1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = raw->i_checksum_lo; 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = raw->i_checksum_hi; 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = csum_lo; 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = csum_hi; 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 86 return 1; 87 88 provided = le16_to_cpu(raw->i_checksum_lo); 89 calculated = ext4_inode_csum(inode, raw, ei); 90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 93 else 94 calculated &= 0xFFFF; 95 96 return provided == calculated; 97 } 98 99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 100 struct ext4_inode_info *ei) 101 { 102 __u32 csum; 103 104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 105 cpu_to_le32(EXT4_OS_LINUX) || 106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned long offset); 135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 136 struct buffer_head *bh_result, int create); 137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 139 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 142 struct inode *inode, struct page *page, loff_t from, 143 loff_t length, int flags); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 */ 148 static int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 (inode->i_sb->s_blocksize >> 9) : 0; 152 153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 154 } 155 156 /* 157 * Restart the transaction associated with *handle. This does a commit, 158 * so before we call here everything must be consistently dirtied against 159 * this transaction. 160 */ 161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 162 int nblocks) 163 { 164 int ret; 165 166 /* 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 168 * moment, get_block can be called only for blocks inside i_size since 169 * page cache has been already dropped and writes are blocked by 170 * i_mutex. So we can safely drop the i_data_sem here. 171 */ 172 BUG_ON(EXT4_JOURNAL(inode) == NULL); 173 jbd_debug(2, "restarting handle %p\n", handle); 174 up_write(&EXT4_I(inode)->i_data_sem); 175 ret = ext4_journal_restart(handle, nblocks); 176 down_write(&EXT4_I(inode)->i_data_sem); 177 ext4_discard_preallocations(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called at the last iput() if i_nlink is zero. 184 */ 185 void ext4_evict_inode(struct inode *inode) 186 { 187 handle_t *handle; 188 int err; 189 190 trace_ext4_evict_inode(inode); 191 192 ext4_ioend_wait(inode); 193 194 if (inode->i_nlink) { 195 /* 196 * When journalling data dirty buffers are tracked only in the 197 * journal. So although mm thinks everything is clean and 198 * ready for reaping the inode might still have some pages to 199 * write in the running transaction or waiting to be 200 * checkpointed. Thus calling jbd2_journal_invalidatepage() 201 * (via truncate_inode_pages()) to discard these buffers can 202 * cause data loss. Also even if we did not discard these 203 * buffers, we would have no way to find them after the inode 204 * is reaped and thus user could see stale data if he tries to 205 * read them before the transaction is checkpointed. So be 206 * careful and force everything to disk here... We use 207 * ei->i_datasync_tid to store the newest transaction 208 * containing inode's data. 209 * 210 * Note that directories do not have this problem because they 211 * don't use page cache. 212 */ 213 if (ext4_should_journal_data(inode) && 214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 217 218 jbd2_log_start_commit(journal, commit_tid); 219 jbd2_log_wait_commit(journal, commit_tid); 220 filemap_write_and_wait(&inode->i_data); 221 } 222 truncate_inode_pages(&inode->i_data, 0); 223 goto no_delete; 224 } 225 226 if (!is_bad_inode(inode)) 227 dquot_initialize(inode); 228 229 if (ext4_should_order_data(inode)) 230 ext4_begin_ordered_truncate(inode, 0); 231 truncate_inode_pages(&inode->i_data, 0); 232 233 if (is_bad_inode(inode)) 234 goto no_delete; 235 236 /* 237 * Protect us against freezing - iput() caller didn't have to have any 238 * protection against it 239 */ 240 sb_start_intwrite(inode->i_sb); 241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 242 if (IS_ERR(handle)) { 243 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 244 /* 245 * If we're going to skip the normal cleanup, we still need to 246 * make sure that the in-core orphan linked list is properly 247 * cleaned up. 248 */ 249 ext4_orphan_del(NULL, inode); 250 sb_end_intwrite(inode->i_sb); 251 goto no_delete; 252 } 253 254 if (IS_SYNC(inode)) 255 ext4_handle_sync(handle); 256 inode->i_size = 0; 257 err = ext4_mark_inode_dirty(handle, inode); 258 if (err) { 259 ext4_warning(inode->i_sb, 260 "couldn't mark inode dirty (err %d)", err); 261 goto stop_handle; 262 } 263 if (inode->i_blocks) 264 ext4_truncate(inode); 265 266 /* 267 * ext4_ext_truncate() doesn't reserve any slop when it 268 * restarts journal transactions; therefore there may not be 269 * enough credits left in the handle to remove the inode from 270 * the orphan list and set the dtime field. 271 */ 272 if (!ext4_handle_has_enough_credits(handle, 3)) { 273 err = ext4_journal_extend(handle, 3); 274 if (err > 0) 275 err = ext4_journal_restart(handle, 3); 276 if (err != 0) { 277 ext4_warning(inode->i_sb, 278 "couldn't extend journal (err %d)", err); 279 stop_handle: 280 ext4_journal_stop(handle); 281 ext4_orphan_del(NULL, inode); 282 sb_end_intwrite(inode->i_sb); 283 goto no_delete; 284 } 285 } 286 287 /* 288 * Kill off the orphan record which ext4_truncate created. 289 * AKPM: I think this can be inside the above `if'. 290 * Note that ext4_orphan_del() has to be able to cope with the 291 * deletion of a non-existent orphan - this is because we don't 292 * know if ext4_truncate() actually created an orphan record. 293 * (Well, we could do this if we need to, but heck - it works) 294 */ 295 ext4_orphan_del(handle, inode); 296 EXT4_I(inode)->i_dtime = get_seconds(); 297 298 /* 299 * One subtle ordering requirement: if anything has gone wrong 300 * (transaction abort, IO errors, whatever), then we can still 301 * do these next steps (the fs will already have been marked as 302 * having errors), but we can't free the inode if the mark_dirty 303 * fails. 304 */ 305 if (ext4_mark_inode_dirty(handle, inode)) 306 /* If that failed, just do the required in-core inode clear. */ 307 ext4_clear_inode(inode); 308 else 309 ext4_free_inode(handle, inode); 310 ext4_journal_stop(handle); 311 sb_end_intwrite(inode->i_sb); 312 return; 313 no_delete: 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 315 } 316 317 #ifdef CONFIG_QUOTA 318 qsize_t *ext4_get_reserved_space(struct inode *inode) 319 { 320 return &EXT4_I(inode)->i_reserved_quota; 321 } 322 #endif 323 324 /* 325 * Calculate the number of metadata blocks need to reserve 326 * to allocate a block located at @lblock 327 */ 328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 329 { 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 331 return ext4_ext_calc_metadata_amount(inode, lblock); 332 333 return ext4_ind_calc_metadata_amount(inode, lblock); 334 } 335 336 /* 337 * Called with i_data_sem down, which is important since we can call 338 * ext4_discard_preallocations() from here. 339 */ 340 void ext4_da_update_reserve_space(struct inode *inode, 341 int used, int quota_claim) 342 { 343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 344 struct ext4_inode_info *ei = EXT4_I(inode); 345 346 spin_lock(&ei->i_block_reservation_lock); 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 348 if (unlikely(used > ei->i_reserved_data_blocks)) { 349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 350 "with only %d reserved data blocks", 351 __func__, inode->i_ino, used, 352 ei->i_reserved_data_blocks); 353 WARN_ON(1); 354 used = ei->i_reserved_data_blocks; 355 } 356 357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d " 359 "with only %d reserved metadata blocks\n", __func__, 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks); 362 WARN_ON(1); 363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 364 } 365 366 /* Update per-inode reservations */ 367 ei->i_reserved_data_blocks -= used; 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 370 used + ei->i_allocated_meta_blocks); 371 ei->i_allocated_meta_blocks = 0; 372 373 if (ei->i_reserved_data_blocks == 0) { 374 /* 375 * We can release all of the reserved metadata blocks 376 * only when we have written all of the delayed 377 * allocation blocks. 378 */ 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 380 ei->i_reserved_meta_blocks); 381 ei->i_reserved_meta_blocks = 0; 382 ei->i_da_metadata_calc_len = 0; 383 } 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 385 386 /* Update quota subsystem for data blocks */ 387 if (quota_claim) 388 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 389 else { 390 /* 391 * We did fallocate with an offset that is already delayed 392 * allocated. So on delayed allocated writeback we should 393 * not re-claim the quota for fallocated blocks. 394 */ 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 396 } 397 398 /* 399 * If we have done all the pending block allocations and if 400 * there aren't any writers on the inode, we can discard the 401 * inode's preallocations. 402 */ 403 if ((ei->i_reserved_data_blocks == 0) && 404 (atomic_read(&inode->i_writecount) == 0)) 405 ext4_discard_preallocations(inode); 406 } 407 408 static int __check_block_validity(struct inode *inode, const char *func, 409 unsigned int line, 410 struct ext4_map_blocks *map) 411 { 412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 413 map->m_len)) { 414 ext4_error_inode(inode, func, line, map->m_pblk, 415 "lblock %lu mapped to illegal pblock " 416 "(length %d)", (unsigned long) map->m_lblk, 417 map->m_len); 418 return -EIO; 419 } 420 return 0; 421 } 422 423 #define check_block_validity(inode, map) \ 424 __check_block_validity((inode), __func__, __LINE__, (map)) 425 426 /* 427 * Return the number of contiguous dirty pages in a given inode 428 * starting at page frame idx. 429 */ 430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 431 unsigned int max_pages) 432 { 433 struct address_space *mapping = inode->i_mapping; 434 pgoff_t index; 435 struct pagevec pvec; 436 pgoff_t num = 0; 437 int i, nr_pages, done = 0; 438 439 if (max_pages == 0) 440 return 0; 441 pagevec_init(&pvec, 0); 442 while (!done) { 443 index = idx; 444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 445 PAGECACHE_TAG_DIRTY, 446 (pgoff_t)PAGEVEC_SIZE); 447 if (nr_pages == 0) 448 break; 449 for (i = 0; i < nr_pages; i++) { 450 struct page *page = pvec.pages[i]; 451 struct buffer_head *bh, *head; 452 453 lock_page(page); 454 if (unlikely(page->mapping != mapping) || 455 !PageDirty(page) || 456 PageWriteback(page) || 457 page->index != idx) { 458 done = 1; 459 unlock_page(page); 460 break; 461 } 462 if (page_has_buffers(page)) { 463 bh = head = page_buffers(page); 464 do { 465 if (!buffer_delay(bh) && 466 !buffer_unwritten(bh)) 467 done = 1; 468 bh = bh->b_this_page; 469 } while (!done && (bh != head)); 470 } 471 unlock_page(page); 472 if (done) 473 break; 474 idx++; 475 num++; 476 if (num >= max_pages) { 477 done = 1; 478 break; 479 } 480 } 481 pagevec_release(&pvec); 482 } 483 return num; 484 } 485 486 /* 487 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 488 */ 489 static void set_buffers_da_mapped(struct inode *inode, 490 struct ext4_map_blocks *map) 491 { 492 struct address_space *mapping = inode->i_mapping; 493 struct pagevec pvec; 494 int i, nr_pages; 495 pgoff_t index, end; 496 497 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 498 end = (map->m_lblk + map->m_len - 1) >> 499 (PAGE_CACHE_SHIFT - inode->i_blkbits); 500 501 pagevec_init(&pvec, 0); 502 while (index <= end) { 503 nr_pages = pagevec_lookup(&pvec, mapping, index, 504 min(end - index + 1, 505 (pgoff_t)PAGEVEC_SIZE)); 506 if (nr_pages == 0) 507 break; 508 for (i = 0; i < nr_pages; i++) { 509 struct page *page = pvec.pages[i]; 510 struct buffer_head *bh, *head; 511 512 if (unlikely(page->mapping != mapping) || 513 !PageDirty(page)) 514 break; 515 516 if (page_has_buffers(page)) { 517 bh = head = page_buffers(page); 518 do { 519 set_buffer_da_mapped(bh); 520 bh = bh->b_this_page; 521 } while (bh != head); 522 } 523 index++; 524 } 525 pagevec_release(&pvec); 526 } 527 } 528 529 /* 530 * The ext4_map_blocks() function tries to look up the requested blocks, 531 * and returns if the blocks are already mapped. 532 * 533 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 534 * and store the allocated blocks in the result buffer head and mark it 535 * mapped. 536 * 537 * If file type is extents based, it will call ext4_ext_map_blocks(), 538 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 539 * based files 540 * 541 * On success, it returns the number of blocks being mapped or allocate. 542 * if create==0 and the blocks are pre-allocated and uninitialized block, 543 * the result buffer head is unmapped. If the create ==1, it will make sure 544 * the buffer head is mapped. 545 * 546 * It returns 0 if plain look up failed (blocks have not been allocated), in 547 * that case, buffer head is unmapped 548 * 549 * It returns the error in case of allocation failure. 550 */ 551 int ext4_map_blocks(handle_t *handle, struct inode *inode, 552 struct ext4_map_blocks *map, int flags) 553 { 554 int retval; 555 556 map->m_flags = 0; 557 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 558 "logical block %lu\n", inode->i_ino, flags, map->m_len, 559 (unsigned long) map->m_lblk); 560 /* 561 * Try to see if we can get the block without requesting a new 562 * file system block. 563 */ 564 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 565 down_read((&EXT4_I(inode)->i_data_sem)); 566 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 567 retval = ext4_ext_map_blocks(handle, inode, map, flags & 568 EXT4_GET_BLOCKS_KEEP_SIZE); 569 } else { 570 retval = ext4_ind_map_blocks(handle, inode, map, flags & 571 EXT4_GET_BLOCKS_KEEP_SIZE); 572 } 573 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 574 up_read((&EXT4_I(inode)->i_data_sem)); 575 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 int ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 582 /* If it is only a block(s) look up */ 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 584 return retval; 585 586 /* 587 * Returns if the blocks have already allocated 588 * 589 * Note that if blocks have been preallocated 590 * ext4_ext_get_block() returns the create = 0 591 * with buffer head unmapped. 592 */ 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 594 return retval; 595 596 /* 597 * When we call get_blocks without the create flag, the 598 * BH_Unwritten flag could have gotten set if the blocks 599 * requested were part of a uninitialized extent. We need to 600 * clear this flag now that we are committed to convert all or 601 * part of the uninitialized extent to be an initialized 602 * extent. This is because we need to avoid the combination 603 * of BH_Unwritten and BH_Mapped flags being simultaneously 604 * set on the buffer_head. 605 */ 606 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 607 608 /* 609 * New blocks allocate and/or writing to uninitialized extent 610 * will possibly result in updating i_data, so we take 611 * the write lock of i_data_sem, and call get_blocks() 612 * with create == 1 flag. 613 */ 614 down_write((&EXT4_I(inode)->i_data_sem)); 615 616 /* 617 * if the caller is from delayed allocation writeout path 618 * we have already reserved fs blocks for allocation 619 * let the underlying get_block() function know to 620 * avoid double accounting 621 */ 622 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 623 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 624 /* 625 * We need to check for EXT4 here because migrate 626 * could have changed the inode type in between 627 */ 628 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 629 retval = ext4_ext_map_blocks(handle, inode, map, flags); 630 } else { 631 retval = ext4_ind_map_blocks(handle, inode, map, flags); 632 633 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 634 /* 635 * We allocated new blocks which will result in 636 * i_data's format changing. Force the migrate 637 * to fail by clearing migrate flags 638 */ 639 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 640 } 641 642 /* 643 * Update reserved blocks/metadata blocks after successful 644 * block allocation which had been deferred till now. We don't 645 * support fallocate for non extent files. So we can update 646 * reserve space here. 647 */ 648 if ((retval > 0) && 649 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 650 ext4_da_update_reserve_space(inode, retval, 1); 651 } 652 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 653 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 654 655 /* If we have successfully mapped the delayed allocated blocks, 656 * set the BH_Da_Mapped bit on them. Its important to do this 657 * under the protection of i_data_sem. 658 */ 659 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 660 set_buffers_da_mapped(inode, map); 661 } 662 663 up_write((&EXT4_I(inode)->i_data_sem)); 664 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 665 int ret = check_block_validity(inode, map); 666 if (ret != 0) 667 return ret; 668 } 669 return retval; 670 } 671 672 /* Maximum number of blocks we map for direct IO at once. */ 673 #define DIO_MAX_BLOCKS 4096 674 675 static int _ext4_get_block(struct inode *inode, sector_t iblock, 676 struct buffer_head *bh, int flags) 677 { 678 handle_t *handle = ext4_journal_current_handle(); 679 struct ext4_map_blocks map; 680 int ret = 0, started = 0; 681 int dio_credits; 682 683 map.m_lblk = iblock; 684 map.m_len = bh->b_size >> inode->i_blkbits; 685 686 if (flags && !handle) { 687 /* Direct IO write... */ 688 if (map.m_len > DIO_MAX_BLOCKS) 689 map.m_len = DIO_MAX_BLOCKS; 690 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 691 handle = ext4_journal_start(inode, dio_credits); 692 if (IS_ERR(handle)) { 693 ret = PTR_ERR(handle); 694 return ret; 695 } 696 started = 1; 697 } 698 699 ret = ext4_map_blocks(handle, inode, &map, flags); 700 if (ret > 0) { 701 map_bh(bh, inode->i_sb, map.m_pblk); 702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 703 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 704 ret = 0; 705 } 706 if (started) 707 ext4_journal_stop(handle); 708 return ret; 709 } 710 711 int ext4_get_block(struct inode *inode, sector_t iblock, 712 struct buffer_head *bh, int create) 713 { 714 return _ext4_get_block(inode, iblock, bh, 715 create ? EXT4_GET_BLOCKS_CREATE : 0); 716 } 717 718 /* 719 * `handle' can be NULL if create is zero 720 */ 721 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 722 ext4_lblk_t block, int create, int *errp) 723 { 724 struct ext4_map_blocks map; 725 struct buffer_head *bh; 726 int fatal = 0, err; 727 728 J_ASSERT(handle != NULL || create == 0); 729 730 map.m_lblk = block; 731 map.m_len = 1; 732 err = ext4_map_blocks(handle, inode, &map, 733 create ? EXT4_GET_BLOCKS_CREATE : 0); 734 735 /* ensure we send some value back into *errp */ 736 *errp = 0; 737 738 if (err < 0) 739 *errp = err; 740 if (err <= 0) 741 return NULL; 742 743 bh = sb_getblk(inode->i_sb, map.m_pblk); 744 if (!bh) { 745 *errp = -EIO; 746 return NULL; 747 } 748 if (map.m_flags & EXT4_MAP_NEW) { 749 J_ASSERT(create != 0); 750 J_ASSERT(handle != NULL); 751 752 /* 753 * Now that we do not always journal data, we should 754 * keep in mind whether this should always journal the 755 * new buffer as metadata. For now, regular file 756 * writes use ext4_get_block instead, so it's not a 757 * problem. 