adjusted accordingly. 863 */ 864 int transfer_args_to_stack(struct linux_binprm *bprm, 865 unsigned long *sp_location) 866 { 867 unsigned long index, stop, sp; 868 int ret = 0; 869 870 stop = bprm->p >> PAGE_SHIFT; 871 sp = *sp_location; 872 873 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 874 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 875 char *src = kmap(bprm->page[index]) + offset; 876 sp -= PAGE_SIZE - offset; 877 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 878 ret = -EFAULT; 879 kunmap(bprm->page[index]); 880 if (ret) 881 goto out; 882 } 883 884 *sp_location = sp; 885 886 out: 887 return ret; 888 } 889 EXPORT_SYMBOL(transfer_args_to_stack); 890 891 #endif /* CONFIG_MMU */ 892 893 static struct file *do_open_execat(int fd, struct filename *name, int flags) 894 { 895 struct file *file; 896 int err; 897 struct open_flags open_exec_flags = { 898 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 899 .acc_mode = MAY_EXEC, 900 .intent = LOOKUP_OPEN, 901 .lookup_flags = LOOKUP_FOLLOW, 902 }; 903 904 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 905 return ERR_PTR(-EINVAL); 906 if (flags & AT_SYMLINK_NOFOLLOW) 907 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 908 if (flags & AT_EMPTY_PATH) 909 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 910 911 file = do_filp_open(fd, name, &open_exec_flags); 912 if (IS_ERR(file)) 913 goto out; 914 915 /* 916 * may_open() has already checked for this, so it should be 917 * impossible to trip now. But we need to be extra cautious 918 * and check again at the very end too. 919 */ 920 err = -EACCES; 921 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 922 path_noexec(&file->f_path))) 923 goto exit; 924 925 err = deny_write_access(file); 926 if (err) 927 goto exit; 928 929 if (name->name[0] != '\0') 930 fsnotify_open(file); 931 932 out: 933 return file; 934 935 exit: 936 fput(file); 937 return ERR_PTR(err); 938 } 939 940 struct file *open_exec(const char *name) 941 { 942 struct filename *filename = getname_kernel(name); 943 struct file *f = ERR_CAST(filename); 944 945 if (!IS_ERR(filename)) { 946 f = do_open_execat(AT_FDCWD, filename, 0); 947 putname(filename); 948 } 949 return f; 950 } 951 EXPORT_SYMBOL(open_exec); 952 953 int kernel_read_file(struct file *file, void **buf, loff_t *size, 954 loff_t max_size, enum kernel_read_file_id id) 955 { 956 loff_t i_size, pos; 957 ssize_t bytes = 0; 958 void *allocated = NULL; 959 int ret; 960 961 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 962 return -EINVAL; 963 964 ret = deny_write_access(file); 965 if (ret) 966 return ret; 967 968 ret = security_kernel_read_file(file, id); 969 if (ret) 970 goto out; 971 972 i_size = i_size_read(file_inode(file)); 973 if (i_size <= 0) { 974 ret = -EINVAL; 975 goto out; 976 } 977 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) { 978 ret = -EFBIG; 979 goto out; 980 } 981 982 if (!*buf) 983 *buf = allocated = vmalloc(i_size); 984 if (!*buf) { 985 ret = -ENOMEM; 986 goto out; 987 } 988 989 pos = 0; 990 while (pos < i_size) { 991 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 992 if (bytes < 0) { 993 ret = bytes; 994 goto out_free; 995 } 996 997 if (bytes == 0) 998 break; 999 } 1000 1001 if (pos != i_size) { 1002 ret = -EIO; 1003 goto out_free; 1004 } 1005 1006 ret = security_kernel_post_read_file(file, *buf, i_size, id); 1007 if (!ret) 1008 *size = pos; 1009 1010 out_free: 1011 if (ret < 0) { 1012 if (allocated) { 1013 vfree(*buf); 1014 *buf = NULL; 1015 } 1016 } 1017 1018 out: 1019 allow_write_access(file); 1020 return ret; 1021 } 1022 EXPORT_SYMBOL_GPL(kernel_read_file); 1023 1024 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 1025 loff_t max_size, enum kernel_read_file_id id) 1026 { 1027 struct file *file; 1028 int ret; 1029 1030 if (!path || !*path) 1031 return -EINVAL; 1032 1033 file = filp_open(path, O_RDONLY, 0); 1034 if (IS_ERR(file)) 1035 return PTR_ERR(file); 1036 1037 ret = kernel_read_file(file, buf, size, max_size, id); 1038 fput(file); 1039 return ret; 1040 } 1041 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 1042 1043 int kernel_read_file_from_path_initns(const char *path, void **buf, 1044 loff_t *size, loff_t max_size, 1045 enum kernel_read_file_id id) 1046 { 1047 struct file *file; 1048 struct path root; 1049 int ret; 1050 1051 if (!path || !