1 /* 2 * linux/fs/ext4/file.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/file.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * ext4 fs regular file handling primitives 16 * 17 * 64-bit file support on 64-bit platforms by Jakub Jelinek 18 * (jj@sunsite.ms.mff.cuni.cz) 19 */ 20 21 #include <linux/time.h> 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/path.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/pagevec.h> 28 #include <linux/uio.h> 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 /* 35 * Called when an inode is released. Note that this is different 36 * from ext4_file_open: open gets called at every open, but release 37 * gets called only when /all/ the files are closed. 38 */ 39 static int ext4_release_file(struct inode *inode, struct file *filp) 40 { 41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 42 ext4_alloc_da_blocks(inode); 43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 44 } 45 /* if we are the last writer on the inode, drop the block reservation */ 46 if ((filp->f_mode & FMODE_WRITE) && 47 (atomic_read(&inode->i_writecount) == 1) && 48 !EXT4_I(inode)->i_reserved_data_blocks) 49 { 50 down_write(&EXT4_I(inode)->i_data_sem); 51 ext4_discard_preallocations(inode); 52 up_write(&EXT4_I(inode)->i_data_sem); 53 } 54 if (is_dx(inode) && filp->private_data) 55 ext4_htree_free_dir_info(filp->private_data); 56 57 return 0; 58 } 59 60 static void ext4_unwritten_wait(struct inode *inode) 61 { 62 wait_queue_head_t *wq = ext4_ioend_wq(inode); 63 64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0)); 65 } 66 67 /* 68 * This tests whether the IO in question is block-aligned or not. 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 70 * are converted to written only after the IO is complete. Until they are 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 72 * it needs to zero out portions of the start and/or end block. If 2 AIO 73 * threads are at work on the same unwritten block, they must be synchronized 74 * or one thread will zero the other's data, causing corruption. 75 */ 76 static int 77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos) 78 { 79 struct super_block *sb = inode->i_sb; 80 int blockmask = sb->s_blocksize - 1; 81 82 if (pos >= ALIGN(i_size_read(inode), sb->s_blocksize)) 83 return 0; 84 85 if ((pos | iov_iter_alignment(from)) & blockmask) 86 return 1; 87 88 return 0; 89 } 90 91 static ssize_t 92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 93 { 94 struct file *file = iocb->ki_filp; 95 struct inode *inode = file_inode(iocb->ki_filp); 96 struct mutex *aio_mutex = NULL; 97 struct blk_plug plug; 98 int o_direct = iocb->ki_flags & IOCB_DIRECT; 99 int overwrite = 0; 100 ssize_t ret; 101 102 /* 103 * Unaligned direct AIO must be serialized; see comment above 104 * In the case of O_APPEND, assume that we must always serialize 105 */ 106 if (o_direct && 107 ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) && 108 !is_sync_kiocb(iocb) && 109 (iocb->ki_flags & IOCB_APPEND || 110 ext4_unaligned_aio(inode, from, iocb->ki_pos))) { 111 aio_mutex = ext4_aio_mutex(inode); 112 mutex_lock(aio_mutex); 113 ext4_unwritten_wait(inode); 114 } 115 116 mutex_lock(&inode->i_mutex); 117 ret = generic_write_checks(iocb, from); 118 if (ret <= 0) 119 goto out; 120 121 /* 122 * If we have encountered a bitmap-format file, the size limit 123 * is smaller than s_maxbytes, which is for extent-mapped files. 124 */ 125 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 126 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 127 128 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) { 129 ret = -EFBIG; 130 goto out; 131 } 132 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 133 } 134 135 iocb->private = &overwrite; 136 if (o_direct) { 137 size_t length = iov_iter_count(from); 138 loff_t pos = iocb->ki_pos; 139 blk_start_plug(&plug); 140 141 /* check whether we do a DIO overwrite or not */ 142 if (ext4_should_dioread_nolock(inode) && !aio_mutex && 143 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) { 144 struct ext4_map_blocks map; 145 unsigned int blkbits = inode->i_blkbits; 146 int err, len; 147 148 map.m_lblk = pos >> blkbits; 149 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits) 150 - map.m_lblk; 151 len = map.m_len; 152 153 err = ext4_map_blocks(NULL, inode, &map, 0); 154 /* 155 * 'err==len' means that all of blocks has 156 * been preallocated no matter they are 157 * initialized or not. For excluding 158 * unwritten extents, we need to check 159 * m_flags. There are two conditions that 160 * indicate for initialized extents. 