758 */ 759 lock_buffer(bh); 760 BUFFER_TRACE(bh, "call get_create_access"); 761 fatal = ext4_journal_get_create_access(handle, bh); 762 if (!fatal && !buffer_uptodate(bh)) { 763 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 764 set_buffer_uptodate(bh); 765 } 766 unlock_buffer(bh); 767 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 768 err = ext4_handle_dirty_metadata(handle, inode, bh); 769 if (!fatal) 770 fatal = err; 771 } else { 772 BUFFER_TRACE(bh, "not a new buffer"); 773 } 774 if (fatal) { 775 *errp = fatal; 776 brelse(bh); 777 bh = NULL; 778 } 779 return bh; 780 } 781 782 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 783 ext4_lblk_t block, int create, int *err) 784 { 785 struct buffer_head *bh; 786 787 bh = ext4_getblk(handle, inode, block, create, err); 788 if (!bh) 789 return bh; 790 if (buffer_uptodate(bh)) 791 return bh; 792 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 793 wait_on_buffer(bh); 794 if (buffer_uptodate(bh)) 795 return bh; 796 put_bh(bh); 797 *err = -EIO; 798 return NULL; 799 } 800 801 static int walk_page_buffers(handle_t *handle, 802 struct buffer_head *head, 803 unsigned from, 804 unsigned to, 805 int *partial, 806 int (*fn)(handle_t *handle, 807 struct buffer_head *bh)) 808 { 809 struct buffer_head *bh; 810 unsigned block_start, block_end; 811 unsigned blocksize = head->b_size; 812 int err, ret = 0; 813 struct buffer_head *next; 814 815 for (bh = head, block_start = 0; 816 ret == 0 && (bh != head || !block_start); 817 block_start = block_end, bh = next) { 818 next = bh->b_this_page; 819 block_end = block_start + blocksize; 820 if (block_end <= from || block_start >= to) { 821 if (partial && !buffer_uptodate(bh)) 822 *partial = 1; 823 continue; 824 } 825 err = (*fn)(handle, bh); 826 if (!ret) 827 ret = err; 828 } 829 return ret; 830 } 831 832 /* 833 * To preserve ordering, it is essential that the hole instantiation and 834 * the data write be encapsulated in a single transaction. We cannot 835 * close off a transaction and start a new one between the ext4_get_block() 836 * and the commit_write(). So doing the jbd2_journal_start at the start of 837 * prepare_write() is the right place. 838 * 839 * Also, this function can nest inside ext4_writepage() -> 840 * block_write_full_page(). In that case, we *know* that ext4_writepage() 841 * has generated enough buffer credits to do the whole page. So we won't 842 * block on the journal in that case, which is good, because the caller may 843 * be PF_MEMALLOC. 844 * 845 * By accident, ext4 can be reentered when a transaction is open via 846 * quota file writes. If we were to commit the transaction while thus 847 * reentered, there can be a deadlock - we would be holding a quota 848 * lock, and the commit would never complete if another thread had a 849 * transaction open and was blocking on the quota lock - a ranking 850 * violation. 851 * 852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 853 * will _not_ run commit under these circumstances because handle->h_ref 854 * is elevated. We'll still have enough credits for the tiny quotafile 855 * write. 856 */ 857 static int do_journal_get_write_access(handle_t *handle, 858 struct buffer_head *bh) 859 { 860 int dirty = buffer_dirty(bh); 861 int ret; 862 863 if (!buffer_mapped(bh) || buffer_freed(bh)) 864 return 0; 865 /* 866 * __block_write_begin() could have dirtied some buffers. Clean 867 * the dirty bit as jbd2_journal_get_write_access() could complain 868 * otherwise about fs integrity issues. Setting of the dirty bit 869 * by __block_write_begin() isn't a real problem here as we clear 870 * the bit before releasing a page lock and thus writeback cannot 871 * ever write the buffer. 872 */ 873 if (dirty) 874 clear_buffer_dirty(bh); 875 ret = ext4_journal_get_write_access(handle, bh); 876 if (!ret && dirty) 877 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 878 return ret; 879 } 880 881 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 882 struct buffer_head *bh_result, int create); 883 static int ext4_write_begin(struct file *file, struct address_space *mapping, 884 loff_t pos, unsigned len, unsigned flags, 885 struct page **pagep, void **fsdata) 886 { 887 struct inode *inode = mapping->host; 888 int ret, needed_blocks; 889 handle_t *handle; 890 int retries = 0; 891 struct page *page; 892 pgoff_t index; 893 unsigned from, to; 894 895 trace_ext4_write_begin(inode, pos, len, flags); 896 /* 897 * Reserve one block more for addition to orphan list in case 898 * we allocate blocks but write fails for some reason 899 */ 900 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 901 index = pos >> PAGE_CACHE_SHIFT; 902 from = pos & (PAGE_CACHE_SIZE - 1); 903 to = from + len; 904 905 retry: 906 handle = ext4_journal_start(inode, needed_blocks); 907 if (IS_ERR(handle)) { 908 ret = PTR_ERR(handle); 909 goto out; 910 } 911 912 /* We cannot recurse into the filesystem as the transaction is already 913 * started */ 914 flags |= AOP_FLAG_NOFS; 915 916 page = grab_cache_page_write_begin(mapping, index, flags); 917 if (!page) { 918 ext4_journal_stop(handle); 919 ret = -ENOMEM; 920 goto out; 921 } 922 *pagep = page; 923 924 if (ext4_should_dioread_nolock(inode)) 925 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 926 else 927 ret = __block_write_begin(page, pos, len, ext4_get_block); 928 929 if (!ret && ext4_should_journal_data(inode)) { 930 ret = walk_page_buffers(handle, page_buffers(page), 931 from, to, NULL, do_journal_get_write_access); 932 } 933 934 if (ret) { 935 unlock_page(page); 936 page_cache_release(page); 937 /* 938 * __block_write_begin may have instantiated a few blocks 939 * outside i_size. Trim these off again. Don't need 940 * i_size_read because we hold i_mutex. 941 * 942 * Add inode to orphan list in case we crash before 943 * truncate finishes 944 */ 945 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 946 ext4_orphan_add(handle, inode); 947 948 ext4_journal_stop(handle); 949 if (pos + len > inode->i_size) { 950 ext4_truncate_failed_write(inode); 951 /* 952 * If truncate failed early the inode might 953 * still be on the orphan list; we need to 954 * make sure the inode is removed from the 955 * orphan list in that case. 956 */ 957 if (inode->i_nlink) 958 ext4_orphan_del(NULL, inode); 959 } 960 } 961 962 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 963 goto retry; 964 out: 965 return ret; 966 } 967 968 /* For write_end() in data=journal mode */ 969 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 970 { 971 if (!buffer_mapped(bh) || buffer_freed(bh)) 972 return 0; 973 set_buffer_uptodate(bh); 974 return ext4_handle_dirty_metadata(handle, NULL, bh); 975 } 976 977 static int ext4_generic_write_end(struct file *file, 978 struct address_space *mapping, 979 loff_t pos, unsigned len, unsigned copied, 980 struct page *page, void *fsdata) 981 { 982 int i_size_changed = 0; 983 struct inode *inode = mapping->host; 984 handle_t *handle = ext4_journal_current_handle(); 985 986 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 987 988 /* 989 * No need to use i_size_read() here, the i_size 990 * cannot change under us because we hold i_mutex. 991 * 992 * But it's important to update i_size while still holding page lock: 993 * page writeout could otherwise come in and zero beyond i_size. 994 */ 995 if (pos + copied > inode->i_size) { 996 i_size_write(inode, pos + copied); 997 i_size_changed = 1; 998 } 999 1000 if (pos + copied > EXT4_I(inode)->i_disksize) { 1001 /* We need to mark inode dirty even if 1002 * new_i_size is less that inode->i_size 1003 * bu greater than i_disksize.(hint delalloc) 1004 */ 1005 ext4_update_i_disksize(inode, (pos + copied)); 1006 i_size_changed = 1; 1007 } 1008 unlock_page(page); 1009 page_cache_release(page); 1010 1011 /* 1012 * Don't mark the inode dirty under page lock. First, it unnecessarily 1013 * makes the holding time of page lock longer. Second, it forces lock 1014 * ordering of page lock and transaction start for journaling 1015 * filesystems. 1016 */ 1017 if (i_size_changed) 1018 ext4_mark_inode_dirty(handle, inode); 1019 1020 return copied; 1021 } 1022 1023 /* 1024 * We need to pick up the new inode size which generic_commit_write gave us 1025 * `file' can be NULL - eg, when called from page_symlink(). 1026 * 1027 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1028 * buffers are managed internally. 1029 */ 1030 static int ext4_ordered_write_end(struct file *file, 1031 struct address_space *mapping, 1032 loff_t pos, unsigned len, unsigned copied, 1033 struct page *page, void *fsdata) 1034 { 1035 handle_t *handle = ext4_journal_current_handle(); 1036 struct inode *inode = mapping->host; 1037 int ret = 0, ret2; 1038 1039 trace_ext4_ordered_write_end(inode, pos, len, copied); 1040 ret = ext4_jbd2_file_inode(handle, inode); 1041 1042 if (ret == 0) { 1043 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1044 page, fsdata); 1045 copied = ret2; 1046 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1047 /* if we have allocated more blocks and copied 1048 * less. We will have blocks allocated outside 1049 * inode->i_size. So truncate them 1050 */ 1051 ext4_orphan_add(handle, inode); 1052 if (ret2 < 0) 1053 ret = ret2; 1054 } else { 1055 unlock_page(page); 1056 page_cache_release(page); 1057 } 1058 1059 ret2 = ext4_journal_stop(handle); 1060 if (!ret) 1061 ret = ret2; 1062 1063 if (pos + len > inode->i_size) { 1064 ext4_truncate_failed_write(inode); 1065 /* 1066 * If truncate failed early the inode might still be 1067 * on the orphan list; we need to make sure the inode 1068 * is removed from the orphan list in that case. 1069 */ 1070 if (inode->i_nlink) 1071 ext4_orphan_del(NULL, inode); 1072 } 1073 1074 1075 return ret ? ret : copied; 1076 } 1077 1078 static int ext4_writeback_write_end(struct file *file, 1079 struct address_space *mapping, 1080 loff_t pos, unsigned len, unsigned copied, 1081 struct page *page, void *fsdata) 1082 { 1083 handle_t *handle = ext4_journal_current_handle(); 1084 struct inode *inode = mapping->host; 1085 int ret = 0, ret2; 1086 1087 trace_ext4_writeback_write_end(inode, pos, len, copied); 1088 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1089 page, fsdata); 1090 copied = ret2; 1091 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1092 /* if we have allocated more blocks and copied 1093 * less. We will have blocks allocated outside 1094 * inode->i_size. So truncate them 1095 */ 1096 ext4_orphan_add(handle, inode); 1097 1098 if (ret2 < 0) 1099 ret = ret2; 1100 1101 ret2 = ext4_journal_stop(handle); 1102 if (!ret) 1103 ret = ret2; 1104 1105 if (pos + len > inode->i_size) { 1106 ext4_truncate_failed_write(inode); 1107 /* 1108 * If truncate failed early the inode might still be 1109 * on the orphan list; we need to make sure the inode 1110 * is removed from the orphan list in that case. 1111 */ 1112 if (inode->i_nlink) 1113 ext4_orphan_del(NULL, inode); 1114 } 1115 1116 return ret ? ret : copied; 1117 } 1118 1119 static int ext4_journalled_write_end(struct file *file, 1120 struct address_space *mapping, 1121 loff_t pos, unsigned len, unsigned copied, 1122 struct page *page, void *fsdata) 1123 { 1124 handle_t *handle = ext4_journal_current_handle(); 1125 struct inode *inode = mapping->host; 1126 int ret = 0, ret2; 1127 int partial = 0; 1128 unsigned from, to; 1129 loff_t new_i_size; 1130 1131 trace_ext4_journalled_write_end(inode, pos, len, copied); 1132 from = pos & (PAGE_CACHE_SIZE - 1); 1133 to = from + len; 1134 1135 BUG_ON(!ext4_handle_valid(handle)); 1136 1137 if (copied < len) { 1138 if (!PageUptodate(page)) 1139 copied = 0; 1140 page_zero_new_buffers(page, from+copied, to); 1141 } 1142 1143 ret = walk_page_buffers(handle, page_buffers(page), from, 1144 to, &partial, write_end_fn); 1145 if (!partial) 1146 SetPageUptodate(page); 1147 new_i_size = pos + copied; 1148 if (new_i_size > inode->i_size) 1149 i_size_write(inode, pos+copied); 1150 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1151 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1152 if (new_i_size > EXT4_I(inode)->i_disksize) { 1153 ext4_update_i_disksize(inode, new_i_size); 1154 ret2 = ext4_mark_inode_dirty(handle, inode); 1155 if (!ret) 1156 ret = ret2; 1157 } 1158 1159 unlock_page(page); 1160 page_cache_release(page); 1161 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1162 /* if we have allocated more blocks and copied 1163 * less. We will have blocks allocated outside 1164 * inode->i_size. So truncate them 1165 */ 1166 ext4_orphan_add(handle, inode); 1167 1168 ret2 = ext4_journal_stop(handle); 1169 if (!ret) 1170 ret = ret2; 1171 if (pos + len > inode->i_size) { 1172 ext4_truncate_failed_write(inode); 1173 /* 1174 * If truncate failed early the inode might still be 1175 * on the orphan list; we need to make sure the inode 1176 * is removed from the orphan list in that case. 1177 */ 1178 if (inode->i_nlink) 1179 ext4_orphan_del(NULL, inode); 1180 } 1181 1182 return ret ? ret : copied; 1183 } 1184 1185 /* 1186 * Reserve a single cluster located at lblock 1187 */ 1188 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1189 { 1190 int retries = 0; 1191 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1192 struct ext4_inode_info *ei = EXT4_I(inode); 1193 unsigned int md_needed; 1194 int ret; 1195 ext4_lblk_t save_last_lblock; 1196 int save_len; 1197 1198 /* 1199 * We will charge metadata quota at writeout time; this saves 1200 * us from metadata over-estimation, though we may go over by 1201 * a small amount in the end. Here we just reserve for data. 1202 */ 1203 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1204 if (ret) 1205 return ret; 1206 1207 /* 1208 * recalculate the amount of metadata blocks to reserve 1209 * in order to allocate nrblocks 1210 * worse case is one extent per block 1211 */ 1212 repeat: 1213 spin_lock(&ei->i_block_reservation_lock); 1214 /* 1215 * ext4_calc_metadata_amount() has side effects, which we have 1216 * to be prepared undo if we fail to claim space. 1217 */ 1218 save_len = ei->i_da_metadata_calc_len; 1219 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1220 md_needed = EXT4_NUM_B2C(sbi, 1221 ext4_calc_metadata_amount(inode, lblock)); 1222 trace_ext4_da_reserve_space(inode, md_needed); 1223 1224 /* 1225 * We do still charge estimated metadata to the sb though; 1226 * we cannot afford to run out of free blocks. 1227 */ 1228 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1229 ei->i_da_metadata_calc_len = save_len; 1230 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1231 spin_unlock(&ei->i_block_reservation_lock); 1232 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1233 yield(); 1234 goto repeat; 1235 } 1236 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1237 return -ENOSPC; 1238 } 1239 ei->i_reserved_data_blocks++; 1240 ei->i_reserved_meta_blocks += md_needed; 1241 spin_unlock(&ei->i_block_reservation_lock); 1242 1243 return 0; /* success */ 1244 } 1245 1246 static void ext4_da_release_space(struct inode *inode, int to_free) 1247 { 1248 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1249 struct ext4_inode_info *ei = EXT4_I(inode); 1250 1251 if (!to_free) 1252 return; /* Nothing to release, exit */ 1253 1254 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1255 1256 trace_ext4_da_release_space(inode, to_free); 1257 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1258 /* 1259 * if there aren't enough reserved blocks, then the 1260 * counter is messed up somewhere. Since this 1261 * function is called from invalidate page, it's 1262 * harmless to return without any action. 1263 */ 1264 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1265 "ino %lu, to_free %d with only %d reserved " 1266 "data blocks", inode->i_ino, to_free, 1267 ei->i_reserved_data_blocks); 1268 WARN_ON(1); 1269 to_free = ei->i_reserved_data_blocks; 1270 } 1271 ei->i_reserved_data_blocks -= to_free; 1272 1273 if (ei->i_reserved_data_blocks == 0) { 1274 /* 1275 * We can release all of the reserved metadata blocks 1276 * only when we have written all of the delayed 1277 * allocation blocks. 1278 * Note that in case of bigalloc, i_reserved_meta_blocks, 1279 * i_reserved_data_blocks, etc. refer to number of clusters. 1280 */ 1281 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1282 ei->i_reserved_meta_blocks); 1283 ei->i_reserved_meta_blocks = 0; 1284 ei->i_da_metadata_calc_len = 0; 1285 } 1286 1287 /* update fs dirty data blocks counter */ 1288 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1289 1290 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1291 1292 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1293 } 1294 1295 static void ext4_da_page_release_reservation(struct page *page, 1296 unsigned long offset) 1297 { 1298 int to_release = 0; 1299 struct buffer_head *head, *bh; 1300 unsigned int curr_off = 0; 1301 struct inode *inode = page->mapping->host; 1302 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1303 int num_clusters; 1304 1305 head = page_buffers(page); 1306 bh = head; 1307 do { 1308 unsigned int next_off = curr_off + bh->b_size; 1309 1310 if ((offset <= curr_off) && (buffer_delay(bh))) { 1311 to_release++; 1312 clear_buffer_delay(bh); 1313 clear_buffer_da_mapped(bh); 1314 } 1315 curr_off = next_off; 1316 } while ((bh = bh->b_this_page) != head); 1317 1318 /* If we have released all the blocks belonging to a cluster, then we 1319 * need to release the reserved space for that cluster. */ 1320 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1321 while (num_clusters > 0) { 1322 ext4_fsblk_t lblk; 1323 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1324 ((num_clusters - 1) << sbi->s_cluster_bits); 1325 if (sbi->s_cluster_ratio == 1 || 1326 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1327 ext4_da_release_space(inode, 1); 1328 1329 num_clusters--; 1330 } 1331 } 1332 1333 /* 1334 * Delayed allocation stuff 1335 */ 1336 1337 /* 1338 * mpage_da_submit_io - walks through extent of pages and try to write 1339 * them with writepage() call back 1340 * 1341 * @mpd->inode: inode 1342 * @mpd->first_page: first page of the extent 1343 * @mpd->next_page: page after the last page of the extent 1344 * 1345 * By the time mpage_da_submit_io() is called we expect all blocks 1346 * to be allocated. this may be wrong if allocation failed. 