*path) 1052 return -EINVAL; 1053 1054 task_lock(&init_task); 1055 get_fs_root(init_task.fs, &root); 1056 task_unlock(&init_task); 1057 1058 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0); 1059 path_put(&root); 1060 if (IS_ERR(file)) 1061 return PTR_ERR(file); 1062 1063 ret = kernel_read_file(file, buf, size, max_size, id); 1064 fput(file); 1065 return ret; 1066 } 1067 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns); 1068 1069 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 1070 enum kernel_read_file_id id) 1071 { 1072 struct fd f = fdget(fd); 1073 int ret = -EBADF; 1074 1075 if (!f.file) 1076 goto out; 1077 1078 ret = kernel_read_file(f.file, buf, size, max_size, id); 1079 out: 1080 fdput(f); 1081 return ret; 1082 } 1083 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 1084 1085 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 1086 defined(CONFIG_BINFMT_ELF_FDPIC) 1087 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1088 { 1089 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1090 if (res > 0) 1091 flush_icache_user_range(addr, addr + len); 1092 return res; 1093 } 1094 EXPORT_SYMBOL(read_code); 1095 #endif 1096 1097 /* 1098 * Maps the mm_struct mm into the current task struct. 1099 * On success, this function returns with the mutex 1100 * exec_update_mutex locked. 1101 */ 1102 static int exec_mmap(struct mm_struct *mm) 1103 { 1104 struct task_struct *tsk; 1105 struct mm_struct *old_mm, *active_mm; 1106 int ret; 1107 1108 /* Notify parent that we're no longer interested in the old VM */ 1109 tsk = current; 1110 old_mm = current->mm; 1111 exec_mm_release(tsk, old_mm); 1112 if (old_mm) 1113 sync_mm_rss(old_mm); 1114 1115 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex); 1116 if (ret) 1117 return ret; 1118 1119 if (old_mm) { 1120 /* 1121 * Make sure that if there is a core dump in progress 1122 * for the old mm, we get out and die instead of going 1123 * through with the exec. We must hold mmap_lock around 1124 * checking core_state and changing tsk->mm. 1125 */ 1126 mmap_read_lock(old_mm); 1127 if (unlikely(old_mm->core_state)) { 1128 mmap_read_unlock(old_mm); 1129 mutex_unlock(&tsk->signal->exec_update_mutex); 1130 return -EINTR; 1131 } 1132 } 1133 1134 task_lock(tsk); 1135 membarrier_exec_mmap(mm); 1136 1137 local_irq_disable(); 1138 active_mm = tsk->active_mm; 1139 tsk->active_mm = mm; 1140 tsk->mm = mm; 1141 /* 1142 * This prevents preemption while active_mm is being loaded and 1143 * it and mm are being updated, which could cause problems for 1144 * lazy tlb mm refcounting when these are updated by context 1145 * switches. Not all architectures can handle irqs off over 1146 * activate_mm yet. 1147 */ 1148 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1149 local_irq_enable(); 1150 activate_mm(active_mm, mm); 1151 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1152 local_irq_enable(); 1153 tsk->mm->vmacache_seqnum = 0; 1154 vmacache_flush(tsk); 1155 task_unlock(tsk); 1156 if (old_mm) { 1157 mmap_read_unlock(old_mm); 1158 BUG_ON(active_mm != old_mm); 1159 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1160 mm_update_next_owner(old_mm); 1161 mmput(old_mm); 1162 return 0; 1163 } 1164 mmdrop(active_mm); 1165 return 0; 1166 } 1167 1168 static int de_thread(struct task_struct *tsk) 1169 { 1170 struct signal_struct *sig = tsk->signal; 1171 struct sighand_struct *oldsighand = tsk->sighand; 1172 spinlock_t *lock = &oldsighand->siglock; 1173 1174 if (thread_group_empty(tsk)) 1175 goto no_thread_group; 1176 1177 /* 1178 * Kill all other threads in the thread group. 1179 */ 1180 spin_lock_irq(lock); 1181 if (signal_group_exit(sig)) { 1182 /* 1183 * Another group action in progress, just 1184 * return so that the signal is processed. 1185 */ 1186 spin_unlock_irq(lock); 1187 return -EAGAIN; 1188 } 1189 1190 sig->group_exit_task = tsk; 1191 sig->notify_count = zap_other_threads(tsk); 1192 if (!thread_group_leader(tsk)) 1193 sig->notify_count--; 1194 1195 while (sig->notify_count) { 1196 __set_current_state(TASK_KILLABLE); 1197 spin_unlock_irq(lock); 1198 schedule(); 1199 if (__fatal_signal_pending(tsk)) 1200 goto killed; 1201 spin_lock_irq(lock); 1202 } 1203 spin_unlock_irq(lock); 1204 1205 /* 1206 * At this point all other threads have exited, all we have to 1207 * do is to wait for the thread group leader to become inactive, 1208 * and to assume its PID: 1209 */ 1210 if (!thread_group_leader(tsk)) { 1211 struct task_struct *leader = tsk->group_leader; 1212 1213 for (;;) { 1214 cgroup_threadgroup_change_begin(tsk); 1215 write_lock_irq(&tasklist_lock); 1216 /* 1217 * Do this under tasklist_lock to ensure that 1218 * exit_notify() can't miss ->group_exit_task 1219 */ 1220 sig->notify_count = -1; 1221 if (likely(leader->exit_state)) 1222 break; 1223 __set_current_state(TASK_KILLABLE); 1224 write_unlock_irq(&tasklist_lock); 1225 cgroup_threadgroup_change_end(tsk); 1226 schedule(); 1227 if (__fatal_signal_pending(tsk)) 1228 goto killed; 1229 } 1230 1231 /* 1232 * The only record we have of the real-time age of a 1233 * process, regardless of execs it's done, is start_time. 1234 * All the past CPU time is accumulated in signal_struct 1235 * from sister threads now dead. But in this non-leader 1236 * exec, nothing survives from the original leader thread, 1237 * whose birth marks the true age of this process now. 1238 * When we take on its identity by switching to its PID, we 1239 * also take its birthdate (always earlier than our own). 