~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/exec.c

Version: ~ [ linux-6.3-rc3 ] ~ [ linux-6.2.7 ] ~ [ linux-6.1.20 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.103 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.175 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.237 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.278 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.310 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/fs/exec.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  */
  7 
  8 /*
  9  * #!-checking implemented by tytso.
 10  */
 11 /*
 12  * Demand-loading implemented 01.12.91 - no need to read anything but
 13  * the header into memory. The inode of the executable is put into
 14  * "current->executable", and page faults do the actual loading. Clean.
 15  *
 16  * Once more I can proudly say that linux stood up to being changed: it
 17  * was less than 2 hours work to get demand-loading completely implemented.
 18  *
 19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
 20  * current->executable is only used by the procfs.  This allows a dispatch
 21  * table to check for several different types  of binary formats.  We keep
 22  * trying until we recognize the file or we run out of supported binary
 23  * formats.
 24  */
 25 
 26 #include <linux/slab.h>
 27 #include <linux/file.h>
 28 #include <linux/fdtable.h>
 29 #include <linux/mm.h>
 30 #include <linux/vmacache.h>
 31 #include <linux/stat.h>
 32 #include <linux/fcntl.h>
 33 #include <linux/swap.h>
 34 #include <linux/string.h>
 35 #include <linux/init.h>
 36 #include <linux/sched/mm.h>
 37 #include <linux/sched/coredump.h>
 38 #include <linux/sched/signal.h>
 39 #include <linux/sched/numa_balancing.h>
 40 #include <linux/sched/task.h>
 41 #include <linux/pagemap.h>
 42 #include <linux/perf_event.h>
 43 #include <linux/highmem.h>
 44 #include <linux/spinlock.h>
 45 #include <linux/key.h>
 46 #include <linux/personality.h>
 47 #include <linux/binfmts.h>
 48 #include <linux/utsname.h>
 49 #include <linux/pid_namespace.h>
 50 #include <linux/module.h>
 51 #include <linux/namei.h>
 52 #include <linux/mount.h>
 53 #include <linux/security.h>
 54 #include <linux/syscalls.h>
 55 #include <linux/tsacct_kern.h>
 56 #include <linux/cn_proc.h>
 57 #include <linux/audit.h>
 58 #include <linux/tracehook.h>
 59 #include <linux/kmod.h>
 60 #include <linux/fsnotify.h>
 61 #include <linux/fs_struct.h>
 62 #include <linux/oom.h>
 63 #include <linux/compat.h>
 64 #include <linux/vmalloc.h>
 65 #include <linux/io_uring.h>
 66 
 67 #include <linux/uaccess.h>
 68 #include <asm/mmu_context.h>
 69 #include <asm/tlb.h>
 70 
 71 #include <trace/events/task.h>
 72 #include "internal.h"
 73 
 74 #include <trace/events/sched.h>
 75 
 76 static int bprm_creds_from_file(struct linux_binprm *bprm);
 77 
 78 int suid_dumpable = 0;
 79 
 80 static LIST_HEAD(formats);
 81 static DEFINE_RWLOCK(binfmt_lock);
 82 
 83 void __register_binfmt(struct linux_binfmt * fmt, int insert)
 84 {
 85         BUG_ON(!fmt);
 86         if (WARN_ON(!fmt->load_binary))
 87                 return;
 88         write_lock(&binfmt_lock);
 89         insert ? list_add(&fmt->lh, &formats) :
 90                  list_add_tail(&fmt->lh, &formats);
 91         write_unlock(&binfmt_lock);
 92 }
 93 
 94 EXPORT_SYMBOL(__register_binfmt);
 95 
 96 void unregister_binfmt(struct linux_binfmt * fmt)
 97 {
 98         write_lock(&binfmt_lock);
 99         list_del(&fmt->lh);
100         write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107         module_put(fmt->module);
108 }
109 
110 bool path_noexec(const struct path *path)
111 {
112         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115 
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from from the file itself.
122  */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125         struct linux_binfmt *fmt;
126         struct file *file;
127         struct filename *tmp = getname(library);
128         int error = PTR_ERR(tmp);
129         static const struct open_flags uselib_flags = {
130                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131                 .acc_mode = MAY_READ | MAY_EXEC,
132                 .intent = LOOKUP_OPEN,
133                 .lookup_flags = LOOKUP_FOLLOW,
134         };
135 
136         if (IS_ERR(tmp))
137                 goto out;
138 
139         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140         putname(tmp);
141         error = PTR_ERR(file);
142         if (IS_ERR(file))
143                 goto out;
144 
145         /*
146          * may_open() has already checked for this, so it should be
147          * impossible to trip now. But we need to be extra cautious
148          * and check again at the very end too.
149          */
150         error = -EACCES;
151         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152                          path_noexec(&file->f_path)))
153                 goto exit;
154 
155         fsnotify_open(file);
156 
157         error = -ENOEXEC;
158 
159         read_lock(&binfmt_lock);
160         list_for_each_entry(fmt, &formats, lh) {
161                 if (!fmt->load_shlib)
162                         continue;
163                 if (!try_module_get(fmt->module))
164                         continue;
165                 read_unlock(&binfmt_lock);
166                 error = fmt->load_shlib(file);
167                 read_lock(&binfmt_lock);
168                 put_binfmt(fmt);
169                 if (error != -ENOEXEC)
170                         break;
171         }
172         read_unlock(&binfmt_lock);
173 exit:
174         fput(file);
175 out:
176         return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189         struct mm_struct *mm = current->mm;
190         long diff = (long)(pages - bprm->vma_pages);
191 
192         if (!mm || !diff)
193                 return;
194 
195         bprm->vma_pages = pages;
196         add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200                 int write)
201 {
202         struct page *page;
203         int ret;
204         unsigned int gup_flags = FOLL_FORCE;
205 
206 #ifdef CONFIG_STACK_GROWSUP
207         if (write) {
208                 ret = expand_downwards(bprm->vma, pos);
209                 if (ret < 0)
210                         return NULL;
211         }
212 #endif
213 
214         if (write)
215                 gup_flags |= FOLL_WRITE;
216 
217         /*
218          * We are doing an exec().  'current' is the process
219          * doing the exec and bprm->mm is the new process's mm.
220          */
221         ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222                         &page, NULL, NULL);
223         if (ret <= 0)
224                 return NULL;
225 
226         if (write)
227                 acct_arg_size(bprm, vma_pages(bprm->vma));
228 
229         return page;
230 }
231 
232 static void put_arg_page(struct page *page)
233 {
234         put_page(page);
235 }
236 
237 static void free_arg_pages(struct linux_binprm *bprm)
238 {
239 }
240 
241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
242                 struct page *page)
243 {
244         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
245 }
246 
247 static int __bprm_mm_init(struct linux_binprm *bprm)
248 {
249         int err;
250         struct vm_area_struct *vma = NULL;
251         struct mm_struct *mm = bprm->mm;
252 
253         bprm->vma = vma = vm_area_alloc(mm);
254         if (!vma)
255                 return -ENOMEM;
256         vma_set_anonymous(vma);
257 
258         if (mmap_write_lock_killable(mm)) {
259                 err = -EINTR;
260                 goto err_free;
261         }
262 
263         /*
264          * Place the stack at the largest stack address the architecture
265          * supports. Later, we'll move this to an appropriate place. We don't
266          * use STACK_TOP because that can depend on attributes which aren't
267          * configured yet.