1347 * 1348 * As pages are already locked by write_cache_pages(), we can't use it 1349 */ 1350 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1351 struct ext4_map_blocks *map) 1352 { 1353 struct pagevec pvec; 1354 unsigned long index, end; 1355 int ret = 0, err, nr_pages, i; 1356 struct inode *inode = mpd->inode; 1357 struct address_space *mapping = inode->i_mapping; 1358 loff_t size = i_size_read(inode); 1359 unsigned int len, block_start; 1360 struct buffer_head *bh, *page_bufs = NULL; 1361 int journal_data = ext4_should_journal_data(inode); 1362 sector_t pblock = 0, cur_logical = 0; 1363 struct ext4_io_submit io_submit; 1364 1365 BUG_ON(mpd->next_page <= mpd->first_page); 1366 memset(&io_submit, 0, sizeof(io_submit)); 1367 /* 1368 * We need to start from the first_page to the next_page - 1 1369 * to make sure we also write the mapped dirty buffer_heads. 1370 * If we look at mpd->b_blocknr we would only be looking 1371 * at the currently mapped buffer_heads. 1372 */ 1373 index = mpd->first_page; 1374 end = mpd->next_page - 1; 1375 1376 pagevec_init(&pvec, 0); 1377 while (index <= end) { 1378 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1379 if (nr_pages == 0) 1380 break; 1381 for (i = 0; i < nr_pages; i++) { 1382 int commit_write = 0, skip_page = 0; 1383 struct page *page = pvec.pages[i]; 1384 1385 index = page->index; 1386 if (index > end) 1387 break; 1388 1389 if (index == size >> PAGE_CACHE_SHIFT) 1390 len = size & ~PAGE_CACHE_MASK; 1391 else 1392 len = PAGE_CACHE_SIZE; 1393 if (map) { 1394 cur_logical = index << (PAGE_CACHE_SHIFT - 1395 inode->i_blkbits); 1396 pblock = map->m_pblk + (cur_logical - 1397 map->m_lblk); 1398 } 1399 index++; 1400 1401 BUG_ON(!PageLocked(page)); 1402 BUG_ON(PageWriteback(page)); 1403 1404 /* 1405 * If the page does not have buffers (for 1406 * whatever reason), try to create them using 1407 * __block_write_begin. If this fails, 1408 * skip the page and move on. 1409 */ 1410 if (!page_has_buffers(page)) { 1411 if (__block_write_begin(page, 0, len, 1412 noalloc_get_block_write)) { 1413 skip_page: 1414 unlock_page(page); 1415 continue; 1416 } 1417 commit_write = 1; 1418 } 1419 1420 bh = page_bufs = page_buffers(page); 1421 block_start = 0; 1422 do { 1423 if (!bh) 1424 goto skip_page; 1425 if (map && (cur_logical >= map->m_lblk) && 1426 (cur_logical <= (map->m_lblk + 1427 (map->m_len - 1)))) { 1428 if (buffer_delay(bh)) { 1429 clear_buffer_delay(bh); 1430 bh->b_blocknr = pblock; 1431 } 1432 if (buffer_da_mapped(bh)) 1433 clear_buffer_da_mapped(bh); 1434 if (buffer_unwritten(bh) || 1435 buffer_mapped(bh)) 1436 BUG_ON(bh->b_blocknr != pblock); 1437 if (map->m_flags & EXT4_MAP_UNINIT) 1438 set_buffer_uninit(bh); 1439 clear_buffer_unwritten(bh); 1440 } 1441 1442 /* 1443 * skip page if block allocation undone and 1444 * block is dirty 1445 */ 1446 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1447 skip_page = 1; 1448 bh = bh->b_this_page; 1449 block_start += bh->b_size; 1450 cur_logical++; 1451 pblock++; 1452 } while (bh != page_bufs); 1453 1454 if (skip_page) 1455 goto skip_page; 1456 1457 if (commit_write) 1458 /* mark the buffer_heads as dirty & uptodate */ 1459 block_commit_write(page, 0, len); 1460 1461 clear_page_dirty_for_io(page); 1462 /* 1463 * Delalloc doesn't support data journalling, 1464 * but eventually maybe we'll lift this 1465 * restriction. 1466 */ 1467 if (unlikely(journal_data && PageChecked(page))) 1468 err = __ext4_journalled_writepage(page, len); 1469 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1470 err = ext4_bio_write_page(&io_submit, page, 1471 len, mpd->wbc); 1472 else if (buffer_uninit(page_bufs)) { 1473 ext4_set_bh_endio(page_bufs, inode); 1474 err = block_write_full_page_endio(page, 1475 noalloc_get_block_write, 1476 mpd->wbc, ext4_end_io_buffer_write); 1477 } else 1478 err = block_write_full_page(page, 1479 noalloc_get_block_write, mpd->wbc); 1480 1481 if (!err) 1482 mpd->pages_written++; 1483 /* 1484 * In error case, we have to continue because 1485 * remaining pages are still locked 1486 */ 1487 if (ret == 0) 1488 ret = err; 1489 } 1490 pagevec_release(&pvec); 1491 } 1492 ext4_io_submit(&io_submit); 1493 return ret; 1494 } 1495 1496 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1497 { 1498 int nr_pages, i; 1499 pgoff_t index, end; 1500 struct pagevec pvec; 1501 struct inode *inode = mpd->inode; 1502 struct address_space *mapping = inode->i_mapping; 1503 1504 index = mpd->first_page; 1505 end = mpd->next_page - 1; 1506 1507 pagevec_init(&pvec, 0); 1508 while (index <= end) { 1509 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1510 if (nr_pages == 0) 1511 break; 1512 for (i = 0; i < nr_pages; i++) { 1513 struct page *page = pvec.pages[i]; 1514 if (page->index > end) 1515 break; 1516 BUG_ON(!PageLocked(page)); 1517 BUG_ON(PageWriteback(page)); 1518 block_invalidatepage(page, 0); 1519 ClearPageUptodate(page); 1520 unlock_page(page); 1521 } 1522 index = pvec.pages[nr_pages - 1]->index + 1; 1523 pagevec_release(&pvec); 1524 } 1525 return; 1526 } 1527 1528 static void ext4_print_free_blocks(struct inode *inode) 1529 { 1530 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1531 struct super_block *sb = inode->i_sb; 1532 1533 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1534 EXT4_C2B(EXT4_SB(inode->i_sb), 1535 ext4_count_free_clusters(inode->i_sb))); 1536 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1537 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1538 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1539 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1540 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1541 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1542 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1543 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1544 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1545 EXT4_I(inode)->i_reserved_data_blocks); 1546 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1547 EXT4_I(inode)->i_reserved_meta_blocks); 1548 return; 1549 } 1550 1551 /* 1552 * mpage_da_map_and_submit - go through given space, map them 1553 * if necessary, and then submit them for I/O 1554 * 1555 * @mpd - bh describing space 1556 * 1557 * The function skips space we know is already mapped to disk blocks. 1558 * 1559 */ 1560 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1561 { 1562 int err, blks, get_blocks_flags; 1563 struct ext4_map_blocks map, *mapp = NULL; 1564 sector_t next = mpd->b_blocknr; 1565 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1566 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1567 handle_t *handle = NULL; 1568 1569 /* 1570 * If the blocks are mapped already, or we couldn't accumulate 1571 * any blocks, then proceed immediately to the submission stage. 1572 */ 1573 if ((mpd->b_size == 0) || 1574 ((mpd->b_state & (1 << BH_Mapped)) && 1575 !(mpd->b_state & (1 << BH_Delay)) && 1576 !(mpd->b_state & (1 << BH_Unwritten)))) 1577 goto submit_io; 1578 1579 handle = ext4_journal_current_handle(); 1580 BUG_ON(!handle); 1581 1582 /* 1583 * Call ext4_map_blocks() to allocate any delayed allocation 1584 * blocks, or to convert an uninitialized extent to be 1585 * initialized (in the case where we have written into 1586 * one or more preallocated blocks). 1587 * 1588 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1589 * indicate that we are on the delayed allocation path. This 1590 * affects functions in many different parts of the allocation 1591 * call path. This flag exists primarily because we don't 1592 * want to change *many* call functions, so ext4_map_blocks() 1593 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1594 * inode's allocation semaphore is taken. 1595 * 1596 * If the blocks in questions were delalloc blocks, set 1597 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1598 * variables are updated after the blocks have been allocated. 1599 */ 1600 map.m_lblk = next; 1601 map.m_len = max_blocks; 1602 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1603 if (ext4_should_dioread_nolock(mpd->inode)) 1604 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1605 if (mpd->b_state & (1 << BH_Delay)) 1606 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1607 1608 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1609 if (blks < 0) { 1610 struct super_block *sb = mpd->inode->i_sb; 1611 1612 err = blks; 1613 /* 1614 * If get block returns EAGAIN or ENOSPC and there 1615 * appears to be free blocks we will just let 1616 * mpage_da_submit_io() unlock all of the pages. 1617 */ 1618 if (err == -EAGAIN) 1619 goto submit_io; 1620 1621 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1622 mpd->retval = err; 1623 goto submit_io; 1624 } 1625 1626 /* 1627 * get block failure will cause us to loop in 1628 * writepages, because a_ops->writepage won't be able 1629 * to make progress. The page will be redirtied by 1630 * writepage and writepages will again try to write 1631 * the same. 1632 */ 1633 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1634 ext4_msg(sb, KERN_CRIT, 1635 "delayed block allocation failed for inode %lu " 1636 "at logical offset %llu with max blocks %zd " 1637 "with error %d", mpd->inode->i_ino, 1638 (unsigned long long) next, 1639 mpd->b_size >> mpd->inode->i_blkbits, err); 1640 ext4_msg(sb, KERN_CRIT, 1641 "This should not happen!! Data will be lost\n"); 1642 if (err == -ENOSPC) 1643 ext4_print_free_blocks(mpd->inode); 1644 } 1645 /* invalidate all the pages */ 1646 ext4_da_block_invalidatepages(mpd); 1647 1648 /* Mark this page range as having been completed */ 1649 mpd->io_done = 1; 1650 return; 1651 } 1652 BUG_ON(blks == 0); 1653 1654 mapp = ↦ 1655 if (map.m_flags & EXT4_MAP_NEW) { 1656 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1657 int i; 1658 1659 for (i = 0; i < map.m_len; i++) 1660 unmap_underlying_metadata(bdev, map.m_pblk + i); 1661 1662 if (ext4_should_order_data(mpd->inode)) { 1663 err = ext4_jbd2_file_inode(handle, mpd->inode); 1664 if (err) { 1665 /* Only if the journal is aborted */ 1666 mpd->retval = err; 1667 goto submit_io; 1668 } 1669 } 1670 } 1671 1672 /* 1673 * Update on-disk size along with block allocation. 1674 */ 1675 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1676 if (disksize > i_size_read(mpd->inode)) 1677 disksize = i_size_read(mpd->inode); 1678 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1679 ext4_update_i_disksize(mpd->inode, disksize); 1680 err = ext4_mark_inode_dirty(handle, mpd->inode); 1681 if (err) 1682 ext4_error(mpd->inode->i_sb, 1683 "Failed to mark inode %lu dirty", 1684 mpd->inode->i_ino); 1685 } 1686 1687 submit_io: 1688 mpage_da_submit_io(mpd, mapp); 1689 mpd->io_done = 1; 1690 } 1691 1692 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1693 (1 << BH_Delay) | (1 << BH_Unwritten)) 1694 1695 /* 1696 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1697 * 1698 * @mpd->lbh - extent of blocks 1699 * @logical - logical number of the block in the file 1700 * @bh - bh of the block (used to access block's state) 1701 * 1702 * the function is used to collect contig. blocks in same state 1703 */ 1704 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1705 sector_t logical, size_t b_size, 1706 unsigned long b_state) 1707 { 1708 sector_t next; 1709 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1710 1711 /* 1712 * XXX Don't go larger than mballoc is willing to allocate 1713 * This is a stopgap solution. We eventually need to fold 1714 * mpage_da_submit_io() into this function and then call 1715 * ext4_map_blocks() multiple times in a loop 1716 */ 1717 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1718 goto flush_it; 1719 1720 /* check if thereserved journal credits might overflow */ 1721 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1722 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1723 /* 1724 * With non-extent format we are limited by the journal 1725 * credit available. Total credit needed to insert 1726 * nrblocks contiguous blocks is dependent on the 1727 * nrblocks. So limit nrblocks. 1728 */ 1729 goto flush_it; 1730 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1731 EXT4_MAX_TRANS_DATA) { 1732 /* 1733 * Adding the new buffer_head would make it cross the 1734 * allowed limit for which we have journal credit 1735 * reserved. So limit the new bh->b_size 1736 */ 1737 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1738 mpd->inode->i_blkbits; 1739 /* we will do mpage_da_submit_io in the next loop */ 1740 } 1741 } 1742 /* 1743 * First block in the extent 1744 */ 1745 if (mpd->b_size == 0) { 1746 mpd->b_blocknr = logical; 1747 mpd->b_size = b_size; 1748 mpd->b_state = b_state & BH_FLAGS; 1749 return; 1750 } 1751 1752 next = mpd->b_blocknr + nrblocks; 1753 /* 1754 * Can we merge the block to our big extent? 1755 */ 1756 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1757 mpd->b_size += b_size; 1758 return; 1759 } 1760 1761 flush_it: 1762 /* 1763 * We couldn't merge the block to our extent, so we 1764 * need to flush current extent and start new one 1765 */ 1766 mpage_da_map_and_submit(mpd); 1767 return; 1768 } 1769 1770 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1771 { 1772 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1773 } 1774 1775 /* 1776 * This function is grabs code from the very beginning of 1777 * ext4_map_blocks, but assumes that the caller is from delayed write 1778 * time. This function looks up the requested blocks and sets the 1779 * buffer delay bit under the protection of i_data_sem. 1780 */ 1781 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1782 struct ext4_map_blocks *map, 1783 struct buffer_head *bh) 1784 { 1785 int retval; 1786 sector_t invalid_block = ~((sector_t) 0xffff); 1787 1788 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1789 invalid_block = ~0; 1790 1791 map->m_flags = 0; 1792 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1793 "logical block %lu\n", inode->i_ino, map->m_len, 1794 (unsigned long) map->m_lblk); 1795 /* 1796 * Try to see if we can get the block without requesting a new 1797 * file system block. 1798 */ 1799 down_read((&EXT4_I(inode)->i_data_sem)); 1800 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1801 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1802 else 1803 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1804 1805 if (retval == 0) { 1806 /* 1807 * XXX: __block_prepare_write() unmaps passed block, 1808 * is it OK? 1809 */ 1810 /* If the block was allocated from previously allocated cluster, 1811 * then we dont need to reserve it again. */ 1812 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1813 retval = ext4_da_reserve_space(inode, iblock); 1814 if (retval) 1815 /* not enough space to reserve */ 1816 goto out_unlock; 1817 } 1818 1819 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1820 * and it should not appear on the bh->b_state. 1821 */ 1822 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1823 1824 map_bh(bh, inode->i_sb, invalid_block); 1825 set_buffer_new(bh); 1826 set_buffer_delay(bh); 1827 } 1828 1829 out_unlock: 1830 up_read((&EXT4_I(inode)->i_data_sem)); 1831 1832 return retval; 1833 } 1834 1835 /* 1836 * This is a special get_blocks_t callback which is used by 1837 * ext4_da_write_begin(). It will either return mapped block or 1838 * reserve space for a single block. 1839 * 1840 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1841 * We also have b_blocknr = -1 and b_bdev initialized properly 1842 * 1843 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1844 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1845 * initialized properly. 1846 */ 1847 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1848 struct buffer_head *bh, int create) 1849 { 1850 struct ext4_map_blocks map; 1851 int ret = 0; 1852 1853 BUG_ON(create == 0); 1854 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1855 1856 map.m_lblk = iblock; 1857 map.m_len = 1; 1858 1859 /* 1860 * first, we need to know whether the block is allocated already 1861 * preallocated blocks are unmapped but should treated 1862 * the same as allocated blocks. 1863 */ 1864 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1865 if (ret <= 0) 1866 return ret; 1867 1868 map_bh(bh, inode->i_sb, map.m_pblk); 1869 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1870 1871 if (buffer_unwritten(bh)) { 1872 /* A delayed write to unwritten bh should be marked 1873 * new and mapped. Mapped ensures that we don't do 1874 * get_block multiple times when we write to the same 1875 * offset and new ensures that we do proper zero out 1876 * for partial write. 1877 */ 1878 set_buffer_new(bh); 1879 set_buffer_mapped(bh); 1880 } 1881 return 0; 1882 } 1883 1884 /* 1885 * This function is used as a standard get_block_t calback function 1886 * when there is no desire to allocate any blocks. It is used as a 1887 * callback function for block_write_begin() and block_write_full_page(). 1888 * These functions should only try to map a single block at a time. 1889 * 1890 * Since this function doesn't do block allocations even if the caller 1891 * requests it by passing in create=1, it is critically important that 1892 * any caller checks to make sure that any buffer heads are returned 1893 * by this function are either all already mapped or marked for 1894 * delayed allocation before calling block_write_full_page(). Otherwise, 1895 * b_blocknr could be left unitialized, and the page write functions will 1896 * be taken by surprise. 1897 */ 1898 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1899 struct buffer_head *bh_result, int create) 1900 { 1901 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1902 return _ext4_get_block(inode, iblock, bh_result, 0); 1903 } 1904 1905 static int bget_one(handle_t *handle, struct buffer_head *bh) 1906 { 1907 get_bh(bh); 1908 return 0; 1909 } 1910 1911 static int bput_one(handle_t *handle, struct buffer_head *bh) 1912 { 1913 put_bh(bh); 1914 return 0; 1915 } 1916 1917 static int __ext4_journalled_writepage(struct page *page, 1918 unsigned int len) 1919 { 1920 struct address_space *mapping = page->mapping; 1921 struct inode *inode = mapping->host; 1922 struct buffer_head *page_bufs; 1923 handle_t *handle = NULL; 1924 int ret = 0; 1925 int err; 1926 1927 ClearPageChecked(page); 1928 page_bufs = page_buffers(page); 1929 BUG_ON(!page_bufs); 1930 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1931 /* As soon as we unlock the page, it can go away, but we have 1932 * references to buffers so we are safe */ 1933 unlock_page(page); 1934 1935 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1936 if (IS_ERR(handle)) { 1937 ret = PTR_ERR(handle); 1938 goto out; 1939 } 1940 1941 BUG_ON(!ext4_handle_valid(handle)); 1942 1943 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1944 do_journal_get_write_access); 1945 1946 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1947 write_end_fn); 1948 if (ret == 0) 1949 ret = err; 1950 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1951 err = ext4_journal_stop(handle); 1952 if (!ret) 1953 ret = err; 1954 1955 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1956 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1957 out: 1958 return ret; 1959 } 1960 1961 /* 1962 * Note that we don't need to start a transaction unless we're journaling data 1963 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1964 * need to file the inode to the transaction's list in ordered mode because if 1965 * we are writing back data added by write(), the inode is already there and if 1966 * we are writing back data modified via mmap(), no one guarantees in which 1967 * transaction the data will hit the disk. In case we are journaling data, we 1968 * cannot start transaction directly because transaction start ranks above page 1969 * lock so we have to do some magic. 