1240 */ 1241 tsk->start_time = leader->start_time; 1242 tsk->start_boottime = leader->start_boottime; 1243 1244 BUG_ON(!same_thread_group(leader, tsk)); 1245 /* 1246 * An exec() starts a new thread group with the 1247 * TGID of the previous thread group. Rehash the 1248 * two threads with a switched PID, and release 1249 * the former thread group leader: 1250 */ 1251 1252 /* Become a process group leader with the old leader's pid. 1253 * The old leader becomes a thread of the this thread group. 1254 */ 1255 exchange_tids(tsk, leader); 1256 transfer_pid(leader, tsk, PIDTYPE_TGID); 1257 transfer_pid(leader, tsk, PIDTYPE_PGID); 1258 transfer_pid(leader, tsk, PIDTYPE_SID); 1259 1260 list_replace_rcu(&leader->tasks, &tsk->tasks); 1261 list_replace_init(&leader->sibling, &tsk->sibling); 1262 1263 tsk->group_leader = tsk; 1264 leader->group_leader = tsk; 1265 1266 tsk->exit_signal = SIGCHLD; 1267 leader->exit_signal = -1; 1268 1269 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1270 leader->exit_state = EXIT_DEAD; 1271 1272 /* 1273 * We are going to release_task()->ptrace_unlink() silently, 1274 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1275 * the tracer wont't block again waiting for this thread. 1276 */ 1277 if (unlikely(leader->ptrace)) 1278 __wake_up_parent(leader, leader->parent); 1279 write_unlock_irq(&tasklist_lock); 1280 cgroup_threadgroup_change_end(tsk); 1281 1282 release_task(leader); 1283 } 1284 1285 sig->group_exit_task = NULL; 1286 sig->notify_count = 0; 1287 1288 no_thread_group: 1289 /* we have changed execution domain */ 1290 tsk->exit_signal = SIGCHLD; 1291 1292 BUG_ON(!thread_group_leader(tsk)); 1293 return 0; 1294 1295 killed: 1296 /* protects against exit_notify() and __exit_signal() */ 1297 read_lock(&tasklist_lock); 1298 sig->group_exit_task = NULL; 1299 sig->notify_count = 0; 1300 read_unlock(&tasklist_lock); 1301 return -EAGAIN; 1302 } 1303 1304 1305 /* 1306 * This function makes sure the current process has its own signal table, 1307 * so that flush_signal_handlers can later reset the handlers without 1308 * disturbing other processes. (Other processes might share the signal 1309 * table via the CLONE_SIGHAND option to clone().) 1310 */ 1311 static int unshare_sighand(struct task_struct *me) 1312 { 1313 struct sighand_struct *oldsighand = me->sighand; 1314 1315 if (refcount_read(&oldsighand->count) != 1) { 1316 struct sighand_struct *newsighand; 1317 /* 1318 * This ->sighand is shared with the CLONE_SIGHAND 1319 * but not CLONE_THREAD task, switch to the new one. 1320 */ 1321 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1322 if (!newsighand) 1323 return -ENOMEM; 1324 1325 refcount_set(&newsighand->count, 1); 1326 memcpy(newsighand->action, oldsighand->action, 1327 sizeof(newsighand->action)); 1328 1329 write_lock_irq(&tasklist_lock); 1330 spin_lock(&oldsighand->siglock); 1331 rcu_assign_pointer(me->sighand, newsighand); 1332 spin_unlock(&oldsighand->siglock); 1333 write_unlock_irq(&tasklist_lock); 1334 1335 __cleanup_sighand(oldsighand); 1336 } 1337 return 0; 1338 } 1339 1340 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1341 { 1342 task_lock(tsk); 1343 strncpy(buf, tsk->comm, buf_size); 1344 task_unlock(tsk); 1345 return buf; 1346 } 1347 EXPORT_SYMBOL_GPL(__get_task_comm); 1348 1349 /* 1350 * These functions flushes out all traces of the currently running executable 1351 * so that a new one can be started 1352 */ 1353 1354 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1355 { 1356 task_lock(tsk); 1357 trace_task_rename(tsk, buf); 1358 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1359 task_unlock(tsk); 1360 perf_event_comm(tsk, exec); 1361 } 1362 1363 /* 1364 * Calling this is the point of no return. None of the failures will be 1365 * seen by userspace since either the process is already taking a fatal 1366 * signal (via de_thread() or coredump), or will have SEGV raised 1367 * (after exec_mmap()) by search_binary_handler (see below). 