268          */
269         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
270         vma->vm_end = STACK_TOP_MAX;
271         vma->vm_start = vma->vm_end - PAGE_SIZE;
272         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
273         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
274 
275         err = insert_vm_struct(mm, vma);
276         if (err)
277                 goto err;
278 
279         mm->stack_vm = mm->total_vm = 1;
280         mmap_write_unlock(mm);
281         bprm->p = vma->vm_end - sizeof(void *);
282         return 0;
283 err:
284         mmap_write_unlock(mm);
285 err_free:
286         bprm->vma = NULL;
287         vm_area_free(vma);
288         return err;
289 }
290 
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293         return len <= MAX_ARG_STRLEN;
294 }
295 
296 #else
297 
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301 
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303                 int write)
304 {
305         struct page *page;
306 
307         page = bprm->page[pos / PAGE_SIZE];
308         if (!page && write) {
309                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310                 if (!page)
311                         return NULL;
312                 bprm->page[pos / PAGE_SIZE] = page;
313         }
314 
315         return page;
316 }
317 
318 static void put_arg_page(struct page *page)
319 {
320 }
321 
322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324         if (bprm->page[i]) {
325                 __free_page(bprm->page[i]);
326                 bprm->page[i] = NULL;
327         }
328 }
329 
330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332         int i;
333 
334         for (i = 0; i < MAX_ARG_PAGES; i++)
335                 free_arg_page(bprm, i);
336 }
337 
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339                 struct page *page)
340 {
341 }
342 
343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346         return 0;
347 }
348 
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351         return len <= bprm->p;
352 }
353 
354 #endif /* CONFIG_MMU */
355 
356 /*
357  * Create a new mm_struct and populate it with a temporary stack
358  * vm_area_struct.  We don't have enough context at this point to set the stack
359  * flags, permissions, and offset, so we use temporary values.  We'll update
360  * them later in setup_arg_pages().
361  */
362 static int bprm_mm_init(struct linux_binprm *bprm)
363 {
364         int err;
365         struct mm_struct *mm = NULL;
366 
367         bprm->mm = mm = mm_alloc();
368         err = -ENOMEM;
369         if (!mm)
370                 goto err;
371 
372         /* Save current stack limit for all calculations made during exec. */
373         task_lock(current->group_leader);
374         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
375         task_unlock(current->group_leader);
376 
377         err = __bprm_mm_init(bprm);
378         if (err)
379                 goto err;
380 
381         return 0;
382 
383 err:
384         if (mm) {
385                 bprm->mm = NULL;
386                 mmdrop(mm);
387         }
388 
389         return err;
390 }
391 
392 struct user_arg_ptr {
393 #ifdef CONFIG_COMPAT
394         bool is_compat;
395 #endif
396         union {
397                 const char __user *const __user *native;
398 #ifdef CONFIG_COMPAT
399                 const compat_uptr_t __user *compat;
400 #endif
401         } ptr;
402 };
403 
404 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
405 {
406         const char __user *native;
407 
408 #ifdef CONFIG_COMPAT
409         if (unlikely(argv.is_compat)) {
410                 compat_uptr_t compat;
411 
412                 if (get_user(compat, argv.ptr.compat + nr))
413                         return ERR_PTR(-EFAULT);
414 
415                 return compat_ptr(compat);
416         }
417 #endif
418 
419         if (get_user(native, argv.ptr.native + nr))
420                 return ERR_PTR(-EFAULT);
421 
422         return native;
423 }
424 
425 /*
426  * count() counts the number of strings in array ARGV.
427  */
428 static int count(struct user_arg_ptr argv, int max)
429 {
430         int i = 0;
431 
432         if (argv.ptr.native != NULL) {
433                 for (;;) {
434                         const char __user *p = get_user_arg_ptr(argv, i);
435 
436                         if (!p)
437                                 break;
438 
439                         if (IS_ERR(p))
440                                 return -EFAULT;
441 
442                         if (i >= max)
443                                 return -E2BIG;
444                         ++i;
445 
446                         if (fatal_signal_pending(current))
447                                 return -ERESTARTNOHAND;
448                         cond_resched();
449                 }
450         }
451         return i;
452 }
453 
454 static int count_strings_kernel(const char *const *argv)
455 {
456         int i;
457 
458         if (!argv)
459                 return 0;
460 
461         for (i = 0; argv[i]; ++i) {
462                 if (i >= MAX_ARG_STRINGS)
463                         return -E2BIG;
464                 if (fatal_signal_pending(current))
465                         return -ERESTARTNOHAND;
466                 cond_resched();
467         }
468         return i;
469 }
470 
471 static int bprm_stack_limits(struct linux_binprm *bprm)
472 {
473         unsigned long limit, ptr_size;
474 
475         /*
476          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
477          * (whichever is smaller) for the argv+env strings.
478          * This ensures that:
479          *  - the remaining binfmt code will not run out of stack space,
480          *  - the program will have a reasonable amount of stack left
481          *    to work from.
482          */
483         limit = _STK_LIM / 4 * 3;
484         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
485         /*
486          * We've historically supported up to 32 pages (ARG_MAX)
487          * of argument strings even with small stacks
488          */
489         limit = max_t(unsigned long, limit, ARG_MAX);
490         /*
491          * We must account for the size of all the argv and envp pointers to
492          * the argv and envp strings, since they will also take up space in
493          * the stack. They aren't stored until much later when we can't
494          * signal to the parent that the child has run out of stack space.
495          * Instead, calculate it here so it's possible to fail gracefully.
496          */
497         ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
498         if (limit <= ptr_size)
499                 return -E2BIG;
500         limit -= ptr_size;
501 
502         bprm->argmin = bprm->p - limit;
503         return 0;
504 }
505 
506 /*
507  * 'copy_strings()' copies argument/environment strings from the old
508  * processes's memory to the new process's stack.  The call to get_user_pages()
509  * ensures the destination page is created and not swapped out.
510  */
511 static int copy_strings(int argc, struct user_arg_ptr argv,
512                         struct linux_binprm *bprm)
513 {
514         struct page *kmapped_page = NULL;
515         char *kaddr = NULL;
516         unsigned long kpos = 0;
517         int ret;
518 
519         while (argc-- > 0) {
520                 const char __user *str;
521                 int len;
522                 unsigned long pos;
523 
524                 ret = -EFAULT;
525                 str = get_user_arg_ptr(argv, argc);
526                 if (IS_ERR(str))
527                         goto out;
528 
529                 len = strnlen_user(str, MAX_ARG_STRLEN);
530                 if (!len)
531                         goto out;
532 
533                 ret = -E2BIG;
534                 if (!valid_arg_len(bprm, len))
535                         goto out;
536 
537                 /* We're going to work our way backwords. */
538                 pos = bprm->p;
539                 str += len;
540                 bprm->p -= len;
541 #ifdef CONFIG_MMU
542                 if (bprm->p < bprm->argmin)
543                         goto out;
544 #endif
545 
546                 while (len > 0) {
547                         int offset, bytes_to_copy;
548 
549                         if (fatal_signal_pending(current)) {
550                                 ret = -ERESTARTNOHAND;
551                                 goto out;
552                         }
553                         cond_resched();
554 
555                         offset = pos % PAGE_SIZE;
556                         if (offset == 0)
557                                 offset = PAGE_SIZE;
558 
559                         bytes_to_copy = offset;
560                         if (bytes_to_copy > len)
561                                 bytes_to_copy = len;
562 
563                         offset -= bytes_to_copy;
564                         pos -= bytes_to_copy;
565                         str -= bytes_to_copy;
566                         len -= bytes_to_copy;
567 
568                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
569                                 struct page *page;
570 
571                                 page = get_arg_page(bprm, pos, 1);
572                                 if (!page) {
573                                         ret = -E2BIG;
574                                         goto out;
575                                 }
576 
577                                 if (kmapped_page) {
578                                         flush_kernel_dcache_page(kmapped_page);
579                                         kunmap(kmapped_page);
580                                         put_arg_page(kmapped_page);
581                                 }
582                                 kmapped_page = page;
583                                 kaddr = kmap(kmapped_page);
584                                 kpos = pos & PAGE_MASK;
585                                 flush_arg_page(bprm, kpos, kmapped_page);
586                         }
587                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
588                                 ret = -EFAULT;
589                                 goto out;
590                         }
591                 }
592         }
593         ret = 0;
594 out:
595         if (kmapped_page) {
596                 flush_kernel_dcache_page(kmapped_page);
597                 kunmap(kmapped_page);
598                 put_arg_page(kmapped_page);
599         }
600         return ret;
601 }
602 
603 /*
604  * Copy and argument/environment string from the kernel to the processes stack.