1970 * 1971 * This function can get called via... 1972 * - ext4_da_writepages after taking page lock (have journal handle) 1973 * - journal_submit_inode_data_buffers (no journal handle) 1974 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1975 * - grab_page_cache when doing write_begin (have journal handle) 1976 * 1977 * We don't do any block allocation in this function. If we have page with 1978 * multiple blocks we need to write those buffer_heads that are mapped. This 1979 * is important for mmaped based write. So if we do with blocksize 1K 1980 * truncate(f, 1024); 1981 * a = mmap(f, 0, 4096); 1982 * a[0] = 'a'; 1983 * truncate(f, 4096); 1984 * we have in the page first buffer_head mapped via page_mkwrite call back 1985 * but other buffer_heads would be unmapped but dirty (dirty done via the 1986 * do_wp_page). So writepage should write the first block. If we modify 1987 * the mmap area beyond 1024 we will again get a page_fault and the 1988 * page_mkwrite callback will do the block allocation and mark the 1989 * buffer_heads mapped. 1990 * 1991 * We redirty the page if we have any buffer_heads that is either delay or 1992 * unwritten in the page. 1993 * 1994 * We can get recursively called as show below. 1995 * 1996 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1997 * ext4_writepage() 1998 * 1999 * But since we don't do any block allocation we should not deadlock. 2000 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2001 */ 2002 static int ext4_writepage(struct page *page, 2003 struct writeback_control *wbc) 2004 { 2005 int ret = 0, commit_write = 0; 2006 loff_t size; 2007 unsigned int len; 2008 struct buffer_head *page_bufs = NULL; 2009 struct inode *inode = page->mapping->host; 2010 2011 trace_ext4_writepage(page); 2012 size = i_size_read(inode); 2013 if (page->index == size >> PAGE_CACHE_SHIFT) 2014 len = size & ~PAGE_CACHE_MASK; 2015 else 2016 len = PAGE_CACHE_SIZE; 2017 2018 /* 2019 * If the page does not have buffers (for whatever reason), 2020 * try to create them using __block_write_begin. If this 2021 * fails, redirty the page and move on. 2022 */ 2023 if (!page_has_buffers(page)) { 2024 if (__block_write_begin(page, 0, len, 2025 noalloc_get_block_write)) { 2026 redirty_page: 2027 redirty_page_for_writepage(wbc, page); 2028 unlock_page(page); 2029 return 0; 2030 } 2031 commit_write = 1; 2032 } 2033 page_bufs = page_buffers(page); 2034 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2035 ext4_bh_delay_or_unwritten)) { 2036 /* 2037 * We don't want to do block allocation, so redirty 2038 * the page and return. We may reach here when we do 2039 * a journal commit via journal_submit_inode_data_buffers. 2040 * We can also reach here via shrink_page_list but it 2041 * should never be for direct reclaim so warn if that 2042 * happens 2043 */ 2044 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 2045 PF_MEMALLOC); 2046 goto redirty_page; 2047 } 2048 if (commit_write) 2049 /* now mark the buffer_heads as dirty and uptodate */ 2050 block_commit_write(page, 0, len); 2051 2052 if (PageChecked(page) && ext4_should_journal_data(inode)) 2053 /* 2054 * It's mmapped pagecache. Add buffers and journal it. There 2055 * doesn't seem much point in redirtying the page here. 2056 */ 2057 return __ext4_journalled_writepage(page, len); 2058 2059 if (buffer_uninit(page_bufs)) { 2060 ext4_set_bh_endio(page_bufs, inode); 2061 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2062 wbc, ext4_end_io_buffer_write); 2063 } else 2064 ret = block_write_full_page(page, noalloc_get_block_write, 2065 wbc); 2066 2067 return ret; 2068 } 2069 2070 /* 2071 * This is called via ext4_da_writepages() to 2072 * calculate the total number of credits to reserve to fit 2073 * a single extent allocation into a single transaction, 2074 * ext4_da_writpeages() will loop calling this before 2075 * the block allocation. 2076 */ 2077 2078 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2079 { 2080 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2081 2082 /* 2083 * With non-extent format the journal credit needed to 2084 * insert nrblocks contiguous block is dependent on 2085 * number of contiguous block. So we will limit 2086 * number of contiguous block to a sane value 2087 */ 2088 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2089 (max_blocks > EXT4_MAX_TRANS_DATA)) 2090 max_blocks = EXT4_MAX_TRANS_DATA; 2091 2092 return ext4_chunk_trans_blocks(inode, max_blocks); 2093 } 2094 2095 /* 2096 * write_cache_pages_da - walk the list of dirty pages of the given 2097 * address space and accumulate pages that need writing, and call 2098 * mpage_da_map_and_submit to map a single contiguous memory region 2099 * and then write them. 2100 */ 2101 static int write_cache_pages_da(struct address_space *mapping, 2102 struct writeback_control *wbc, 2103 struct mpage_da_data *mpd, 2104 pgoff_t *done_index) 2105 { 2106 struct buffer_head *bh, *head; 2107 struct inode *inode = mapping->host; 2108 struct pagevec pvec; 2109 unsigned int nr_pages; 2110 sector_t logical; 2111 pgoff_t index, end; 2112 long nr_to_write = wbc->nr_to_write; 2113 int i, tag, ret = 0; 2114 2115 memset(mpd, 0, sizeof(struct mpage_da_data)); 2116 mpd->wbc = wbc; 2117 mpd->inode = inode; 2118 pagevec_init(&pvec, 0); 2119 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2120 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2121 2122 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2123 tag = PAGECACHE_TAG_TOWRITE; 2124 else 2125 tag = PAGECACHE_TAG_DIRTY; 2126 2127 *done_index = index; 2128 while (index <= end) { 2129 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2130 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2131 if (nr_pages == 0) 2132 return 0; 2133 2134 for (i = 0; i < nr_pages; i++) { 2135 struct page *page = pvec.pages[i]; 2136 2137 /* 2138 * At this point, the page may be truncated or 2139 * invalidated (changing page->mapping to NULL), or 2140 * even swizzled back from swapper_space to tmpfs file 2141 * mapping. However, page->index will not change 2142 * because we have a reference on the page. 2143 */ 2144 if (page->index > end) 2145 goto out; 2146 2147 *done_index = page->index + 1; 2148 2149 /* 2150 * If we can't merge this page, and we have 2151 * accumulated an contiguous region, write it 2152 */ 2153 if ((mpd->next_page != page->index) && 2154 (mpd->next_page != mpd->first_page)) { 2155 mpage_da_map_and_submit(mpd); 2156 goto ret_extent_tail; 2157 } 2158 2159 lock_page(page); 2160 2161 /* 2162 * If the page is no longer dirty, or its 2163 * mapping no longer corresponds to inode we 2164 * are writing (which means it has been 2165 * truncated or invalidated), or the page is 2166 * already under writeback and we are not 2167 * doing a data integrity writeback, skip the page 2168 */ 2169 if (!PageDirty(page) || 2170 (PageWriteback(page) && 2171 (wbc->sync_mode == WB_SYNC_NONE)) || 2172 unlikely(page->mapping != mapping)) { 2173 unlock_page(page); 2174 continue; 2175 } 2176 2177 wait_on_page_writeback(page); 2178 BUG_ON(PageWriteback(page)); 2179 2180 if (mpd->next_page != page->index) 2181 mpd->first_page = page->index; 2182 mpd->next_page = page->index + 1; 2183 logical = (sector_t) page->index << 2184 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2185 2186 if (!page_has_buffers(page)) { 2187 mpage_add_bh_to_extent(mpd, logical, 2188 PAGE_CACHE_SIZE, 2189 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2190 if (mpd->io_done) 2191 goto ret_extent_tail; 2192 } else { 2193 /* 2194 * Page with regular buffer heads, 2195 * just add all dirty ones 2196 */ 2197 head = page_buffers(page); 2198 bh = head; 2199 do { 2200 BUG_ON(buffer_locked(bh)); 2201 /* 2202 * We need to try to allocate 2203 * unmapped blocks in the same page. 2204 * Otherwise we won't make progress 2205 * with the page in ext4_writepage 2206 */ 2207 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2208 mpage_add_bh_to_extent(mpd, logical, 2209 bh->b_size, 2210 bh->b_state); 2211 if (mpd->io_done) 2212 goto ret_extent_tail; 2213 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2214 /* 2215 * mapped dirty buffer. We need 2216 * to update the b_state 2217 * because we look at b_state 2218 * in mpage_da_map_blocks. We 2219 * don't update b_size because 2220 * if we find an unmapped 2221 * buffer_head later we need to 2222 * use the b_state flag of that 2223 * buffer_head. 2224 */ 2225 if (mpd->b_size == 0) 2226 mpd->b_state = bh->b_state & BH_FLAGS; 2227 } 2228 logical++; 2229 } while ((bh = bh->b_this_page) != head); 2230 } 2231 2232 if (nr_to_write > 0) { 2233 nr_to_write--; 2234 if (nr_to_write == 0 && 2235 wbc->sync_mode == WB_SYNC_NONE) 2236 /* 2237 * We stop writing back only if we are 2238 * not doing integrity sync. In case of 2239 * integrity sync we have to keep going 2240 * because someone may be concurrently 2241 * dirtying pages, and we might have 2242 * synced a lot of newly appeared dirty 2243 * pages, but have not synced all of the 2244 * old dirty pages. 2245 */ 2246 goto out; 2247 } 2248 } 2249 pagevec_release(&pvec); 2250 cond_resched(); 2251 } 2252 return 0; 2253 ret_extent_tail: 2254 ret = MPAGE_DA_EXTENT_TAIL; 2255 out: 2256 pagevec_release(&pvec); 2257 cond_resched(); 2258 return ret; 2259 } 2260 2261 2262 static int ext4_da_writepages(struct address_space *mapping, 2263 struct writeback_control *wbc) 2264 { 2265 pgoff_t index; 2266 int range_whole = 0; 2267 handle_t *handle = NULL; 2268 struct mpage_da_data mpd; 2269 struct inode *inode = mapping->host; 2270 int pages_written = 0; 2271 unsigned int max_pages; 2272 int range_cyclic, cycled = 1, io_done = 0; 2273 int needed_blocks, ret = 0; 2274 long desired_nr_to_write, nr_to_writebump = 0; 2275 loff_t range_start = wbc->range_start; 2276 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2277 pgoff_t done_index = 0; 2278 pgoff_t end; 2279 struct blk_plug plug; 2280 2281 trace_ext4_da_writepages(inode, wbc); 2282 2283 /* 2284 * No pages to write? This is mainly a kludge to avoid starting 2285 * a transaction for special inodes like journal inode on last iput() 2286 * because that could violate lock ordering on umount 2287 */ 2288 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2289 return 0; 2290 2291 /* 2292 * If the filesystem has aborted, it is read-only, so return 2293 * right away instead of dumping stack traces later on that 2294 * will obscure the real source of the problem. We test 2295 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2296 * the latter could be true if the filesystem is mounted 2297 * read-only, and in that case, ext4_da_writepages should 2298 * *never* be called, so if that ever happens, we would want 2299 * the stack trace. 2300 */ 2301 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2302 return -EROFS; 2303 2304 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2305 range_whole = 1; 2306 2307 range_cyclic = wbc->range_cyclic; 2308 if (wbc->range_cyclic) { 2309 index = mapping->writeback_index; 2310 if (index) 2311 cycled = 0; 2312 wbc->range_start = index << PAGE_CACHE_SHIFT; 2313 wbc->range_end = LLONG_MAX; 2314 wbc->range_cyclic = 0; 2315 end = -1; 2316 } else { 2317 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2318 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2319 } 2320 2321 /* 2322 * This works around two forms of stupidity. The first is in 2323 * the writeback code, which caps the maximum number of pages 2324 * written to be 1024 pages. This is wrong on multiple 2325 * levels; different architectues have a different page size, 2326 * which changes the maximum amount of data which gets 2327 * written. Secondly, 4 megabytes is way too small. XFS 2328 * forces this value to be 16 megabytes by multiplying 2329 * nr_to_write parameter by four, and then relies on its 2330 * allocator to allocate larger extents to make them 2331 * contiguous. Unfortunately this brings us to the second 2332 * stupidity, which is that ext4's mballoc code only allocates 2333 * at most 2048 blocks. So we force contiguous writes up to 2334 * the number of dirty blocks in the inode, or 2335 * sbi->max_writeback_mb_bump whichever is smaller. 2336 */ 2337 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2338 if (!range_cyclic && range_whole) { 2339 if (wbc->nr_to_write == LONG_MAX) 2340 desired_nr_to_write = wbc->nr_to_write; 2341 else 2342 desired_nr_to_write = wbc->nr_to_write * 8; 2343 } else 2344 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2345 max_pages); 2346 if (desired_nr_to_write > max_pages) 2347 desired_nr_to_write = max_pages; 2348 2349 if (wbc->nr_to_write < desired_nr_to_write) { 2350 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2351 wbc->nr_to_write = desired_nr_to_write; 2352 } 2353 2354 retry: 2355 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2356 tag_pages_for_writeback(mapping, index, end); 2357 2358 blk_start_plug(&plug); 2359 while (!ret && wbc->nr_to_write > 0) { 2360 2361 /* 2362 * we insert one extent at a time. So we need 2363 * credit needed for single extent allocation. 2364 * journalled mode is currently not supported 2365 * by delalloc 2366 */ 2367 BUG_ON(ext4_should_journal_data(inode)); 2368 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2369 2370 /* start a new transaction*/ 2371 handle = ext4_journal_start(inode, needed_blocks); 2372 if (IS_ERR(handle)) { 2373 ret = PTR_ERR(handle); 2374 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2375 "%ld pages, ino %lu; err %d", __func__, 2376 wbc->nr_to_write, inode->i_ino, ret); 2377 blk_finish_plug(&plug); 2378 goto out_writepages; 2379 } 2380 2381 /* 2382 * Now call write_cache_pages_da() to find the next 2383 * contiguous region of logical blocks that need 2384 * blocks to be allocated by ext4 and submit them. 2385 */ 2386 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2387 /* 2388 * If we have a contiguous extent of pages and we 2389 * haven't done the I/O yet, map the blocks and submit 2390 * them for I/O. 2391 */ 2392 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2393 mpage_da_map_and_submit(&mpd); 2394 ret = MPAGE_DA_EXTENT_TAIL; 2395 } 2396 trace_ext4_da_write_pages(inode, &mpd); 2397 wbc->nr_to_write -= mpd.pages_written; 2398 2399 ext4_journal_stop(handle); 2400 2401 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2402 /* commit the transaction which would 2403 * free blocks released in the transaction 2404 * and try again 2405 */ 2406 jbd2_journal_force_commit_nested(sbi->s_journal); 2407 ret = 0; 2408 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2409 /* 2410 * Got one extent now try with rest of the pages. 2411 * If mpd.retval is set -EIO, journal is aborted. 2412 * So we don't need to write any more. 2413 */ 2414 pages_written += mpd.pages_written; 2415 ret = mpd.retval; 2416 io_done = 1; 2417 } else if (wbc->nr_to_write) 2418 /* 2419 * There is no more writeout needed 2420 * or we requested for a noblocking writeout 2421 * and we found the device congested 2422 */ 2423 break; 2424 } 2425 blk_finish_plug(&plug); 2426 if (!io_done && !cycled) { 2427 cycled = 1; 2428 index = 0; 2429 wbc->range_start = index << PAGE_CACHE_SHIFT; 2430 wbc->range_end = mapping->writeback_index - 1; 2431 goto retry; 2432 } 2433 2434 /* Update index */ 2435 wbc->range_cyclic = range_cyclic; 2436 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2437 /* 2438 * set the writeback_index so that range_cyclic 2439 * mode will write it back later 2440 */ 2441 mapping->writeback_index = done_index; 2442 2443 out_writepages: 2444 wbc->nr_to_write -= nr_to_writebump; 2445 wbc->range_start = range_start; 2446 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2447 return ret; 2448 } 2449 2450 #define FALL_BACK_TO_NONDELALLOC 1 2451 static int ext4_nonda_switch(struct super_block *sb) 2452 { 2453 s64 free_blocks, dirty_blocks; 2454 struct ext4_sb_info *sbi = EXT4_SB(sb); 2455 2456 /* 2457 * switch to non delalloc mode if we are running low 2458 * on free block. The free block accounting via percpu 2459 * counters can get slightly wrong with percpu_counter_batch getting 2460 * accumulated on each CPU without updating global counters 2461 * Delalloc need an accurate free block accounting. So switch 2462 * to non delalloc when we are near to error range. 2463 */ 2464 free_blocks = EXT4_C2B(sbi, 2465 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2466 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2467 /* 2468 * Start pushing delalloc when 1/2 of free blocks are dirty. 2469 */ 2470 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) && 2471 !writeback_in_progress(sb->s_bdi) && 2472 down_read_trylock(&sb->s_umount)) { 2473 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2474 up_read(&sb->s_umount); 2475 } 2476 2477 if (2 * free_blocks < 3 * dirty_blocks || 2478 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2479 /* 2480 * free block count is less than 150% of dirty blocks 2481 * or free blocks is less than watermark 2482 */ 2483 return 1; 2484 } 2485 return 0; 2486 } 2487 2488 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2489 loff_t pos, unsigned len, unsigned flags, 2490 struct page **pagep, void **fsdata) 2491 { 2492 int ret, retries = 0; 2493 struct page *page; 2494 pgoff_t index; 2495 struct inode *inode = mapping->host; 2496 handle_t *handle; 2497 2498 index = pos >> PAGE_CACHE_SHIFT; 2499 2500 if (ext4_nonda_switch(inode->i_sb)) { 2501 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2502 return ext4_write_begin(file, mapping, pos, 2503 len, flags, pagep, fsdata); 2504 } 2505 *fsdata = (void *)0; 2506 trace_ext4_da_write_begin(inode, pos, len, flags); 2507 retry: 2508 /* 2509 * With delayed allocation, we don't log the i_disksize update 2510 * if there is delayed block allocation. But we still need 2511 * to journalling the i_disksize update if writes to the end 2512 * of file which has an already mapped buffer. 