1368 */ 1369 int begin_new_exec(struct linux_binprm * bprm) 1370 { 1371 struct task_struct *me = current; 1372 int retval; 1373 1374 /* Once we are committed compute the creds */ 1375 retval = bprm_creds_from_file(bprm); 1376 if (retval) 1377 return retval; 1378 1379 /* 1380 * Ensure all future errors are fatal. 1381 */ 1382 bprm->point_of_no_return = true; 1383 1384 /* 1385 * Make this the only thread in the thread group. 1386 */ 1387 retval = de_thread(me); 1388 if (retval) 1389 goto out; 1390 1391 /* 1392 * Must be called _before_ exec_mmap() as bprm->mm is 1393 * not visibile until then. This also enables the update 1394 * to be lockless. 1395 */ 1396 set_mm_exe_file(bprm->mm, bprm->file); 1397 1398 /* If the binary is not readable then enforce mm->dumpable=0 */ 1399 would_dump(bprm, bprm->file); 1400 if (bprm->have_execfd) 1401 would_dump(bprm, bprm->executable); 1402 1403 /* 1404 * Release all of the old mmap stuff 1405 */ 1406 acct_arg_size(bprm, 0); 1407 retval = exec_mmap(bprm->mm); 1408 if (retval) 1409 goto out; 1410 1411 bprm->mm = NULL; 1412 1413 #ifdef CONFIG_POSIX_TIMERS 1414 exit_itimers(me->signal); 1415 flush_itimer_signals(); 1416 #endif 1417 1418 /* 1419 * Make the signal table private. 1420 */ 1421 retval = unshare_sighand(me); 1422 if (retval) 1423 goto out_unlock; 1424 1425 /* 1426 * Ensure that the uaccess routines can actually operate on userspace 1427 * pointers: 1428 */ 1429 force_uaccess_begin(); 1430 1431 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1432 PF_NOFREEZE | PF_NO_SETAFFINITY); 1433 flush_thread(); 1434 me->personality &= ~bprm->per_clear; 1435 1436 /* 1437 * We have to apply CLOEXEC before we change whether the process is 1438 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1439 * trying to access the should-be-closed file descriptors of a process 1440 * undergoing exec(2). 1441 */ 1442 do_close_on_exec(me->files); 1443 1444 if (bprm->secureexec) { 1445 /* Make sure parent cannot signal privileged process. */ 1446 me->pdeath_signal = 0; 1447 1448 /* 1449 * For secureexec, reset the stack limit to sane default to 1450 * avoid bad behavior from the prior rlimits. This has to 1451 * happen before arch_pick_mmap_layout(), which examines 1452 * RLIMIT_STACK, but after the point of no return to avoid 1453 * needing to clean up the change on failure. 1454 */ 1455 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1456 bprm->rlim_stack.rlim_cur = _STK_LIM; 1457 } 1458 1459 me->sas_ss_sp = me->sas_ss_size = 0; 1460 1461 /* 1462 * Figure out dumpability. Note that this checking only of current 1463 * is wrong, but userspace depends on it. This should be testing 1464 * bprm->secureexec instead. 1465 */ 1466 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1467 !(uid_eq(current_euid(), current_uid()) && 1468 gid_eq(current_egid(), current_gid()))) 1469 set_dumpable(current->mm, suid_dumpable); 1470 else 1471 set_dumpable(current->mm, SUID_DUMP_USER); 1472 1473 perf_event_exec(); 1474 __set_task_comm(me, kbasename(bprm->filename), true); 1475 1476 /* An exec changes our domain. We are no longer part of the thread 1477 group */ 1478 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1479 flush_signal_handlers(me, 0); 1480 1481 /* 1482 * install the new credentials for this executable 1483 */ 1484 security_bprm_committing_creds(bprm); 1485 1486 commit_creds(bprm->cred); 1487 bprm->cred = NULL; 1488 1489 /* 1490 * Disable monitoring for regular users 1491 * when executing setuid binaries. Must 1492 * wait until new credentials are committed 1493 * by commit_creds() above 1494 */ 1495 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1496 perf_event_exit_task(me); 1497 /* 1498 * cred_guard_mutex must be held at least to this point to prevent 1499 * ptrace_attach() from altering our determination of the task's 1500 * credentials; any time after this it may be unlocked. 1501 */ 1502 security_bprm_committed_creds(bprm); 1503 1504 /* Pass the opened binary to the interpreter. */ 1505 if (bprm->have_execfd) { 1506 retval = get_unused_fd_flags(0); 1507 if (retval < 0) 1508 goto out_unlock; 1509 fd_install(retval, bprm->executable); 1510 bprm->executable = NULL; 1511 bprm->execfd = retval; 1512 } 1513 return 0; 1514 1515 out_unlock: 1516 mutex_unlock(&me->signal->exec_update_mutex); 1517 out: 1518 return retval; 1519 } 1520 EXPORT_SYMBOL(begin_new_exec); 1521 1522 void would_dump(struct linux_binprm *bprm, struct file *file) 1523 { 1524 struct inode *inode = file_inode(file); 1525 if (inode_permission(inode, MAY_READ) < 0) { 1526 struct user_namespace *old, *user_ns; 1527 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1528 