605  */
606 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
607 {
608         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
609         unsigned long pos = bprm->p;
610 
611         if (len == 0)
612                 return -EFAULT;
613         if (!valid_arg_len(bprm, len))
614                 return -E2BIG;
615 
616         /* We're going to work our way backwards. */
617         arg += len;
618         bprm->p -= len;
619         if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
620                 return -E2BIG;
621 
622         while (len > 0) {
623                 unsigned int bytes_to_copy = min_t(unsigned int, len,
624                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
625                 struct page *page;
626                 char *kaddr;
627 
628                 pos -= bytes_to_copy;
629                 arg -= bytes_to_copy;
630                 len -= bytes_to_copy;
631 
632                 page = get_arg_page(bprm, pos, 1);
633                 if (!page)
634                         return -E2BIG;
635                 kaddr = kmap_atomic(page);
636                 flush_arg_page(bprm, pos & PAGE_MASK, page);
637                 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
638                 flush_kernel_dcache_page(page);
639                 kunmap_atomic(kaddr);
640                 put_arg_page(page);
641         }
642 
643         return 0;
644 }
645 EXPORT_SYMBOL(copy_string_kernel);
646 
647 static int copy_strings_kernel(int argc, const char *const *argv,
648                                struct linux_binprm *bprm)
649 {
650         while (argc-- > 0) {
651                 int ret = copy_string_kernel(argv[argc], bprm);
652                 if (ret < 0)
653                         return ret;
654                 if (fatal_signal_pending(current))
655                         return -ERESTARTNOHAND;
656                 cond_resched();
657         }
658         return 0;
659 }
660 
661 #ifdef CONFIG_MMU
662 
663 /*
664  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
665  * the binfmt code determines where the new stack should reside, we shift it to
666  * its final location.  The process proceeds as follows:
667  *
668  * 1) Use shift to calculate the new vma endpoints.
669  * 2) Extend vma to cover both the old and new ranges.  This ensures the
670  *    arguments passed to subsequent functions are consistent.
671  * 3) Move vma's page tables to the new range.
672  * 4) Free up any cleared pgd range.
673  * 5) Shrink the vma to cover only the new range.
674  */
675 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
676 {
677         struct mm_struct *mm = vma->vm_mm;
678         unsigned long old_start = vma->vm_start;
679         unsigned long old_end = vma->vm_end;
680         unsigned long length = old_end - old_start;
681         unsigned long new_start = old_start - shift;
682         unsigned long new_end = old_end - shift;
683         struct mmu_gather tlb;
684 
685         BUG_ON(new_start > new_end);
686 
687         /*
688          * ensure there are no vmas between where we want to go
689          * and where we are
690          */
691         if (vma != find_vma(mm, new_start))
692                 return -EFAULT;
693 
694         /*
695          * cover the whole range: [new_start, old_end)
696          */
697         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
698                 return -ENOMEM;
699 
700         /*
701          * move the page tables downwards, on failure we rely on
702          * process cleanup to remove whatever mess we made.
703          */
704         if (length != move_page_tables(vma, old_start,
705                                        vma, new_start, length, false))
706                 return -ENOMEM;
707 
708         lru_add_drain();
709         tlb_gather_mmu(&tlb, mm, old_start, old_end);
710         if (new_end > old_start) {
711                 /*
712                  * when the old and new regions overlap clear from new_end.
713                  */
714                 free_pgd_range(&tlb, new_end, old_end, new_end,
715                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
716         } else {
717                 /*
718                  * otherwise, clean from old_start; this is done to not touch
719                  * the address space in [new_end, old_start) some architectures
720                  * have constraints on va-space that make this illegal (IA64) -
721                  * for the others its just a little faster.
722                  */
723                 free_pgd_range(&tlb, old_start, old_end, new_end,
724                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
725         }
726         tlb_finish_mmu(&tlb, old_start, old_end);
727 
728         /*
729          * Shrink the vma to just the new range.  Always succeeds.
730          */
731         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
732 
733         return 0;
734 }
735 
736 /*
737  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
738  * the stack is optionally relocated, and some extra space is added.
739  */
740 int setup_arg_pages(struct linux_binprm *bprm,
741                     unsigned long stack_top,
742                     int executable_stack)
743 {
744         unsigned long ret;
745         unsigned long stack_shift;
746         struct mm_struct *mm = current->mm;
747         struct vm_area_struct *vma = bprm->vma;
748         struct vm_area_struct *prev = NULL;
749         unsigned long vm_flags;
750         unsigned long stack_base;
751         unsigned long stack_size;
752         unsigned long stack_expand;
753         unsigned long rlim_stack;
754 
755 #ifdef CONFIG_STACK_GROWSUP
756         /* Limit stack size */
757         stack_base = bprm->rlim_stack.rlim_max;
758         if (stack_base > STACK_SIZE_MAX)
759                 stack_base = STACK_SIZE_MAX;
760 
761         /* Add space for stack randomization. */
762         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
763 
764         /* Make sure we didn't let the argument array grow too large. */
765         if (vma->vm_end - vma->vm_start > stack_base)
766                 return -ENOMEM;
767 
768         stack_base = PAGE_ALIGN(stack_top - stack_base);
769 
770         stack_shift = vma->vm_start - stack_base;
771         mm->arg_start = bprm->p - stack_shift;
772         bprm->p = vma->vm_end - stack_shift;
773 #else
774         stack_top = arch_align_stack(stack_top);
775         stack_top = PAGE_ALIGN(stack_top);
776 
777         if (unlikely(stack_top < mmap_min_addr) ||
778             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
779                 return -ENOMEM;
780 
781         stack_shift = vma->vm_end - stack_top;
782 
783         bprm->p -= stack_shift;
784         mm->arg_start = bprm->p;
785 #endif
786 
787         if (bprm->loader)
788                 bprm->loader -= stack_shift;
789         bprm->exec -= stack_shift;
790 
791         if (mmap_write_lock_killable(mm))
792                 return -EINTR;
793 
794         vm_flags = VM_STACK_FLAGS;
795 
796         /*
797          * Adjust stack execute permissions; explicitly enable for
798          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
799          * (arch default) otherwise.
800          */
801         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
802                 vm_flags |= VM_EXEC;
803         else if (executable_stack == EXSTACK_DISABLE_X)
804                 vm_flags &= ~VM_EXEC;
805         vm_flags |= mm->def_flags;
806         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
807 
808         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
809                         vm_flags);
810         if (ret)
811                 goto out_unlock;
812         BUG_ON(prev != vma);
813 
814         if (unlikely(vm_flags & VM_EXEC)) {
815                 pr_warn_once("process '%pD4' started with executable stack\n",
816                              bprm->file);
817         }
818 
819         /* Move stack pages down in memory. */
820         if (stack_shift) {
821                 ret = shift_arg_pages(vma, stack_shift);
822                 if (ret)
823                         goto out_unlock;
824         }
825 
826         /* mprotect_fixup is overkill to remove the temporary stack flags */
827         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
828 
829         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
830         stack_size = vma->vm_end - vma->vm_start;
831         /*
832          * Align this down to a page boundary as expand_stack
833          * will align it up.
834          */
835         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
836 #ifdef CONFIG_STACK_GROWSUP
837         if (stack_size + stack_expand > rlim_stack)
838                 stack_base = vma->vm_start + rlim_stack;
839         else
840                 stack_base = vma->vm_end + stack_expand;
841 #else
842         if (stack_size + stack_expand > rlim_stack)
843                 stack_base = vma->vm_end - rlim_stack;
844         else
845                 stack_base = vma->vm_start - stack_expand;
846 #endif
847         current->mm->start_stack = bprm->p;
848         ret = expand_stack(vma, stack_base);
849         if (ret)
850                 ret = -EFAULT;
851 
852 out_unlock:
853         mmap_write_unlock(mm);
854         return ret;
855 }
856 EXPORT_SYMBOL(setup_arg_pages);
857 
858 #else
859 
860 /*
861  * Transfer the program arguments and environment from the holding pages
862  * onto the stack. The provided stack pointer is adjusted accordingly.