2513 */ 2514 handle = ext4_journal_start(inode, 1); 2515 if (IS_ERR(handle)) { 2516 ret = PTR_ERR(handle); 2517 goto out; 2518 } 2519 /* We cannot recurse into the filesystem as the transaction is already 2520 * started */ 2521 flags |= AOP_FLAG_NOFS; 2522 2523 page = grab_cache_page_write_begin(mapping, index, flags); 2524 if (!page) { 2525 ext4_journal_stop(handle); 2526 ret = -ENOMEM; 2527 goto out; 2528 } 2529 *pagep = page; 2530 2531 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2532 if (ret < 0) { 2533 unlock_page(page); 2534 ext4_journal_stop(handle); 2535 page_cache_release(page); 2536 /* 2537 * block_write_begin may have instantiated a few blocks 2538 * outside i_size. Trim these off again. Don't need 2539 * i_size_read because we hold i_mutex. 2540 */ 2541 if (pos + len > inode->i_size) 2542 ext4_truncate_failed_write(inode); 2543 } 2544 2545 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2546 goto retry; 2547 out: 2548 return ret; 2549 } 2550 2551 /* 2552 * Check if we should update i_disksize 2553 * when write to the end of file but not require block allocation 2554 */ 2555 static int ext4_da_should_update_i_disksize(struct page *page, 2556 unsigned long offset) 2557 { 2558 struct buffer_head *bh; 2559 struct inode *inode = page->mapping->host; 2560 unsigned int idx; 2561 int i; 2562 2563 bh = page_buffers(page); 2564 idx = offset >> inode->i_blkbits; 2565 2566 for (i = 0; i < idx; i++) 2567 bh = bh->b_this_page; 2568 2569 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2570 return 0; 2571 return 1; 2572 } 2573 2574 static int ext4_da_write_end(struct file *file, 2575 struct address_space *mapping, 2576 loff_t pos, unsigned len, unsigned copied, 2577 struct page *page, void *fsdata) 2578 { 2579 struct inode *inode = mapping->host; 2580 int ret = 0, ret2; 2581 handle_t *handle = ext4_journal_current_handle(); 2582 loff_t new_i_size; 2583 unsigned long start, end; 2584 int write_mode = (int)(unsigned long)fsdata; 2585 2586 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2587 switch (ext4_inode_journal_mode(inode)) { 2588 case EXT4_INODE_ORDERED_DATA_MODE: 2589 return ext4_ordered_write_end(file, mapping, pos, 2590 len, copied, page, fsdata); 2591 case EXT4_INODE_WRITEBACK_DATA_MODE: 2592 return ext4_writeback_write_end(file, mapping, pos, 2593 len, copied, page, fsdata); 2594 default: 2595 BUG(); 2596 } 2597 } 2598 2599 trace_ext4_da_write_end(inode, pos, len, copied); 2600 start = pos & (PAGE_CACHE_SIZE - 1); 2601 end = start + copied - 1; 2602 2603 /* 2604 * generic_write_end() will run mark_inode_dirty() if i_size 2605 * changes. So let's piggyback the i_disksize mark_inode_dirty 2606 * into that. 2607 */ 2608 2609 new_i_size = pos + copied; 2610 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2611 if (ext4_da_should_update_i_disksize(page, end)) { 2612 down_write(&EXT4_I(inode)->i_data_sem); 2613 if (new_i_size > EXT4_I(inode)->i_disksize) { 2614 /* 2615 * Updating i_disksize when extending file 2616 * without needing block allocation 2617 */ 2618 if (ext4_should_order_data(inode)) 2619 ret = ext4_jbd2_file_inode(handle, 2620 inode); 2621 2622 EXT4_I(inode)->i_disksize = new_i_size; 2623 } 2624 up_write(&EXT4_I(inode)->i_data_sem); 2625 /* We need to mark inode dirty even if 2626 * new_i_size is less that inode->i_size 2627 * bu greater than i_disksize.(hint delalloc) 2628 */ 2629 ext4_mark_inode_dirty(handle, inode); 2630 } 2631 } 2632 ret2 = generic_write_end(file, mapping, pos, len, copied, 2633 page, fsdata); 2634 copied = ret2; 2635 if (ret2 < 0) 2636 ret = ret2; 2637 ret2 = ext4_journal_stop(handle); 2638 if (!ret) 2639 ret = ret2; 2640 2641 return ret ? ret : copied; 2642 } 2643 2644 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2645 { 2646 /* 2647 * Drop reserved blocks 2648 */ 2649 BUG_ON(!PageLocked(page)); 2650 if (!page_has_buffers(page)) 2651 goto out; 2652 2653 ext4_da_page_release_reservation(page, offset); 2654 2655 out: 2656 ext4_invalidatepage(page, offset); 2657 2658 return; 2659 } 2660 2661 /* 2662 * Force all delayed allocation blocks to be allocated for a given inode. 2663 */ 2664 int ext4_alloc_da_blocks(struct inode *inode) 2665 { 2666 trace_ext4_alloc_da_blocks(inode); 2667 2668 if (!EXT4_I(inode)->i_reserved_data_blocks && 2669 !EXT4_I(inode)->i_reserved_meta_blocks) 2670 return 0; 2671 2672 /* 2673 * We do something simple for now. The filemap_flush() will 2674 * also start triggering a write of the data blocks, which is 2675 * not strictly speaking necessary (and for users of 2676 * laptop_mode, not even desirable). However, to do otherwise 2677 * would require replicating code paths in: 2678 * 2679 * ext4_da_writepages() -> 2680 * write_cache_pages() ---> (via passed in callback function) 2681 * __mpage_da_writepage() --> 2682 * mpage_add_bh_to_extent() 2683 * mpage_da_map_blocks() 2684 * 2685 * The problem is that write_cache_pages(), located in 2686 * mm/page-writeback.c, marks pages clean in preparation for 2687 * doing I/O, which is not desirable if we're not planning on 2688 * doing I/O at all. 2689 * 2690 * We could call write_cache_pages(), and then redirty all of 2691 * the pages by calling redirty_page_for_writepage() but that 2692 * would be ugly in the extreme. So instead we would need to 2693 * replicate parts of the code in the above functions, 2694 * simplifying them because we wouldn't actually intend to 2695 * write out the pages, but rather only collect contiguous 2696 * logical block extents, call the multi-block allocator, and 2697 * then update the buffer heads with the block allocations. 2698 * 2699 * For now, though, we'll cheat by calling filemap_flush(), 2700 * which will map the blocks, and start the I/O, but not 2701 * actually wait for the I/O to complete. 2702 */ 2703 return filemap_flush(inode->i_mapping); 2704 } 2705 2706 /* 2707 * bmap() is special. It gets used by applications such as lilo and by 2708 * the swapper to find the on-disk block of a specific piece of data. 2709 * 2710 * Naturally, this is dangerous if the block concerned is still in the 2711 * journal. If somebody makes a swapfile on an ext4 data-journaling 2712 * filesystem and enables swap, then they may get a nasty shock when the 2713 * data getting swapped to that swapfile suddenly gets overwritten by 2714 * the original zero's written out previously to the journal and 2715 * awaiting writeback in the kernel's buffer cache. 2716 * 2717 * So, if we see any bmap calls here on a modified, data-journaled file, 2718 * take extra steps to flush any blocks which might be in the cache. 2719 */ 2720 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2721 { 2722 struct inode *inode = mapping->host; 2723 journal_t *journal; 2724 int err; 2725 2726 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2727 test_opt(inode->i_sb, DELALLOC)) { 2728 /* 2729 * With delalloc we want to sync the file 2730 * so that we can make sure we allocate 2731 * blocks for file 2732 */ 2733 filemap_write_and_wait(mapping); 2734 } 2735 2736 if (EXT4_JOURNAL(inode) && 2737 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2738 /* 2739 * This is a REALLY heavyweight approach, but the use of 2740 * bmap on dirty files is expected to be extremely rare: 2741 * only if we run lilo or swapon on a freshly made file 2742 * do we expect this to happen. 2743 * 2744 * (bmap requires CAP_SYS_RAWIO so this does not 2745 * represent an unprivileged user DOS attack --- we'd be 2746 * in trouble if mortal users could trigger this path at 2747 * will.) 2748 * 2749 * NB. EXT4_STATE_JDATA is not set on files other than 2750 * regular files. If somebody wants to bmap a directory 2751 * or symlink and gets confused because the buffer 2752 * hasn't yet been flushed to disk, they deserve 2753 * everything they get. 2754 */ 2755 2756 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2757 journal = EXT4_JOURNAL(inode); 2758 jbd2_journal_lock_updates(journal); 2759 err = jbd2_journal_flush(journal); 2760 jbd2_journal_unlock_updates(journal); 2761 2762 if (err) 2763 return 0; 2764 } 2765 2766 return generic_block_bmap(mapping, block, ext4_get_block); 2767 } 2768 2769 static int ext4_readpage(struct file *file, struct page *page) 2770 { 2771 trace_ext4_readpage(page); 2772 return mpage_readpage(page, ext4_get_block); 2773 } 2774 2775 static int 2776 ext4_readpages(struct file *file, struct address_space *mapping, 2777 struct list_head *pages, unsigned nr_pages) 2778 { 2779 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2780 } 2781 2782 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2783 { 2784 struct buffer_head *head, *bh; 2785 unsigned int curr_off = 0; 2786 2787 if (!page_has_buffers(page)) 2788 return; 2789 head = bh = page_buffers(page); 2790 do { 2791 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2792 && bh->b_private) { 2793 ext4_free_io_end(bh->b_private); 2794 bh->b_private = NULL; 2795 bh->b_end_io = NULL; 2796 } 2797 curr_off = curr_off + bh->b_size; 2798 bh = bh->b_this_page; 2799 } while (bh != head); 2800 } 2801 2802 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2803 { 2804 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2805 2806 trace_ext4_invalidatepage(page, offset); 2807 2808 /* 2809 * free any io_end structure allocated for buffers to be discarded 2810 */ 2811 if (ext4_should_dioread_nolock(page->mapping->host)) 2812 ext4_invalidatepage_free_endio(page, offset); 2813 /* 2814 * If it's a full truncate we just forget about the pending dirtying 2815 */ 2816 if (offset == 0) 2817 ClearPageChecked(page); 2818 2819 if (journal) 2820 jbd2_journal_invalidatepage(journal, page, offset); 2821 else 2822 block_invalidatepage(page, offset); 2823 } 2824 2825 static int ext4_releasepage(struct page *page, gfp_t wait) 2826 { 2827 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2828 2829 trace_ext4_releasepage(page); 2830 2831 WARN_ON(PageChecked(page)); 2832 if (!page_has_buffers(page)) 2833 return 0; 2834 if (journal) 2835 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2836 else 2837 return try_to_free_buffers(page); 2838 } 2839 2840 /* 2841 * ext4_get_block used when preparing for a DIO write or buffer write. 2842 * We allocate an uinitialized extent if blocks haven't been allocated. 2843 * The extent will be converted to initialized after the IO is complete. 2844 */ 2845 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2846 struct buffer_head *bh_result, int create) 2847 { 2848 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2849 inode->i_ino, create); 2850 return _ext4_get_block(inode, iblock, bh_result, 2851 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2852 } 2853 2854 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2855 struct buffer_head *bh_result, int flags) 2856 { 2857 handle_t *handle = ext4_journal_current_handle(); 2858 struct ext4_map_blocks map; 2859 int ret = 0; 2860 2861 ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n", 2862 inode->i_ino, flags); 2863 2864 flags = EXT4_GET_BLOCKS_NO_LOCK; 2865 2866 map.m_lblk = iblock; 2867 map.m_len = bh_result->b_size >> inode->i_blkbits; 2868 2869 ret = ext4_map_blocks(handle, inode, &map, flags); 2870 if (ret > 0) { 2871 map_bh(bh_result, inode->i_sb, map.m_pblk); 2872 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) | 2873 map.m_flags; 2874 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len; 2875 ret = 0; 2876 } 2877 return ret; 2878 } 2879 2880 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2881 ssize_t size, void *private, int ret, 2882 bool is_async) 2883 { 2884 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2885 ext4_io_end_t *io_end = iocb->private; 2886 2887 /* if not async direct IO or dio with 0 bytes write, just return */ 2888 if (!io_end || !size) 2889 goto out; 2890 2891 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2892 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2893 iocb->private, io_end->inode->i_ino, iocb, offset, 2894 size); 2895 2896 iocb->private = NULL; 2897 2898 /* if not aio dio with unwritten extents, just free io and return */ 2899 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2900 ext4_free_io_end(io_end); 2901 out: 2902 if (is_async) 2903 aio_complete(iocb, ret, 0); 2904 inode_dio_done(inode); 2905 return; 2906 } 2907 2908 io_end->offset = offset; 2909 io_end->size = size; 2910 if (is_async) { 2911 io_end->iocb = iocb; 2912 io_end->result = ret; 2913 } 2914 2915 ext4_add_complete_io(io_end); 2916 } 2917 2918 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2919 { 2920 ext4_io_end_t *io_end = bh->b_private; 2921 struct inode *inode; 2922 2923 if (!test_clear_buffer_uninit(bh) || !io_end) 2924 goto out; 2925 2926 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2927 ext4_msg(io_end->inode->i_sb, KERN_INFO, 2928 "sb umounted, discard end_io request for inode %lu", 2929 io_end->inode->i_ino); 2930 ext4_free_io_end(io_end); 2931 goto out; 2932 } 2933 2934 /* 2935 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2936 * but being more careful is always safe for the future change. 2937 */ 2938 inode = io_end->inode; 2939 ext4_set_io_unwritten_flag(inode, io_end); 2940 ext4_add_complete_io(io_end); 2941 out: 2942 bh->b_private = NULL; 2943 bh->b_end_io = NULL; 2944 clear_buffer_uninit(bh); 2945 end_buffer_async_write(bh, uptodate); 2946 } 2947 2948 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2949 { 2950 ext4_io_end_t *io_end; 2951 struct page *page = bh->b_page; 2952 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2953 size_t size = bh->b_size; 2954 2955 retry: 2956 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2957 if (!io_end) { 2958 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2959 schedule(); 2960 goto retry; 2961 } 2962 io_end->offset = offset; 2963 io_end->size = size; 2964 /* 2965 * We need to hold a reference to the page to make sure it 2966 * doesn't get evicted before ext4_end_io_work() has a chance 2967 * to convert the extent from written to unwritten. 2968 */ 2969 io_end->page = page; 2970 get_page(io_end->page); 2971 2972 bh->b_private = io_end; 2973 bh->b_end_io = ext4_end_io_buffer_write; 2974 return 0; 2975 } 2976 2977 /* 2978 * For ext4 extent files, ext4 will do direct-io write to holes, 2979 * preallocated extents, and those write extend the file, no need to 2980 * fall back to buffered IO. 2981 * 2982 * For holes, we fallocate those blocks, mark them as uninitialized 2983 * If those blocks were preallocated, we mark sure they are splited, but 2984 * still keep the range to write as uninitialized. 2985 * 2986 * The unwrritten extents will be converted to written when DIO is completed. 2987 * For async direct IO, since the IO may still pending when return, we 2988 * set up an end_io call back function, which will do the conversion 2989 * when async direct IO completed. 2990 * 2991 * If the O_DIRECT write will extend the file then add this inode to the 2992 * orphan list. So recovery will truncate it back to the original size 2993 * if the machine crashes during the write. 2994 * 2995 */ 2996 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2997 const struct iovec *iov, loff_t offset, 2998 unsigned long nr_segs) 2999 { 3000 struct file *file = iocb->ki_filp; 3001 struct inode *inode = file->f_mapping->host; 3002 ssize_t ret; 3003 size_t count = iov_length(iov, nr_segs); 3004 3005 loff_t final_size = offset + count; 3006 if (rw == WRITE && final_size <= inode->i_size) { 3007 int overwrite = 0; 3008 3009 BUG_ON(iocb->private == NULL); 3010 3011 /* If we do a overwrite dio, i_mutex locking can be released */ 3012 overwrite = *((int *)iocb->private); 3013 3014 if (overwrite) { 3015 atomic_inc(&inode->i_dio_count); 3016 down_read(&EXT4_I(inode)->i_data_sem); 3017 mutex_unlock(&inode->i_mutex); 3018 } 3019 3020 /* 3021 * We could direct write to holes and fallocate. 3022 * 3023 * Allocated blocks to fill the hole are marked as uninitialized 3024 * to prevent parallel buffered read to expose the stale data 3025 * before DIO complete the data IO. 3026 * 3027 * As to previously fallocated extents, ext4 get_block 3028 * will just simply mark the buffer mapped but still 3029 * keep the extents uninitialized. 3030 * 3031 * for non AIO case, we will convert those unwritten extents 3032 * to written after return back from blockdev_direct_IO. 3033 * 3034 * for async DIO, the conversion needs to be defered when 3035 * the IO is completed. The ext4 end_io callback function 3036 * will be called to take care of the conversion work. 3037 * Here for async case, we allocate an io_end structure to 3038 * hook to the iocb. 3039 */ 3040 iocb->private = NULL; 3041 ext4_inode_aio_set(inode, NULL); 3042 if (!is_sync_kiocb(iocb)) { 3043 ext4_io_end_t *io_end = 3044 ext4_init_io_end(inode, GFP_NOFS); 3045 if (!io_end) { 3046 ret = -ENOMEM; 3047 goto retake_lock; 3048 } 3049 io_end->flag |= EXT4_IO_END_DIRECT; 3050 iocb->private = io_end; 3051 /* 3052 * we save the io structure for current async 3053 * direct IO, so that later ext4_map_blocks() 3054 * could flag the io structure whether there 3055 * is a unwritten extents needs to be converted 3056 * when IO is completed. 3057 */ 3058 ext4_inode_aio_set(inode, io_end); 3059 } 3060 3061 if (overwrite) 3062 ret = __blockdev_direct_IO(rw, iocb, inode, 3063 inode->i_sb->s_bdev, iov, 3064 offset, nr_segs, 3065 ext4_get_block_write_nolock, 3066 ext4_end_io_dio, 3067 NULL, 3068 0); 3069 else 3070 ret = __blockdev_direct_IO(rw, iocb, inode, 3071 inode->i_sb->s_bdev, iov, 3072 offset, nr_segs, 3073 ext4_get_block_write, 3074 ext4_end_io_dio, 3075 NULL, 3076 DIO_LOCKING); 3077 if (iocb->private) 3078 ext4_inode_aio_set(inode, NULL); 3079 /* 3080 * The io_end structure takes a reference to the inode, 3081 * that structure needs to be destroyed and the 3082 * reference to the inode need to be dropped, when IO is 3083 * complete, even with 0 byte write, or failed. 3084 * 3085 * In the successful AIO DIO case, the io_end structure will be 3086 * desctroyed and the reference to the inode will be dropped 3087 * after the end_io call back function is called. 