1529 /* Ensure mm->user_ns contains the executable */ 1530 user_ns = old = bprm->mm->user_ns; 1531 while ((user_ns != &init_user_ns) && 1532 !privileged_wrt_inode_uidgid(user_ns, inode)) 1533 user_ns = user_ns->parent; 1534 1535 if (old != user_ns) { 1536 bprm->mm->user_ns = get_user_ns(user_ns); 1537 put_user_ns(old); 1538 } 1539 } 1540 } 1541 EXPORT_SYMBOL(would_dump); 1542 1543 void setup_new_exec(struct linux_binprm * bprm) 1544 { 1545 /* Setup things that can depend upon the personality */ 1546 struct task_struct *me = current; 1547 1548 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1549 1550 arch_setup_new_exec(); 1551 1552 /* Set the new mm task size. We have to do that late because it may 1553 * depend on TIF_32BIT which is only updated in flush_thread() on 1554 * some architectures like powerpc 1555 */ 1556 me->mm->task_size = TASK_SIZE; 1557 mutex_unlock(&me->signal->exec_update_mutex); 1558 mutex_unlock(&me->signal->cred_guard_mutex); 1559 } 1560 EXPORT_SYMBOL(setup_new_exec); 1561 1562 /* Runs immediately before start_thread() takes over. */ 1563 void finalize_exec(struct linux_binprm *bprm) 1564 { 1565 /* Store any stack rlimit changes before starting thread. */ 1566 task_lock(current->group_leader); 1567 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1568 task_unlock(current->group_leader); 1569 } 1570 EXPORT_SYMBOL(finalize_exec); 1571 1572 /* 1573 * Prepare credentials and lock ->cred_guard_mutex. 1574 * setup_new_exec() commits the new creds and drops the lock. 1575 * Or, if exec fails before, free_bprm() should release ->cred and 1576 * and unlock. 1577 */ 1578 static int prepare_bprm_creds(struct linux_binprm *bprm) 1579 { 1580 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1581 return -ERESTARTNOINTR; 1582 1583 bprm->cred = prepare_exec_creds(); 1584 if (likely(bprm->cred)) 1585 return 0; 1586 1587 mutex_unlock(¤t->signal->cred_guard_mutex); 1588 return -ENOMEM; 1589 } 1590 1591 static void free_bprm(struct linux_binprm *bprm) 1592 { 1593 if (bprm->mm) { 1594 acct_arg_size(bprm, 0); 1595 mmput(bprm->mm); 1596 } 1597 free_arg_pages(bprm); 1598 if (bprm->cred) { 1599 mutex_unlock(¤t->signal->cred_guard_mutex); 1600 abort_creds(bprm->cred); 1601 } 1602 if (bprm->file) { 1603 allow_write_access(bprm->file); 1604 fput(bprm->file); 1605 } 1606 if (bprm->executable) 1607 fput(bprm->executable); 1608 /* If a binfmt changed the interp, free it. */ 1609 if (bprm->interp != bprm->filename) 1610 kfree(bprm->interp); 1611 kfree(bprm->fdpath); 1612 kfree(bprm); 1613 } 1614 1615 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1616 { 1617 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1618 int retval = -ENOMEM; 1619 if (!bprm) 1620 goto out; 1621 1622 if (fd == AT_FDCWD || filename->name[0] == '/') { 1623 bprm->filename = filename->name; 1624 } else { 1625 if (filename->name[0] == '\0') 1626 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1627 else 1628 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1629 fd, filename->name); 1630 if (!bprm->fdpath) 1631 goto out_free; 1632 1633 bprm->filename = bprm->fdpath; 1634 } 1635 bprm->interp = bprm->filename; 1636 1637 retval = bprm_mm_init(bprm); 1638 if (retval) 1639 goto out_free; 1640 return bprm; 1641 1642 out_free: 1643 free_bprm(bprm); 1644 out: 1645 return ERR_PTR(retval); 1646 } 1647 1648 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1649 { 1650 /* If a binfmt changed the interp, free it first. */ 1651 if (bprm->interp != bprm->filename) 1652 kfree(bprm->interp); 1653 bprm->interp = kstrdup(interp, GFP_KERNEL); 1654 if (!bprm->interp) 1655 return -ENOMEM; 1656 return 0; 1657 } 1658 EXPORT_SYMBOL(bprm_change_interp); 1659 1660 /* 1661 * determine how safe it is to execute the proposed program 1662 * - the caller must hold ->cred_guard_mutex to protect against 1663 * PTRACE_ATTACH or seccomp thread-sync 1664 */ 1665 static void check_unsafe_exec(struct linux_binprm *bprm) 1666 { 1667 struct task_struct *p = current, *t; 1668 unsigned n_fs; 1669 1670 if (p->ptrace) 1671 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1672 1673 /* 1674 * This isn't strictly necessary, but it makes it harder for LSMs to 1675 * mess up. 1676 */ 1677 if (task_no_new_privs(current)) 1678 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1679 1680 t = p; 1681 n_fs = 1; 1682 spin_lock(&p->fs->lock); 1683 rcu_read_lock(); 1684 while_each_thread(p, t) { 1685 if (t->fs == p->fs) 1686 n_fs++; 1687 } 1688 rcu_read_unlock(); 1689 1690 if (p->fs->users > n_fs) 1691 bprm->unsafe |= LSM_UNSAFE_SHARE; 1692 else 1693 p->fs->in_exec = 1; 1694 spin_unlock(&p->fs->lock); 1695 } 1696 1697 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1698 { 1699 /* Handle suid and sgid on files */ 1700 struct inode *inode; 1701 unsigned int mode; 1702 kuid_t uid; 1703 kgid_t gid; 1704 1705 if (!mnt_may_suid(file->f_path.mnt)) 1706 return; 1707 1708 if (task_no_new_privs(current)) 1709 return; 1710 1711 inode = file->f_path.dentry->d_inode; 1712 mode = READ_ONCE(inode->i_mode); 1713 if (!