863  */
864 int transfer_args_to_stack(struct linux_binprm *bprm,
865                            unsigned long *sp_location)
866 {
867         unsigned long index, stop, sp;
868         int ret = 0;
869 
870         stop = bprm->p >> PAGE_SHIFT;
871         sp = *sp_location;
872 
873         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
874                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
875                 char *src = kmap(bprm->page[index]) + offset;
876                 sp -= PAGE_SIZE - offset;
877                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
878                         ret = -EFAULT;
879                 kunmap(bprm->page[index]);
880                 if (ret)
881                         goto out;
882         }
883 
884         *sp_location = sp;
885 
886 out:
887         return ret;
888 }
889 EXPORT_SYMBOL(transfer_args_to_stack);
890 
891 #endif /* CONFIG_MMU */
892 
893 static struct file *do_open_execat(int fd, struct filename *name, int flags)
894 {
895         struct file *file;
896         int err;
897         struct open_flags open_exec_flags = {
898                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
899                 .acc_mode = MAY_EXEC,
900                 .intent = LOOKUP_OPEN,
901                 .lookup_flags = LOOKUP_FOLLOW,
902         };
903 
904         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
905                 return ERR_PTR(-EINVAL);
906         if (flags & AT_SYMLINK_NOFOLLOW)
907                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
908         if (flags & AT_EMPTY_PATH)
909                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
910 
911         file = do_filp_open(fd, name, &open_exec_flags);
912         if (IS_ERR(file))
913                 goto out;
914 
915         /*
916          * may_open() has already checked for this, so it should be
917          * impossible to trip now. But we need to be extra cautious
918          * and check again at the very end too.
919          */
920         err = -EACCES;
921         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
922                          path_noexec(&file->f_path)))
923                 goto exit;
924 
925         err = deny_write_access(file);
926         if (err)
927                 goto exit;
928 
929         if (name->name[0] != '\0')
930                 fsnotify_open(file);
931 
932 out:
933         return file;
934 
935 exit:
936         fput(file);
937         return ERR_PTR(err);
938 }
939 
940 struct file *open_exec(const char *name)
941 {
942         struct filename *filename = getname_kernel(name);
943         struct file *f = ERR_CAST(filename);
944 
945         if (!IS_ERR(filename)) {
946                 f = do_open_execat(AT_FDCWD, filename, 0);
947                 putname(filename);
948         }
949         return f;
950 }
951 EXPORT_SYMBOL(open_exec);
952 
953 int kernel_read_file(struct file *file, void **buf, loff_t *size,
954                      loff_t max_size, enum kernel_read_file_id id)
955 {
956         loff_t i_size, pos;
957         ssize_t bytes = 0;
958         void *allocated = NULL;
959         int ret;
960 
961         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
962                 return -EINVAL;
963 
964         ret = deny_write_access(file);
965         if (ret)
966                 return ret;
967 
968         ret = security_kernel_read_file(file, id);
969         if (ret)
970                 goto out;
971 
972         i_size = i_size_read(file_inode(file));
973         if (i_size <= 0) {
974                 ret = -EINVAL;
975                 goto out;
976         }
977         if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
978                 ret = -EFBIG;
979                 goto out;
980         }
981 
982         if (!*buf)
983                 *buf = allocated = vmalloc(i_size);
984         if (!*buf) {
985                 ret = -ENOMEM;
986                 goto out;
987         }
988 
989         pos = 0;
990         while (pos < i_size) {
991                 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
992                 if (bytes < 0) {
993                         ret = bytes;
994                         goto out_free;
995                 }
996 
997                 if (bytes == 0)
998                         break;
999         }
1000 
1001         if (pos != i_size) {
1002                 ret = -EIO;
1003                 goto out_free;
1004         }
1005 
1006         ret = security_kernel_post_read_file(file, *buf, i_size, id);
1007         if (!ret)
1008                 *size = pos;
1009 
1010 out_free:
1011         if (ret < 0) {
1012                 if (allocated) {
1013                         vfree(*buf);
1014                         *buf = NULL;
1015                 }
1016         }
1017 
1018 out:
1019         allow_write_access(file);
1020         return ret;
1021 }
1022 EXPORT_SYMBOL_GPL(kernel_read_file);
1023 
1024 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1025                                loff_t max_size, enum kernel_read_file_id id)
1026 {
1027         struct file *file;
1028         int ret;
1029 
1030         if (!path || !*path)
1031                 return -EINVAL;
1032 
1033         file = filp_open(path, O_RDONLY, 0);
1034         if (IS_ERR(file))
1035                 return PTR_ERR(file);
1036 
1037         ret = kernel_read_file(file, buf, size, max_size, id);
1038         fput(file);
1039         return ret;
1040 }
1041 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1042 
1043 int kernel_read_file_from_path_initns(const char *path, void **buf,
1044                                       loff_t *size, loff_t max_size,
1045                                       enum kernel_read_file_id id)
1046 {
1047         struct file *file;
1048         struct path root;
1049         int ret;
1050 
1051         if (!path || !*path)
1052                 return -EINVAL;
1053 
1054         task_lock(&init_task);
1055         get_fs_root(init_task.fs, &root);
1056         task_unlock(&init_task);
1057 
1058         file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1059         path_put(&root);
1060         if (IS_ERR(file))
1061                 return PTR_ERR(file);
1062 
1063         ret = kernel_read_file(file, buf, size, max_size, id);
1064         fput(file);
1065         return ret;
1066 }
1067 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1068 
1069 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1070                              enum kernel_read_file_id id)
1071 {
1072         struct fd f = fdget(fd);
1073         int ret = -EBADF;
1074 
1075         if (!f.file)
1076                 goto out;
1077 
1078         ret = kernel_read_file(f.file, buf, size, max_size, id);
1079 out:
1080         fdput(f);
1081         return ret;
1082 }
1083 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1084 
1085 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1086     defined(CONFIG_BINFMT_ELF_FDPIC)
1087 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1088 {
1089         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1090         if (res > 0)
1091                 flush_icache_user_range(addr, addr + len);
1092         return res;
1093 }
1094 EXPORT_SYMBOL(read_code);
1095 #endif
1096 
1097 /*
1098  * Maps the mm_struct mm into the current task struct.
1099  * On success, this function returns with the mutex
1100  * exec_update_mutex locked.
1101  */
1102 static int exec_mmap(struct mm_struct *mm)
1103 {
1104         struct task_struct *tsk;
1105         struct mm_struct *old_mm, *active_mm;
1106         int ret;
1107 
1108         /* Notify parent that we're no longer interested in the old VM */
1109         tsk = current;
1110         old_mm = current->mm;
1111         exec_mm_release(tsk, old_mm);
1112         if (old_mm)
1113                 sync_mm_rss(old_mm);
1114 
1115         ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1116         if (ret)
1117                 return ret;
1118 
1119         if (old_mm) {
1120                 /*
1121                  * Make sure that if there is a core dump in progress
1122                  * for the old mm, we get out and die instead of going
1123                  * through with the exec.  We must hold mmap_lock around
1124                  * checking core_state and changing tsk->mm.
1125                  */
1126                 mmap_read_lock(old_mm);
1127                 if (unlikely(old_mm->core_state)) {
1128                         mmap_read_unlock(old_mm);
1129                         mutex_unlock(&tsk->signal->exec_update_mutex);
1130                         return -EINTR;
1131                 }
1132         }
1133 
1134         task_lock(tsk);
1135         membarrier_exec_mmap(mm);
1136 
1137         local_irq_disable();
1138         active_mm = tsk->active_mm;
1139         tsk->active_mm = mm;
1140         tsk->mm = mm;
1141         /*
1142          * This prevents preemption while active_mm is being loaded and
1143          * it and mm are being updated, which could cause problems for
1144          * lazy tlb mm refcounting when these are updated by context
1145          * switches. Not all architectures can handle irqs off over
1146          * activate_mm yet.
1147          */
1148         if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1149                 local_irq_enable();
1150         activate_mm(active_mm, mm);
1151         if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1152                 local_irq_enable();
1153         tsk->mm->vmacache_seqnum = 0;
1154         vmacache_flush(tsk);
1155         task_unlock(tsk);
1156         if (old_mm) {
1157                 mmap_read_unlock(old_mm);
1158                 BUG_ON(active_mm != old_mm);
1159                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1160                 mm_update_next_owner(old_mm);
1161                 mmput(old_mm);
1162                 return 0;
1163         }
1164         mmdrop(active_mm);
1165         return 0;
1166 }
1167 
1168 static int de_thread(struct task_struct *tsk)
1169 {
1170         struct signal_struct *sig = tsk->signal;
1171         struct sighand_struct *oldsighand = tsk->sighand;
1172         spinlock_t *lock = &oldsighand->siglock;
1173 
1174         if (thread_group_empty(tsk))
1175                 goto no_thread_group;
1176 
1177         /*
1178          * Kill all other threads in the thread group.
1179          */
1180         spin_lock_irq(lock);
1181         if (signal_group_exit(sig)) {
1182                 /*
1183                  * Another group action in progress, just
1184                  * return so that the signal is processed.