3088 * 3089 * In the case there is 0 byte write, or error case, since 3090 * VFS direct IO won't invoke the end_io call back function, 3091 * we need to free the end_io structure here. 3092 */ 3093 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3094 ext4_free_io_end(iocb->private); 3095 iocb->private = NULL; 3096 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3097 EXT4_STATE_DIO_UNWRITTEN)) { 3098 int err; 3099 /* 3100 * for non AIO case, since the IO is already 3101 * completed, we could do the conversion right here 3102 */ 3103 err = ext4_convert_unwritten_extents(inode, 3104 offset, ret); 3105 if (err < 0) 3106 ret = err; 3107 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3108 } 3109 3110 retake_lock: 3111 /* take i_mutex locking again if we do a ovewrite dio */ 3112 if (overwrite) { 3113 inode_dio_done(inode); 3114 up_read(&EXT4_I(inode)->i_data_sem); 3115 mutex_lock(&inode->i_mutex); 3116 } 3117 3118 return ret; 3119 } 3120 3121 /* for write the the end of file case, we fall back to old way */ 3122 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3123 } 3124 3125 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3126 const struct iovec *iov, loff_t offset, 3127 unsigned long nr_segs) 3128 { 3129 struct file *file = iocb->ki_filp; 3130 struct inode *inode = file->f_mapping->host; 3131 ssize_t ret; 3132 3133 /* 3134 * If we are doing data journalling we don't support O_DIRECT 3135 */ 3136 if (ext4_should_journal_data(inode)) 3137 return 0; 3138 3139 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3140 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3141 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3142 else 3143 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3144 trace_ext4_direct_IO_exit(inode, offset, 3145 iov_length(iov, nr_segs), rw, ret); 3146 return ret; 3147 } 3148 3149 /* 3150 * Pages can be marked dirty completely asynchronously from ext4's journalling 3151 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3152 * much here because ->set_page_dirty is called under VFS locks. The page is 3153 * not necessarily locked. 3154 * 3155 * We cannot just dirty the page and leave attached buffers clean, because the 3156 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3157 * or jbddirty because all the journalling code will explode. 3158 * 3159 * So what we do is to mark the page "pending dirty" and next time writepage 3160 * is called, propagate that into the buffers appropriately. 3161 */ 3162 static int ext4_journalled_set_page_dirty(struct page *page) 3163 { 3164 SetPageChecked(page); 3165 return __set_page_dirty_nobuffers(page); 3166 } 3167 3168 static const struct address_space_operations ext4_ordered_aops = { 3169 .readpage = ext4_readpage, 3170 .readpages = ext4_readpages, 3171 .writepage = ext4_writepage, 3172 .write_begin = ext4_write_begin, 3173 .write_end = ext4_ordered_write_end, 3174 .bmap = ext4_bmap, 3175 .invalidatepage = ext4_invalidatepage, 3176 .releasepage = ext4_releasepage, 3177 .direct_IO = ext4_direct_IO, 3178 .migratepage = buffer_migrate_page, 3179 .is_partially_uptodate = block_is_partially_uptodate, 3180 .error_remove_page = generic_error_remove_page, 3181 }; 3182 3183 static const struct address_space_operations ext4_writeback_aops = { 3184 .readpage = ext4_readpage, 3185 .readpages = ext4_readpages, 3186 .writepage = ext4_writepage, 3187 .write_begin = ext4_write_begin, 3188 .write_end = ext4_writeback_write_end, 3189 .bmap = ext4_bmap, 3190 .invalidatepage = ext4_invalidatepage, 3191 .releasepage = ext4_releasepage, 3192 .direct_IO = ext4_direct_IO, 3193 .migratepage = buffer_migrate_page, 3194 .is_partially_uptodate = block_is_partially_uptodate, 3195 .error_remove_page = generic_error_remove_page, 3196 }; 3197 3198 static const struct address_space_operations ext4_journalled_aops = { 3199 .readpage = ext4_readpage, 3200 .readpages = ext4_readpages, 3201 .writepage = ext4_writepage, 3202 .write_begin = ext4_write_begin, 3203 .write_end = ext4_journalled_write_end, 3204 .set_page_dirty = ext4_journalled_set_page_dirty, 3205 .bmap = ext4_bmap, 3206 .invalidatepage = ext4_invalidatepage, 3207 .releasepage = ext4_releasepage, 3208 .direct_IO = ext4_direct_IO, 3209 .is_partially_uptodate = block_is_partially_uptodate, 3210 .error_remove_page = generic_error_remove_page, 3211 }; 3212 3213 static const struct address_space_operations ext4_da_aops = { 3214 .readpage = ext4_readpage, 3215 .readpages = ext4_readpages, 3216 .writepage = ext4_writepage, 3217 .writepages = ext4_da_writepages, 3218 .write_begin = ext4_da_write_begin, 3219 .write_end = ext4_da_write_end, 3220 .bmap = ext4_bmap, 3221 .invalidatepage = ext4_da_invalidatepage, 3222 .releasepage = ext4_releasepage, 3223 .direct_IO = ext4_direct_IO, 3224 .migratepage = buffer_migrate_page, 3225 .is_partially_uptodate = block_is_partially_uptodate, 3226 .error_remove_page = generic_error_remove_page, 3227 }; 3228 3229 void ext4_set_aops(struct inode *inode) 3230 { 3231 switch (ext4_inode_journal_mode(inode)) { 3232 case EXT4_INODE_ORDERED_DATA_MODE: 3233 if (test_opt(inode->i_sb, DELALLOC)) 3234 inode->i_mapping->a_ops = &ext4_da_aops; 3235 else 3236 inode->i_mapping->a_ops = &ext4_ordered_aops; 3237 break; 3238 case EXT4_INODE_WRITEBACK_DATA_MODE: 3239 if (test_opt(inode->i_sb, DELALLOC)) 3240 inode->i_mapping->a_ops = &ext4_da_aops; 3241 else 3242 inode->i_mapping->a_ops = &ext4_writeback_aops; 3243 break; 3244 case EXT4_INODE_JOURNAL_DATA_MODE: 3245 inode->i_mapping->a_ops = &ext4_journalled_aops; 3246 break; 3247 default: 3248 BUG(); 3249 } 3250 } 3251 3252 3253 /* 3254 * ext4_discard_partial_page_buffers() 3255 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3256 * This function finds and locks the page containing the offset 3257 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3258 * Calling functions that already have the page locked should call 3259 * ext4_discard_partial_page_buffers_no_lock directly. 3260 */ 3261 int ext4_discard_partial_page_buffers(handle_t *handle, 3262 struct address_space *mapping, loff_t from, 3263 loff_t length, int flags) 3264 { 3265 struct inode *inode = mapping->host; 3266 struct page *page; 3267 int err = 0; 3268 3269 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3270 mapping_gfp_mask(mapping) & ~__GFP_FS); 3271 if (!page) 3272 return -ENOMEM; 3273 3274 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3275 from, length, flags); 3276 3277 unlock_page(page); 3278 page_cache_release(page); 3279 return err; 3280 } 3281 3282 /* 3283 * ext4_discard_partial_page_buffers_no_lock() 3284 * Zeros a page range of length 'length' starting from offset 'from'. 3285 * Buffer heads that correspond to the block aligned regions of the 3286 * zeroed range will be unmapped. Unblock aligned regions 3287 * will have the corresponding buffer head mapped if needed so that 3288 * that region of the page can be updated with the partial zero out. 3289 * 3290 * This function assumes that the page has already been locked. The 3291 * The range to be discarded must be contained with in the given page. 3292 * If the specified range exceeds the end of the page it will be shortened 3293 * to the end of the page that corresponds to 'from'. This function is 3294 * appropriate for updating a page and it buffer heads to be unmapped and 3295 * zeroed for blocks that have been either released, or are going to be 3296 * released. 3297 * 3298 * handle: The journal handle 3299 * inode: The files inode 3300 * page: A locked page that contains the offset "from" 3301 * from: The starting byte offset (from the beginning of the file) 3302 * to begin discarding 3303 * len: The length of bytes to discard 3304 * flags: Optional flags that may be used: 3305 * 3306 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3307 * Only zero the regions of the page whose buffer heads 3308 * have already been unmapped. This flag is appropriate 3309 * for updating the contents of a page whose blocks may 3310 * have already been released, and we only want to zero 3311 * out the regions that correspond to those released blocks. 3312 * 3313 * Returns zero on success or negative on failure. 3314 */ 3315 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3316 struct inode *inode, struct page *page, loff_t from, 3317 loff_t length, int flags) 3318 { 3319 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3320 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3321 unsigned int blocksize, max, pos; 3322 ext4_lblk_t iblock; 3323 struct buffer_head *bh; 3324 int err = 0; 3325 3326 blocksize = inode->i_sb->s_blocksize; 3327 max = PAGE_CACHE_SIZE - offset; 3328 3329 if (index != page->index) 3330 return -EINVAL; 3331 3332 /* 3333 * correct length if it does not fall between 3334 * 'from' and the end of the page 3335 */ 3336 if (length > max || length < 0) 3337 length = max; 3338 3339 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3340 3341 if (!page_has_buffers(page)) 3342 create_empty_buffers(page, blocksize, 0); 3343 3344 /* Find the buffer that contains "offset" */ 3345 bh = page_buffers(page); 3346 pos = blocksize; 3347 while (offset >= pos) { 3348 bh = bh->b_this_page; 3349 iblock++; 3350 pos += blocksize; 3351 } 3352 3353 pos = offset; 3354 while (pos < offset + length) { 3355 unsigned int end_of_block, range_to_discard; 3356 3357 err = 0; 3358 3359 /* The length of space left to zero and unmap */ 3360 range_to_discard = offset + length - pos; 3361 3362 /* The length of space until the end of the block */ 3363 end_of_block = blocksize - (pos & (blocksize-1)); 3364 3365 /* 3366 * Do not unmap or zero past end of block 3367 * for this buffer head 3368 */ 3369 if (range_to_discard > end_of_block) 3370 range_to_discard = end_of_block; 3371 3372 3373 /* 3374 * Skip this buffer head if we are only zeroing unampped 3375 * regions of the page 3376 */ 3377 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3378 buffer_mapped(bh)) 3379 goto next; 3380 3381 /* If the range is block aligned, unmap */ 3382 if (range_to_discard == blocksize) { 3383 clear_buffer_dirty(bh); 3384 bh->b_bdev = NULL; 3385 clear_buffer_mapped(bh); 3386 clear_buffer_req(bh); 3387 clear_buffer_new(bh); 3388 clear_buffer_delay(bh); 3389 clear_buffer_unwritten(bh); 3390 clear_buffer_uptodate(bh); 3391 zero_user(page, pos, range_to_discard); 3392 BUFFER_TRACE(bh, "Buffer discarded"); 3393 goto next; 3394 } 3395 3396 /* 3397 * If this block is not completely contained in the range 3398 * to be discarded, then it is not going to be released. Because 3399 * we need to keep this block, we need to make sure this part 3400 * of the page is uptodate before we modify it by writeing 3401 * partial zeros on it. 3402 */ 3403 if (!buffer_mapped(bh)) { 3404 /* 3405 * Buffer head must be mapped before we can read 3406 * from the block 3407 */ 3408 BUFFER_TRACE(bh, "unmapped"); 3409 ext4_get_block(inode, iblock, bh, 0); 3410 /* unmapped? It's a hole - nothing to do */ 3411 if (!buffer_mapped(bh)) { 3412 BUFFER_TRACE(bh, "still unmapped"); 3413 goto next; 3414 } 3415 } 3416 3417 /* Ok, it's mapped. Make sure it's up-to-date */ 3418 if (PageUptodate(page)) 3419 set_buffer_uptodate(bh); 3420 3421 if (!buffer_uptodate(bh)) { 3422 err = -EIO; 3423 ll_rw_block(READ, 1, &bh); 3424 wait_on_buffer(bh); 3425 /* Uhhuh. Read error. Complain and punt.*/ 3426 if (!buffer_uptodate(bh)) 3427 goto next; 3428 } 3429 3430 if (ext4_should_journal_data(inode)) { 3431 BUFFER_TRACE(bh, "get write access"); 3432 err = ext4_journal_get_write_access(handle, bh); 3433 if (err) 3434 goto next; 3435 } 3436 3437 zero_user(page, pos, range_to_discard); 3438 3439 err = 0; 3440 if (ext4_should_journal_data(inode)) { 3441 err = ext4_handle_dirty_metadata(handle, inode, bh); 3442 } else 3443 mark_buffer_dirty(bh); 3444 3445 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3446 next: 3447 bh = bh->b_this_page; 3448 iblock++; 3449 pos += range_to_discard; 3450 } 3451 3452 return err; 3453 } 3454 3455 int ext4_can_truncate(struct inode *inode) 3456 { 3457 if (S_ISREG(inode->i_mode)) 3458 return 1; 3459 if (S_ISDIR(inode->i_mode)) 3460 return 1; 3461 if (S_ISLNK(inode->i_mode)) 3462 return !ext4_inode_is_fast_symlink(inode); 3463 return 0; 3464 } 3465 3466 /* 3467 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3468 * associated with the given offset and length 3469 * 3470 * @inode: File inode 3471 * @offset: The offset where the hole will begin 3472 * @len: The length of the hole 3473 * 3474 * Returns: 0 on success or negative on failure 3475 */ 3476 3477 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3478 { 3479 struct inode *inode = file->f_path.dentry->d_inode; 3480 if (!S_ISREG(inode->i_mode)) 3481 return -EOPNOTSUPP; 3482 3483 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3484 /* TODO: Add support for non extent hole punching */ 3485 return -EOPNOTSUPP; 3486 } 3487 3488 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3489 /* TODO: Add support for bigalloc file systems */ 3490 return -EOPNOTSUPP; 3491 } 3492 3493 return ext4_ext_punch_hole(file, offset, length); 3494 } 3495 3496 /* 3497 * ext4_truncate() 3498 * 3499 * We block out ext4_get_block() block instantiations across the entire 3500 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3501 * simultaneously on behalf of the same inode. 3502 * 3503 * As we work through the truncate and commit bits of it to the journal there 3504 * is one core, guiding principle: the file's tree must always be consistent on 3505 * disk. We must be able to restart the truncate after a crash. 3506 * 3507 * The file's tree may be transiently inconsistent in memory (although it 3508 * probably isn't), but whenever we close off and commit a journal transaction, 3509 * the contents of (the filesystem + the journal) must be consistent and 3510 * restartable. It's pretty simple, really: bottom up, right to left (although 3511 * left-to-right works OK too). 3512 * 3513 * Note that at recovery time, journal replay occurs *before* the restart of 3514 * truncate against the orphan inode list. 3515 * 3516 * The committed inode has the new, desired i_size (which is the same as 3517 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3518 * that this inode's truncate did not complete and it will again call 3519 * ext4_truncate() to have another go. So there will be instantiated blocks 3520 * to the right of the truncation point in a crashed ext4 filesystem. But 3521 * that's fine - as long as they are linked from the inode, the post-crash 3522 * ext4_truncate() run will find them and release them. 3523 */ 3524 void ext4_truncate(struct inode *inode) 3525 { 3526 trace_ext4_truncate_enter(inode); 3527 3528 if (!ext4_can_truncate(inode)) 3529 return; 3530 3531 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3532 3533 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3534 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3535 3536 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3537 ext4_ext_truncate(inode); 3538 else 3539 ext4_ind_truncate(inode); 3540 3541 trace_ext4_truncate_exit(inode); 3542 } 3543 3544 /* 3545 * ext4_get_inode_loc returns with an extra refcount against the inode's 3546 * underlying buffer_head on success. If 'in_mem' is true, we have all 3547 * data in memory that is needed to recreate the on-disk version of this 3548 * inode. 3549 */ 3550 static int __ext4_get_inode_loc(struct inode *inode, 3551 struct ext4_iloc *iloc, int in_mem) 3552 { 3553 struct ext4_group_desc *gdp; 3554 struct buffer_head *bh; 3555 struct super_block *sb = inode->i_sb; 3556 ext4_fsblk_t block; 3557 int inodes_per_block, inode_offset; 3558 3559 iloc->bh = NULL; 3560 if (!ext4_valid_inum(sb, inode->i_ino)) 3561 return -EIO; 3562 3563 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3564 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3565 if (!gdp) 3566 return -EIO; 3567 3568 /* 3569 * Figure out the offset within the block group inode table 3570 */ 3571 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3572 inode_offset = ((inode->i_ino - 1) % 3573 EXT4_INODES_PER_GROUP(sb)); 3574 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3575 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3576 3577 bh = sb_getblk(sb, block); 3578 if (!bh) { 3579 EXT4_ERROR_INODE_BLOCK(inode, block, 3580 "unable to read itable block"); 3581 return -EIO; 3582 } 3583 if (!buffer_uptodate(bh)) { 3584 lock_buffer(bh); 3585 3586 /* 3587 * If the buffer has the write error flag, we have failed 3588 * to write out another inode in the same block. In this 3589 * case, we don't have to read the block because we may 3590 * read the old inode data successfully. 3591 */ 3592 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3593 set_buffer_uptodate(bh); 3594 3595 if (buffer_uptodate(bh)) { 3596 /* someone brought it uptodate while we waited */ 3597 unlock_buffer(bh); 3598 goto has_buffer; 3599 } 3600 3601 /* 3602 * If we have all information of the inode in memory and this 3603 * is the only valid inode in the block, we need not read the 3604 * block. 3605 */ 3606 if (in_mem) { 3607 struct buffer_head *bitmap_bh; 3608 int i, start; 3609 3610 start = inode_offset & ~(inodes_per_block - 1); 3611 3612 /* Is the inode bitmap in cache? */ 3613 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3614 if (!bitmap_bh) 3615 goto make_io; 3616 3617 /* 3618 * If the inode bitmap isn't in cache then the 3619 * optimisation may end up performing two reads instead 3620 * of one, so skip it. 3621 */ 3622 if (!buffer_uptodate(bitmap_bh)) { 3623 brelse(bitmap_bh); 3624 goto make_io; 3625 } 3626 for (i = start; i < start + inodes_per_block; i++) { 3627 if (i == inode_offset) 3628 continue; 3629 if (ext4_test_bit(i, bitmap_bh->b_data)) 3630 break; 3631 } 3632 brelse(bitmap_bh); 3633 if (i == start + inodes_per_block) { 3634 /* all other inodes are free, so skip I/O */ 3635 memset(bh->b_data, 0, bh->b_size); 3636 set_buffer_uptodate(bh); 3637 unlock_buffer(bh); 3638 goto has_buffer; 3639 } 3640 } 3641 3642 make_io: 3643 /* 3644 * If we need to do any I/O, try to pre-readahead extra 3645 * blocks from the inode table. 3646 */ 3647 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3648 ext4_fsblk_t b, end, table; 3649 unsigned num; 3650 3651 table = ext4_inode_table(sb, gdp); 3652 /* s_inode_readahead_blks is always a power of 2 */ 3653 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3654 if (table > b) 3655 b = table; 3656 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3657 num = EXT4_INODES_PER_GROUP(sb); 3658 if (ext4_has_group_desc_csum(sb)) 3659 num -= ext4_itable_unused_count(sb, gdp); 3660 table += num / inodes_per_block; 3661 if (end > table) 3662 end = table; 3663 while (b <= end) 3664 sb_breadahead(sb, b++); 3665 } 3666 3667 /* 3668 * There are other valid inodes in the buffer, this inode 3669 * has in-inode xattrs, or we don't have this inode in memory. 