1) If we 161 * hit extent cache, EXT4_MAP_MAPPED flag is 162 * returned; 2) If we do a real lookup, 163 * non-flags are returned. So we should check 164 * these two conditions. 165 */ 166 if (err == len && (map.m_flags & EXT4_MAP_MAPPED)) 167 overwrite = 1; 168 } 169 } 170 171 ret = __generic_file_write_iter(iocb, from); 172 mutex_unlock(&inode->i_mutex); 173 174 if (ret > 0) { 175 ssize_t err; 176 177 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 178 if (err < 0) 179 ret = err; 180 } 181 if (o_direct) 182 blk_finish_plug(&plug); 183 184 if (aio_mutex) 185 mutex_unlock(aio_mutex); 186 return ret; 187 188 out: 189 mutex_unlock(&inode->i_mutex); 190 if (aio_mutex) 191 mutex_unlock(aio_mutex); 192 return ret; 193 } 194 195 #ifdef CONFIG_FS_DAX 196 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate) 197 { 198 struct inode *inode = bh->b_assoc_map->host; 199 /* XXX: breaks on 32-bit > 16TB. Is that even supported? */ 200 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits; 201 int err; 202 if (!uptodate) 203 return; 204 WARN_ON(!buffer_unwritten(bh)); 205 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size); 206 } 207 208 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 209 { 210 int result; 211 handle_t *handle = NULL; 212 struct inode *inode = file_inode(vma->vm_file); 213 struct super_block *sb = inode->i_sb; 214 bool write = vmf->flags & FAULT_FLAG_WRITE; 215 216 if (write) { 217 sb_start_pagefault(sb); 218 file_update_time(vma->vm_file); 219 down_read(&EXT4_I(inode)->i_mmap_sem); 220 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 221 EXT4_DATA_TRANS_BLOCKS(sb)); 222 } else 223 down_read(&EXT4_I(inode)->i_mmap_sem); 224 225 if (IS_ERR(handle)) 226 result = VM_FAULT_SIGBUS; 227 else 228 result = __dax_fault(vma, vmf, ext4_get_block_dax, 229 ext4_end_io_unwritten); 230 231 if (write) { 232 if (!IS_ERR(handle)) 233 ext4_journal_stop(handle); 234 up_read(&EXT4_I(inode)->i_mmap_sem); 235 sb_end_pagefault(sb); 236 } else 237 up_read(&EXT4_I(inode)->i_mmap_sem); 238 239 return result; 240 } 241 242 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr, 243 pmd_t *pmd, unsigned int flags) 244 { 245 int result; 246 handle_t *handle = NULL; 247 struct inode *inode = file_inode(vma->vm_file); 248 struct super_block *sb = inode->i_sb; 249 bool write = flags & FAULT_FLAG_WRITE; 250 251 if (write) { 252 sb_start_pagefault(sb); 253 file_update_time(vma->vm_file); 254 down_read(&EXT4_I(inode)->i_mmap_sem); 255 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 256 ext4_chunk_trans_blocks(inode, 257 PMD_SIZE / PAGE_SIZE)); 258 } else 259 down_read(&EXT4_I(inode)->i_mmap_sem); 260 261 if (IS_ERR(handle)) 262 result = VM_FAULT_SIGBUS; 263 else 264 result = __dax_pmd_fault(vma, addr, pmd, flags, 265 ext4_get_block_dax, ext4_end_io_unwritten); 266 267 if (write) { 268 if (!IS_ERR(handle)) 269 ext4_journal_stop(handle); 270 up_read(&EXT4_I(inode)->i_mmap_sem); 271 sb_end_pagefault(sb); 272 } else 273 up_read(&EXT4_I(inode)->i_mmap_sem); 274 275 return result; 276 } 277 278 static int ext4_dax_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 279 { 280 int err; 281 struct inode *inode = file_inode(vma->vm_file); 282 283 sb_start_pagefault(inode->i_sb); 284 file_update_time(vma->vm_file); 285 down_read(&EXT4_I(inode)->i_mmap_sem); 286 err = __dax_mkwrite(vma, vmf, ext4_get_block_dax, 287 ext4_end_io_unwritten); 288 up_read(&EXT4_I(inode)->i_mmap_sem); 289 sb_end_pagefault(inode->i_sb); 290 291 return err; 292 } 293 294 /* 295 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_mkwrite() 296 * handler we check for races agaist truncate. Note that since we cycle through 297 * i_mmap_sem, we are sure that also any hole punching that began before we 298 * were called is finished by now and so if it included part of the file we 299 * are working on, our pte will get unmapped and the check for pte_same() in 300 * wp_pfn_shared() fails. Thus fault gets retried and things work out as 301 * desired. 