(mode & (S_ISUID|S_ISGID))) 1714 return; 1715 1716 /* Be careful if suid/sgid is set */ 1717 inode_lock(inode); 1718 1719 /* reload atomically mode/uid/gid now that lock held */ 1720 mode = inode->i_mode; 1721 uid = inode->i_uid; 1722 gid = inode->i_gid; 1723 inode_unlock(inode); 1724 1725 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1726 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1727 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1728 return; 1729 1730 if (mode & S_ISUID) { 1731 bprm->per_clear |= PER_CLEAR_ON_SETID; 1732 bprm->cred->euid = uid; 1733 } 1734 1735 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1736 bprm->per_clear |= PER_CLEAR_ON_SETID; 1737 bprm->cred->egid = gid; 1738 } 1739 } 1740 1741 /* 1742 * Compute brpm->cred based upon the final binary. 1743 */ 1744 static int bprm_creds_from_file(struct linux_binprm *bprm) 1745 { 1746 /* Compute creds based on which file? */ 1747 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1748 1749 bprm_fill_uid(bprm, file); 1750 return security_bprm_creds_from_file(bprm, file); 1751 } 1752 1753 /* 1754 * Fill the binprm structure from the inode. 1755 * Read the first BINPRM_BUF_SIZE bytes 1756 * 1757 * This may be called multiple times for binary chains (scripts for example). 1758 */ 1759 static int prepare_binprm(struct linux_binprm *bprm) 1760 { 1761 loff_t pos = 0; 1762 1763 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1764 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1765 } 1766 1767 /* 1768 * Arguments are '\0' separated strings found at the location bprm->p 1769 * points to; chop off the first by relocating brpm->p to right after 1770 * the first '\0' encountered. 1771 */ 1772 int remove_arg_zero(struct linux_binprm *bprm) 1773 { 1774 int ret = 0; 1775 unsigned long offset; 1776 char *kaddr; 1777 struct page *page; 1778 1779 if (!bprm->argc) 1780 return 0; 1781 1782 do { 1783 offset = bprm->p & ~PAGE_MASK; 1784 page = get_arg_page(bprm, bprm->p, 0); 1785 if (!page) { 1786 ret = -EFAULT; 1787 goto out; 1788 } 1789 kaddr = kmap_atomic(page); 1790 1791 for (; offset < PAGE_SIZE && kaddr[offset]; 1792 offset++, bprm->p++) 1793 ; 1794 1795 kunmap_atomic(kaddr); 1796 put_arg_page(page); 1797 } while (offset == PAGE_SIZE); 1798 1799 bprm->p++; 1800 bprm->argc--; 1801 ret = 0; 1802 1803 out: 1804 return ret; 1805 } 1806 EXPORT_SYMBOL(remove_arg_zero); 1807 1808 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1809 /* 1810 * cycle the list of binary formats handler, until one recognizes the image 1811 */ 1812 static int search_binary_handler(struct linux_binprm *bprm) 1813 { 1814 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1815 struct linux_binfmt *fmt; 1816 int retval; 1817 1818 retval = prepare_binprm(bprm); 1819 if (retval < 0) 1820 return retval; 1821 1822 retval = security_bprm_check(bprm); 1823 if (retval) 1824 return retval; 1825 1826 retval = -ENOENT; 1827 retry: 1828 read_lock(&binfmt_lock); 1829 list_for_each_entry(fmt, &formats, lh) { 1830 if (!try_module_get(fmt->module)) 1831 continue; 1832 read_unlock(&binfmt_lock); 1833 1834 retval = fmt->load_binary(bprm); 1835 1836 read_lock(&binfmt_lock); 1837 put_binfmt(fmt); 1838 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1839 read_unlock(&binfmt_lock); 1840 return retval; 1841 } 1842 } 1843 read_unlock(&binfmt_lock); 1844 1845 if (need_retry) { 1846 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1847 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1848 return retval; 1849 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1850 return retval; 1851 need_retry = false; 1852 goto retry; 1853 } 1854 1855 return retval; 1856 } 1857 1858 static int exec_binprm(struct linux_binprm *bprm) 1859 { 1860 pid_t old_pid, old_vpid; 1861 int ret, depth; 1862 1863 /* Need to fetch pid before load_binary changes it */ 1864 old_pid = current->pid; 1865 rcu_read_lock(); 1866 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1867 rcu_read_unlock(); 1868 1869 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1870 for (depth = 0;; depth++) { 1871 struct file *exec; 1872 if (depth > 5) 1873 return -ELOOP; 1874 1875 ret = search_binary_handler(bprm); 1876 if (ret < 0) 1877 return ret; 1878 if (!bprm->interpreter) 1879 break; 1880 1881 exec = bprm->file; 1882 bprm->file = bprm->interpreter; 1883 bprm->interpreter = NULL; 1884 1885 allow_write_access(exec); 1886 if (unlikely(bprm->have_execfd)) { 1887 if (bprm->executable) { 1888 fput(exec); 1889 return -ENOEXEC; 1890 } 1891 bprm->executable = exec; 1892 } else 1893 fput(exec); 1894 } 1895 1896 audit_bprm(bprm); 1897 trace_sched_process_exec(current, old_pid, bprm); 1898 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1899 proc_exec_connector(current); 1900 return 0; 1901 } 1902 1903 /* 1904 * sys_execve() executes a new program. 1905 */ 1906 static int bprm_execve(struct linux_binprm *bprm, 1907 int fd, struct filename *filename, int flags) 1908 { 1909 struct file *file; 1910 struct files_struct *displaced; 1911 int retval; 1912 1913 /* 1914 * Cancel any io_uring activity across execve 1915 */ 1916 io_uring_task_cancel(); 1917 1918 retval = unshare_files(&displaced); 1919 if (retval) 1920 return retval; 1921 1922 retval = prepare_bprm_creds(bprm); 1923 if (retval) 1924 goto out_files; 1925 1926 check_unsafe_exec(bprm); 1927 current->in_execve = 1; 1928 1929 file = do_open_execat(fd, filename, flags); 1930 retval = PTR_ERR(file); 1931 if (IS_ERR(file)) 1932 goto out_unmark; 1933 1934 sched_exec(); 1935 1936 bprm->file = file; 1937 /* 1938 * Record that a name derived from an O_CLOEXEC fd will be 1939 * inaccessible after exec. Relies on having exclusive access to 1940 * current->files (due to unshare_files above). 1941 */ 1942 if (bprm->fdpath && 1943 close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1944 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1945 1946 /* Set the unchanging part of bprm->cred */ 1947 retval = security_bprm_creds_for_exec(bprm); 1948 if (retval) 1949 goto out; 1950 1951 retval = ccs_exec_binprm(bprm); 1952 if (retval < 0) 1953 goto out; 1954 1955 /* execve succeeded */ 1956 current->fs->in_exec = 0; 1957 current->in_execve = 0; 1958 rseq_execve(current); 1959 acct_update_integrals(current); 1960 task_numa_free(current, false); 1961 if (displaced) 1962 put_files_struct(displaced); 1963 return retval; 1964 1965 out: 1966 /* 1967 * If past the point of no return ensure the the code never 1968 * returns to the userspace process. Use an existing fatal 1969 * signal if present otherwise terminate the process with 1970 * SIGSEGV. 1971 */ 1972 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1973 force_sigsegv(SIGSEGV); 1974 1975 out_unmark: 1976 current->fs->in_exec = 0; 1977 current->in_execve = 0; 1978 1979 out_files: 1980 if (displaced) 1981 reset_files_struct(displaced); 1982 1983 return retval; 1984 } 1985 1986 static int do_execveat_common(int fd, struct filename *filename, 1987 struct user_arg_ptr argv, 1988 struct user_arg_ptr envp, 1989 int flags) 1990 { 1991 struct linux_binprm *bprm; 1992 int retval; 1993 1994 if (IS_ERR(filename)) 1995 return PTR_ERR(filename); 1996 1997 /* 1998 * We move the actual failure in case of RLIMIT_NPROC excess from 1999 * set*uid() to execve() because too many poorly written programs 2000 * don't check setuid() return code. Here we additionally recheck 2001 * whether NPROC limit is still exceeded. 2002 */ 2003 if ((current->flags & PF_NPROC_EXCEEDED) && 2004 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 2005 retval = -EAGAIN; 2006 goto out_ret; 2007 } 2008 2009 /* We're below the limit (still or again), so we don't want to make 2010 * further execve() calls fail. */ 2011 current->flags &= ~PF_NPROC_EXCEEDED; 2012 2013 bprm = alloc_bprm(fd, filename); 2014 if (IS_ERR(bprm)) { 2015 retval = PTR_ERR(bprm); 2016 goto out_ret; 2017 } 2018 2019 retval = count(argv, MAX_ARG_STRINGS); 2020 if (retval < 0) 2021 goto out_free; 2022 bprm->argc = retval; 2023 2024 retval = count(envp, MAX_ARG_STRINGS); 2025 if (retval < 0) 2026 goto out_free; 2027 bprm->envc = retval; 2028 2029 retval = bprm_stack_limits(bprm); 2030 if (retval < 0) 2031 goto out_free; 2032 2033 retval = copy_string_kernel(bprm->filename, bprm); 2034 if (retval < 0) 2035 goto out_free; 2036 bprm->exec = bprm->p; 2037 2038 retval = copy_strings(bprm->envc, envp, bprm); 2039 if (retval < 0) 2040 goto out_free; 2041 2042 retval = copy_strings(bprm->argc, argv, bprm); 2043 if (retval < 0) 2044 goto out_free; 2045 2046 retval = bprm_execve(bprm, fd, filename, flags); 2047 out_free: 2048 free_bprm(bprm); 2049 2050 out_ret: 2051 putname(filename); 2052 return retval; 2053 } 2054 2055 int kernel_execve(const char *kernel_filename, 2056 const char *const *argv, const char *const *envp) 2057 { 2058 struct filename *filename; 2059 struct linux_binprm *bprm; 2060 int fd = AT_FDCWD; 2061 int retval; 2062 2063 filename = getname_kernel(kernel_filename); 2064 if (IS_ERR(filename)) 2065 return PTR_ERR(filename); 2066 2067 bprm = alloc_bprm(fd, filename); 2068 if (IS_ERR(bprm)) { 2069 retval = PTR_ERR(bprm); 2070 goto out_ret; 2071 } 2072 2073 retval = count_strings_kernel(argv); 2074 if (retval < 0) 2075 goto out_free; 2076 bprm->argc = retval; 2077 2078 retval = count_strings_kernel(envp); 2079 if (retval < 0) 2080 goto out_free; 2081 bprm->envc = retval; 2082 2083 retval = bprm_stack_limits(bprm); 2084 if (retval < 0) 2085 goto out_free; 2086 2087 retval = copy_string_kernel(bprm->filename, bprm); 2088 if (retval < 0) 2089 goto out_free; 2090 bprm->exec = bprm->p; 2091 2092 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2093 if (retval < 0) 2094 goto out_free; 2095 2096 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2097 if (retval < 0) 2098 goto out_free; 2099 2100 retval = bprm_execve(bprm, fd, filename, 0); 2101 out_free: 2102 free_bprm(bprm); 2103 out_ret: 2104 putname(filename); 2105 return retval; 2106 } 2107 2108 static int do_execve(struct filename *filename, 2109 const char __user *const __user *__argv, 2110 const char __user *const __user *__envp) 2111 { 2112 struct user_arg_ptr argv = { .ptr.native = __argv }; 2113 struct user_arg_ptr envp = { .ptr.native = __envp }; 2114 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2115 } 2116 2117 static int do_execveat(int fd, struct filename *filename, 2118 const char __user *const __user *__argv, 2119 const char __user *const __user *__envp, 2120 int flags) 2121 { 2122 struct user_arg_ptr argv = { .ptr.native = __argv }; 2123 struct user_arg_ptr envp = { .ptr.native = __envp }; 2124 2125 return do_execveat_common(fd, filename, argv, envp, flags); 2126 } 2127 2128 #ifdef CONFIG_COMPAT 2129 static int compat_do_execve(struct filename *filename, 2130 const compat_uptr_t __user *__argv, 2131 const compat_uptr_t __user *__envp) 2132 { 2133 struct user_arg_ptr argv = { 2134 .is_compat = true, 2135 .ptr.compat = __argv, 2136 }; 2137 struct user_arg_ptr envp = { 2138 .is_compat = true, 2139 .ptr.compat = __envp, 2140 }; 2141 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2142 } 2143 2144 static int compat_do_execveat(int fd, struct filename *filename, 2145 const compat_uptr_t __user *__argv, 2146 const compat_uptr_t __user *__envp, 2147 int flags) 2148 { 2149 struct user_arg_ptr argv = { 2150 .is_compat = true, 2151 .ptr.compat = __argv, 2152 }; 2153 struct user_arg_ptr envp = { 2154 .is_compat = true, 2155 .ptr.compat = __envp, 2156 }; 2157 return do_execveat_common(fd, filename, argv, envp, flags); 2158 } 2159 #endif 2160 2161 void set_binfmt(struct linux_binfmt *new) 2162 { 2163 struct mm_struct *mm = current->mm; 2164 2165 if (mm->binfmt) 2166 module_put(mm->binfmt->module); 2167 2168 mm->binfmt = new; 2169 if (new) 2170 __module_get(new->module); 2171 } 2172 EXPORT_SYMBOL(set_binfmt); 2173 2174 /* 2175 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2176 */ 2177 void set_dumpable(struct mm_struct *mm, int value) 2178 { 2179 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2180 return; 2181 2182 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2183 } 2184 2185 SYSCALL_DEFINE3(execve, 2186 const char __user *, filename, 2187 const char __user *const __user *, argv, 2188 const char __user *const __user *, envp) 2189 { 2190 return do_execve(getname(filename), argv, envp); 2191 } 2192 2193 SYSCALL_DEFINE5(execveat, 2194 int, fd, const char __user *, filename, 2195 const char __user *const __user *, argv, 2196 const char __user *const __user *, envp, 2197 int, flags) 2198 { 2199 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2200 2201 return do_execveat(fd, 2202 getname_flags(filename, lookup_flags, NULL), 2203 argv, envp, flags); 2204 } 2205 2206 #ifdef CONFIG_COMPAT 2207 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2208 const compat_uptr_t __user *, argv, 2209 const compat_uptr_t __user *, envp) 2210 { 2211 return compat_do_execve(getname(filename), argv, envp); 2212 } 2213 2214 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2215 const char __user *, filename, 2216 const compat_uptr_t __user *, argv, 2217 const compat_uptr_t __user *, envp, 2218 int, flags) 2219 { 2220 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2221 2222 return compat_do_execveat(fd, 2223 getname_flags(filename, lookup_flags, NULL), 2224 argv, envp, flags); 2225 } 2226 #endif 2227
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.