3670 * Read the block from disk. 3671 */ 3672 trace_ext4_load_inode(inode); 3673 get_bh(bh); 3674 bh->b_end_io = end_buffer_read_sync; 3675 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3676 wait_on_buffer(bh); 3677 if (!buffer_uptodate(bh)) { 3678 EXT4_ERROR_INODE_BLOCK(inode, block, 3679 "unable to read itable block"); 3680 brelse(bh); 3681 return -EIO; 3682 } 3683 } 3684 has_buffer: 3685 iloc->bh = bh; 3686 return 0; 3687 } 3688 3689 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3690 { 3691 /* We have all inode data except xattrs in memory here. */ 3692 return __ext4_get_inode_loc(inode, iloc, 3693 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3694 } 3695 3696 void ext4_set_inode_flags(struct inode *inode) 3697 { 3698 unsigned int flags = EXT4_I(inode)->i_flags; 3699 3700 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3701 if (flags & EXT4_SYNC_FL) 3702 inode->i_flags |= S_SYNC; 3703 if (flags & EXT4_APPEND_FL) 3704 inode->i_flags |= S_APPEND; 3705 if (flags & EXT4_IMMUTABLE_FL) 3706 inode->i_flags |= S_IMMUTABLE; 3707 if (flags & EXT4_NOATIME_FL) 3708 inode->i_flags |= S_NOATIME; 3709 if (flags & EXT4_DIRSYNC_FL) 3710 inode->i_flags |= S_DIRSYNC; 3711 } 3712 3713 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3714 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3715 { 3716 unsigned int vfs_fl; 3717 unsigned long old_fl, new_fl; 3718 3719 do { 3720 vfs_fl = ei->vfs_inode.i_flags; 3721 old_fl = ei->i_flags; 3722 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3723 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3724 EXT4_DIRSYNC_FL); 3725 if (vfs_fl & S_SYNC) 3726 new_fl |= EXT4_SYNC_FL; 3727 if (vfs_fl & S_APPEND) 3728 new_fl |= EXT4_APPEND_FL; 3729 if (vfs_fl & S_IMMUTABLE) 3730 new_fl |= EXT4_IMMUTABLE_FL; 3731 if (vfs_fl & S_NOATIME) 3732 new_fl |= EXT4_NOATIME_FL; 3733 if (vfs_fl & S_DIRSYNC) 3734 new_fl |= EXT4_DIRSYNC_FL; 3735 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3736 } 3737 3738 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3739 struct ext4_inode_info *ei) 3740 { 3741 blkcnt_t i_blocks ; 3742 struct inode *inode = &(ei->vfs_inode); 3743 struct super_block *sb = inode->i_sb; 3744 3745 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3746 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3747 /* we are using combined 48 bit field */ 3748 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3749 le32_to_cpu(raw_inode->i_blocks_lo); 3750 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3751 /* i_blocks represent file system block size */ 3752 return i_blocks << (inode->i_blkbits - 9); 3753 } else { 3754 return i_blocks; 3755 } 3756 } else { 3757 return le32_to_cpu(raw_inode->i_blocks_lo); 3758 } 3759 } 3760 3761 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3762 { 3763 struct ext4_iloc iloc; 3764 struct ext4_inode *raw_inode; 3765 struct ext4_inode_info *ei; 3766 struct inode *inode; 3767 journal_t *journal = EXT4_SB(sb)->s_journal; 3768 long ret; 3769 int block; 3770 uid_t i_uid; 3771 gid_t i_gid; 3772 3773 inode = iget_locked(sb, ino); 3774 if (!inode) 3775 return ERR_PTR(-ENOMEM); 3776 if (!(inode->i_state & I_NEW)) 3777 return inode; 3778 3779 ei = EXT4_I(inode); 3780 iloc.bh = NULL; 3781 3782 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3783 if (ret < 0) 3784 goto bad_inode; 3785 raw_inode = ext4_raw_inode(&iloc); 3786 3787 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3788 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3789 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3790 EXT4_INODE_SIZE(inode->i_sb)) { 3791 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3792 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3793 EXT4_INODE_SIZE(inode->i_sb)); 3794 ret = -EIO; 3795 goto bad_inode; 3796 } 3797 } else 3798 ei->i_extra_isize = 0; 3799 3800 /* Precompute checksum seed for inode metadata */ 3801 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3802 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3803 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3804 __u32 csum; 3805 __le32 inum = cpu_to_le32(inode->i_ino); 3806 __le32 gen = raw_inode->i_generation; 3807 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3808 sizeof(inum)); 3809 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3810 sizeof(gen)); 3811 } 3812 3813 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3814 EXT4_ERROR_INODE(inode, "checksum invalid"); 3815 ret = -EIO; 3816 goto bad_inode; 3817 } 3818 3819 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3820 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3821 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3822 if (!(test_opt(inode->i_sb, NO_UID32))) { 3823 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3824 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3825 } 3826 i_uid_write(inode, i_uid); 3827 i_gid_write(inode, i_gid); 3828 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3829 3830 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3831 ei->i_dir_start_lookup = 0; 3832 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3833 /* We now have enough fields to check if the inode was active or not. 3834 * This is needed because nfsd might try to access dead inodes 3835 * the test is that same one that e2fsck uses 3836 * NeilBrown 1999oct15 3837 */ 3838 if (inode->i_nlink == 0) { 3839 if (inode->i_mode == 0 || 3840 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3841 /* this inode is deleted */ 3842 ret = -ESTALE; 3843 goto bad_inode; 3844 } 3845 /* The only unlinked inodes we let through here have 3846 * valid i_mode and are being read by the orphan 3847 * recovery code: that's fine, we're about to complete 3848 * the process of deleting those. */ 3849 } 3850 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3851 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3852 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3853 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3854 ei->i_file_acl |= 3855 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3856 inode->i_size = ext4_isize(raw_inode); 3857 ei->i_disksize = inode->i_size; 3858 #ifdef CONFIG_QUOTA 3859 ei->i_reserved_quota = 0; 3860 #endif 3861 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3862 ei->i_block_group = iloc.block_group; 3863 ei->i_last_alloc_group = ~0; 3864 /* 3865 * NOTE! The in-memory inode i_data array is in little-endian order 3866 * even on big-endian machines: we do NOT byteswap the block numbers! 3867 */ 3868 for (block = 0; block < EXT4_N_BLOCKS; block++) 3869 ei->i_data[block] = raw_inode->i_block[block]; 3870 INIT_LIST_HEAD(&ei->i_orphan); 3871 3872 /* 3873 * Set transaction id's of transactions that have to be committed 3874 * to finish f[data]sync. We set them to currently running transaction 3875 * as we cannot be sure that the inode or some of its metadata isn't 3876 * part of the transaction - the inode could have been reclaimed and 3877 * now it is reread from disk. 3878 */ 3879 if (journal) { 3880 transaction_t *transaction; 3881 tid_t tid; 3882 3883 read_lock(&journal->j_state_lock); 3884 if (journal->j_running_transaction) 3885 transaction = journal->j_running_transaction; 3886 else 3887 transaction = journal->j_committing_transaction; 3888 if (transaction) 3889 tid = transaction->t_tid; 3890 else 3891 tid = journal->j_commit_sequence; 3892 read_unlock(&journal->j_state_lock); 3893 ei->i_sync_tid = tid; 3894 ei->i_datasync_tid = tid; 3895 } 3896 3897 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3898 if (ei->i_extra_isize == 0) { 3899 /* The extra space is currently unused. Use it. */ 3900 ei->i_extra_isize = sizeof(struct ext4_inode) - 3901 EXT4_GOOD_OLD_INODE_SIZE; 3902 } else { 3903 __le32 *magic = (void *)raw_inode + 3904 EXT4_GOOD_OLD_INODE_SIZE + 3905 ei->i_extra_isize; 3906 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3907 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3908 } 3909 } 3910 3911 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3912 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3913 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3914 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3915 3916 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3917 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3918 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3919 inode->i_version |= 3920 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3921 } 3922 3923 ret = 0; 3924 if (ei->i_file_acl && 3925 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3926 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3927 ei->i_file_acl); 3928 ret = -EIO; 3929 goto bad_inode; 3930 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3931 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3932 (S_ISLNK(inode->i_mode) && 3933 !ext4_inode_is_fast_symlink(inode))) 3934 /* Validate extent which is part of inode */ 3935 ret = ext4_ext_check_inode(inode); 3936 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3937 (S_ISLNK(inode->i_mode) && 3938 !ext4_inode_is_fast_symlink(inode))) { 3939 /* Validate block references which are part of inode */ 3940 ret = ext4_ind_check_inode(inode); 3941 } 3942 if (ret) 3943 goto bad_inode; 3944 3945 if (S_ISREG(inode->i_mode)) { 3946 inode->i_op = &ext4_file_inode_operations; 3947 inode->i_fop = &ext4_file_operations; 3948 ext4_set_aops(inode); 3949 } else if (S_ISDIR(inode->i_mode)) { 3950 inode->i_op = &ext4_dir_inode_operations; 3951 inode->i_fop = &ext4_dir_operations; 3952 } else if (S_ISLNK(inode->i_mode)) { 3953 if (ext4_inode_is_fast_symlink(inode)) { 3954 inode->i_op = &ext4_fast_symlink_inode_operations; 3955 nd_terminate_link(ei->i_data, inode->i_size, 3956 sizeof(ei->i_data) - 1); 3957 } else { 3958 inode->i_op = &ext4_symlink_inode_operations; 3959 ext4_set_aops(inode); 3960 } 3961 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3962 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3963 inode->i_op = &ext4_special_inode_operations; 3964 if (raw_inode->i_block[0]) 3965 init_special_inode(inode, inode->i_mode, 3966 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3967 else 3968 init_special_inode(inode, inode->i_mode, 3969 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3970 } else { 3971 ret = -EIO; 3972 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3973 goto bad_inode; 3974 } 3975 brelse(iloc.bh); 3976 ext4_set_inode_flags(inode); 3977 unlock_new_inode(inode); 3978 return inode; 3979 3980 bad_inode: 3981 brelse(iloc.bh); 3982 iget_failed(inode); 3983 return ERR_PTR(ret); 3984 } 3985 3986 static int ext4_inode_blocks_set(handle_t *handle, 3987 struct ext4_inode *raw_inode, 3988 struct ext4_inode_info *ei) 3989 { 3990 struct inode *inode = &(ei->vfs_inode); 3991 u64 i_blocks = inode->i_blocks; 3992 struct super_block *sb = inode->i_sb; 3993 3994 if (i_blocks <= ~0U) { 3995 /* 3996 * i_blocks can be represented in a 32 bit variable 3997 * as multiple of 512 bytes 3998 */ 3999 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4000 raw_inode->i_blocks_high = 0; 4001 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4002 return 0; 4003 } 4004 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4005 return -EFBIG; 4006 4007 if (i_blocks <= 0xffffffffffffULL) { 4008 /* 4009 * i_blocks can be represented in a 48 bit variable 4010 * as multiple of 512 bytes 4011 */ 4012 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4013 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4014 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4015 } else { 4016 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4017 /* i_block is stored in file system block size */ 4018 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4019 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4020 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4021 } 4022 return 0; 4023 } 4024 4025 /* 4026 * Post the struct inode info into an on-disk inode location in the 4027 * buffer-cache. This gobbles the caller's reference to the 4028 * buffer_head in the inode location struct. 4029 * 4030 * The caller must have write access to iloc->bh. 4031 */ 4032 static int ext4_do_update_inode(handle_t *handle, 4033 struct inode *inode, 4034 struct ext4_iloc *iloc) 4035 { 4036 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4037 struct ext4_inode_info *ei = EXT4_I(inode); 4038 struct buffer_head *bh = iloc->bh; 4039 int err = 0, rc, block; 4040 int need_datasync = 0; 4041 uid_t i_uid; 4042 gid_t i_gid; 4043 4044 /* For fields not not tracking in the in-memory inode, 4045 * initialise them to zero for new inodes. */ 4046 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4047 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4048 4049 ext4_get_inode_flags(ei); 4050 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4051 i_uid = i_uid_read(inode); 4052 i_gid = i_gid_read(inode); 4053 if (!(test_opt(inode->i_sb, NO_UID32))) { 4054 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4055 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4056 /* 4057 * Fix up interoperability with old kernels. Otherwise, old inodes get 4058 * re-used with the upper 16 bits of the uid/gid intact 4059 */ 4060 if (!ei->i_dtime) { 4061 raw_inode->i_uid_high = 4062 cpu_to_le16(high_16_bits(i_uid)); 4063 raw_inode->i_gid_high = 4064 cpu_to_le16(high_16_bits(i_gid)); 4065 } else { 4066 raw_inode->i_uid_high = 0; 4067 raw_inode->i_gid_high = 0; 4068 } 4069 } else { 4070 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4071 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4072 raw_inode->i_uid_high = 0; 4073 raw_inode->i_gid_high = 0; 4074 } 4075 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4076 4077 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4078 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4079 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4080 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4081 4082 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4083 goto out_brelse; 4084 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4085 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4086 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4087 cpu_to_le32(EXT4_OS_HURD)) 4088 raw_inode->i_file_acl_high = 4089 cpu_to_le16(ei->i_file_acl >> 32); 4090 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4091 if (ei->i_disksize != ext4_isize(raw_inode)) { 4092 ext4_isize_set(raw_inode, ei->i_disksize); 4093 need_datasync = 1; 4094 } 4095 if (ei->i_disksize > 0x7fffffffULL) { 4096 struct super_block *sb = inode->i_sb; 4097 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4098 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4099 EXT4_SB(sb)->s_es->s_rev_level == 4100 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4101 /* If this is the first large file 4102 * created, add a flag to the superblock. 4103 */ 4104 err = ext4_journal_get_write_access(handle, 4105 EXT4_SB(sb)->s_sbh); 4106 if (err) 4107 goto out_brelse; 4108 ext4_update_dynamic_rev(sb); 4109 EXT4_SET_RO_COMPAT_FEATURE(sb, 4110 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4111 ext4_handle_sync(handle); 4112 err = ext4_handle_dirty_super(handle, sb); 4113 } 4114 } 4115 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4116 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4117 if (old_valid_dev(inode->i_rdev)) { 4118 raw_inode->i_block[0] = 4119 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4120 raw_inode->i_block[1] = 0; 4121 } else { 4122 raw_inode->i_block[0] = 0; 4123 raw_inode->i_block[1] = 4124 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4125 raw_inode->i_block[2] = 0; 4126 } 4127 } else 4128 for (block = 0; block < EXT4_N_BLOCKS; block++) 4129 raw_inode->i_block[block] = ei->i_data[block]; 4130 4131 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4132 if (ei->i_extra_isize) { 4133 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4134 raw_inode->i_version_hi = 4135 cpu_to_le32(inode->i_version >> 32); 4136 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4137 } 4138 4139 ext4_inode_csum_set(inode, raw_inode, ei); 4140 4141 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4142 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4143 if (!err) 4144 err = rc; 4145 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4146 4147 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4148 out_brelse: 4149 brelse(bh); 4150 ext4_std_error(inode->i_sb, err); 4151 return err; 4152 } 4153 4154 /* 4155 * ext4_write_inode() 4156 * 4157 * We are called from a few places: 4158 * 4159 * - Within generic_file_write() for O_SYNC files. 4160 * Here, there will be no transaction running. We wait for any running 4161 * transaction to commit. 4162 * 4163 * - Within sys_sync(), kupdate and such. 4164 * We wait on commit, if tol to. 4165 * 4166 * - Within prune_icache() (PF_MEMALLOC == true) 4167 * Here we simply return. We can't afford to block kswapd on the 4168 * journal commit. 4169 * 4170 * In all cases it is actually safe for us to return without doing anything, 4171 * because the inode has been copied into a raw inode buffer in 4172 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4173 * knfsd. 4174 * 4175 * Note that we are absolutely dependent upon all inode dirtiers doing the 4176 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4177 * which we are interested. 4178 * 4179 * It would be a bug for them to not do this. The code: 4180 * 4181 * mark_inode_dirty(inode) 4182 * stuff(); 4183 * inode->i_size = expr; 4184 * 4185 * is in error because a kswapd-driven write_inode() could occur while 4186 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4187 * will no longer be on the superblock's dirty inode list. 4188 */ 4189 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4190 { 4191 int err; 4192 4193 if (current->flags & PF_MEMALLOC) 4194 return 0; 4195 4196 if (EXT4_SB(inode->i_sb)->s_journal) { 4197 if (ext4_journal_current_handle()) { 4198 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4199 dump_stack(); 4200 return -EIO; 4201 } 4202 4203 if (wbc->sync_mode != WB_SYNC_ALL) 4204 return 0; 4205 4206 err = ext4_force_commit(inode->i_sb); 4207 } else { 4208 struct ext4_iloc iloc; 4209 4210 err = __ext4_get_inode_loc(inode, &iloc, 0); 4211 if (err) 4212 return err; 4213 if (wbc->sync_mode == WB_SYNC_ALL) 4214 sync_dirty_buffer(iloc.bh); 4215 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4216 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4217 "IO error syncing inode"); 4218 err = -EIO; 4219 } 4220 brelse(iloc.bh); 4221 } 4222 return err; 4223 } 4224 4225 /* 4226 * ext4_setattr() 4227 * 4228 * Called from notify_change. 4229 * 4230 * We want to trap VFS attempts to truncate the file as soon as 4231 * possible. In particular, we want to make sure that when the VFS 4232 * shrinks i_size, we put the inode on the orphan list and modify 4233 * i_disksize immediately, so that during the subsequent flushing of 4234 * dirty pages and freeing of disk blocks, we can guarantee that any 4235 * commit will leave the blocks being flushed in an unused state on 4236 * disk. (On recovery, the inode will get truncated and the blocks will 4237 * be freed, so we have a strong guarantee that no future commit will 4238 * leave these blocks visible to the user.) 4239 * 4240 * Another thing we have to assure is that if we are in ordered mode 4241 * and inode is still attached to the committing transaction, we must 4242 * we start writeout of all the dirty pages which are being truncated. 