302 */ 303 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma, 304 struct vm_fault *vmf) 305 { 306 struct inode *inode = file_inode(vma->vm_file); 307 struct super_block *sb = inode->i_sb; 308 int ret = VM_FAULT_NOPAGE; 309 loff_t size; 310 311 sb_start_pagefault(sb); 312 file_update_time(vma->vm_file); 313 down_read(&EXT4_I(inode)->i_mmap_sem); 314 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 315 if (vmf->pgoff >= size) 316 ret = VM_FAULT_SIGBUS; 317 up_read(&EXT4_I(inode)->i_mmap_sem); 318 sb_end_pagefault(sb); 319 320 return ret; 321 } 322 323 static const struct vm_operations_struct ext4_dax_vm_ops = { 324 .fault = ext4_dax_fault, 325 .pmd_fault = ext4_dax_pmd_fault, 326 .page_mkwrite = ext4_dax_mkwrite, 327 .pfn_mkwrite = ext4_dax_pfn_mkwrite, 328 }; 329 #else 330 #define ext4_dax_vm_ops ext4_file_vm_ops 331 #endif 332 333 static const struct vm_operations_struct ext4_file_vm_ops = { 334 .fault = ext4_filemap_fault, 335 .map_pages = filemap_map_pages, 336 .page_mkwrite = ext4_page_mkwrite, 337 }; 338 339 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 340 { 341 struct inode *inode = file->f_mapping->host; 342 343 if (ext4_encrypted_inode(inode)) { 344 int err = ext4_get_encryption_info(inode); 345 if (err) 346 return 0; 347 if (ext4_encryption_info(inode) == NULL) 348 return -ENOKEY; 349 } 350 file_accessed(file); 351 if (IS_DAX(file_inode(file))) { 352 vma->vm_ops = &ext4_dax_vm_ops; 353 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 354 } else { 355 vma->vm_ops = &ext4_file_vm_ops; 356 } 357 return 0; 358 } 359 360 static int ext4_file_open(struct inode * inode, struct file * filp) 361 { 362 struct super_block *sb = inode->i_sb; 363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 364 struct vfsmount *mnt = filp->f_path.mnt; 365 struct path path; 366 char buf[64], *cp; 367 int ret; 368 369 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) && 370 !(sb->s_flags & MS_RDONLY))) { 371 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 372 /* 373 * Sample where the filesystem has been mounted and 374 * store it in the superblock for sysadmin convenience 375 * when trying to sort through large numbers of block 376 * devices or filesystem images. 377 */ 378 memset(buf, 0, sizeof(buf)); 379 path.mnt = mnt; 380 path.dentry = mnt->mnt_root; 381 cp = d_path(&path, buf, sizeof(buf)); 382 if (!IS_ERR(cp)) { 383 handle_t *handle; 384 int err; 385 386 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 387 if (IS_ERR(handle)) 388 return PTR_ERR(handle); 389 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 390 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 391 if (err) { 392 ext4_journal_stop(handle); 393 return err; 394 } 395 strlcpy(sbi->s_es->s_last_mounted, cp, 396 sizeof(sbi->s_es->s_last_mounted)); 397 ext4_handle_dirty_super(handle, sb); 398 ext4_journal_stop(handle); 399 } 400 } 401 if (ext4_encrypted_inode(inode)) { 402 ret = ext4_get_encryption_info(inode); 403 if (ret) 404 return -EACCES; 405 if (ext4_encryption_info(inode) == NULL) 406 return -ENOKEY; 407 } 408 /* 409 * Set up the jbd2_inode if we are opening the inode for 410 * writing and the journal is present 411 */ 412 if (filp->f_mode & FMODE_WRITE) { 413 ret = ext4_inode_attach_jinode(inode); 414 if (ret < 0) 415 return ret; 416 } 417 return dquot_file_open(inode, filp); 418 } 419 420 /* 421 * Here we use ext4_map_blocks() to get a block mapping for a extent-based 422 * file rather than ext4_ext_walk_space() because we can introduce 423 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same 424 * function. When extent status tree has been fully implemented, it will 425 * track all extent status for a file and we can directly use it to 426 * retrieve the offset for SEEK_DATA/SEEK_HOLE. 