1185                  */
1186                 spin_unlock_irq(lock);
1187                 return -EAGAIN;
1188         }
1189 
1190         sig->group_exit_task = tsk;
1191         sig->notify_count = zap_other_threads(tsk);
1192         if (!thread_group_leader(tsk))
1193                 sig->notify_count--;
1194 
1195         while (sig->notify_count) {
1196                 __set_current_state(TASK_KILLABLE);
1197                 spin_unlock_irq(lock);
1198                 schedule();
1199                 if (__fatal_signal_pending(tsk))
1200                         goto killed;
1201                 spin_lock_irq(lock);
1202         }
1203         spin_unlock_irq(lock);
1204 
1205         /*
1206          * At this point all other threads have exited, all we have to
1207          * do is to wait for the thread group leader to become inactive,
1208          * and to assume its PID:
1209          */
1210         if (!thread_group_leader(tsk)) {
1211                 struct task_struct *leader = tsk->group_leader;
1212 
1213                 for (;;) {
1214                         cgroup_threadgroup_change_begin(tsk);
1215                         write_lock_irq(&tasklist_lock);
1216                         /*
1217                          * Do this under tasklist_lock to ensure that
1218                          * exit_notify() can't miss ->group_exit_task
1219                          */
1220                         sig->notify_count = -1;
1221                         if (likely(leader->exit_state))
1222                                 break;
1223                         __set_current_state(TASK_KILLABLE);
1224                         write_unlock_irq(&tasklist_lock);
1225                         cgroup_threadgroup_change_end(tsk);
1226                         schedule();
1227                         if (__fatal_signal_pending(tsk))
1228                                 goto killed;
1229                 }
1230 
1231                 /*
1232                  * The only record we have of the real-time age of a
1233                  * process, regardless of execs it's done, is start_time.
1234                  * All the past CPU time is accumulated in signal_struct
1235                  * from sister threads now dead.  But in this non-leader
1236                  * exec, nothing survives from the original leader thread,
1237                  * whose birth marks the true age of this process now.
1238                  * When we take on its identity by switching to its PID, we
1239                  * also take its birthdate (always earlier than our own).
1240                  */
1241                 tsk->start_time = leader->start_time;
1242                 tsk->start_boottime = leader->start_boottime;
1243 
1244                 BUG_ON(!same_thread_group(leader, tsk));
1245                 /*
1246                  * An exec() starts a new thread group with the
1247                  * TGID of the previous thread group. Rehash the
1248                  * two threads with a switched PID, and release
1249                  * the former thread group leader:
1250                  */
1251 
1252                 /* Become a process group leader with the old leader's pid.
1253                  * The old leader becomes a thread of the this thread group.
1254                  */
1255                 exchange_tids(tsk, leader);
1256                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1257                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1258                 transfer_pid(leader, tsk, PIDTYPE_SID);
1259 
1260                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1261                 list_replace_init(&leader->sibling, &tsk->sibling);
1262 
1263                 tsk->group_leader = tsk;
1264                 leader->group_leader = tsk;
1265 
1266                 tsk->exit_signal = SIGCHLD;
1267                 leader->exit_signal = -1;
1268 
1269                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1270                 leader->exit_state = EXIT_DEAD;
1271 
1272                 /*
1273                  * We are going to release_task()->ptrace_unlink() silently,
1274                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1275                  * the tracer wont't block again waiting for this thread.
1276                  */
1277                 if (unlikely(leader->ptrace))
1278                         __wake_up_parent(leader, leader->parent);
1279                 write_unlock_irq(&tasklist_lock);
1280                 cgroup_threadgroup_change_end(tsk);
1281 
1282                 release_task(leader);
1283         }
1284 
1285         sig->group_exit_task = NULL;
1286         sig->notify_count = 0;
1287 
1288 no_thread_group:
1289         /* we have changed execution domain */
1290         tsk->exit_signal = SIGCHLD;
1291 
1292         BUG_ON(!thread_group_leader(tsk));
1293         return 0;
1294 
1295 killed:
1296         /* protects against exit_notify() and __exit_signal() */
1297         read_lock(&tasklist_lock);
1298         sig->group_exit_task = NULL;
1299         sig->notify_count = 0;
1300         read_unlock(&tasklist_lock);
1301         return -EAGAIN;
1302 }
1303 
1304 
1305 /*
1306  * This function makes sure the current process has its own signal table,
1307  * so that flush_signal_handlers can later reset the handlers without
1308  * disturbing other processes.  (Other processes might share the signal
1309  * table via the CLONE_SIGHAND option to clone().)
1310  */
1311 static int unshare_sighand(struct task_struct *me)
1312 {
1313         struct sighand_struct *oldsighand = me->sighand;
1314 
1315         if (refcount_read(&oldsighand->count) != 1) {
1316                 struct sighand_struct *newsighand;
1317                 /*
1318                  * This ->sighand is shared with the CLONE_SIGHAND
1319                  * but not CLONE_THREAD task, switch to the new one.
1320                  */
1321                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1322                 if (!newsighand)
1323                         return -ENOMEM;
1324 
1325                 refcount_set(&newsighand->count, 1);
1326                 memcpy(newsighand->action, oldsighand->action,
1327                        sizeof(newsighand->action));
1328 
1329                 write_lock_irq(&tasklist_lock);
1330                 spin_lock(&oldsighand->siglock);
1331                 rcu_assign_pointer(me->sighand, newsighand);
1332                 spin_unlock(&oldsighand->siglock);
1333                 write_unlock_irq(&tasklist_lock);
1334 
1335                 __cleanup_sighand(oldsighand);
1336         }
1337         return 0;
1338 }
1339 
1340 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1341 {
1342         task_lock(tsk);
1343         strncpy(buf, tsk->comm, buf_size);
1344         task_unlock(tsk);
1345         return buf;
1346 }
1347 EXPORT_SYMBOL_GPL(__get_task_comm);
1348 
1349 /*
1350  * These functions flushes out all traces of the currently running executable
1351  * so that a new one can be started
1352  */
1353 
1354 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1355 {
1356         task_lock(tsk);
1357         trace_task_rename(tsk, buf);
1358         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1359         task_unlock(tsk);
1360         perf_event_comm(tsk, exec);
1361 }
1362 
1363 /*
1364  * Calling this is the point of no return. None of the failures will be
1365  * seen by userspace since either the process is already taking a fatal
1366  * signal (via de_thread() or coredump), or will have SEGV raised
1367  * (after exec_mmap()) by search_binary_handler (see below).
1368  */
1369 int begin_new_exec(struct linux_binprm * bprm)
1370 {
1371         struct task_struct *me = current;
1372         int retval;
1373 
1374         /* Once we are committed compute the creds */
1375         retval = bprm_creds_from_file(bprm);
1376         if (retval)
1377                 return retval;
1378 
1379         /*
1380          * Ensure all future errors are fatal.
1381          */
1382         bprm->point_of_no_return = true;
1383 
1384         /*
1385          * Make this the only thread in the thread group.
1386          */
1387         retval = de_thread(me);
1388         if (retval)
1389                 goto out;
1390 
1391         /*
1392          * Must be called _before_ exec_mmap() as bprm->mm is
1393          * not visibile until then. This also enables the update
1394          * to be lockless.
1395          */
1396         set_mm_exe_file(bprm->mm, bprm->file);
1397 
1398         /* If the binary is not readable then enforce mm->dumpable=0 */
1399         would_dump(bprm, bprm->file);
1400         if (bprm->have_execfd)
1401                 would_dump(bprm, bprm->executable);
1402 
1403         /*
1404          * Release all of the old mmap stuff
1405          */
1406         acct_arg_size(bprm, 0);
1407         retval = exec_mmap(bprm->mm);
1408         if (retval)
1409                 goto out;
1410 
1411         bprm->mm = NULL;
1412 
1413 #ifdef CONFIG_POSIX_TIMERS
1414         exit_itimers(me->signal);
1415         flush_itimer_signals();
1416 #endif
1417 
1418         /*
1419          * Make the signal table private.