4243 * This way we are sure that all the data written in the previous 4244 * transaction are already on disk (truncate waits for pages under 4245 * writeback). 4246 * 4247 * Called with inode->i_mutex down. 4248 */ 4249 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4250 { 4251 struct inode *inode = dentry->d_inode; 4252 int error, rc = 0; 4253 int orphan = 0; 4254 const unsigned int ia_valid = attr->ia_valid; 4255 4256 error = inode_change_ok(inode, attr); 4257 if (error) 4258 return error; 4259 4260 if (is_quota_modification(inode, attr)) 4261 dquot_initialize(inode); 4262 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4263 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4264 handle_t *handle; 4265 4266 /* (user+group)*(old+new) structure, inode write (sb, 4267 * inode block, ? - but truncate inode update has it) */ 4268 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4269 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4270 if (IS_ERR(handle)) { 4271 error = PTR_ERR(handle); 4272 goto err_out; 4273 } 4274 error = dquot_transfer(inode, attr); 4275 if (error) { 4276 ext4_journal_stop(handle); 4277 return error; 4278 } 4279 /* Update corresponding info in inode so that everything is in 4280 * one transaction */ 4281 if (attr->ia_valid & ATTR_UID) 4282 inode->i_uid = attr->ia_uid; 4283 if (attr->ia_valid & ATTR_GID) 4284 inode->i_gid = attr->ia_gid; 4285 error = ext4_mark_inode_dirty(handle, inode); 4286 ext4_journal_stop(handle); 4287 } 4288 4289 if (attr->ia_valid & ATTR_SIZE) { 4290 4291 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4292 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4293 4294 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4295 return -EFBIG; 4296 } 4297 } 4298 4299 if (S_ISREG(inode->i_mode) && 4300 attr->ia_valid & ATTR_SIZE && 4301 (attr->ia_size < inode->i_size)) { 4302 handle_t *handle; 4303 4304 handle = ext4_journal_start(inode, 3); 4305 if (IS_ERR(handle)) { 4306 error = PTR_ERR(handle); 4307 goto err_out; 4308 } 4309 if (ext4_handle_valid(handle)) { 4310 error = ext4_orphan_add(handle, inode); 4311 orphan = 1; 4312 } 4313 EXT4_I(inode)->i_disksize = attr->ia_size; 4314 rc = ext4_mark_inode_dirty(handle, inode); 4315 if (!error) 4316 error = rc; 4317 ext4_journal_stop(handle); 4318 4319 if (ext4_should_order_data(inode)) { 4320 error = ext4_begin_ordered_truncate(inode, 4321 attr->ia_size); 4322 if (error) { 4323 /* Do as much error cleanup as possible */ 4324 handle = ext4_journal_start(inode, 3); 4325 if (IS_ERR(handle)) { 4326 ext4_orphan_del(NULL, inode); 4327 goto err_out; 4328 } 4329 ext4_orphan_del(handle, inode); 4330 orphan = 0; 4331 ext4_journal_stop(handle); 4332 goto err_out; 4333 } 4334 } 4335 } 4336 4337 if (attr->ia_valid & ATTR_SIZE) { 4338 if (attr->ia_size != i_size_read(inode)) { 4339 truncate_setsize(inode, attr->ia_size); 4340 /* Inode size will be reduced, wait for dio in flight. 4341 * Temporarily disable dioread_nolock to prevent 4342 * livelock. */ 4343 if (orphan) { 4344 ext4_inode_block_unlocked_dio(inode); 4345 inode_dio_wait(inode); 4346 ext4_inode_resume_unlocked_dio(inode); 4347 } 4348 } 4349 ext4_truncate(inode); 4350 } 4351 4352 if (!rc) { 4353 setattr_copy(inode, attr); 4354 mark_inode_dirty(inode); 4355 } 4356 4357 /* 4358 * If the call to ext4_truncate failed to get a transaction handle at 4359 * all, we need to clean up the in-core orphan list manually. 4360 */ 4361 if (orphan && inode->i_nlink) 4362 ext4_orphan_del(NULL, inode); 4363 4364 if (!rc && (ia_valid & ATTR_MODE)) 4365 rc = ext4_acl_chmod(inode); 4366 4367 err_out: 4368 ext4_std_error(inode->i_sb, error); 4369 if (!error) 4370 error = rc; 4371 return error; 4372 } 4373 4374 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4375 struct kstat *stat) 4376 { 4377 struct inode *inode; 4378 unsigned long delalloc_blocks; 4379 4380 inode = dentry->d_inode; 4381 generic_fillattr(inode, stat); 4382 4383 /* 4384 * We can't update i_blocks if the block allocation is delayed 4385 * otherwise in the case of system crash before the real block 4386 * allocation is done, we will have i_blocks inconsistent with 4387 * on-disk file blocks. 4388 * We always keep i_blocks updated together with real 4389 * allocation. But to not confuse with user, stat 4390 * will return the blocks that include the delayed allocation 4391 * blocks for this file. 4392 */ 4393 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4394 EXT4_I(inode)->i_reserved_data_blocks); 4395 4396 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4397 return 0; 4398 } 4399 4400 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4401 { 4402 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4403 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4404 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4405 } 4406 4407 /* 4408 * Account for index blocks, block groups bitmaps and block group 4409 * descriptor blocks if modify datablocks and index blocks 4410 * worse case, the indexs blocks spread over different block groups 4411 * 4412 * If datablocks are discontiguous, they are possible to spread over 4413 * different block groups too. If they are contiguous, with flexbg, 4414 * they could still across block group boundary. 4415 * 4416 * Also account for superblock, inode, quota and xattr blocks 4417 */ 4418 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4419 { 4420 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4421 int gdpblocks; 4422 int idxblocks; 4423 int ret = 0; 4424 4425 /* 4426 * How many index blocks need to touch to modify nrblocks? 4427 * The "Chunk" flag indicating whether the nrblocks is 4428 * physically contiguous on disk 4429 * 4430 * For Direct IO and fallocate, they calls get_block to allocate 4431 * one single extent at a time, so they could set the "Chunk" flag 4432 */ 4433 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4434 4435 ret = idxblocks; 4436 4437 /* 4438 * Now let's see how many group bitmaps and group descriptors need 4439 * to account 4440 */ 4441 groups = idxblocks; 4442 if (chunk) 4443 groups += 1; 4444 else 4445 groups += nrblocks; 4446 4447 gdpblocks = groups; 4448 if (groups > ngroups) 4449 groups = ngroups; 4450 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4451 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4452 4453 /* bitmaps and block group descriptor blocks */ 4454 ret += groups + gdpblocks; 4455 4456 /* Blocks for super block, inode, quota and xattr blocks */ 4457 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4458 4459 return ret; 4460 } 4461 4462 /* 4463 * Calculate the total number of credits to reserve to fit 4464 * the modification of a single pages into a single transaction, 4465 * which may include multiple chunks of block allocations. 4466 * 4467 * This could be called via ext4_write_begin() 4468 * 4469 * We need to consider the worse case, when 4470 * one new block per extent. 4471 */ 4472 int ext4_writepage_trans_blocks(struct inode *inode) 4473 { 4474 int bpp = ext4_journal_blocks_per_page(inode); 4475 int ret; 4476 4477 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4478 4479 /* Account for data blocks for journalled mode */ 4480 if (ext4_should_journal_data(inode)) 4481 ret += bpp; 4482 return ret; 4483 } 4484 4485 /* 4486 * Calculate the journal credits for a chunk of data modification. 4487 * 4488 * This is called from DIO, fallocate or whoever calling 4489 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4490 * 4491 * journal buffers for data blocks are not included here, as DIO 4492 * and fallocate do no need to journal data buffers. 4493 */ 4494 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4495 { 4496 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4497 } 4498 4499 /* 4500 * The caller must have previously called ext4_reserve_inode_write(). 4501 * Give this, we know that the caller already has write access to iloc->bh. 4502 */ 4503 int ext4_mark_iloc_dirty(handle_t *handle, 4504 struct inode *inode, struct ext4_iloc *iloc) 4505 { 4506 int err = 0; 4507 4508 if (IS_I_VERSION(inode)) 4509 inode_inc_iversion(inode); 4510 4511 /* the do_update_inode consumes one bh->b_count */ 4512 get_bh(iloc->bh); 4513 4514 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4515 err = ext4_do_update_inode(handle, inode, iloc); 4516 put_bh(iloc->bh); 4517 return err; 4518 } 4519 4520 /* 4521 * On success, We end up with an outstanding reference count against 4522 * iloc->bh. This _must_ be cleaned up later. 4523 */ 4524 4525 int 4526 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4527 struct ext4_iloc *iloc) 4528 { 4529 int err; 4530 4531 err = ext4_get_inode_loc(inode, iloc); 4532 if (!err) { 4533 BUFFER_TRACE(iloc->bh, "get_write_access"); 4534 err = ext4_journal_get_write_access(handle, iloc->bh); 4535 if (err) { 4536 brelse(iloc->bh); 4537 iloc->bh = NULL; 4538 } 4539 } 4540 ext4_std_error(inode->i_sb, err); 4541 return err; 4542 } 4543 4544 /* 4545 * Expand an inode by new_extra_isize bytes. 4546 * Returns 0 on success or negative error number on failure. 4547 */ 4548 static int ext4_expand_extra_isize(struct inode *inode, 4549 unsigned int new_extra_isize, 4550 struct ext4_iloc iloc, 4551 handle_t *handle) 4552 { 4553 struct ext4_inode *raw_inode; 4554 struct ext4_xattr_ibody_header *header; 4555 4556 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4557 return 0; 4558 4559 raw_inode = ext4_raw_inode(&iloc); 4560 4561 header = IHDR(inode, raw_inode); 4562 4563 /* No extended attributes present */ 4564 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4565 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4566 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4567 new_extra_isize); 4568 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4569 return 0; 4570 } 4571 4572 /* try to expand with EAs present */ 4573 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4574 raw_inode, handle); 4575 } 4576 4577 /* 4578 * What we do here is to mark the in-core inode as clean with respect to inode 4579 * dirtiness (it may still be data-dirty). 4580 * This means that the in-core inode may be reaped by prune_icache 4581 * without having to perform any I/O. This is a very good thing, 4582 * because *any* task may call prune_icache - even ones which 4583 * have a transaction open against a different journal. 4584 * 4585 * Is this cheating? Not really. Sure, we haven't written the 4586 * inode out, but prune_icache isn't a user-visible syncing function. 4587 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4588 * we start and wait on commits. 4589 */ 4590 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4591 { 4592 struct ext4_iloc iloc; 4593 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4594 static unsigned int mnt_count; 4595 int err, ret; 4596 4597 might_sleep(); 4598 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4599 err = ext4_reserve_inode_write(handle, inode, &iloc); 4600 if (ext4_handle_valid(handle) && 4601 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4602 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4603 /* 4604 * We need extra buffer credits since we may write into EA block 4605 * with this same handle. If journal_extend fails, then it will 4606 * only result in a minor loss of functionality for that inode. 4607 * If this is felt to be critical, then e2fsck should be run to 4608 * force a large enough s_min_extra_isize. 4609 */ 4610 if ((jbd2_journal_extend(handle, 4611 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4612 ret = ext4_expand_extra_isize(inode, 4613 sbi->s_want_extra_isize, 4614 iloc, handle); 4615 if (ret) { 4616 ext4_set_inode_state(inode, 4617 EXT4_STATE_NO_EXPAND); 4618 if (mnt_count != 4619 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4620 ext4_warning(inode->i_sb, 4621 "Unable to expand inode %lu. Delete" 4622 " some EAs or run e2fsck.", 4623 inode->i_ino); 4624 mnt_count = 4625 le16_to_cpu(sbi->s_es->s_mnt_count); 4626 } 4627 } 4628 } 4629 } 4630 if (!err) 4631 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4632 return err; 4633 } 4634 4635 /* 4636 * ext4_dirty_inode() is called from __mark_inode_dirty() 4637 * 4638 * We're really interested in the case where a file is being extended. 4639 * i_size has been changed by generic_commit_write() and we thus need 4640 * to include the updated inode in the current transaction. 4641 * 4642 * Also, dquot_alloc_block() will always dirty the inode when blocks 4643 * are allocated to the file. 4644 * 4645 * If the inode is marked synchronous, we don't honour that here - doing 4646 * so would cause a commit on atime updates, which we don't bother doing. 4647 * We handle synchronous inodes at the highest possible level. 4648 */ 4649 void ext4_dirty_inode(struct inode *inode, int flags) 4650 { 4651 handle_t *handle; 4652 4653 handle = ext4_journal_start(inode, 2); 4654 if (IS_ERR(handle)) 4655 goto out; 4656 4657 ext4_mark_inode_dirty(handle, inode); 4658 4659 ext4_journal_stop(handle); 4660 out: 4661 return; 4662 } 4663 4664 #if 0 4665 /* 4666 * Bind an inode's backing buffer_head into this transaction, to prevent 4667 * it from being flushed to disk early. Unlike 4668 * ext4_reserve_inode_write, this leaves behind no bh reference and 4669 * returns no iloc structure, so the caller needs to repeat the iloc 4670 * lookup to mark the inode dirty later. 4671 */ 4672 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4673 { 4674 struct ext4_iloc iloc; 4675 4676 int err = 0; 4677 if (handle) { 4678 err = ext4_get_inode_loc(inode, &iloc); 4679 if (!err) { 4680 BUFFER_TRACE(iloc.bh, "get_write_access"); 4681 err = jbd2_journal_get_write_access(handle, iloc.bh); 4682 if (!err) 4683 err = ext4_handle_dirty_metadata(handle, 4684 NULL, 4685 iloc.bh); 4686 brelse(iloc.bh); 4687 } 4688 } 4689 ext4_std_error(inode->i_sb, err); 4690 return err; 4691 } 4692 #endif 4693 4694 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4695 { 4696 journal_t *journal; 4697 handle_t *handle; 4698 int err; 4699 4700 /* 4701 * We have to be very careful here: changing a data block's 4702 * journaling status dynamically is dangerous. If we write a 4703 * data block to the journal, change the status and then delete 4704 * that block, we risk forgetting to revoke the old log record 4705 * from the journal and so a subsequent replay can corrupt data. 4706 * So, first we make sure that the journal is empty and that 4707 * nobody is changing anything. 4708 */ 4709 4710 journal = EXT4_JOURNAL(inode); 4711 if (!journal) 4712 return 0; 4713 if (is_journal_aborted(journal)) 4714 return -EROFS; 4715 /* We have to allocate physical blocks for delalloc blocks 4716 * before flushing journal. otherwise delalloc blocks can not 4717 * be allocated any more. even more truncate on delalloc blocks 4718 * could trigger BUG by flushing delalloc blocks in journal. 4719 * There is no delalloc block in non-journal data mode. 4720 */ 4721 if (val && test_opt(inode->i_sb, DELALLOC)) { 4722 err = ext4_alloc_da_blocks(inode); 4723 if (err < 0) 4724 return err; 4725 } 4726 4727 /* Wait for all existing dio workers */ 4728 ext4_inode_block_unlocked_dio(inode); 4729 inode_dio_wait(inode); 4730 4731 jbd2_journal_lock_updates(journal); 4732 4733 /* 4734 * OK, there are no updates running now, and all cached data is 4735 * synced to disk. We are now in a completely consistent state 4736 * which doesn't have anything in the journal, and we know that 4737 * no filesystem updates are running, so it is safe to modify 4738 * the inode's in-core data-journaling state flag now. 4739 */ 4740 4741 if (val) 4742 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4743 else { 4744 jbd2_journal_flush(journal); 4745 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4746 } 4747 ext4_set_aops(inode); 4748 4749 jbd2_journal_unlock_updates(journal); 4750 ext4_inode_resume_unlocked_dio(inode); 4751 4752 /* Finally we can mark the inode as dirty. */ 4753 4754 handle = ext4_journal_start(inode, 1); 4755 if (IS_ERR(handle)) 4756 return PTR_ERR(handle); 4757 4758 err = ext4_mark_inode_dirty(handle, inode); 4759 ext4_handle_sync(handle); 4760 ext4_journal_stop(handle); 4761 ext4_std_error(inode->i_sb, err); 4762 4763 return err; 4764 } 4765 4766 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4767 { 4768 return !buffer_mapped(bh); 4769 } 4770 4771 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4772 { 4773 struct page *page = vmf->page; 4774 loff_t size; 4775 unsigned long len; 4776 int ret; 4777 struct file *file = vma->vm_file; 4778 struct inode *inode = file->f_path.dentry->d_inode; 4779 struct address_space *mapping = inode->i_mapping; 4780 handle_t *handle; 4781 get_block_t *get_block; 4782 int retries = 0; 4783 4784 sb_start_pagefault(inode->i_sb); 4785 file_update_time(vma->vm_file); 4786 /* Delalloc case is easy... */ 4787 if (test_opt(inode->i_sb, DELALLOC) && 4788 !ext4_should_journal_data(inode) && 4789 !ext4_nonda_switch(inode->i_sb)) { 4790 do { 4791 ret = __block_page_mkwrite(vma, vmf, 4792 ext4_da_get_block_prep); 4793 } while (ret == -ENOSPC && 4794 ext4_should_retry_alloc(inode->i_sb, &retries)); 4795 goto out_ret; 4796 } 4797 4798 lock_page(page); 4799 size = i_size_read(inode); 4800 /* Page got truncated from under us? */ 4801 if (page->mapping != mapping || page_offset(page) > size) { 4802 unlock_page(page); 4803 ret = VM_FAULT_NOPAGE; 4804 goto out; 4805 } 4806 4807 if (page->index == size >> PAGE_CACHE_SHIFT) 4808 len = size & ~PAGE_CACHE_MASK; 4809 else 4810 len = PAGE_CACHE_SIZE; 4811 /* 4812 * Return if we have all the buffers mapped. This avoids the need to do 4813 * journal_start/journal_stop which can block and take a long time 4814 */ 4815 if (page_has_buffers(page)) { 4816 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4817 ext4_bh_unmapped)) { 4818 /* Wait so that we don't change page under IO */ 4819 wait_on_page_writeback(page); 4820 ret = VM_FAULT_LOCKED; 4821 goto out; 4822 } 4823 } 4824 unlock_page(page); 4825 /* OK, we need to fill the hole... */ 4826 if (ext4_should_dioread_nolock(inode)) 4827 get_block = ext4_get_block_write; 4828 else 4829 get_block = ext4_get_block; 4830 retry_alloc: 4831 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4832 if (IS_ERR(handle)) { 4833 ret = VM_FAULT_SIGBUS; 4834 goto out; 4835 } 4836 ret = __block_page_mkwrite(vma, vmf, get_block); 4837 if (!ret && ext4_should_journal_data(inode)) { 4838 if (walk_page_buffers(handle, page_buffers(page), 0, 4839 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4840 unlock_page(page); 4841 ret = VM_FAULT_SIGBUS; 4842 ext4_journal_stop(handle); 4843 goto out; 4844 } 4845 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4846 } 4847 ext4_journal_stop(handle); 4848 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4849 goto retry_alloc; 4850 out_ret: 4851 ret = block_page_mkwrite_return(ret); 4852 out: 4853 sb_end_pagefault(inode->i_sb); 4854 return ret; 4855 } 4856
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.