427 */ 428 429 /* 430 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to 431 * lookup page cache to check whether or not there has some data between 432 * [startoff, endoff] because, if this range contains an unwritten extent, 433 * we determine this extent as a data or a hole according to whether the 434 * page cache has data or not. 435 */ 436 static int ext4_find_unwritten_pgoff(struct inode *inode, 437 int whence, 438 struct ext4_map_blocks *map, 439 loff_t *offset) 440 { 441 struct pagevec pvec; 442 unsigned int blkbits; 443 pgoff_t index; 444 pgoff_t end; 445 loff_t endoff; 446 loff_t startoff; 447 loff_t lastoff; 448 int found = 0; 449 450 blkbits = inode->i_sb->s_blocksize_bits; 451 startoff = *offset; 452 lastoff = startoff; 453 endoff = (loff_t)(map->m_lblk + map->m_len) << blkbits; 454 455 index = startoff >> PAGE_CACHE_SHIFT; 456 end = endoff >> PAGE_CACHE_SHIFT; 457 458 pagevec_init(&pvec, 0); 459 do { 460 int i, num; 461 unsigned long nr_pages; 462 463 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE - 1) + 1; 464 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 465 (pgoff_t)num); 466 if (nr_pages == 0) 467 break; 468 469 for (i = 0; i < nr_pages; i++) { 470 struct page *page = pvec.pages[i]; 471 struct buffer_head *bh, *head; 472 473 /* 474 * If current offset is smaller than the page offset, 475 * there is a hole at this offset. 476 */ 477 if (whence == SEEK_HOLE && lastoff < endoff && 478 lastoff < page_offset(pvec.pages[i])) { 479 found = 1; 480 *offset = lastoff; 481 goto out; 482 } 483 484 if (page->index > end) 485 goto out; 486 487 lock_page(page); 488 489 if (unlikely(page->mapping != inode->i_mapping)) { 490 unlock_page(page); 491 continue; 492 } 493 494 if (!page_has_buffers(page)) { 495 unlock_page(page); 496 continue; 497 } 498 499 if (page_has_buffers(page)) { 500 lastoff = page_offset(page); 501 bh = head = page_buffers(page); 502 do { 503 if (lastoff + bh->b_size <= startoff) 504 goto next; 505 if (buffer_uptodate(bh) || 506 buffer_unwritten(bh)) { 507 if (whence == SEEK_DATA) 508 found = 1; 509 } else { 510 if (whence == SEEK_HOLE) 511 found = 1; 512 } 513 if (found) { 514 *offset = max_t(loff_t, 515 startoff, lastoff); 516 unlock_page(page); 517 goto out; 518 } 519 next: 520 lastoff += bh->b_size; 521 bh = bh->b_this_page; 522 } while (bh != head); 523 } 524 525 lastoff = page_offset(page) + PAGE_SIZE; 526 unlock_page(page); 527 } 528 529 /* The no. of pages is less than our desired, we are done. */ 530 if (nr_pages < num) 531 break; 532 533 index = pvec.pages[i - 1]->index + 1; 534 pagevec_release(&pvec); 535 } while (index <= end); 536 537 if (whence == SEEK_HOLE && lastoff < endoff) { 538 found = 1; 539 *offset = lastoff; 540 } 541 out: 542 pagevec_release(&pvec); 543 return found; 544 } 545 546 /* 547 * ext4_seek_data() retrieves the offset for SEEK_DATA. 548 */ 549 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize) 550 { 551 struct inode *inode = file->f_mapping->host; 552 struct ext4_map_blocks map; 553 struct extent_status es; 554 ext4_lblk_t start, last, end; 555 loff_t dataoff, isize; 556 int blkbits; 557 int ret = 0; 558 559 mutex_lock(&inode->i_mutex); 560 561 isize = i_size_read(inode); 562 if (offset < 0 || offset >= isize) { 563 mutex_unlock(&inode->i_mutex); 564 return -ENXIO; 565 } 566 567 blkbits = inode->i_sb->s_blocksize_bits; 568 start = offset >> blkbits; 569 last = start; 570 end = isize >> blkbits; 571 dataoff = offset; 572 573 do { 574 map.m_lblk = last; 575 map.m_len = end - last + 1; 576 ret = ext4_map_blocks(NULL, inode, &map, 0); 577 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 578 if (last != start) 579 dataoff = (loff_t)last << blkbits; 580 break; 581 } 582 583 /* 584 * If there is a delay extent at this offset, 585 * it will be as a data. 586 */ 587 ext4_es_find_delayed_extent_range(inode, last, last, &es); 588 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 589 if (last != start) 590 dataoff = (loff_t)last << blkbits; 591 break; 592 } 593 594 /* 595 * If there is a unwritten extent at this offset, 596 * it will be as a data or a hole according to page 597 * cache that has data or not. 598 */ 599 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 600 int unwritten; 601 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA, 602 &map, &dataoff); 603 if (unwritten) 604 break; 605 } 606 607 last++; 608 dataoff = (loff_t)last << blkbits; 609 } while (last <= end); 610 611 mutex_unlock(&inode->i_mutex); 612 613 if (dataoff > isize) 614 return -ENXIO; 615 616 return vfs_setpos(file, dataoff, maxsize); 617 } 618 619 /* 620 * ext4_seek_hole() retrieves the offset for SEEK_HOLE. 621 */ 622 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize) 623 { 624 struct inode *inode = file->f_mapping->host; 625 struct ext4_map_blocks map; 626 struct extent_status es; 627 ext4_lblk_t start, last, end; 628 loff_t holeoff, isize; 629 int blkbits; 630 int ret = 0; 631 632 mutex_lock(&inode->i_mutex); 633 634 isize = i_size_read(inode); 635 if (offset < 0 || offset >= isize) { 636 mutex_unlock(&inode->i_mutex); 637 return -ENXIO; 638 } 639 640 blkbits = inode->i_sb->s_blocksize_bits; 641 start = offset >> blkbits; 642 last = start; 643 end = isize >> blkbits; 644 holeoff = offset; 645 646 do { 647 map.m_lblk = last; 648 map.m_len = end - last + 1; 649 ret = ext4_map_blocks(NULL, inode, &map, 0); 650 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 651 last += ret; 652 holeoff = (loff_t)last << blkbits; 653 continue; 654 } 655 656 /* 657 * If there is a delay extent at this offset, 658 * we will skip this extent. 659 */ 660 ext4_es_find_delayed_extent_range(inode, last, last, &es); 661 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 662 last = es.es_lblk + es.es_len; 663 holeoff = (loff_t)last << blkbits; 664 continue; 665 } 666 667 /* 668 * If there is a unwritten extent at this offset, 669 * it will be as a data or a hole according to page 670 * cache that has data or not. 671 */ 672 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 673 int unwritten; 674 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE, 675 &map, &holeoff); 676 if (!unwritten) { 677 last += ret; 678 holeoff = (loff_t)last << blkbits; 679 continue; 680 } 681 } 682 683 /* find a hole */ 684 break; 685 } while (last <= end); 686 687 mutex_unlock(&inode->i_mutex); 688 689 if (holeoff > isize) 690 holeoff = isize; 691 692 return vfs_setpos(file, holeoff, maxsize); 693 } 694 695 /* 696 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 697 * by calling generic_file_llseek_size() with the appropriate maxbytes 698 * value for each. 699 */ 700 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 701 { 702 struct inode *inode = file->f_mapping->host; 703 loff_t maxbytes; 704 705 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 706 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 707 else 708 maxbytes = inode->i_sb->s_maxbytes; 709 710 switch (whence) { 711 case SEEK_SET: 712 case SEEK_CUR: 713 case SEEK_END: 714 return generic_file_llseek_size(file, offset, whence, 715 maxbytes, i_size_read(inode)); 716 case SEEK_DATA: 717 return ext4_seek_data(file, offset, maxbytes); 718 case SEEK_HOLE: 719 return ext4_seek_hole(file, offset, maxbytes); 720 } 721 722 return -EINVAL; 723 } 724 725 const struct file_operations ext4_file_operations = { 726 .llseek = ext4_llseek, 727 .read_iter = generic_file_read_iter, 728 .write_iter = ext4_file_write_iter, 729 .unlocked_ioctl = ext4_ioctl, 730 #ifdef CONFIG_COMPAT 731 .compat_ioctl = ext4_compat_ioctl, 732 #endif 733 .mmap = ext4_file_mmap, 734 .open = ext4_file_open, 735 .release = ext4_release_file, 736 .fsync = ext4_sync_file, 737 .splice_read = generic_file_splice_read, 738 .splice_write = iter_file_splice_write, 739 .fallocate = ext4_fallocate, 740 }; 741 742 const struct inode_operations ext4_file_inode_operations = { 743 .setattr = ext4_setattr, 744 .getattr = ext4_getattr, 745 .setxattr = generic_setxattr, 746 .getxattr = generic_getxattr, 747 .listxattr = ext4_listxattr, 748 .removexattr = generic_removexattr, 749 .get_acl = ext4_get_acl, 750 .set_acl = ext4_set_acl, 751 .fiemap = ext4_fiemap, 752 }; 753 754
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.