1420          */
1421         retval = unshare_sighand(me);
1422         if (retval)
1423                 goto out_unlock;
1424 
1425         /*
1426          * Ensure that the uaccess routines can actually operate on userspace
1427          * pointers:
1428          */
1429         force_uaccess_begin();
1430 
1431         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1432                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1433         flush_thread();
1434         me->personality &= ~bprm->per_clear;
1435 
1436         /*
1437          * We have to apply CLOEXEC before we change whether the process is
1438          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1439          * trying to access the should-be-closed file descriptors of a process
1440          * undergoing exec(2).
1441          */
1442         do_close_on_exec(me->files);
1443 
1444         if (bprm->secureexec) {
1445                 /* Make sure parent cannot signal privileged process. */
1446                 me->pdeath_signal = 0;
1447 
1448                 /*
1449                  * For secureexec, reset the stack limit to sane default to
1450                  * avoid bad behavior from the prior rlimits. This has to
1451                  * happen before arch_pick_mmap_layout(), which examines
1452                  * RLIMIT_STACK, but after the point of no return to avoid
1453                  * needing to clean up the change on failure.
1454                  */
1455                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1456                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1457         }
1458 
1459         me->sas_ss_sp = me->sas_ss_size = 0;
1460 
1461         /*
1462          * Figure out dumpability. Note that this checking only of current
1463          * is wrong, but userspace depends on it. This should be testing
1464          * bprm->secureexec instead.
1465          */
1466         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1467             !(uid_eq(current_euid(), current_uid()) &&
1468               gid_eq(current_egid(), current_gid())))
1469                 set_dumpable(current->mm, suid_dumpable);
1470         else
1471                 set_dumpable(current->mm, SUID_DUMP_USER);
1472 
1473         perf_event_exec();
1474         __set_task_comm(me, kbasename(bprm->filename), true);
1475 
1476         /* An exec changes our domain. We are no longer part of the thread
1477            group */
1478         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1479         flush_signal_handlers(me, 0);
1480 
1481         /*
1482          * install the new credentials for this executable
1483          */
1484         security_bprm_committing_creds(bprm);
1485 
1486         commit_creds(bprm->cred);
1487         bprm->cred = NULL;
1488 
1489         /*
1490          * Disable monitoring for regular users
1491          * when executing setuid binaries. Must
1492          * wait until new credentials are committed
1493          * by commit_creds() above
1494          */
1495         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1496                 perf_event_exit_task(me);
1497         /*
1498          * cred_guard_mutex must be held at least to this point to prevent
1499          * ptrace_attach() from altering our determination of the task's
1500          * credentials; any time after this it may be unlocked.
1501          */
1502         security_bprm_committed_creds(bprm);
1503 
1504         /* Pass the opened binary to the interpreter. */
1505         if (bprm->have_execfd) {
1506                 retval = get_unused_fd_flags(0);
1507                 if (retval < 0)
1508                         goto out_unlock;
1509                 fd_install(retval, bprm->executable);
1510                 bprm->executable = NULL;
1511                 bprm->execfd = retval;
1512         }
1513         return 0;
1514 
1515 out_unlock:
1516         mutex_unlock(&me->signal->exec_update_mutex);
1517 out:
1518         return retval;
1519 }
1520 EXPORT_SYMBOL(begin_new_exec);
1521 
1522 void would_dump(struct linux_binprm *bprm, struct file *file)
1523 {
1524         struct inode *inode = file_inode(file);
1525         if (inode_permission(inode, MAY_READ) < 0) {
1526                 struct user_namespace *old, *user_ns;
1527                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1528 
1529                 /* Ensure mm->user_ns contains the executable */
1530                 user_ns = old = bprm->mm->user_ns;
1531                 while ((user_ns != &init_user_ns) &&
1532                        !privileged_wrt_inode_uidgid(user_ns, inode))
1533                         user_ns = user_ns->parent;
1534 
1535                 if (old != user_ns) {
1536                         bprm->mm->user_ns = get_user_ns(user_ns);
1537                         put_user_ns(old);
1538                 }
1539         }
1540 }
1541 EXPORT_SYMBOL(would_dump);
1542 
1543 void setup_new_exec(struct linux_binprm * bprm)
1544 {
1545         /* Setup things that can depend upon the personality */
1546         struct task_struct *me = current;
1547 
1548         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1549 
1550         arch_setup_new_exec();
1551 
1552         /* Set the new mm task size. We have to do that late because it may
1553          * depend on TIF_32BIT which is only updated in flush_thread() on
1554          * some architectures like powerpc
1555          */
1556         me->mm->task_size = TASK_SIZE;
1557         mutex_unlock(&me->signal->exec_update_mutex);
1558         mutex_unlock(&me->signal->cred_guard_mutex);
1559 }
1560 EXPORT_SYMBOL(setup_new_exec);
1561 
1562 /* Runs immediately before start_thread() takes over. */
1563 void finalize_exec(struct linux_binprm *bprm)
1564 {
1565         /* Store any stack rlimit changes before starting thread. */
1566         task_lock(current->group_leader);
1567         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1568         task_unlock(current->group_leader);
1569 }
1570 EXPORT_SYMBOL(finalize_exec);
1571 
1572 /*
1573  * Prepare credentials and lock ->cred_guard_mutex.
1574  * setup_new_exec() commits the new creds and drops the lock.
1575  * Or, if exec fails before, free_bprm() should release ->cred and
1576  * and unlock.
1577  */
1578 static int prepare_bprm_creds(struct linux_binprm *bprm)
1579 {
1580         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1581                 return -ERESTARTNOINTR;
1582 
1583         bprm->cred = prepare_exec_creds();
1584         if (likely(bprm->cred))
1585                 return 0;
1586 
1587         mutex_unlock(&current->signal->cred_guard_mutex);
1588         return -ENOMEM;
1589 }
1590 
1591 static void free_bprm(struct linux_binprm *bprm)
1592 {
1593         if (bprm->mm) {
1594                 acct_arg_size(bprm, 0);
1595                 mmput(bprm->mm);
1596         }
1597         free_arg_pages(bprm);
1598         if (bprm->cred) {
1599                 mutex_unlock(&current->signal->cred_guard_mutex);
1600                 abort_creds(bprm->cred);
1601         }
1602         if (bprm->file) {
1603                 allow_write_access(bprm->file);
1604                 fput(bprm->file);
1605         }
1606         if (bprm->executable)
1607                 fput(bprm->executable);
1608         /* If a binfmt changed the interp, free it. */
1609         if (bprm->interp != bprm->filename)
1610                 kfree(bprm->interp);
1611         kfree(bprm->fdpath);
1612         kfree(bprm);
1613 }
1614 
1615 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1616 {
1617         struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1618         int retval = -ENOMEM;
1619         if (!bprm)
1620                 goto out;
1621 
1622         if (fd == AT_FDCWD || filename->name[0] == '/') {
1623                 bprm->filename = filename->name;
1624         } else {
1625                 if (filename->name[0] == '\0')
1626                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1627                 else
1628                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1629                                                   fd, filename->name);
1630                 if (!bprm->fdpath)
1631                         goto out_free;
1632 
1633                 bprm->filename = bprm->fdpath;
1634         }
1635         bprm->interp = bprm->filename;
1636 
1637         retval = bprm_mm_init(bprm);
1638         if (retval)
1639                 goto out_free;
1640         return bprm;
1641 
1642 out_free:
1643         free_bprm(bprm);
1644 out:
1645         return ERR_PTR(retval);
1646 }
1647 
1648 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1649 {
1650         /* If a binfmt changed the interp, free it first. */
1651         if (bprm->interp != bprm->filename)
1652                 kfree(bprm->interp);
1653         bprm->interp = kstrdup(interp, GFP_KERNEL);
1654         if (!bprm->interp)
1655                 return -ENOMEM;
1656         return 0;
1657 }
1658 EXPORT_SYMBOL(bprm_change_interp);
1659 
1660 /*
1661  * determine how safe it is to execute the proposed program
1662  * - the caller must hold ->cred_guard_mutex to protect against
1663  *   PTRACE_ATTACH or seccomp thread-sync
1664  */
1665 static void check_unsafe_exec(struct linux_binprm *bprm)
1666 {
1667         struct task_struct *p = current, *t;
1668         unsigned n_fs;
1669 
1670         if (p->ptrace)
1671                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1672 
1673         /*
1674          * This isn't strictly necessary, but it makes it harder for LSMs to
1675          * mess up.
1676          */
1677         if (task_no_new_privs(current))
1678                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1679 
1680         t = p;
1681         n_fs = 1;
1682         spin_lock(&p->fs->lock);
1683         rcu_read_lock();
1684         while_each_thread(p, t) {
1685                 if (t->fs == p->fs)
1686                         n_fs++;
1687         }
1688         rcu_read_unlock();
1689 
1690         if (p->fs->users > n_fs)
1691                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1692         else
1693                 p->fs->in_exec = 1;
1694         spin_unlock(&p->fs->lock);
1695 }
1696 
1697 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1698 {
1699         /* Handle suid and sgid on files */
1700         struct inode *inode;
1701         unsigned int mode;
1702         kuid_t uid;
1703         kgid_t gid;
1704 
1705         if (!mnt_may_suid(file->f_path.mnt))
1706                 return;
1707 
1708         if (task_no_new_privs(current))
1709                 return;
1710 
1711         inode = file->f_path.dentry->d_inode;
1712         mode = READ_ONCE(inode->i_mode);
1713         if (!(mode & (S_ISUID|S_ISGID)))
1714                 return;
1715 
1716         /* Be careful if suid/sgid is set */
1717         inode_lock(inode);
1718 
1719         /* reload atomically mode/uid/gid now that lock held */
1720         mode = inode->i_mode;
1721         uid = inode->i_uid;
1722         gid = inode->i_gid;
1723         inode_unlock(inode);
1724 
1725         /* We ignore suid/sgid if there are no mappings for them in the ns */
1726         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1727                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1728                 return;
1729 
1730         if (mode & S_ISUID) {
1731                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1732                 bprm->cred->euid = uid;
1733         }
1734 
1735         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1736                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1737                 bprm->cred->egid = gid;
1738         }
1739 }
1740 
1741 /*
1742  * Compute brpm->cred based upon the final binary.
1743  */
1744 static int bprm_creds_from_file(struct linux_binprm *bprm)
1745 {
1746         /* Compute creds based on which file? */
1747         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1748 
1749         bprm_fill_uid(bprm, file);
1750         return security_bprm_creds_from_file(bprm, file);
1751 }
1752 
1753 /*
1754  * Fill the binprm structure from the inode.
1755  * Read the first BINPRM_BUF_SIZE bytes
1756  *
1757  * This may be called multiple times for binary chains (scripts for example).
1758  */
1759 static int prepare_binprm(struct linux_binprm *bprm)
1760 {
1761         loff_t pos = 0;
1762 
1763         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1764         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1765 }
1766 
1767 /*
1768  * Arguments are '\0' separated strings found at the location bprm->p
1769  * points to; chop off the first by relocating brpm->p to right after
1770  * the first '\0' encountered.
1771  */
1772 int remove_arg_zero(struct linux_binprm *bprm)
1773 {
1774         int ret = 0;
1775         unsigned long offset;
1776         char *kaddr;
1777         struct page *page;
1778 
1779         if (!bprm->argc)
1780                 return 0;
1781 
1782         do {
1783                 offset = bprm->p & ~PAGE_MASK;
1784                 page = get_arg_page(bprm, bprm->p, 0);
1785                 if (!page) {
1786                         ret = -EFAULT;
1787                         goto out;
1788                 }
1789                 kaddr = kmap_atomic(page);
1790 
1791                 for (; offset < PAGE_SIZE && kaddr[offset];
1792                                 offset++, bprm->p++)
1793                         ;
1794 
1795                 kunmap_atomic(kaddr);
1796                 put_arg_page(page);
1797         } while (offset == PAGE_SIZE);
1798 
1799         bprm->p++;
1800         bprm->argc--;
1801         ret = 0;
1802 
1803 out:
1804         return ret;
1805 }
1806 EXPORT_SYMBOL(remove_arg_zero);
1807 
1808 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1809 /*
1810  * cycle the list of binary formats handler, until one recognizes the image
1811  */
1812 static int search_binary_handler(struct linux_binprm *bprm)
1813 {
1814         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1815         struct linux_binfmt *fmt;
1816         int retval;
1817 
1818         retval = prepare_binprm(bprm);
1819         if (retval < 0)
1820                 return retval;
1821 
1822         retval = security_bprm_check(bprm);
1823         if (retval)
1824                 return retval;
1825 
1826         retval = -ENOENT;
1827  retry:
1828         read_lock(&binfmt_lock);
1829         list_for_each_entry(fmt, &formats, lh) {
1830                 if (!try_module_get(fmt->module))
1831                         continue;
1832                 read_unlock(&binfmt_lock);
1833 
1834                 retval = fmt->load_binary(bprm);
1835 
1836                 read_lock(&binfmt_lock);
1837                 put_binfmt(fmt);
1838                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1839                         read_unlock(&binfmt_lock);
1840                         return retval;
1841                 }
1842         }
1843         read_unlock(&binfmt_lock);
1844 
1845         if (need_retry) {
1846                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1847                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1848                         return retval;
1849                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1850                         return retval;
1851                 need_retry = false;
1852                 goto retry;
1853         }
1854 
1855         return retval;
1856 }
1857 
1858 static int exec_binprm(struct linux_binprm *bprm)
1859 {
1860         pid_t old_pid, old_vpid;
1861         int ret, depth;
1862 
1863         /* Need to fetch pid before load_binary changes it */
1864         old_pid = current->pid;
1865         rcu_read_lock();
1866         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1867         rcu_read_unlock();
1868 
1869         /* This allows 4 levels of binfmt rewrites before failing hard. */
1870         for (depth = 0;; depth++) {
1871                 struct file *exec;
1872                 if (depth > 5)
1873                         return -ELOOP;
1874 
1875                 ret = search_binary_handler(bprm);
1876                 if (ret < 0)
1877                         return ret;
1878                 if (!bprm->interpreter)
1879                         break;
1880 
1881                 exec = bprm->file;
1882                 bprm->file = bprm->interpreter;
1883                 bprm->interpreter = NULL;
1884 
1885                 allow_write_access(exec);
1886                 if (unlikely(bprm->have_execfd)) {
1887                         if (bprm->executable) {
1888                                 fput(exec);
1889                                 return -ENOEXEC;
1890                         }
1891                         bprm->executable = exec;
1892                 } else
1893                         fput(exec);
1894         }
1895 
1896         audit_bprm(bprm);
1897         trace_sched_process_exec(current, old_pid, bprm);
1898         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1899         proc_exec_connector(current);
1900         return 0;
1901 }
1902 
1903 /*
1904  * sys_execve() executes a new program.
1905  */
1906 static int bprm_execve(struct linux_binprm *bprm,
1907                        int fd, struct filename *filename, int flags)
1908 {
1909         struct file *file;
1910         struct files_struct *displaced;
1911         int retval;
1912 
1913         /*
1914          * Cancel any io_uring activity across execve
1915          */
1916         io_uring_task_cancel();
1917 
1918         retval = unshare_files(&displaced);
1919         if (retval)
1920                 return retval;
1921 
1922         retval = prepare_bprm_creds(bprm);
1923         if (retval)
1924                 goto out_files;
1925 
1926         check_unsafe_exec(bprm);
1927         current->in_execve = 1;
1928 
1929         file = do_open_execat(fd, filename, flags);
1930         retval = PTR_ERR(file);
1931         if (IS_ERR(file))
1932                 goto out_unmark;
1933 
1934         sched_exec();
1935 
1936         bprm->file = file;
1937         /*
1938          * Record that a name derived from an O_CLOEXEC fd will be
1939          * inaccessible after exec. Relies on having exclusive access to
1940          * current->files (due to unshare_files above).
1941          */
1942         if (bprm->fdpath &&
1943             close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1944                 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1945 
1946         /* Set the unchanging part of bprm->cred */
1947         retval = security_bprm_creds_for_exec(bprm);
1948         if (retval)
1949                 goto out;
1950 
1951         retval = ccs_exec_binprm(bprm);
1952         if (retval < 0)
1953                 goto out;
1954 
1955         /* execve succeeded */
1956         current->fs->in_exec = 0;
1957         current->in_execve = 0;
1958         rseq_execve(current);
1959         acct_update_integrals(current);
1960         task_numa_free(current, false);
1961         if (displaced)
1962                 put_files_struct(displaced);
1963         return retval;
1964 
1965 out:
1966         /*
1967          * If past the point of no return ensure the the code never
1968          * returns to the userspace process.  Use an existing fatal
1969          * signal if present otherwise terminate the process with
1970          * SIGSEGV.
1971          */
1972         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1973                 force_sigsegv(SIGSEGV);
1974 
1975 out_unmark:
1976         current->fs->in_exec = 0;
1977         current->in_execve = 0;
1978 
1979 out_files:
1980         if (displaced)
1981                 reset_files_struct(displaced);
1982 
1983         return retval;
1984 }
1985 
1986 static int do_execveat_common(int fd, struct filename *filename,
1987                               struct user_arg_ptr argv,
1988                               struct user_arg_ptr envp,
1989                               int flags)
1990 {
1991         struct linux_binprm *bprm;
1992         int retval;
1993 
1994         if (IS_ERR(filename))
1995                 return PTR_ERR(filename);
1996 
1997         /*
1998          * We move the actual failure in case of RLIMIT_NPROC excess from
1999          * set*uid() to execve() because too many poorly written programs
2000          * don't check setuid() return code.  Here we additionally recheck
2001          * whether NPROC limit is still exceeded.
2002          */
2003         if ((current->flags & PF_NPROC_EXCEEDED) &&
2004             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
2005                 retval = -EAGAIN;
2006                 goto out_ret;
2007         }
2008 
2009         /* We're below the limit (still or again), so we don't want to make
2010          * further execve() calls fail. */
2011         current->flags &= ~PF_NPROC_EXCEEDED;
2012 
2013         bprm = alloc_bprm(fd, filename);
2014         if (IS_ERR(bprm)) {
2015                 retval = PTR_ERR(bprm);
2016                 goto out_ret;
2017         }
2018 
2019         retval = count(argv, MAX_ARG_STRINGS);
2020         if (retval < 0)
2021                 goto out_free;
2022         bprm->argc = retval;
2023 
2024         retval = count(envp, MAX_ARG_STRINGS);
2025         if (retval < 0)
2026                 goto out_free;
2027         bprm->envc = retval;
2028 
2029         retval = bprm_stack_limits(bprm);
2030         if (retval < 0)
2031                 goto out_free;
2032 
2033         retval = copy_string_kernel(bprm->filename, bprm);
2034         if (retval < 0)
2035                 goto out_free;
2036         bprm->exec = bprm->p;
2037 
2038         retval = copy_strings(bprm->envc, envp, bprm);
2039         if (retval < 0)
2040                 goto out_free;
2041 
2042         retval = copy_strings(bprm->argc, argv, bprm);
2043         if (retval < 0)
2044                 goto out_free;
2045 
2046         retval = bprm_execve(bprm, fd, filename, flags);
2047 out_free:
2048         free_bprm(bprm);
2049 
2050 out_ret:
2051         putname(filename);
2052         return retval;
2053 }
2054 
2055 int kernel_execve(const char *kernel_filename,
2056                   const char *const *argv, const char *const *envp)
2057 {
2058         struct filename *filename;
2059         struct linux_binprm *bprm;
2060         int fd = AT_FDCWD;
2061         int retval;
2062 
2063         filename = getname_kernel(kernel_filename);
2064         if (IS_ERR(filename))
2065                 return PTR_ERR(filename);
2066 
2067         bprm = alloc_bprm(fd, filename);
2068         if (IS_ERR(bprm)) {
2069                 retval = PTR_ERR(bprm);
2070                 goto out_ret;
2071         }
2072 
2073         retval = count_strings_kernel(argv);
2074         if (retval < 0)
2075                 goto out_free;
2076         bprm->argc = retval;
2077 
2078         retval = count_strings_kernel(envp);
2079         if (retval < 0)
2080                 goto out_free;
2081         bprm->envc = retval;
2082 
2083         retval = bprm_stack_limits(bprm);
2084         if (retval < 0)
2085                 goto out_free;
2086 
2087         retval = copy_string_kernel(bprm->filename, bprm);
2088         if (retval < 0)
2089                 goto out_free;
2090         bprm->exec = bprm->p;
2091 
2092         retval = copy_strings_kernel(bprm->envc, envp, bprm);
2093         if (retval < 0)
2094                 goto out_free;
2095 
2096         retval = copy_strings_kernel(bprm->argc, argv, bprm);
2097         if (retval < 0)
2098                 goto out_free;
2099 
2100         retval = bprm_execve(bprm, fd, filename, 0);
2101 out_free:
2102         free_bprm(bprm);
2103 out_ret:
2104         putname(filename);
2105         return retval;
2106 }
2107 
2108 static int do_execve(struct filename *filename,
2109         const char __user *const __user *__argv,
2110         const char __user *const __user *__envp)
2111 {
2112         struct user_arg_ptr argv = { .ptr.native = __argv };
2113         struct user_arg_ptr envp = { .ptr.native = __envp };
2114         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2115 }
2116 
2117 static int do_execveat(int fd, struct filename *filename,
2118                 const char __user *const __user *__argv,
2119                 const char __user *const __user *__envp,
2120                 int flags)
2121 {
2122         struct user_arg_ptr argv = { .ptr.native = __argv };
2123         struct user_arg_ptr envp = { .ptr.native = __envp };
2124 
2125         return do_execveat_common(fd, filename, argv, envp, flags);
2126 }
2127 
2128 #ifdef CONFIG_COMPAT
2129 static int compat_do_execve(struct filename *filename,
2130         const compat_uptr_t __user *__argv,
2131         const compat_uptr_t __user *__envp)
2132 {
2133         struct user_arg_ptr argv = {
2134                 .is_compat = true,
2135                 .ptr.compat = __argv,
2136         };
2137         struct user_arg_ptr envp = {
2138                 .is_compat = true,
2139                 .ptr.compat = __envp,
2140         };
2141         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2142 }
2143 
2144 static int compat_do_execveat(int fd, struct filename *filename,
2145                               const compat_uptr_t __user *__argv,
2146                               const compat_uptr_t __user *__envp,
2147                               int flags)
2148 {
2149         struct user_arg_ptr argv = {
2150                 .is_compat = true,
2151                 .ptr.compat = __argv,
2152         };
2153         struct user_arg_ptr envp = {
2154                 .is_compat = true,
2155                 .ptr.compat = __envp,
2156         };
2157         return do_execveat_common(fd, filename, argv, envp, flags);
2158 }
2159 #endif
2160 
2161 void set_binfmt(struct linux_binfmt *new)
2162 {
2163         struct mm_struct *mm = current->mm;
2164 
2165         if (mm->binfmt)
2166                 module_put(mm->binfmt->module);
2167 
2168         mm->binfmt = new;
2169         if (new)
2170                 __module_get(new->module);
2171 }
2172 EXPORT_SYMBOL(set_binfmt);
2173 
2174 /*
2175  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2176  */
2177 void set_dumpable(struct mm_struct *mm, int value)
2178 {
2179         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2180                 return;
2181 
2182         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2183 }
2184 
2185 SYSCALL_DEFINE3(execve,
2186                 const char __user *, filename,
2187                 const char __user *const __user *, argv,
2188                 const char __user *const __user *, envp)
2189 {
2190         return do_execve(getname(filename), argv, envp);
2191 }
2192 
2193 SYSCALL_DEFINE5(execveat,
2194                 int, fd, const char __user *, filename,
2195                 const char __user *const __user *, argv,
2196                 const char __user *const __user *, envp,
2197                 int, flags)
2198 {
2199         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2200 
2201         return do_execveat(fd,
2202                            getname_flags(filename, lookup_flags, NULL),
2203                            argv, envp, flags);
2204 }
2205 
2206 #ifdef CONFIG_COMPAT
2207 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2208         const compat_uptr_t __user *, argv,
2209         const compat_uptr_t __user *, envp)
2210 {
2211         return compat_do_execve(getname(filename), argv, envp);
2212 }
2213 
2214 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2215                        const char __user *, filename,
2216                        const compat_uptr_t __user *, argv,
2217                        const compat_uptr_t __user *, envp,
2218                        int,  flags)
2219 {
2220         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2221 
2222         return compat_do_execveat(fd,
2223                                   getname_flags(filename, lookup_flags, NULL),
2224                                   argv, envp, flags);
2225 }
2226 #endif
2227 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp