1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = le16_to_cpu(raw->i_checksum_lo); 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = le16_to_cpu(raw->i_checksum_hi); 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = cpu_to_le16(csum_lo); 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = cpu_to_le16(csum_hi); 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !ext4_has_metadata_csum(inode->i_sb)) 85 return 1; 86 87 provided = le16_to_cpu(raw->i_checksum_lo); 88 calculated = ext4_inode_csum(inode, raw, ei); 89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 92 else 93 calculated &= 0xFFFF; 94 95 return provided == calculated; 96 } 97 98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 99 struct ext4_inode_info *ei) 100 { 101 __u32 csum; 102 103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 104 cpu_to_le32(EXT4_OS_LINUX) || 105 !ext4_has_metadata_csum(inode->i_sb)) 106 return; 107 108 csum = ext4_inode_csum(inode, raw, ei); 109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 112 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 113 } 114 115 static inline int ext4_begin_ordered_truncate(struct inode *inode, 116 loff_t new_size) 117 { 118 trace_ext4_begin_ordered_truncate(inode, new_size); 119 /* 120 * If jinode is zero, then we never opened the file for 121 * writing, so there's no need to call 122 * jbd2_journal_begin_ordered_truncate() since there's no 123 * outstanding writes we need to flush. 124 */ 125 if (!EXT4_I(inode)->jinode) 126 return 0; 127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 128 EXT4_I(inode)->jinode, 129 new_size); 130 } 131 132 static void ext4_invalidatepage(struct page *page, unsigned int offset, 133 unsigned int length); 134 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 137 int pextents); 138 139 /* 140 * Test whether an inode is a fast symlink. 141 */ 142 int ext4_inode_is_fast_symlink(struct inode *inode) 143 { 144 int ea_blocks = EXT4_I(inode)->i_file_acl ? 145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 146 147 if (ext4_has_inline_data(inode)) 148 return 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (inode->i_ino != EXT4_JOURNAL_INO && 209 ext4_should_journal_data(inode) && 210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages_final(&inode->i_data); 218 219 goto no_delete; 220 } 221 222 if (is_bad_inode(inode)) 223 goto no_delete; 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages_final(&inode->i_data); 229 230 /* 231 * Protect us against freezing - iput() caller didn't have to have any 232 * protection against it 233 */ 234 sb_start_intwrite(inode->i_sb); 235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 236 ext4_blocks_for_truncate(inode)+3); 237 if (IS_ERR(handle)) { 238 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 239 /* 240 * If we're going to skip the normal cleanup, we still need to 241 * make sure that the in-core orphan linked list is properly 242 * cleaned up. 243 */ 244 ext4_orphan_del(NULL, inode); 245 sb_end_intwrite(inode->i_sb); 246 goto no_delete; 247 } 248 249 if (IS_SYNC(inode)) 250 ext4_handle_sync(handle); 251 inode->i_size = 0; 252 err = ext4_mark_inode_dirty(handle, inode); 253 if (err) { 254 ext4_warning(inode->i_sb, 255 "couldn't mark inode dirty (err %d)", err); 256 goto stop_handle; 257 } 258 if (inode->i_blocks) 259 ext4_truncate(inode); 260 261 /* 262 * ext4_ext_truncate() doesn't reserve any slop when it 263 * restarts journal transactions; therefore there may not be 264 * enough credits left in the handle to remove the inode from 265 * the orphan list and set the dtime field. 266 */ 267 if (!ext4_handle_has_enough_credits(handle, 3)) { 268 err = ext4_journal_extend(handle, 3); 269 if (err > 0) 270 err = ext4_journal_restart(handle, 3); 271 if (err != 0) { 272 ext4_warning(inode->i_sb, 273 "couldn't extend journal (err %d)", err); 274 stop_handle: 275 ext4_journal_stop(handle); 276 ext4_orphan_del(NULL, inode); 277 sb_end_intwrite(inode->i_sb); 278 goto no_delete; 279 } 280 } 281 282 /* 283 * Kill off the orphan record which ext4_truncate created. 284 * AKPM: I think this can be inside the above `if'. 285 * Note that ext4_orphan_del() has to be able to cope with the 286 * deletion of a non-existent orphan - this is because we don't 287 * know if ext4_truncate() actually created an orphan record. 288 * (Well, we could do this if we need to, but heck - it works) 289 */ 290 ext4_orphan_del(handle, inode); 291 EXT4_I(inode)->i_dtime = get_seconds(); 292 293 /* 294 * One subtle ordering requirement: if anything has gone wrong 295 * (transaction abort, IO errors, whatever), then we can still 296 * do these next steps (the fs will already have been marked as 297 * having errors), but we can't free the inode if the mark_dirty 298 * fails. 299 */ 300 if (ext4_mark_inode_dirty(handle, inode)) 301 /* If that failed, just do the required in-core inode clear. */ 302 ext4_clear_inode(inode); 303 else 304 ext4_free_inode(handle, inode); 305 ext4_journal_stop(handle); 306 sb_end_intwrite(inode->i_sb); 307 return; 308 no_delete: 309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 310 } 311 312 #ifdef CONFIG_QUOTA 313 qsize_t *ext4_get_reserved_space(struct inode *inode) 314 { 315 return &EXT4_I(inode)->i_reserved_quota; 316 } 317 #endif 318 319 /* 320 * Called with i_data_sem down, which is important since we can call 321 * ext4_discard_preallocations() from here. 322 */ 323 void ext4_da_update_reserve_space(struct inode *inode, 324 int used, int quota_claim) 325 { 326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 327 struct ext4_inode_info *ei = EXT4_I(inode); 328 329 spin_lock(&ei->i_block_reservation_lock); 330 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 331 if (unlikely(used > ei->i_reserved_data_blocks)) { 332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 333 "with only %d reserved data blocks", 334 __func__, inode->i_ino, used, 335 ei->i_reserved_data_blocks); 336 WARN_ON(1); 337 used = ei->i_reserved_data_blocks; 338 } 339 340 /* Update per-inode reservations */ 341 ei->i_reserved_data_blocks -= used; 342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 343 344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 345 346 /* Update quota subsystem for data blocks */ 347 if (quota_claim) 348 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 349 else { 350 /* 351 * We did fallocate with an offset that is already delayed 352 * allocated. So on delayed allocated writeback we should 353 * not re-claim the quota for fallocated blocks. 354 */ 355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 356 } 357 358 /* 359 * If we have done all the pending block allocations and if 360 * there aren't any writers on the inode, we can discard the 361 * inode's preallocations. 362 */ 363 if ((ei->i_reserved_data_blocks == 0) && 364 (atomic_read(&inode->i_writecount) == 0)) 365 ext4_discard_preallocations(inode); 366 } 367 368 static int __check_block_validity(struct inode *inode, const char *func, 369 unsigned int line, 370 struct ext4_map_blocks *map) 371 { 372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 373 map->m_len)) { 374 ext4_error_inode(inode, func, line, map->m_pblk, 375 "lblock %lu mapped to illegal pblock " 376 "(length %d)", (unsigned long) map->m_lblk, 377 map->m_len); 378 return -EFSCORRUPTED; 379 } 380 return 0; 381 } 382 383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 384 ext4_lblk_t len) 385 { 386 int ret; 387 388 if (ext4_encrypted_inode(inode)) 389 return ext4_encrypted_zeroout(inode, lblk, pblk, len); 390 391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 392 if (ret > 0) 393 ret = 0; 394 395 return ret; 396 } 397 398 #define check_block_validity(inode, map) \ 399 __check_block_validity((inode), __func__, __LINE__, (map)) 400 401 #ifdef ES_AGGRESSIVE_TEST 402 static void ext4_map_blocks_es_recheck(handle_t *handle, 403 struct inode *inode, 404 struct ext4_map_blocks *es_map, 405 struct ext4_map_blocks *map, 406 int flags) 407 { 408 int retval; 409 410 map->m_flags = 0; 411 /* 412 * There is a race window that the result is not the same. 413 * e.g. xfstests #223 when dioread_nolock enables. The reason 414 * is that we lookup a block mapping in extent status tree with 415 * out taking i_data_sem. So at the time the unwritten extent 416 * could be converted. 417 */ 418 down_read(&EXT4_I(inode)->i_data_sem); 419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 420 retval = ext4_ext_map_blocks(handle, inode, map, flags & 421 EXT4_GET_BLOCKS_KEEP_SIZE); 422 } else { 423 retval = ext4_ind_map_blocks(handle, inode, map, flags & 424 EXT4_GET_BLOCKS_KEEP_SIZE); 425 } 426 up_read((&EXT4_I(inode)->i_data_sem)); 427 428 /* 429 * We don't check m_len because extent will be collpased in status 430 * tree. So the m_len might not equal. 431 */ 432 if (es_map->m_lblk != map->m_lblk || 433 es_map->m_flags != map->m_flags || 434 es_map->m_pblk != map->m_pblk) { 435 printk("ES cache assertion failed for inode: %lu " 436 "es_cached ex [%d/%d/%llu/%x] != " 437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 438 inode->i_ino, es_map->m_lblk, es_map->m_len, 439 es_map->m_pblk, es_map->m_flags, map->m_lblk, 440 map->m_len, map->m_pblk, map->m_flags, 441 retval, flags); 442 } 443 } 444 #endif /* ES_AGGRESSIVE_TEST */ 445 446 /* 447 * The ext4_map_blocks() function tries to look up the requested blocks, 448 * and returns if the blocks are already mapped. 449 * 450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 451 * and store the allocated blocks in the result buffer head and mark it 452 * mapped. 453 * 454 * If file type is extents based, it will call ext4_ext_map_blocks(), 455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 456 * based files 457 * 458 * On success, it returns the number of blocks being mapped or allocated. if 459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 460 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 461 * 462 * It returns 0 if plain look up failed (blocks have not been allocated), in 463 * that case, @map is returned as unmapped but we still do fill map->m_len to 464 * indicate the length of a hole starting at map->m_lblk. 465 * 466 * It returns the error in case of allocation failure. 467 */ 468 int ext4_map_blocks(handle_t *handle, struct inode *inode, 469 struct ext4_map_blocks *map, int flags) 470 { 471 struct extent_status es; 472 int retval; 473 int ret = 0; 474 #ifdef ES_AGGRESSIVE_TEST 475 struct ext4_map_blocks orig_map; 476 477 memcpy(&orig_map, map, sizeof(*map)); 478 #endif 479 480 map->m_flags = 0; 481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 482 "logical block %lu\n", inode->i_ino, flags, map->m_len, 483 (unsigned long) map->m_lblk); 484 485 /* 486 * ext4_map_blocks returns an int, and m_len is an unsigned int 487 */ 488 if (unlikely(map->m_len > INT_MAX)) 489 map->m_len = INT_MAX; 490 491 /* We can handle the block number less than EXT_MAX_BLOCKS */ 492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 493 return -EFSCORRUPTED; 494 495 /* Lookup extent status tree firstly */ 496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 498 map->m_pblk = ext4_es_pblock(&es) + 499 map->m_lblk - es.es_lblk; 500 map->m_flags |= ext4_es_is_written(&es) ? 501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 502 retval = es.es_len - (map->m_lblk - es.es_lblk); 503 if (retval > map->m_len) 504 retval = map->m_len; 505 map->m_len = retval; 506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 507 map->m_pblk = 0; 508 retval = es.es_len - (map->m_lblk - es.es_lblk); 509 if (retval > map->m_len) 510 retval = map->m_len; 511 map->m_len = retval; 512 retval = 0; 513 } else { 514 BUG_ON(1); 515 } 516 #ifdef ES_AGGRESSIVE_TEST 517 ext4_map_blocks_es_recheck(handle, inode, map, 518 &orig_map, flags); 519 #endif 520 goto found; 521 } 522 523 /* 524 * Try to see if we can get the block without requesting a new 525 * file system block. 526 */ 527 down_read(&EXT4_I(inode)->i_data_sem); 528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 529 retval = ext4_ext_map_blocks(handle, inode, map, flags & 530 EXT4_GET_BLOCKS_KEEP_SIZE); 531 } else { 532 retval = ext4_ind_map_blocks(handle, inode, map, flags & 533 EXT4_GET_BLOCKS_KEEP_SIZE); 534 } 535 if (retval > 0) { 536 unsigned int status; 537 538 if (unlikely(retval != map->m_len)) { 539 ext4_warning(inode->i_sb, 540 "ES len assertion failed for inode " 541 "%lu: retval %d != map->m_len %d", 542 inode->i_ino, retval, map->m_len); 543 WARN_ON(1); 544 } 545 546 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 549 !(status & EXTENT_STATUS_WRITTEN) && 550 ext4_find_delalloc_range(inode, map->m_lblk, 551 map->m_lblk + map->m_len - 1)) 552 status |= EXTENT_STATUS_DELAYED; 553 ret = ext4_es_insert_extent(inode, map->m_lblk, 554 map->m_len, map->m_pblk, status); 555 if (ret < 0) 556 retval = ret; 557 } 558 up_read((&EXT4_I(inode)->i_data_sem)); 559 560 found: 561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 562 ret = check_block_validity(inode, map); 563 if (ret != 0) 564 return ret; 565 } 566 567 /* If it is only a block(s) look up */ 568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 569 return retval; 570 571 /* 572 * Returns if the blocks have already allocated 573 * 574 * Note that if blocks have been preallocated 575 * ext4_ext_get_block() returns the create = 0 576 * with buffer head unmapped. 577 */ 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 579 /* 580 * If we need to convert extent to unwritten 581 * we continue and do the actual work in 582 * ext4_ext_map_blocks() 583 */ 584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 585 return retval; 586 587 /* 588 * Here we clear m_flags because after allocating an new extent, 589 * it will be set again. 590 */ 591 map->m_flags &= ~EXT4_MAP_FLAGS; 592 593 /* 594 * New blocks allocate and/or writing to unwritten extent 595 * will possibly result in updating i_data, so we take 596 * the write lock of i_data_sem, and call get_block() 597 * with create == 1 flag. 598 */ 599 down_write(&EXT4_I(inode)->i_data_sem); 600 601 /* 602 * We need to check for EXT4 here because migrate 603 * could have changed the inode type in between 604 */ 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 606 retval = ext4_ext_map_blocks(handle, inode, map, flags); 607 } else { 608 retval = ext4_ind_map_blocks(handle, inode, map, flags); 609 610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 611 /* 612 * We allocated new blocks which will result in 613 * i_data's format changing. Force the migrate 614 * to fail by clearing migrate flags 615 */ 616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 617 } 618 619 /* 620 * Update reserved blocks/metadata blocks after successful 621 * block allocation which had been deferred till now. We don't 622 * support fallocate for non extent files. So we can update 623 * reserve space here. 624 */ 625 if ((retval > 0) && 626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 627 ext4_da_update_reserve_space(inode, retval, 1); 628 } 629 630 if (retval > 0) { 631 unsigned int status; 632 633 if (unlikely(retval != map->m_len)) { 634 ext4_warning(inode->i_sb, 635 "ES len assertion failed for inode " 636 "%lu: retval %d != map->m_len %d", 637 inode->i_ino, retval, map->m_len); 638 WARN_ON(1); 639 } 640 641 /* 642 * We have to zeroout blocks before inserting them into extent 643 * status tree. Otherwise someone could look them up there and 644 * use them before they are really zeroed. 645 */ 646 if (flags & EXT4_GET_BLOCKS_ZERO && 647 map->m_flags & EXT4_MAP_MAPPED && 648 map->m_flags & EXT4_MAP_NEW) { 649 ret = ext4_issue_zeroout(inode, map->m_lblk, 650 map->m_pblk, map->m_len); 651 if (ret) { 652 retval = ret; 653 goto out_sem; 654 } 655 } 656 657 /* 658 * If the extent has been zeroed out, we don't need to update 659 * extent status tree. 660 */ 661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 663 if (ext4_es_is_written(&es)) 664 goto out_sem; 665 } 666 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 669 !(status & EXTENT_STATUS_WRITTEN) && 670 ext4_find_delalloc_range(inode, map->m_lblk, 671 map->m_lblk + map->m_len - 1)) 672 status |= EXTENT_STATUS_DELAYED; 673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 674 map->m_pblk, status); 675 if (ret < 0) { 676 retval = ret; 677 goto out_sem; 678 } 679 } 680 681 out_sem: 682 up_write((&EXT4_I(inode)->i_data_sem)); 683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 684 ret = check_block_validity(inode, map); 685 if (ret != 0) 686 return ret; 687 688 /* 689 * Inodes with freshly allocated blocks where contents will be 690 * visible after transaction commit must be on transaction's 691 * ordered data list. 692 */ 693 if (map->m_flags & EXT4_MAP_NEW && 694 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 695 !(flags & EXT4_GET_BLOCKS_ZERO) && 696 !IS_NOQUOTA(inode) && 697 ext4_should_order_data(inode)) { 698 ret = ext4_jbd2_file_inode(handle, inode); 699 if (ret) 700 return ret; 701 } 702 } 703 return retval; 704 } 705 706 /* 707 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 708 * we have to be careful as someone else may be manipulating b_state as well. 709 */ 710 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 711 { 712 unsigned long old_state; 713 unsigned long new_state; 714 715 flags &= EXT4_MAP_FLAGS; 716 717 /* Dummy buffer_head? Set non-atomically. */ 718 if (!bh->b_page) { 719 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 720 return; 721 } 722 /* 723 * Someone else may be modifying b_state. Be careful! This is ugly but 724 * once we get rid of using bh as a container for mapping information 725 * to pass to / from get_block functions, this can go away. 726 */ 727 do { 728 old_state = READ_ONCE(bh->b_state); 729 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 730 } while (unlikely( 731 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 732 } 733 734 static int _ext4_get_block(struct inode *inode, sector_t iblock, 735 struct buffer_head *bh, int flags) 736 { 737 struct ext4_map_blocks map; 738 int ret = 0; 739 740 if (ext4_has_inline_data(inode)) 741 return -ERANGE; 742 743 map.m_lblk = iblock; 744 map.m_len = bh->b_size >> inode->i_blkbits; 745 746 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 747 flags); 748 if (ret > 0) { 749 map_bh(bh, inode->i_sb, map.m_pblk); 750 ext4_update_bh_state(bh, map.m_flags); 751 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 752 ret = 0; 753 } 754 return ret; 755 } 756 757 int ext4_get_block(struct inode *inode, sector_t iblock, 758 struct buffer_head *bh, int create) 759 { 760 return _ext4_get_block(inode, iblock, bh, 761 create ? EXT4_GET_BLOCKS_CREATE : 0); 762 } 763 764 /* 765 * Get block function used when preparing for buffered write if we require 766 * creating an unwritten extent if blocks haven't been allocated. The extent 767 * will be converted to written after the IO is complete. 768 */ 769 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 770 struct buffer_head *bh_result, int create) 771 { 772 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 773 inode->i_ino, create); 774 return _ext4_get_block(inode, iblock, bh_result, 775 EXT4_GET_BLOCKS_IO_CREATE_EXT); 776 } 777 778 /* Maximum number of blocks we map for direct IO at once. */ 779 #define DIO_MAX_BLOCKS 4096 780 781 /* 782 * Get blocks function for the cases that need to start a transaction - 783 * generally difference cases of direct IO and DAX IO. It also handles retries 784 * in case of ENOSPC. 785 */ 786 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 787 struct buffer_head *bh_result, int flags) 788 { 789 int dio_credits; 790 handle_t *handle; 791 int retries = 0; 792 int ret; 793 794 /* Trim mapping request to maximum we can map at once for DIO */ 795 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 796 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 797 dio_credits = ext4_chunk_trans_blocks(inode, 798 bh_result->b_size >> inode->i_blkbits); 799 retry: 800 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 801 if (IS_ERR(handle)) 802 return PTR_ERR(handle); 803 804 ret = _ext4_get_block(inode, iblock, bh_result, flags); 805 ext4_journal_stop(handle); 806 807 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 808 goto retry; 809 return ret; 810 } 811 812 /* Get block function for DIO reads and writes to inodes without extents */ 813 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 814 struct buffer_head *bh, int create) 815 { 816 /* We don't expect handle for direct IO */ 817 WARN_ON_ONCE(ext4_journal_current_handle()); 818 819 if (!create) 820 return _ext4_get_block(inode, iblock, bh, 0); 821 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 822 } 823 824 /* 825 * Get block function for AIO DIO writes when we create unwritten extent if 826 * blocks are not allocated yet. The extent will be converted to written 827 * after IO is complete. 828 */ 829 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 830 sector_t iblock, struct buffer_head *bh_result, int create) 831 { 832 int ret; 833 834 /* We don't expect handle for direct IO */ 835 WARN_ON_ONCE(ext4_journal_current_handle()); 836 837 ret = ext4_get_block_trans(inode, iblock, bh_result, 838 EXT4_GET_BLOCKS_IO_CREATE_EXT); 839 840 /* 841 * When doing DIO using unwritten extents, we need io_end to convert 842 * unwritten extents to written on IO completion. We allocate io_end 843 * once we spot unwritten extent and store it in b_private. Generic 844 * DIO code keeps b_private set and furthermore passes the value to 845 * our completion callback in 'private' argument. 846 */ 847 if (!ret && buffer_unwritten(bh_result)) { 848 if (!bh_result->b_private) { 849 ext4_io_end_t *io_end; 850 851 io_end = ext4_init_io_end(inode, GFP_KERNEL); 852 if (!io_end) 853 return -ENOMEM; 854 bh_result->b_private = io_end; 855 ext4_set_io_unwritten_flag(inode, io_end); 856 } 857 set_buffer_defer_completion(bh_result); 858 } 859 860 return ret; 861 } 862 863 /* 864 * Get block function for non-AIO DIO writes when we create unwritten extent if 865 * blocks are not allocated yet. The extent will be converted to written 866 * after IO is complete from ext4_ext_direct_IO() function. 867 */ 868 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 869 sector_t iblock, struct buffer_head *bh_result, int create) 870 { 871 int ret; 872 873 /* We don't expect handle for direct IO */ 874 WARN_ON_ONCE(ext4_journal_current_handle()); 875 876 ret = ext4_get_block_trans(inode, iblock, bh_result, 877 EXT4_GET_BLOCKS_IO_CREATE_EXT); 878 879 /* 880 * Mark inode as having pending DIO writes to unwritten extents. 881 * ext4_ext_direct_IO() checks this flag and converts extents to 882 * written. 883 */ 884 if (!ret && buffer_unwritten(bh_result)) 885 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 886 887 return ret; 888 } 889 890 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 891 struct buffer_head *bh_result, int create) 892 { 893 int ret; 894 895 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 896 inode->i_ino, create); 897 /* We don't expect handle for direct IO */ 898 WARN_ON_ONCE(ext4_journal_current_handle()); 899 900 ret = _ext4_get_block(inode, iblock, bh_result, 0); 901 /* 902 * Blocks should have been preallocated! ext4_file_write_iter() checks 903 * that. 904 */ 905 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 906 907 return ret; 908 } 909 910 911 /* 912 * `handle' can be NULL if create is zero 913 */ 914 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 915 ext4_lblk_t block, int map_flags) 916 { 917 struct ext4_map_blocks map; 918 struct buffer_head *bh; 919 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 920 int err; 921 922 J_ASSERT(handle != NULL || create == 0); 923 924 map.m_lblk = block; 925 map.m_len = 1; 926 err = ext4_map_blocks(handle, inode, &map, map_flags); 927 928 if (err == 0) 929 return create ? ERR_PTR(-ENOSPC) : NULL; 930 if (err < 0) 931 return ERR_PTR(err); 932 933 bh = sb_getblk(inode->i_sb, map.m_pblk); 934 if (unlikely(!bh)) 935 return ERR_PTR(-ENOMEM); 936 if (map.m_flags & EXT4_MAP_NEW) { 937 J_ASSERT(create != 0); 938 J_ASSERT(handle != NULL); 939 940 /* 941 * Now that we do not always journal data, we should 942 * keep in mind whether this should always journal the 943 * new buffer as metadata. For now, regular file 944 * writes use ext4_get_block instead, so it's not a 945 * problem. 946 */ 947 lock_buffer(bh); 948 BUFFER_TRACE(bh, "call get_create_access"); 949 err = ext4_journal_get_create_access(handle, bh); 950 if (unlikely(err)) { 951 unlock_buffer(bh); 952 goto errout; 953 } 954 if (!buffer_uptodate(bh)) { 955 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 956 set_buffer_uptodate(bh); 957 } 958 unlock_buffer(bh); 959 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 960 err = ext4_handle_dirty_metadata(handle, inode, bh); 961 if (unlikely(err)) 962 goto errout; 963 } else 964 BUFFER_TRACE(bh, "not a new buffer"); 965 return bh; 966 errout: 967 brelse(bh); 968 return ERR_PTR(err); 969 } 970 971 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 972 ext4_lblk_t block, int map_flags) 973 { 974 struct buffer_head *bh; 975 976 bh = ext4_getblk(handle, inode, block, map_flags); 977 if (IS_ERR(bh)) 978 return bh; 979 if (!bh || buffer_uptodate(bh)) 980 return bh; 981 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 982 wait_on_buffer(bh); 983 if (buffer_uptodate(bh)) 984 return bh; 985 put_bh(bh); 986 return ERR_PTR(-EIO); 987 } 988 989 int ext4_walk_page_buffers(handle_t *handle, 990 struct buffer_head *head, 991 unsigned from, 992 unsigned to, 993 int *partial, 994 int (*fn)(handle_t *handle, 995 struct buffer_head *bh)) 996 { 997 struct buffer_head *bh; 998 unsigned block_start, block_end; 999 unsigned blocksize = head->b_size; 1000 int err, ret = 0; 1001 struct buffer_head *next; 1002 1003 for (bh = head, block_start = 0; 1004 ret == 0 && (bh != head || !block_start); 1005 block_start = block_end, bh = next) { 1006 next = bh->b_this_page; 1007 block_end = block_start + blocksize; 1008 if (block_end <= from || block_start >= to) { 1009 if (partial && !buffer_uptodate(bh)) 1010 *partial = 1; 1011 continue; 1012 } 1013 err = (*fn)(handle, bh); 1014 if (!ret) 1015 ret = err; 1016 } 1017 return ret; 1018 } 1019 1020 /* 1021 * To preserve ordering, it is essential that the hole instantiation and 1022 * the data write be encapsulated in a single transaction. We cannot 1023 * close off a transaction and start a new one between the ext4_get_block() 1024 * and the commit_write(). So doing the jbd2_journal_start at the start of 1025 * prepare_write() is the right place. 1026 * 1027 * Also, this function can nest inside ext4_writepage(). In that case, we 1028 * *know* that ext4_writepage() has generated enough buffer credits to do the 1029 * whole page. So we won't block on the journal in that case, which is good, 1030 * because the caller may be PF_MEMALLOC. 1031 * 1032 * By accident, ext4 can be reentered when a transaction is open via 1033 * quota file writes. If we were to commit the transaction while thus 1034 * reentered, there can be a deadlock - we would be holding a quota 1035 * lock, and the commit would never complete if another thread had a 1036 * transaction open and was blocking on the quota lock - a ranking 1037 * violation. 1038 * 1039 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1040 * will _not_ run commit under these circumstances because handle->h_ref 1041 * is elevated. We'll still have enough credits for the tiny quotafile 1042 * write. 1043 */ 1044 int do_journal_get_write_access(handle_t *handle, 1045 struct buffer_head *bh) 1046 { 1047 int dirty = buffer_dirty(bh); 1048 int ret; 1049 1050 if (!buffer_mapped(bh) || buffer_freed(bh)) 1051 return 0; 1052 /* 1053 * __block_write_begin() could have dirtied some buffers. Clean 1054 * the dirty bit as jbd2_journal_get_write_access() could complain 1055 * otherwise about fs integrity issues. Setting of the dirty bit 1056 * by __block_write_begin() isn't a real problem here as we clear 1057 * the bit before releasing a page lock and thus writeback cannot 1058 * ever write the buffer. 1059 */ 1060 if (dirty) 1061 clear_buffer_dirty(bh); 1062 BUFFER_TRACE(bh, "get write access"); 1063 ret = ext4_journal_get_write_access(handle, bh); 1064 if (!ret && dirty) 1065 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1066 return ret; 1067 } 1068 1069 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1070 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1071 get_block_t *get_block) 1072 { 1073 unsigned from = pos & (PAGE_SIZE - 1); 1074 unsigned to = from + len; 1075 struct inode *inode = page->mapping->host; 1076 unsigned block_start, block_end; 1077 sector_t block; 1078 int err = 0; 1079 unsigned blocksize = inode->i_sb->s_blocksize; 1080 unsigned bbits; 1081 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1082 bool decrypt = false; 1083 1084 BUG_ON(!PageLocked(page)); 1085 BUG_ON(from > PAGE_SIZE); 1086 BUG_ON(to > PAGE_SIZE); 1087 BUG_ON(from > to); 1088 1089 if (!page_has_buffers(page)) 1090 create_empty_buffers(page, blocksize, 0); 1091 head = page_buffers(page); 1092 bbits = ilog2(blocksize); 1093 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1094 1095 for (bh = head, block_start = 0; bh != head || !block_start; 1096 block++, block_start = block_end, bh = bh->b_this_page) { 1097 block_end = block_start + blocksize; 1098 if (block_end <= from || block_start >= to) { 1099 if (PageUptodate(page)) { 1100 if (!buffer_uptodate(bh)) 1101 set_buffer_uptodate(bh); 1102 } 1103 continue; 1104 } 1105 if (buffer_new(bh)) 1106 clear_buffer_new(bh); 1107 if (!buffer_mapped(bh)) { 1108 WARN_ON(bh->b_size != blocksize); 1109 err = get_block(inode, block, bh, 1); 1110 if (err) 1111 break; 1112 if (buffer_new(bh)) { 1113 unmap_underlying_metadata(bh->b_bdev, 1114 bh->b_blocknr); 1115 if (PageUptodate(page)) { 1116 clear_buffer_new(bh); 1117 set_buffer_uptodate(bh); 1118 mark_buffer_dirty(bh); 1119 continue; 1120 } 1121 if (block_end > to || block_start < from) 1122 zero_user_segments(page, to, block_end, 1123 block_start, from); 1124 continue; 1125 } 1126 } 1127 if (PageUptodate(page)) { 1128 if (!buffer_uptodate(bh)) 1129 set_buffer_uptodate(bh); 1130 continue; 1131 } 1132 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1133 !buffer_unwritten(bh) && 1134 (block_start < from || block_end > to)) { 1135 ll_rw_block(READ, 1, &bh); 1136 *wait_bh++ = bh; 1137 decrypt = ext4_encrypted_inode(inode) && 1138 S_ISREG(inode->i_mode); 1139 } 1140 } 1141 /* 1142 * If we issued read requests, let them complete. 1143 */ 1144 while (wait_bh > wait) { 1145 wait_on_buffer(*--wait_bh); 1146 if (!buffer_uptodate(*wait_bh)) 1147 err = -EIO; 1148 } 1149 if (unlikely(err)) 1150 page_zero_new_buffers(page, from, to); 1151 else if (decrypt) 1152 err = ext4_decrypt(page); 1153 return err; 1154 } 1155 #endif 1156 1157 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1158 loff_t pos, unsigned len, unsigned flags, 1159 struct page **pagep, void **fsdata) 1160 { 1161 struct inode *inode = mapping->host; 1162 int ret, needed_blocks; 1163 handle_t *handle; 1164 int retries = 0; 1165 struct page *page; 1166 pgoff_t index; 1167 unsigned from, to; 1168 1169 trace_ext4_write_begin(inode, pos, len, flags); 1170 /* 1171 * Reserve one block more for addition to orphan list in case 1172 * we allocate blocks but write fails for some reason 1173 */ 1174 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1175 index = pos >> PAGE_SHIFT; 1176 from = pos & (PAGE_SIZE - 1); 1177 to = from + len; 1178 1179 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1180 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1181 flags, pagep); 1182 if (ret < 0) 1183 return ret; 1184 if (ret == 1) 1185 return 0; 1186 } 1187 1188 /* 1189 * grab_cache_page_write_begin() can take a long time if the 1190 * system is thrashing due to memory pressure, or if the page 1191 * is being written back. So grab it first before we start 1192 * the transaction handle. This also allows us to allocate 1193 * the page (if needed) without using GFP_NOFS. 1194 */ 1195 retry_grab: 1196 page = grab_cache_page_write_begin(mapping, index, flags); 1197 if (!page) 1198 return -ENOMEM; 1199 unlock_page(page); 1200 1201 retry_journal: 1202 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1203 if (IS_ERR(handle)) { 1204 put_page(page); 1205 return PTR_ERR(handle); 1206 } 1207 1208 lock_page(page); 1209 if (page->mapping != mapping) { 1210 /* The page got truncated from under us */ 1211 unlock_page(page); 1212 put_page(page); 1213 ext4_journal_stop(handle); 1214 goto retry_grab; 1215 } 1216 /* In case writeback began while the page was unlocked */ 1217 wait_for_stable_page(page); 1218 1219 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1220 if (ext4_should_dioread_nolock(inode)) 1221 ret = ext4_block_write_begin(page, pos, len, 1222 ext4_get_block_unwritten); 1223 else 1224 ret = ext4_block_write_begin(page, pos, len, 1225 ext4_get_block); 1226 #else 1227 if (ext4_should_dioread_nolock(inode)) 1228 ret = __block_write_begin(page, pos, len, 1229 ext4_get_block_unwritten); 1230 else 1231 ret = __block_write_begin(page, pos, len, ext4_get_block); 1232 #endif 1233 if (!ret && ext4_should_journal_data(inode)) { 1234 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1235 from, to, NULL, 1236 do_journal_get_write_access); 1237 } 1238 1239 if (ret) { 1240 unlock_page(page); 1241 /* 1242 * __block_write_begin may have instantiated a few blocks 1243 * outside i_size. Trim these off again. Don't need 1244 * i_size_read because we hold i_mutex. 1245 * 1246 * Add inode to orphan list in case we crash before 1247 * truncate finishes 1248 */ 1249 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1250 ext4_orphan_add(handle, inode); 1251 1252 ext4_journal_stop(handle); 1253 if (pos + len > inode->i_size) { 1254 ext4_truncate_failed_write(inode); 1255 /* 1256 * If truncate failed early the inode might 1257 * still be on the orphan list; we need to 1258 * make sure the inode is removed from the 1259 * orphan list in that case. 1260 */ 1261 if (inode->i_nlink) 1262 ext4_orphan_del(NULL, inode); 1263 } 1264 1265 if (ret == -ENOSPC && 1266 ext4_should_retry_alloc(inode->i_sb, &retries)) 1267 goto retry_journal; 1268 put_page(page); 1269 return ret; 1270 } 1271 *pagep = page; 1272 return ret; 1273 } 1274 1275 /* For write_end() in data=journal mode */ 1276 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1277 { 1278 int ret; 1279 if (!buffer_mapped(bh) || buffer_freed(bh)) 1280 return 0; 1281 set_buffer_uptodate(bh); 1282 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1283 clear_buffer_meta(bh); 1284 clear_buffer_prio(bh); 1285 return ret; 1286 } 1287 1288 /* 1289 * We need to pick up the new inode size which generic_commit_write gave us 1290 * `file' can be NULL - eg, when called from page_symlink(). 1291 * 1292 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1293 * buffers are managed internally. 1294 */ 1295 static int ext4_write_end(struct file *file, 1296 struct address_space *mapping, 1297 loff_t pos, unsigned len, unsigned copied, 1298 struct page *page, void *fsdata) 1299 { 1300 handle_t *handle = ext4_journal_current_handle(); 1301 struct inode *inode = mapping->host; 1302 loff_t old_size = inode->i_size; 1303 int ret = 0, ret2; 1304 int i_size_changed = 0; 1305 1306 trace_ext4_write_end(inode, pos, len, copied); 1307 if (ext4_has_inline_data(inode)) { 1308 ret = ext4_write_inline_data_end(inode, pos, len, 1309 copied, page); 1310 if (ret < 0) 1311 goto errout; 1312 copied = ret; 1313 } else 1314 copied = block_write_end(file, mapping, pos, 1315 len, copied, page, fsdata); 1316 /* 1317 * it's important to update i_size while still holding page lock: 1318 * page writeout could otherwise come in and zero beyond i_size. 1319 */ 1320 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1321 unlock_page(page); 1322 put_page(page); 1323 1324 if (old_size < pos) 1325 pagecache_isize_extended(inode, old_size, pos); 1326 /* 1327 * Don't mark the inode dirty under page lock. First, it unnecessarily 1328 * makes the holding time of page lock longer. Second, it forces lock 1329 * ordering of page lock and transaction start for journaling 1330 * filesystems. 1331 */ 1332 if (i_size_changed) 1333 ext4_mark_inode_dirty(handle, inode); 1334 1335 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1336 /* if we have allocated more blocks and copied 1337 * less. We will have blocks allocated outside 1338 * inode->i_size. So truncate them 1339 */ 1340 ext4_orphan_add(handle, inode); 1341 errout: 1342 ret2 = ext4_journal_stop(handle); 1343 if (!ret) 1344 ret = ret2; 1345 1346 if (pos + len > inode->i_size) { 1347 ext4_truncate_failed_write(inode); 1348 /* 1349 * If truncate failed early the inode might still be 1350 * on the orphan list; we need to make sure the inode 1351 * is removed from the orphan list in that case. 1352 */ 1353 if (inode->i_nlink) 1354 ext4_orphan_del(NULL, inode); 1355 } 1356 1357 return ret ? ret : copied; 1358 } 1359 1360 /* 1361 * This is a private version of page_zero_new_buffers() which doesn't 1362 * set the buffer to be dirty, since in data=journalled mode we need 1363 * to call ext4_handle_dirty_metadata() instead. 1364 */ 1365 static void zero_new_buffers(struct page *page, unsigned from, unsigned to) 1366 { 1367 unsigned int block_start = 0, block_end; 1368 struct buffer_head *head, *bh; 1369 1370 bh = head = page_buffers(page); 1371 do { 1372 block_end = block_start + bh->b_size; 1373 if (buffer_new(bh)) { 1374 if (block_end > from && block_start < to) { 1375 if (!PageUptodate(page)) { 1376 unsigned start, size; 1377 1378 start = max(from, block_start); 1379 size = min(to, block_end) - start; 1380 1381 zero_user(page, start, size); 1382 set_buffer_uptodate(bh); 1383 } 1384 clear_buffer_new(bh); 1385 } 1386 } 1387 block_start = block_end; 1388 bh = bh->b_this_page; 1389 } while (bh != head); 1390 } 1391 1392 static int ext4_journalled_write_end(struct file *file, 1393 struct address_space *mapping, 1394 loff_t pos, unsigned len, unsigned copied, 1395 struct page *page, void *fsdata) 1396 { 1397 handle_t *handle = ext4_journal_current_handle(); 1398 struct inode *inode = mapping->host; 1399 loff_t old_size = inode->i_size; 1400 int ret = 0, ret2; 1401 int partial = 0; 1402 unsigned from, to; 1403 int size_changed = 0; 1404 1405 trace_ext4_journalled_write_end(inode, pos, len, copied); 1406 from = pos & (PAGE_SIZE - 1); 1407 to = from + len; 1408 1409 BUG_ON(!ext4_handle_valid(handle)); 1410 1411 if (ext4_has_inline_data(inode)) 1412 copied = ext4_write_inline_data_end(inode, pos, len, 1413 copied, page); 1414 else { 1415 if (copied < len) { 1416 if (!PageUptodate(page)) 1417 copied = 0; 1418 zero_new_buffers(page, from+copied, to); 1419 } 1420 1421 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1422 to, &partial, write_end_fn); 1423 if (!partial) 1424 SetPageUptodate(page); 1425 } 1426 size_changed = ext4_update_inode_size(inode, pos + copied); 1427 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1428 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1429 unlock_page(page); 1430 put_page(page); 1431 1432 if (old_size < pos) 1433 pagecache_isize_extended(inode, old_size, pos); 1434 1435 if (size_changed) { 1436 ret2 = ext4_mark_inode_dirty(handle, inode); 1437 if (!ret) 1438 ret = ret2; 1439 } 1440 1441 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1442 /* if we have allocated more blocks and copied 1443 * less. We will have blocks allocated outside 1444 * inode->i_size. So truncate them 1445 */ 1446 ext4_orphan_add(handle, inode); 1447 1448 ret2 = ext4_journal_stop(handle); 1449 if (!ret) 1450 ret = ret2; 1451 if (pos + len > inode->i_size) { 1452 ext4_truncate_failed_write(inode); 1453 /* 1454 * If truncate failed early the inode might still be 1455 * on the orphan list; we need to make sure the inode 1456 * is removed from the orphan list in that case. 1457 */ 1458 if (inode->i_nlink) 1459 ext4_orphan_del(NULL, inode); 1460 } 1461 1462 return ret ? ret : copied; 1463 } 1464 1465 /* 1466 * Reserve space for a single cluster 1467 */ 1468 static int ext4_da_reserve_space(struct inode *inode) 1469 { 1470 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1471 struct ext4_inode_info *ei = EXT4_I(inode); 1472 int ret; 1473 1474 /* 1475 * We will charge metadata quota at writeout time; this saves 1476 * us from metadata over-estimation, though we may go over by 1477 * a small amount in the end. Here we just reserve for data. 1478 */ 1479 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1480 if (ret) 1481 return ret; 1482 1483 spin_lock(&ei->i_block_reservation_lock); 1484 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1485 spin_unlock(&ei->i_block_reservation_lock); 1486 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1487 return -ENOSPC; 1488 } 1489 ei->i_reserved_data_blocks++; 1490 trace_ext4_da_reserve_space(inode); 1491 spin_unlock(&ei->i_block_reservation_lock); 1492 1493 return 0; /* success */ 1494 } 1495 1496 static void ext4_da_release_space(struct inode *inode, int to_free) 1497 { 1498 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1499 struct ext4_inode_info *ei = EXT4_I(inode); 1500 1501 if (!to_free) 1502 return; /* Nothing to release, exit */ 1503 1504 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1505 1506 trace_ext4_da_release_space(inode, to_free); 1507 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1508 /* 1509 * if there aren't enough reserved blocks, then the 1510 * counter is messed up somewhere. Since this 1511 * function is called from invalidate page, it's 1512 * harmless to return without any action. 1513 */ 1514 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1515 "ino %lu, to_free %d with only %d reserved " 1516 "data blocks", inode->i_ino, to_free, 1517 ei->i_reserved_data_blocks); 1518 WARN_ON(1); 1519 to_free = ei->i_reserved_data_blocks; 1520 } 1521 ei->i_reserved_data_blocks -= to_free; 1522 1523 /* update fs dirty data blocks counter */ 1524 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1525 1526 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1527 1528 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1529 } 1530 1531 static void ext4_da_page_release_reservation(struct page *page, 1532 unsigned int offset, 1533 unsigned int length) 1534 { 1535 int to_release = 0, contiguous_blks = 0; 1536 struct buffer_head *head, *bh; 1537 unsigned int curr_off = 0; 1538 struct inode *inode = page->mapping->host; 1539 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1540 unsigned int stop = offset + length; 1541 int num_clusters; 1542 ext4_fsblk_t lblk; 1543 1544 BUG_ON(stop > PAGE_SIZE || stop < length); 1545 1546 head = page_buffers(page); 1547 bh = head; 1548 do { 1549 unsigned int next_off = curr_off + bh->b_size; 1550 1551 if (next_off > stop) 1552 break; 1553 1554 if ((offset <= curr_off) && (buffer_delay(bh))) { 1555 to_release++; 1556 contiguous_blks++; 1557 clear_buffer_delay(bh); 1558 } else if (contiguous_blks) { 1559 lblk = page->index << 1560 (PAGE_SHIFT - inode->i_blkbits); 1561 lblk += (curr_off >> inode->i_blkbits) - 1562 contiguous_blks; 1563 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1564 contiguous_blks = 0; 1565 } 1566 curr_off = next_off; 1567 } while ((bh = bh->b_this_page) != head); 1568 1569 if (contiguous_blks) { 1570 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1571 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1572 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1573 } 1574 1575 /* If we have released all the blocks belonging to a cluster, then we 1576 * need to release the reserved space for that cluster. */ 1577 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1578 while (num_clusters > 0) { 1579 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1580 ((num_clusters - 1) << sbi->s_cluster_bits); 1581 if (sbi->s_cluster_ratio == 1 || 1582 !ext4_find_delalloc_cluster(inode, lblk)) 1583 ext4_da_release_space(inode, 1); 1584 1585 num_clusters--; 1586 } 1587 } 1588 1589 /* 1590 * Delayed allocation stuff 1591 */ 1592 1593 struct mpage_da_data { 1594 struct inode *inode; 1595 struct writeback_control *wbc; 1596 1597 pgoff_t first_page; /* The first page to write */ 1598 pgoff_t next_page; /* Current page to examine */ 1599 pgoff_t last_page; /* Last page to examine */ 1600 /* 1601 * Extent to map - this can be after first_page because that can be 1602 * fully mapped. We somewhat abuse m_flags to store whether the extent 1603 * is delalloc or unwritten. 1604 */ 1605 struct ext4_map_blocks map; 1606 struct ext4_io_submit io_submit; /* IO submission data */ 1607 }; 1608 1609 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1610 bool invalidate) 1611 { 1612 int nr_pages, i; 1613 pgoff_t index, end; 1614 struct pagevec pvec; 1615 struct inode *inode = mpd->inode; 1616 struct address_space *mapping = inode->i_mapping; 1617 1618 /* This is necessary when next_page == 0. */ 1619 if (mpd->first_page >= mpd->next_page) 1620 return; 1621 1622 index = mpd->first_page; 1623 end = mpd->next_page - 1; 1624 if (invalidate) { 1625 ext4_lblk_t start, last; 1626 start = index << (PAGE_SHIFT - inode->i_blkbits); 1627 last = end << (PAGE_SHIFT - inode->i_blkbits); 1628 ext4_es_remove_extent(inode, start, last - start + 1); 1629 } 1630 1631 pagevec_init(&pvec, 0); 1632 while (index <= end) { 1633 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1634 if (nr_pages == 0) 1635 break; 1636 for (i = 0; i < nr_pages; i++) { 1637 struct page *page = pvec.pages[i]; 1638 if (page->index > end) 1639 break; 1640 BUG_ON(!PageLocked(page)); 1641 BUG_ON(PageWriteback(page)); 1642 if (invalidate) { 1643 block_invalidatepage(page, 0, PAGE_SIZE); 1644 ClearPageUptodate(page); 1645 } 1646 unlock_page(page); 1647 } 1648 index = pvec.pages[nr_pages - 1]->index + 1; 1649 pagevec_release(&pvec); 1650 } 1651 } 1652 1653 static void ext4_print_free_blocks(struct inode *inode) 1654 { 1655 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1656 struct super_block *sb = inode->i_sb; 1657 struct ext4_inode_info *ei = EXT4_I(inode); 1658 1659 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1660 EXT4_C2B(EXT4_SB(inode->i_sb), 1661 ext4_count_free_clusters(sb))); 1662 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1663 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1664 (long long) EXT4_C2B(EXT4_SB(sb), 1665 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1666 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1667 (long long) EXT4_C2B(EXT4_SB(sb), 1668 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1669 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1670 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1671 ei->i_reserved_data_blocks); 1672 return; 1673 } 1674 1675 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1676 { 1677 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1678 } 1679 1680 /* 1681 * This function is grabs code from the very beginning of 1682 * ext4_map_blocks, but assumes that the caller is from delayed write 1683 * time. This function looks up the requested blocks and sets the 1684 * buffer delay bit under the protection of i_data_sem. 1685 */ 1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1687 struct ext4_map_blocks *map, 1688 struct buffer_head *bh) 1689 { 1690 struct extent_status es; 1691 int retval; 1692 sector_t invalid_block = ~((sector_t) 0xffff); 1693 #ifdef ES_AGGRESSIVE_TEST 1694 struct ext4_map_blocks orig_map; 1695 1696 memcpy(&orig_map, map, sizeof(*map)); 1697 #endif 1698 1699 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1700 invalid_block = ~0; 1701 1702 map->m_flags = 0; 1703 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1704 "logical block %lu\n", inode->i_ino, map->m_len, 1705 (unsigned long) map->m_lblk); 1706 1707 /* Lookup extent status tree firstly */ 1708 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1709 if (ext4_es_is_hole(&es)) { 1710 retval = 0; 1711 down_read(&EXT4_I(inode)->i_data_sem); 1712 goto add_delayed; 1713 } 1714 1715 /* 1716 * Delayed extent could be allocated by fallocate. 1717 * So we need to check it. 1718 */ 1719 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1720 map_bh(bh, inode->i_sb, invalid_block); 1721 set_buffer_new(bh); 1722 set_buffer_delay(bh); 1723 return 0; 1724 } 1725 1726 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1727 retval = es.es_len - (iblock - es.es_lblk); 1728 if (retval > map->m_len) 1729 retval = map->m_len; 1730 map->m_len = retval; 1731 if (ext4_es_is_written(&es)) 1732 map->m_flags |= EXT4_MAP_MAPPED; 1733 else if (ext4_es_is_unwritten(&es)) 1734 map->m_flags |= EXT4_MAP_UNWRITTEN; 1735 else 1736 BUG_ON(1); 1737 1738 #ifdef ES_AGGRESSIVE_TEST 1739 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1740 #endif 1741 return retval; 1742 } 1743 1744 /* 1745 * Try to see if we can get the block without requesting a new 1746 * file system block. 1747 */ 1748 down_read(&EXT4_I(inode)->i_data_sem); 1749 if (ext4_has_inline_data(inode)) 1750 retval = 0; 1751 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1752 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1753 else 1754 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1755 1756 add_delayed: 1757 if (retval == 0) { 1758 int ret; 1759 /* 1760 * XXX: __block_prepare_write() unmaps passed block, 1761 * is it OK? 1762 */ 1763 /* 1764 * If the block was allocated from previously allocated cluster, 1765 * then we don't need to reserve it again. However we still need 1766 * to reserve metadata for every block we're going to write. 1767 */ 1768 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1769 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1770 ret = ext4_da_reserve_space(inode); 1771 if (ret) { 1772 /* not enough space to reserve */ 1773 retval = ret; 1774 goto out_unlock; 1775 } 1776 } 1777 1778 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1779 ~0, EXTENT_STATUS_DELAYED); 1780 if (ret) { 1781 retval = ret; 1782 goto out_unlock; 1783 } 1784 1785 map_bh(bh, inode->i_sb, invalid_block); 1786 set_buffer_new(bh); 1787 set_buffer_delay(bh); 1788 } else if (retval > 0) { 1789 int ret; 1790 unsigned int status; 1791 1792 if (unlikely(retval != map->m_len)) { 1793 ext4_warning(inode->i_sb, 1794 "ES len assertion failed for inode " 1795 "%lu: retval %d != map->m_len %d", 1796 inode->i_ino, retval, map->m_len); 1797 WARN_ON(1); 1798 } 1799 1800 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1801 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1802 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1803 map->m_pblk, status); 1804 if (ret != 0) 1805 retval = ret; 1806 } 1807 1808 out_unlock: 1809 up_read((&EXT4_I(inode)->i_data_sem)); 1810 1811 return retval; 1812 } 1813 1814 /* 1815 * This is a special get_block_t callback which is used by 1816 * ext4_da_write_begin(). It will either return mapped block or 1817 * reserve space for a single block. 1818 * 1819 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1820 * We also have b_blocknr = -1 and b_bdev initialized properly 1821 * 1822 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1823 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1824 * initialized properly. 1825 */ 1826 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1827 struct buffer_head *bh, int create) 1828 { 1829 struct ext4_map_blocks map; 1830 int ret = 0; 1831 1832 BUG_ON(create == 0); 1833 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1834 1835 map.m_lblk = iblock; 1836 map.m_len = 1; 1837 1838 /* 1839 * first, we need to know whether the block is allocated already 1840 * preallocated blocks are unmapped but should treated 1841 * the same as allocated blocks. 1842 */ 1843 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1844 if (ret <= 0) 1845 return ret; 1846 1847 map_bh(bh, inode->i_sb, map.m_pblk); 1848 ext4_update_bh_state(bh, map.m_flags); 1849 1850 if (buffer_unwritten(bh)) { 1851 /* A delayed write to unwritten bh should be marked 1852 * new and mapped. Mapped ensures that we don't do 1853 * get_block multiple times when we write to the same 1854 * offset and new ensures that we do proper zero out 1855 * for partial write. 1856 */ 1857 set_buffer_new(bh); 1858 set_buffer_mapped(bh); 1859 } 1860 return 0; 1861 } 1862 1863 static int bget_one(handle_t *handle, struct buffer_head *bh) 1864 { 1865 get_bh(bh); 1866 return 0; 1867 } 1868 1869 static int bput_one(handle_t *handle, struct buffer_head *bh) 1870 { 1871 put_bh(bh); 1872 return 0; 1873 } 1874 1875 static int __ext4_journalled_writepage(struct page *page, 1876 unsigned int len) 1877 { 1878 struct address_space *mapping = page->mapping; 1879 struct inode *inode = mapping->host; 1880 struct buffer_head *page_bufs = NULL; 1881 handle_t *handle = NULL; 1882 int ret = 0, err = 0; 1883 int inline_data = ext4_has_inline_data(inode); 1884 struct buffer_head *inode_bh = NULL; 1885 1886 ClearPageChecked(page); 1887 1888 if (inline_data) { 1889 BUG_ON(page->index != 0); 1890 BUG_ON(len > ext4_get_max_inline_size(inode)); 1891 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1892 if (inode_bh == NULL) 1893 goto out; 1894 } else { 1895 page_bufs = page_buffers(page); 1896 if (!page_bufs) { 1897 BUG(); 1898 goto out; 1899 } 1900 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1901 NULL, bget_one); 1902 } 1903 /* 1904 * We need to release the page lock before we start the 1905 * journal, so grab a reference so the page won't disappear 1906 * out from under us. 1907 */ 1908 get_page(page); 1909 unlock_page(page); 1910 1911 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1912 ext4_writepage_trans_blocks(inode)); 1913 if (IS_ERR(handle)) { 1914 ret = PTR_ERR(handle); 1915 put_page(page); 1916 goto out_no_pagelock; 1917 } 1918 BUG_ON(!ext4_handle_valid(handle)); 1919 1920 lock_page(page); 1921 put_page(page); 1922 if (page->mapping != mapping) { 1923 /* The page got truncated from under us */ 1924 ext4_journal_stop(handle); 1925 ret = 0; 1926 goto out; 1927 } 1928 1929 if (inline_data) { 1930 BUFFER_TRACE(inode_bh, "get write access"); 1931 ret = ext4_journal_get_write_access(handle, inode_bh); 1932 1933 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1934 1935 } else { 1936 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1937 do_journal_get_write_access); 1938 1939 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1940 write_end_fn); 1941 } 1942 if (ret == 0) 1943 ret = err; 1944 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1945 err = ext4_journal_stop(handle); 1946 if (!ret) 1947 ret = err; 1948 1949 if (!ext4_has_inline_data(inode)) 1950 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1951 NULL, bput_one); 1952 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1953 out: 1954 unlock_page(page); 1955 out_no_pagelock: 1956 brelse(inode_bh); 1957 return ret; 1958 } 1959 1960 /* 1961 * Note that we don't need to start a transaction unless we're journaling data 1962 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1963 * need to file the inode to the transaction's list in ordered mode because if 1964 * we are writing back data added by write(), the inode is already there and if 1965 * we are writing back data modified via mmap(), no one guarantees in which 1966 * transaction the data will hit the disk. In case we are journaling data, we 1967 * cannot start transaction directly because transaction start ranks above page 1968 * lock so we have to do some magic. 1969 * 1970 * This function can get called via... 1971 * - ext4_writepages after taking page lock (have journal handle) 1972 * - journal_submit_inode_data_buffers (no journal handle) 1973 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1974 * - grab_page_cache when doing write_begin (have journal handle) 1975 * 1976 * We don't do any block allocation in this function. If we have page with 1977 * multiple blocks we need to write those buffer_heads that are mapped. This 1978 * is important for mmaped based write. So if we do with blocksize 1K 1979 * truncate(f, 1024); 1980 * a = mmap(f, 0, 4096); 1981 * a[0] = 'a'; 1982 * truncate(f, 4096); 1983 * we have in the page first buffer_head mapped via page_mkwrite call back 1984 * but other buffer_heads would be unmapped but dirty (dirty done via the 1985 * do_wp_page). So writepage should write the first block. If we modify 1986 * the mmap area beyond 1024 we will again get a page_fault and the 1987 * page_mkwrite callback will do the block allocation and mark the 1988 * buffer_heads mapped. 1989 * 1990 * We redirty the page if we have any buffer_heads that is either delay or 1991 * unwritten in the page. 1992 * 1993 * We can get recursively called as show below. 1994 * 1995 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1996 * ext4_writepage() 1997 * 1998 * But since we don't do any block allocation we should not deadlock. 1999 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2000 */ 2001 static int ext4_writepage(struct page *page, 2002 struct writeback_control *wbc) 2003 { 2004 int ret = 0; 2005 loff_t size; 2006 unsigned int len; 2007 struct buffer_head *page_bufs = NULL; 2008 struct inode *inode = page->mapping->host; 2009 struct ext4_io_submit io_submit; 2010 bool keep_towrite = false; 2011 2012 trace_ext4_writepage(page); 2013 size = i_size_read(inode); 2014 if (page->index == size >> PAGE_SHIFT) 2015 len = size & ~PAGE_MASK; 2016 else 2017 len = PAGE_SIZE; 2018 2019 page_bufs = page_buffers(page); 2020 /* 2021 * We cannot do block allocation or other extent handling in this 2022 * function. If there are buffers needing that, we have to redirty 2023 * the page. But we may reach here when we do a journal commit via 2024 * journal_submit_inode_data_buffers() and in that case we must write 2025 * allocated buffers to achieve data=ordered mode guarantees. 2026 * 2027 * Also, if there is only one buffer per page (the fs block 2028 * size == the page size), if one buffer needs block 2029 * allocation or needs to modify the extent tree to clear the 2030 * unwritten flag, we know that the page can't be written at 2031 * all, so we might as well refuse the write immediately. 2032 * Unfortunately if the block size != page size, we can't as 2033 * easily detect this case using ext4_walk_page_buffers(), but 2034 * for the extremely common case, this is an optimization that 2035 * skips a useless round trip through ext4_bio_write_page(). 2036 */ 2037 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2038 ext4_bh_delay_or_unwritten)) { 2039 redirty_page_for_writepage(wbc, page); 2040 if ((current->flags & PF_MEMALLOC) || 2041 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2042 /* 2043 * For memory cleaning there's no point in writing only 2044 * some buffers. So just bail out. Warn if we came here 2045 * from direct reclaim. 2046 */ 2047 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2048 == PF_MEMALLOC); 2049 unlock_page(page); 2050 return 0; 2051 } 2052 keep_towrite = true; 2053 } 2054 2055 if (PageChecked(page) && ext4_should_journal_data(inode)) 2056 /* 2057 * It's mmapped pagecache. Add buffers and journal it. There 2058 * doesn't seem much point in redirtying the page here. 2059 */ 2060 return __ext4_journalled_writepage(page, len); 2061 2062 ext4_io_submit_init(&io_submit, wbc); 2063 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2064 if (!io_submit.io_end) { 2065 redirty_page_for_writepage(wbc, page); 2066 unlock_page(page); 2067 return -ENOMEM; 2068 } 2069 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2070 ext4_io_submit(&io_submit); 2071 /* Drop io_end reference we got from init */ 2072 ext4_put_io_end_defer(io_submit.io_end); 2073 return ret; 2074 } 2075 2076 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2077 { 2078 int len; 2079 loff_t size = i_size_read(mpd->inode); 2080 int err; 2081 2082 BUG_ON(page->index != mpd->first_page); 2083 if (page->index == size >> PAGE_SHIFT) 2084 len = size & ~PAGE_MASK; 2085 else 2086 len = PAGE_SIZE; 2087 clear_page_dirty_for_io(page); 2088 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2089 if (!err) 2090 mpd->wbc->nr_to_write--; 2091 mpd->first_page++; 2092 2093 return err; 2094 } 2095 2096 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2097 2098 /* 2099 * mballoc gives us at most this number of blocks... 2100 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2101 * The rest of mballoc seems to handle chunks up to full group size. 2102 */ 2103 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2104 2105 /* 2106 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2107 * 2108 * @mpd - extent of blocks 2109 * @lblk - logical number of the block in the file 2110 * @bh - buffer head we want to add to the extent 2111 * 2112 * The function is used to collect contig. blocks in the same state. If the 2113 * buffer doesn't require mapping for writeback and we haven't started the 2114 * extent of buffers to map yet, the function returns 'true' immediately - the 2115 * caller can write the buffer right away. Otherwise the function returns true 2116 * if the block has been added to the extent, false if the block couldn't be 2117 * added. 2118 */ 2119 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2120 struct buffer_head *bh) 2121 { 2122 struct ext4_map_blocks *map = &mpd->map; 2123 2124 /* Buffer that doesn't need mapping for writeback? */ 2125 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2126 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2127 /* So far no extent to map => we write the buffer right away */ 2128 if (map->m_len == 0) 2129 return true; 2130 return false; 2131 } 2132 2133 /* First block in the extent? */ 2134 if (map->m_len == 0) { 2135 map->m_lblk = lblk; 2136 map->m_len = 1; 2137 map->m_flags = bh->b_state & BH_FLAGS; 2138 return true; 2139 } 2140 2141 /* Don't go larger than mballoc is willing to allocate */ 2142 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2143 return false; 2144 2145 /* Can we merge the block to our big extent? */ 2146 if (lblk == map->m_lblk + map->m_len && 2147 (bh->b_state & BH_FLAGS) == map->m_flags) { 2148 map->m_len++; 2149 return true; 2150 } 2151 return false; 2152 } 2153 2154 /* 2155 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2156 * 2157 * @mpd - extent of blocks for mapping 2158 * @head - the first buffer in the page 2159 * @bh - buffer we should start processing from 2160 * @lblk - logical number of the block in the file corresponding to @bh 2161 * 2162 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2163 * the page for IO if all buffers in this page were mapped and there's no 2164 * accumulated extent of buffers to map or add buffers in the page to the 2165 * extent of buffers to map. The function returns 1 if the caller can continue 2166 * by processing the next page, 0 if it should stop adding buffers to the 2167 * extent to map because we cannot extend it anymore. It can also return value 2168 * < 0 in case of error during IO submission. 2169 */ 2170 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2171 struct buffer_head *head, 2172 struct buffer_head *bh, 2173 ext4_lblk_t lblk) 2174 { 2175 struct inode *inode = mpd->inode; 2176 int err; 2177 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2178 >> inode->i_blkbits; 2179 2180 do { 2181 BUG_ON(buffer_locked(bh)); 2182 2183 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2184 /* Found extent to map? */ 2185 if (mpd->map.m_len) 2186 return 0; 2187 /* Everything mapped so far and we hit EOF */ 2188 break; 2189 } 2190 } while (lblk++, (bh = bh->b_this_page) != head); 2191 /* So far everything mapped? Submit the page for IO. */ 2192 if (mpd->map.m_len == 0) { 2193 err = mpage_submit_page(mpd, head->b_page); 2194 if (err < 0) 2195 return err; 2196 } 2197 return lblk < blocks; 2198 } 2199 2200 /* 2201 * mpage_map_buffers - update buffers corresponding to changed extent and 2202 * submit fully mapped pages for IO 2203 * 2204 * @mpd - description of extent to map, on return next extent to map 2205 * 2206 * Scan buffers corresponding to changed extent (we expect corresponding pages 2207 * to be already locked) and update buffer state according to new extent state. 2208 * We map delalloc buffers to their physical location, clear unwritten bits, 2209 * and mark buffers as uninit when we perform writes to unwritten extents 2210 * and do extent conversion after IO is finished. If the last page is not fully 2211 * mapped, we update @map to the next extent in the last page that needs 2212 * mapping. Otherwise we submit the page for IO. 2213 */ 2214 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2215 { 2216 struct pagevec pvec; 2217 int nr_pages, i; 2218 struct inode *inode = mpd->inode; 2219 struct buffer_head *head, *bh; 2220 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2221 pgoff_t start, end; 2222 ext4_lblk_t lblk; 2223 sector_t pblock; 2224 int err; 2225 2226 start = mpd->map.m_lblk >> bpp_bits; 2227 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2228 lblk = start << bpp_bits; 2229 pblock = mpd->map.m_pblk; 2230 2231 pagevec_init(&pvec, 0); 2232 while (start <= end) { 2233 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2234 PAGEVEC_SIZE); 2235 if (nr_pages == 0) 2236 break; 2237 for (i = 0; i < nr_pages; i++) { 2238 struct page *page = pvec.pages[i]; 2239 2240 if (page->index > end) 2241 break; 2242 /* Up to 'end' pages must be contiguous */ 2243 BUG_ON(page->index != start); 2244 bh = head = page_buffers(page); 2245 do { 2246 if (lblk < mpd->map.m_lblk) 2247 continue; 2248 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2249 /* 2250 * Buffer after end of mapped extent. 2251 * Find next buffer in the page to map. 2252 */ 2253 mpd->map.m_len = 0; 2254 mpd->map.m_flags = 0; 2255 /* 2256 * FIXME: If dioread_nolock supports 2257 * blocksize < pagesize, we need to make 2258 * sure we add size mapped so far to 2259 * io_end->size as the following call 2260 * can submit the page for IO. 2261 */ 2262 err = mpage_process_page_bufs(mpd, head, 2263 bh, lblk); 2264 pagevec_release(&pvec); 2265 if (err > 0) 2266 err = 0; 2267 return err; 2268 } 2269 if (buffer_delay(bh)) { 2270 clear_buffer_delay(bh); 2271 bh->b_blocknr = pblock++; 2272 } 2273 clear_buffer_unwritten(bh); 2274 } while (lblk++, (bh = bh->b_this_page) != head); 2275 2276 /* 2277 * FIXME: This is going to break if dioread_nolock 2278 * supports blocksize < pagesize as we will try to 2279 * convert potentially unmapped parts of inode. 2280 */ 2281 mpd->io_submit.io_end->size += PAGE_SIZE; 2282 /* Page fully mapped - let IO run! */ 2283 err = mpage_submit_page(mpd, page); 2284 if (err < 0) { 2285 pagevec_release(&pvec); 2286 return err; 2287 } 2288 start++; 2289 } 2290 pagevec_release(&pvec); 2291 } 2292 /* Extent fully mapped and matches with page boundary. We are done. */ 2293 mpd->map.m_len = 0; 2294 mpd->map.m_flags = 0; 2295 return 0; 2296 } 2297 2298 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2299 { 2300 struct inode *inode = mpd->inode; 2301 struct ext4_map_blocks *map = &mpd->map; 2302 int get_blocks_flags; 2303 int err, dioread_nolock; 2304 2305 trace_ext4_da_write_pages_extent(inode, map); 2306 /* 2307 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2308 * to convert an unwritten extent to be initialized (in the case 2309 * where we have written into one or more preallocated blocks). It is 2310 * possible that we're going to need more metadata blocks than 2311 * previously reserved. However we must not fail because we're in 2312 * writeback and there is nothing we can do about it so it might result 2313 * in data loss. So use reserved blocks to allocate metadata if 2314 * possible. 2315 * 2316 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2317 * the blocks in question are delalloc blocks. This indicates 2318 * that the blocks and quotas has already been checked when 2319 * the data was copied into the page cache. 2320 */ 2321 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2322 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2323 dioread_nolock = ext4_should_dioread_nolock(inode); 2324 if (dioread_nolock) 2325 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2326 if (map->m_flags & (1 << BH_Delay)) 2327 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2328 2329 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2330 if (err < 0) 2331 return err; 2332 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2333 if (!mpd->io_submit.io_end->handle && 2334 ext4_handle_valid(handle)) { 2335 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2336 handle->h_rsv_handle = NULL; 2337 } 2338 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2339 } 2340 2341 BUG_ON(map->m_len == 0); 2342 if (map->m_flags & EXT4_MAP_NEW) { 2343 struct block_device *bdev = inode->i_sb->s_bdev; 2344 int i; 2345 2346 for (i = 0; i < map->m_len; i++) 2347 unmap_underlying_metadata(bdev, map->m_pblk + i); 2348 } 2349 return 0; 2350 } 2351 2352 /* 2353 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2354 * mpd->len and submit pages underlying it for IO 2355 * 2356 * @handle - handle for journal operations 2357 * @mpd - extent to map 2358 * @give_up_on_write - we set this to true iff there is a fatal error and there 2359 * is no hope of writing the data. The caller should discard 2360 * dirty pages to avoid infinite loops. 2361 * 2362 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2363 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2364 * them to initialized or split the described range from larger unwritten 2365 * extent. Note that we need not map all the described range since allocation 2366 * can return less blocks or the range is covered by more unwritten extents. We 2367 * cannot map more because we are limited by reserved transaction credits. On 2368 * the other hand we always make sure that the last touched page is fully 2369 * mapped so that it can be written out (and thus forward progress is 2370 * guaranteed). After mapping we submit all mapped pages for IO. 2371 */ 2372 static int mpage_map_and_submit_extent(handle_t *handle, 2373 struct mpage_da_data *mpd, 2374 bool *give_up_on_write) 2375 { 2376 struct inode *inode = mpd->inode; 2377 struct ext4_map_blocks *map = &mpd->map; 2378 int err; 2379 loff_t disksize; 2380 int progress = 0; 2381 2382 mpd->io_submit.io_end->offset = 2383 ((loff_t)map->m_lblk) << inode->i_blkbits; 2384 do { 2385 err = mpage_map_one_extent(handle, mpd); 2386 if (err < 0) { 2387 struct super_block *sb = inode->i_sb; 2388 2389 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2390 goto invalidate_dirty_pages; 2391 /* 2392 * Let the uper layers retry transient errors. 2393 * In the case of ENOSPC, if ext4_count_free_blocks() 2394 * is non-zero, a commit should free up blocks. 2395 */ 2396 if ((err == -ENOMEM) || 2397 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2398 if (progress) 2399 goto update_disksize; 2400 return err; 2401 } 2402 ext4_msg(sb, KERN_CRIT, 2403 "Delayed block allocation failed for " 2404 "inode %lu at logical offset %llu with" 2405 " max blocks %u with error %d", 2406 inode->i_ino, 2407 (unsigned long long)map->m_lblk, 2408 (unsigned)map->m_len, -err); 2409 ext4_msg(sb, KERN_CRIT, 2410 "This should not happen!! Data will " 2411 "be lost\n"); 2412 if (err == -ENOSPC) 2413 ext4_print_free_blocks(inode); 2414 invalidate_dirty_pages: 2415 *give_up_on_write = true; 2416 return err; 2417 } 2418 progress = 1; 2419 /* 2420 * Update buffer state, submit mapped pages, and get us new 2421 * extent to map 2422 */ 2423 err = mpage_map_and_submit_buffers(mpd); 2424 if (err < 0) 2425 goto update_disksize; 2426 } while (map->m_len); 2427 2428 update_disksize: 2429 /* 2430 * Update on-disk size after IO is submitted. Races with 2431 * truncate are avoided by checking i_size under i_data_sem. 2432 */ 2433 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2434 if (disksize > EXT4_I(inode)->i_disksize) { 2435 int err2; 2436 loff_t i_size; 2437 2438 down_write(&EXT4_I(inode)->i_data_sem); 2439 i_size = i_size_read(inode); 2440 if (disksize > i_size) 2441 disksize = i_size; 2442 if (disksize > EXT4_I(inode)->i_disksize) 2443 EXT4_I(inode)->i_disksize = disksize; 2444 err2 = ext4_mark_inode_dirty(handle, inode); 2445 up_write(&EXT4_I(inode)->i_data_sem); 2446 if (err2) 2447 ext4_error(inode->i_sb, 2448 "Failed to mark inode %lu dirty", 2449 inode->i_ino); 2450 if (!err) 2451 err = err2; 2452 } 2453 return err; 2454 } 2455 2456 /* 2457 * Calculate the total number of credits to reserve for one writepages 2458 * iteration. This is called from ext4_writepages(). We map an extent of 2459 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2460 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2461 * bpp - 1 blocks in bpp different extents. 2462 */ 2463 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2464 { 2465 int bpp = ext4_journal_blocks_per_page(inode); 2466 2467 return ext4_meta_trans_blocks(inode, 2468 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2469 } 2470 2471 /* 2472 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2473 * and underlying extent to map 2474 * 2475 * @mpd - where to look for pages 2476 * 2477 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2478 * IO immediately. When we find a page which isn't mapped we start accumulating 2479 * extent of buffers underlying these pages that needs mapping (formed by 2480 * either delayed or unwritten buffers). We also lock the pages containing 2481 * these buffers. The extent found is returned in @mpd structure (starting at 2482 * mpd->lblk with length mpd->len blocks). 2483 * 2484 * Note that this function can attach bios to one io_end structure which are 2485 * neither logically nor physically contiguous. Although it may seem as an 2486 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2487 * case as we need to track IO to all buffers underlying a page in one io_end. 2488 */ 2489 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2490 { 2491 struct address_space *mapping = mpd->inode->i_mapping; 2492 struct pagevec pvec; 2493 unsigned int nr_pages; 2494 long left = mpd->wbc->nr_to_write; 2495 pgoff_t index = mpd->first_page; 2496 pgoff_t end = mpd->last_page; 2497 int tag; 2498 int i, err = 0; 2499 int blkbits = mpd->inode->i_blkbits; 2500 ext4_lblk_t lblk; 2501 struct buffer_head *head; 2502 2503 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2504 tag = PAGECACHE_TAG_TOWRITE; 2505 else 2506 tag = PAGECACHE_TAG_DIRTY; 2507 2508 pagevec_init(&pvec, 0); 2509 mpd->map.m_len = 0; 2510 mpd->next_page = index; 2511 while (index <= end) { 2512 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2513 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2514 if (nr_pages == 0) 2515 goto out; 2516 2517 for (i = 0; i < nr_pages; i++) { 2518 struct page *page = pvec.pages[i]; 2519 2520 /* 2521 * At this point, the page may be truncated or 2522 * invalidated (changing page->mapping to NULL), or 2523 * even swizzled back from swapper_space to tmpfs file 2524 * mapping. However, page->index will not change 2525 * because we have a reference on the page. 2526 */ 2527 if (page->index > end) 2528 goto out; 2529 2530 /* 2531 * Accumulated enough dirty pages? This doesn't apply 2532 * to WB_SYNC_ALL mode. For integrity sync we have to 2533 * keep going because someone may be concurrently 2534 * dirtying pages, and we might have synced a lot of 2535 * newly appeared dirty pages, but have not synced all 2536 * of the old dirty pages. 2537 */ 2538 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2539 goto out; 2540 2541 /* If we can't merge this page, we are done. */ 2542 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2543 goto out; 2544 2545 lock_page(page); 2546 /* 2547 * If the page is no longer dirty, or its mapping no 2548 * longer corresponds to inode we are writing (which 2549 * means it has been truncated or invalidated), or the 2550 * page is already under writeback and we are not doing 2551 * a data integrity writeback, skip the page 2552 */ 2553 if (!PageDirty(page) || 2554 (PageWriteback(page) && 2555 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2556 unlikely(page->mapping != mapping)) { 2557 unlock_page(page); 2558 continue; 2559 } 2560 2561 wait_on_page_writeback(page); 2562 BUG_ON(PageWriteback(page)); 2563 2564 if (mpd->map.m_len == 0) 2565 mpd->first_page = page->index; 2566 mpd->next_page = page->index + 1; 2567 /* Add all dirty buffers to mpd */ 2568 lblk = ((ext4_lblk_t)page->index) << 2569 (PAGE_SHIFT - blkbits); 2570 head = page_buffers(page); 2571 err = mpage_process_page_bufs(mpd, head, head, lblk); 2572 if (err <= 0) 2573 goto out; 2574 err = 0; 2575 left--; 2576 } 2577 pagevec_release(&pvec); 2578 cond_resched(); 2579 } 2580 return 0; 2581 out: 2582 pagevec_release(&pvec); 2583 return err; 2584 } 2585 2586 static int __writepage(struct page *page, struct writeback_control *wbc, 2587 void *data) 2588 { 2589 struct address_space *mapping = data; 2590 int ret = ext4_writepage(page, wbc); 2591 mapping_set_error(mapping, ret); 2592 return ret; 2593 } 2594 2595 static int ext4_writepages(struct address_space *mapping, 2596 struct writeback_control *wbc) 2597 { 2598 pgoff_t writeback_index = 0; 2599 long nr_to_write = wbc->nr_to_write; 2600 int range_whole = 0; 2601 int cycled = 1; 2602 handle_t *handle = NULL; 2603 struct mpage_da_data mpd; 2604 struct inode *inode = mapping->host; 2605 int needed_blocks, rsv_blocks = 0, ret = 0; 2606 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2607 bool done; 2608 struct blk_plug plug; 2609 bool give_up_on_write = false; 2610 2611 trace_ext4_writepages(inode, wbc); 2612 2613 if (dax_mapping(mapping)) 2614 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2615 wbc); 2616 2617 /* 2618 * No pages to write? This is mainly a kludge to avoid starting 2619 * a transaction for special inodes like journal inode on last iput() 2620 * because that could violate lock ordering on umount 2621 */ 2622 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2623 goto out_writepages; 2624 2625 if (ext4_should_journal_data(inode)) { 2626 struct blk_plug plug; 2627 2628 blk_start_plug(&plug); 2629 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2630 blk_finish_plug(&plug); 2631 goto out_writepages; 2632 } 2633 2634 /* 2635 * If the filesystem has aborted, it is read-only, so return 2636 * right away instead of dumping stack traces later on that 2637 * will obscure the real source of the problem. We test 2638 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2639 * the latter could be true if the filesystem is mounted 2640 * read-only, and in that case, ext4_writepages should 2641 * *never* be called, so if that ever happens, we would want 2642 * the stack trace. 2643 */ 2644 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2645 ret = -EROFS; 2646 goto out_writepages; 2647 } 2648 2649 if (ext4_should_dioread_nolock(inode)) { 2650 /* 2651 * We may need to convert up to one extent per block in 2652 * the page and we may dirty the inode. 2653 */ 2654 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2655 } 2656 2657 /* 2658 * If we have inline data and arrive here, it means that 2659 * we will soon create the block for the 1st page, so 2660 * we'd better clear the inline data here. 2661 */ 2662 if (ext4_has_inline_data(inode)) { 2663 /* Just inode will be modified... */ 2664 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2665 if (IS_ERR(handle)) { 2666 ret = PTR_ERR(handle); 2667 goto out_writepages; 2668 } 2669 BUG_ON(ext4_test_inode_state(inode, 2670 EXT4_STATE_MAY_INLINE_DATA)); 2671 ext4_destroy_inline_data(handle, inode); 2672 ext4_journal_stop(handle); 2673 } 2674 2675 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2676 range_whole = 1; 2677 2678 if (wbc->range_cyclic) { 2679 writeback_index = mapping->writeback_index; 2680 if (writeback_index) 2681 cycled = 0; 2682 mpd.first_page = writeback_index; 2683 mpd.last_page = -1; 2684 } else { 2685 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2686 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2687 } 2688 2689 mpd.inode = inode; 2690 mpd.wbc = wbc; 2691 ext4_io_submit_init(&mpd.io_submit, wbc); 2692 retry: 2693 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2694 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2695 done = false; 2696 blk_start_plug(&plug); 2697 while (!done && mpd.first_page <= mpd.last_page) { 2698 /* For each extent of pages we use new io_end */ 2699 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2700 if (!mpd.io_submit.io_end) { 2701 ret = -ENOMEM; 2702 break; 2703 } 2704 2705 /* 2706 * We have two constraints: We find one extent to map and we 2707 * must always write out whole page (makes a difference when 2708 * blocksize < pagesize) so that we don't block on IO when we 2709 * try to write out the rest of the page. Journalled mode is 2710 * not supported by delalloc. 2711 */ 2712 BUG_ON(ext4_should_journal_data(inode)); 2713 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2714 2715 /* start a new transaction */ 2716 handle = ext4_journal_start_with_reserve(inode, 2717 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2718 if (IS_ERR(handle)) { 2719 ret = PTR_ERR(handle); 2720 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2721 "%ld pages, ino %lu; err %d", __func__, 2722 wbc->nr_to_write, inode->i_ino, ret); 2723 /* Release allocated io_end */ 2724 ext4_put_io_end(mpd.io_submit.io_end); 2725 break; 2726 } 2727 2728 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2729 ret = mpage_prepare_extent_to_map(&mpd); 2730 if (!ret) { 2731 if (mpd.map.m_len) 2732 ret = mpage_map_and_submit_extent(handle, &mpd, 2733 &give_up_on_write); 2734 else { 2735 /* 2736 * We scanned the whole range (or exhausted 2737 * nr_to_write), submitted what was mapped and 2738 * didn't find anything needing mapping. We are 2739 * done. 2740 */ 2741 done = true; 2742 } 2743 } 2744 /* 2745 * Caution: If the handle is synchronous, 2746 * ext4_journal_stop() can wait for transaction commit 2747 * to finish which may depend on writeback of pages to 2748 * complete or on page lock to be released. In that 2749 * case, we have to wait until after after we have 2750 * submitted all the IO, released page locks we hold, 2751 * and dropped io_end reference (for extent conversion 2752 * to be able to complete) before stopping the handle. 2753 */ 2754 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2755 ext4_journal_stop(handle); 2756 handle = NULL; 2757 } 2758 /* Submit prepared bio */ 2759 ext4_io_submit(&mpd.io_submit); 2760 /* Unlock pages we didn't use */ 2761 mpage_release_unused_pages(&mpd, give_up_on_write); 2762 /* 2763 * Drop our io_end reference we got from init. We have 2764 * to be careful and use deferred io_end finishing if 2765 * we are still holding the transaction as we can 2766 * release the last reference to io_end which may end 2767 * up doing unwritten extent conversion. 2768 */ 2769 if (handle) { 2770 ext4_put_io_end_defer(mpd.io_submit.io_end); 2771 ext4_journal_stop(handle); 2772 } else 2773 ext4_put_io_end(mpd.io_submit.io_end); 2774 2775 if (ret == -ENOSPC && sbi->s_journal) { 2776 /* 2777 * Commit the transaction which would 2778 * free blocks released in the transaction 2779 * and try again 2780 */ 2781 jbd2_journal_force_commit_nested(sbi->s_journal); 2782 ret = 0; 2783 continue; 2784 } 2785 /* Fatal error - ENOMEM, EIO... */ 2786 if (ret) 2787 break; 2788 } 2789 blk_finish_plug(&plug); 2790 if (!ret && !cycled && wbc->nr_to_write > 0) { 2791 cycled = 1; 2792 mpd.last_page = writeback_index - 1; 2793 mpd.first_page = 0; 2794 goto retry; 2795 } 2796 2797 /* Update index */ 2798 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2799 /* 2800 * Set the writeback_index so that range_cyclic 2801 * mode will write it back later 2802 */ 2803 mapping->writeback_index = mpd.first_page; 2804 2805 out_writepages: 2806 trace_ext4_writepages_result(inode, wbc, ret, 2807 nr_to_write - wbc->nr_to_write); 2808 return ret; 2809 } 2810 2811 static int ext4_nonda_switch(struct super_block *sb) 2812 { 2813 s64 free_clusters, dirty_clusters; 2814 struct ext4_sb_info *sbi = EXT4_SB(sb); 2815 2816 /* 2817 * switch to non delalloc mode if we are running low 2818 * on free block. The free block accounting via percpu 2819 * counters can get slightly wrong with percpu_counter_batch getting 2820 * accumulated on each CPU without updating global counters 2821 * Delalloc need an accurate free block accounting. So switch 2822 * to non delalloc when we are near to error range. 2823 */ 2824 free_clusters = 2825 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2826 dirty_clusters = 2827 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2828 /* 2829 * Start pushing delalloc when 1/2 of free blocks are dirty. 2830 */ 2831 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2832 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2833 2834 if (2 * free_clusters < 3 * dirty_clusters || 2835 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2836 /* 2837 * free block count is less than 150% of dirty blocks 2838 * or free blocks is less than watermark 2839 */ 2840 return 1; 2841 } 2842 return 0; 2843 } 2844 2845 /* We always reserve for an inode update; the superblock could be there too */ 2846 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2847 { 2848 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2849 return 1; 2850 2851 if (pos + len <= 0x7fffffffULL) 2852 return 1; 2853 2854 /* We might need to update the superblock to set LARGE_FILE */ 2855 return 2; 2856 } 2857 2858 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2859 loff_t pos, unsigned len, unsigned flags, 2860 struct page **pagep, void **fsdata) 2861 { 2862 int ret, retries = 0; 2863 struct page *page; 2864 pgoff_t index; 2865 struct inode *inode = mapping->host; 2866 handle_t *handle; 2867 2868 index = pos >> PAGE_SHIFT; 2869 2870 if (ext4_nonda_switch(inode->i_sb)) { 2871 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2872 return ext4_write_begin(file, mapping, pos, 2873 len, flags, pagep, fsdata); 2874 } 2875 *fsdata = (void *)0; 2876 trace_ext4_da_write_begin(inode, pos, len, flags); 2877 2878 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2879 ret = ext4_da_write_inline_data_begin(mapping, inode, 2880 pos, len, flags, 2881 pagep, fsdata); 2882 if (ret < 0) 2883 return ret; 2884 if (ret == 1) 2885 return 0; 2886 } 2887 2888 /* 2889 * grab_cache_page_write_begin() can take a long time if the 2890 * system is thrashing due to memory pressure, or if the page 2891 * is being written back. So grab it first before we start 2892 * the transaction handle. This also allows us to allocate 2893 * the page (if needed) without using GFP_NOFS. 2894 */ 2895 retry_grab: 2896 page = grab_cache_page_write_begin(mapping, index, flags); 2897 if (!page) 2898 return -ENOMEM; 2899 unlock_page(page); 2900 2901 /* 2902 * With delayed allocation, we don't log the i_disksize update 2903 * if there is delayed block allocation. But we still need 2904 * to journalling the i_disksize update if writes to the end 2905 * of file which has an already mapped buffer. 2906 */ 2907 retry_journal: 2908 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2909 ext4_da_write_credits(inode, pos, len)); 2910 if (IS_ERR(handle)) { 2911 put_page(page); 2912 return PTR_ERR(handle); 2913 } 2914 2915 lock_page(page); 2916 if (page->mapping != mapping) { 2917 /* The page got truncated from under us */ 2918 unlock_page(page); 2919 put_page(page); 2920 ext4_journal_stop(handle); 2921 goto retry_grab; 2922 } 2923 /* In case writeback began while the page was unlocked */ 2924 wait_for_stable_page(page); 2925 2926 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2927 ret = ext4_block_write_begin(page, pos, len, 2928 ext4_da_get_block_prep); 2929 #else 2930 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2931 #endif 2932 if (ret < 0) { 2933 unlock_page(page); 2934 ext4_journal_stop(handle); 2935 /* 2936 * block_write_begin may have instantiated a few blocks 2937 * outside i_size. Trim these off again. Don't need 2938 * i_size_read because we hold i_mutex. 2939 */ 2940 if (pos + len > inode->i_size) 2941 ext4_truncate_failed_write(inode); 2942 2943 if (ret == -ENOSPC && 2944 ext4_should_retry_alloc(inode->i_sb, &retries)) 2945 goto retry_journal; 2946 2947 put_page(page); 2948 return ret; 2949 } 2950 2951 *pagep = page; 2952 return ret; 2953 } 2954 2955 /* 2956 * Check if we should update i_disksize 2957 * when write to the end of file but not require block allocation 2958 */ 2959 static int ext4_da_should_update_i_disksize(struct page *page, 2960 unsigned long offset) 2961 { 2962 struct buffer_head *bh; 2963 struct inode *inode = page->mapping->host; 2964 unsigned int idx; 2965 int i; 2966 2967 bh = page_buffers(page); 2968 idx = offset >> inode->i_blkbits; 2969 2970 for (i = 0; i < idx; i++) 2971 bh = bh->b_this_page; 2972 2973 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2974 return 0; 2975 return 1; 2976 } 2977 2978 static int ext4_da_write_end(struct file *file, 2979 struct address_space *mapping, 2980 loff_t pos, unsigned len, unsigned copied, 2981 struct page *page, void *fsdata) 2982 { 2983 struct inode *inode = mapping->host; 2984 int ret = 0, ret2; 2985 handle_t *handle = ext4_journal_current_handle(); 2986 loff_t new_i_size; 2987 unsigned long start, end; 2988 int write_mode = (int)(unsigned long)fsdata; 2989 2990 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2991 return ext4_write_end(file, mapping, pos, 2992 len, copied, page, fsdata); 2993 2994 trace_ext4_da_write_end(inode, pos, len, copied); 2995 start = pos & (PAGE_SIZE - 1); 2996 end = start + copied - 1; 2997 2998 /* 2999 * generic_write_end() will run mark_inode_dirty() if i_size 3000 * changes. So let's piggyback the i_disksize mark_inode_dirty 3001 * into that. 3002 */ 3003 new_i_size = pos + copied; 3004 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3005 if (ext4_has_inline_data(inode) || 3006 ext4_da_should_update_i_disksize(page, end)) { 3007 ext4_update_i_disksize(inode, new_i_size); 3008 /* We need to mark inode dirty even if 3009 * new_i_size is less that inode->i_size 3010 * bu greater than i_disksize.(hint delalloc) 3011 */ 3012 ext4_mark_inode_dirty(handle, inode); 3013 } 3014 } 3015 3016 if (write_mode != CONVERT_INLINE_DATA && 3017 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3018 ext4_has_inline_data(inode)) 3019 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3020 page); 3021 else 3022 ret2 = generic_write_end(file, mapping, pos, len, copied, 3023 page, fsdata); 3024 3025 copied = ret2; 3026 if (ret2 < 0) 3027 ret = ret2; 3028 ret2 = ext4_journal_stop(handle); 3029 if (!ret) 3030 ret = ret2; 3031 3032 return ret ? ret : copied; 3033 } 3034 3035 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3036 unsigned int length) 3037 { 3038 /* 3039 * Drop reserved blocks 3040 */ 3041 BUG_ON(!PageLocked(page)); 3042 if (!page_has_buffers(page)) 3043 goto out; 3044 3045 ext4_da_page_release_reservation(page, offset, length); 3046 3047 out: 3048 ext4_invalidatepage(page, offset, length); 3049 3050 return; 3051 } 3052 3053 /* 3054 * Force all delayed allocation blocks to be allocated for a given inode. 3055 */ 3056 int ext4_alloc_da_blocks(struct inode *inode) 3057 { 3058 trace_ext4_alloc_da_blocks(inode); 3059 3060 if (!EXT4_I(inode)->i_reserved_data_blocks) 3061 return 0; 3062 3063 /* 3064 * We do something simple for now. The filemap_flush() will 3065 * also start triggering a write of the data blocks, which is 3066 * not strictly speaking necessary (and for users of 3067 * laptop_mode, not even desirable). However, to do otherwise 3068 * would require replicating code paths in: 3069 * 3070 * ext4_writepages() -> 3071 * write_cache_pages() ---> (via passed in callback function) 3072 * __mpage_da_writepage() --> 3073 * mpage_add_bh_to_extent() 3074 * mpage_da_map_blocks() 3075 * 3076 * The problem is that write_cache_pages(), located in 3077 * mm/page-writeback.c, marks pages clean in preparation for 3078 * doing I/O, which is not desirable if we're not planning on 3079 * doing I/O at all. 3080 * 3081 * We could call write_cache_pages(), and then redirty all of 3082 * the pages by calling redirty_page_for_writepage() but that 3083 * would be ugly in the extreme. So instead we would need to 3084 * replicate parts of the code in the above functions, 3085 * simplifying them because we wouldn't actually intend to 3086 * write out the pages, but rather only collect contiguous 3087 * logical block extents, call the multi-block allocator, and 3088 * then update the buffer heads with the block allocations. 3089 * 3090 * For now, though, we'll cheat by calling filemap_flush(), 3091 * which will map the blocks, and start the I/O, but not 3092 * actually wait for the I/O to complete. 3093 */ 3094 return filemap_flush(inode->i_mapping); 3095 } 3096 3097 /* 3098 * bmap() is special. It gets used by applications such as lilo and by 3099 * the swapper to find the on-disk block of a specific piece of data. 3100 * 3101 * Naturally, this is dangerous if the block concerned is still in the 3102 * journal. If somebody makes a swapfile on an ext4 data-journaling 3103 * filesystem and enables swap, then they may get a nasty shock when the 3104 * data getting swapped to that swapfile suddenly gets overwritten by 3105 * the original zero's written out previously to the journal and 3106 * awaiting writeback in the kernel's buffer cache. 3107 * 3108 * So, if we see any bmap calls here on a modified, data-journaled file, 3109 * take extra steps to flush any blocks which might be in the cache. 3110 */ 3111 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3112 { 3113 struct inode *inode = mapping->host; 3114 journal_t *journal; 3115 int err; 3116 3117 /* 3118 * We can get here for an inline file via the FIBMAP ioctl 3119 */ 3120 if (ext4_has_inline_data(inode)) 3121 return 0; 3122 3123 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3124 test_opt(inode->i_sb, DELALLOC)) { 3125 /* 3126 * With delalloc we want to sync the file 3127 * so that we can make sure we allocate 3128 * blocks for file 3129 */ 3130 filemap_write_and_wait(mapping); 3131 } 3132 3133 if (EXT4_JOURNAL(inode) && 3134 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3135 /* 3136 * This is a REALLY heavyweight approach, but the use of 3137 * bmap on dirty files is expected to be extremely rare: 3138 * only if we run lilo or swapon on a freshly made file 3139 * do we expect this to happen. 3140 * 3141 * (bmap requires CAP_SYS_RAWIO so this does not 3142 * represent an unprivileged user DOS attack --- we'd be 3143 * in trouble if mortal users could trigger this path at 3144 * will.) 3145 * 3146 * NB. EXT4_STATE_JDATA is not set on files other than 3147 * regular files. If somebody wants to bmap a directory 3148 * or symlink and gets confused because the buffer 3149 * hasn't yet been flushed to disk, they deserve 3150 * everything they get. 3151 */ 3152 3153 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3154 journal = EXT4_JOURNAL(inode); 3155 jbd2_journal_lock_updates(journal); 3156 err = jbd2_journal_flush(journal); 3157 jbd2_journal_unlock_updates(journal); 3158 3159 if (err) 3160 return 0; 3161 } 3162 3163 return generic_block_bmap(mapping, block, ext4_get_block); 3164 } 3165 3166 static int ext4_readpage(struct file *file, struct page *page) 3167 { 3168 int ret = -EAGAIN; 3169 struct inode *inode = page->mapping->host; 3170 3171 trace_ext4_readpage(page); 3172 3173 if (ext4_has_inline_data(inode)) 3174 ret = ext4_readpage_inline(inode, page); 3175 3176 if (ret == -EAGAIN) 3177 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3178 3179 return ret; 3180 } 3181 3182 static int 3183 ext4_readpages(struct file *file, struct address_space *mapping, 3184 struct list_head *pages, unsigned nr_pages) 3185 { 3186 struct inode *inode = mapping->host; 3187 3188 /* If the file has inline data, no need to do readpages. */ 3189 if (ext4_has_inline_data(inode)) 3190 return 0; 3191 3192 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3193 } 3194 3195 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3196 unsigned int length) 3197 { 3198 trace_ext4_invalidatepage(page, offset, length); 3199 3200 /* No journalling happens on data buffers when this function is used */ 3201 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3202 3203 block_invalidatepage(page, offset, length); 3204 } 3205 3206 static int __ext4_journalled_invalidatepage(struct page *page, 3207 unsigned int offset, 3208 unsigned int length) 3209 { 3210 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3211 3212 trace_ext4_journalled_invalidatepage(page, offset, length); 3213 3214 /* 3215 * If it's a full truncate we just forget about the pending dirtying 3216 */ 3217 if (offset == 0 && length == PAGE_SIZE) 3218 ClearPageChecked(page); 3219 3220 return jbd2_journal_invalidatepage(journal, page, offset, length); 3221 } 3222 3223 /* Wrapper for aops... */ 3224 static void ext4_journalled_invalidatepage(struct page *page, 3225 unsigned int offset, 3226 unsigned int length) 3227 { 3228 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3229 } 3230 3231 static int ext4_releasepage(struct page *page, gfp_t wait) 3232 { 3233 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3234 3235 trace_ext4_releasepage(page); 3236 3237 /* Page has dirty journalled data -> cannot release */ 3238 if (PageChecked(page)) 3239 return 0; 3240 if (journal) 3241 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3242 else 3243 return try_to_free_buffers(page); 3244 } 3245 3246 #ifdef CONFIG_FS_DAX 3247 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock, 3248 struct buffer_head *bh_result, int create) 3249 { 3250 int ret, err; 3251 int credits; 3252 struct ext4_map_blocks map; 3253 handle_t *handle = NULL; 3254 int flags = 0; 3255 3256 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n", 3257 inode->i_ino, create); 3258 map.m_lblk = iblock; 3259 map.m_len = bh_result->b_size >> inode->i_blkbits; 3260 credits = ext4_chunk_trans_blocks(inode, map.m_len); 3261 if (create) { 3262 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO; 3263 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 3264 if (IS_ERR(handle)) { 3265 ret = PTR_ERR(handle); 3266 return ret; 3267 } 3268 } 3269 3270 ret = ext4_map_blocks(handle, inode, &map, flags); 3271 if (create) { 3272 err = ext4_journal_stop(handle); 3273 if (ret >= 0 && err < 0) 3274 ret = err; 3275 } 3276 if (ret <= 0) 3277 goto out; 3278 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3279 int err2; 3280 3281 /* 3282 * We are protected by i_mmap_sem so we know block cannot go 3283 * away from under us even though we dropped i_data_sem. 3284 * Convert extent to written and write zeros there. 3285 * 3286 * Note: We may get here even when create == 0. 3287 */ 3288 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 3289 if (IS_ERR(handle)) { 3290 ret = PTR_ERR(handle); 3291 goto out; 3292 } 3293 3294 err = ext4_map_blocks(handle, inode, &map, 3295 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO); 3296 if (err < 0) 3297 ret = err; 3298 err2 = ext4_journal_stop(handle); 3299 if (err2 < 0 && ret > 0) 3300 ret = err2; 3301 } 3302 out: 3303 WARN_ON_ONCE(ret == 0 && create); 3304 if (ret > 0) { 3305 map_bh(bh_result, inode->i_sb, map.m_pblk); 3306 /* 3307 * At least for now we have to clear BH_New so that DAX code 3308 * doesn't attempt to zero blocks again in a racy way. 3309 */ 3310 map.m_flags &= ~EXT4_MAP_NEW; 3311 ext4_update_bh_state(bh_result, map.m_flags); 3312 bh_result->b_size = map.m_len << inode->i_blkbits; 3313 ret = 0; 3314 } 3315 return ret; 3316 } 3317 #endif 3318 3319 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3320 ssize_t size, void *private) 3321 { 3322 ext4_io_end_t *io_end = private; 3323 3324 /* if not async direct IO just return */ 3325 if (!io_end) 3326 return 0; 3327 3328 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3329 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3330 io_end, io_end->inode->i_ino, iocb, offset, size); 3331 3332 /* 3333 * Error during AIO DIO. We cannot convert unwritten extents as the 3334 * data was not written. Just clear the unwritten flag and drop io_end. 3335 */ 3336 if (size <= 0) { 3337 ext4_clear_io_unwritten_flag(io_end); 3338 size = 0; 3339 } 3340 io_end->offset = offset; 3341 io_end->size = size; 3342 ext4_put_io_end(io_end); 3343 3344 return 0; 3345 } 3346 3347 /* 3348 * For ext4 extent files, ext4 will do direct-io write to holes, 3349 * preallocated extents, and those write extend the file, no need to 3350 * fall back to buffered IO. 3351 * 3352 * For holes, we fallocate those blocks, mark them as unwritten 3353 * If those blocks were preallocated, we mark sure they are split, but 3354 * still keep the range to write as unwritten. 3355 * 3356 * The unwritten extents will be converted to written when DIO is completed. 3357 * For async direct IO, since the IO may still pending when return, we 3358 * set up an end_io call back function, which will do the conversion 3359 * when async direct IO completed. 3360 * 3361 * If the O_DIRECT write will extend the file then add this inode to the 3362 * orphan list. So recovery will truncate it back to the original size 3363 * if the machine crashes during the write. 3364 * 3365 */ 3366 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3367 loff_t offset) 3368 { 3369 struct file *file = iocb->ki_filp; 3370 struct inode *inode = file->f_mapping->host; 3371 ssize_t ret; 3372 size_t count = iov_iter_count(iter); 3373 int overwrite = 0; 3374 get_block_t *get_block_func = NULL; 3375 int dio_flags = 0; 3376 loff_t final_size = offset + count; 3377 3378 /* Use the old path for reads and writes beyond i_size. */ 3379 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3380 return ext4_ind_direct_IO(iocb, iter, offset); 3381 3382 BUG_ON(iocb->private == NULL); 3383 3384 /* 3385 * Make all waiters for direct IO properly wait also for extent 3386 * conversion. This also disallows race between truncate() and 3387 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3388 */ 3389 if (iov_iter_rw(iter) == WRITE) 3390 inode_dio_begin(inode); 3391 3392 /* If we do a overwrite dio, i_mutex locking can be released */ 3393 overwrite = *((int *)iocb->private); 3394 3395 if (overwrite) 3396 inode_unlock(inode); 3397 3398 /* 3399 * We could direct write to holes and fallocate. 3400 * 3401 * Allocated blocks to fill the hole are marked as unwritten to prevent 3402 * parallel buffered read to expose the stale data before DIO complete 3403 * the data IO. 3404 * 3405 * As to previously fallocated extents, ext4 get_block will just simply 3406 * mark the buffer mapped but still keep the extents unwritten. 3407 * 3408 * For non AIO case, we will convert those unwritten extents to written 3409 * after return back from blockdev_direct_IO. That way we save us from 3410 * allocating io_end structure and also the overhead of offloading 3411 * the extent convertion to a workqueue. 3412 * 3413 * For async DIO, the conversion needs to be deferred when the 3414 * IO is completed. The ext4 end_io callback function will be 3415 * called to take care of the conversion work. Here for async 3416 * case, we allocate an io_end structure to hook to the iocb. 3417 */ 3418 iocb->private = NULL; 3419 if (overwrite) 3420 get_block_func = ext4_dio_get_block_overwrite; 3421 else if (is_sync_kiocb(iocb)) { 3422 get_block_func = ext4_dio_get_block_unwritten_sync; 3423 dio_flags = DIO_LOCKING; 3424 } else { 3425 get_block_func = ext4_dio_get_block_unwritten_async; 3426 dio_flags = DIO_LOCKING; 3427 } 3428 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3429 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3430 #endif 3431 if (IS_DAX(inode)) 3432 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3433 ext4_end_io_dio, dio_flags); 3434 else 3435 ret = __blockdev_direct_IO(iocb, inode, 3436 inode->i_sb->s_bdev, iter, offset, 3437 get_block_func, 3438 ext4_end_io_dio, NULL, dio_flags); 3439 3440 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3441 EXT4_STATE_DIO_UNWRITTEN)) { 3442 int err; 3443 /* 3444 * for non AIO case, since the IO is already 3445 * completed, we could do the conversion right here 3446 */ 3447 err = ext4_convert_unwritten_extents(NULL, inode, 3448 offset, ret); 3449 if (err < 0) 3450 ret = err; 3451 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3452 } 3453 3454 if (iov_iter_rw(iter) == WRITE) 3455 inode_dio_end(inode); 3456 /* take i_mutex locking again if we do a ovewrite dio */ 3457 if (overwrite) 3458 inode_lock(inode); 3459 3460 return ret; 3461 } 3462 3463 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3464 loff_t offset) 3465 { 3466 struct file *file = iocb->ki_filp; 3467 struct inode *inode = file->f_mapping->host; 3468 size_t count = iov_iter_count(iter); 3469 ssize_t ret; 3470 3471 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3472 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3473 return 0; 3474 #endif 3475 3476 /* 3477 * If we are doing data journalling we don't support O_DIRECT 3478 */ 3479 if (ext4_should_journal_data(inode)) 3480 return 0; 3481 3482 /* Let buffer I/O handle the inline data case. */ 3483 if (ext4_has_inline_data(inode)) 3484 return 0; 3485 3486 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3487 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3488 ret = ext4_ext_direct_IO(iocb, iter, offset); 3489 else 3490 ret = ext4_ind_direct_IO(iocb, iter, offset); 3491 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3492 return ret; 3493 } 3494 3495 /* 3496 * Pages can be marked dirty completely asynchronously from ext4's journalling 3497 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3498 * much here because ->set_page_dirty is called under VFS locks. The page is 3499 * not necessarily locked. 3500 * 3501 * We cannot just dirty the page and leave attached buffers clean, because the 3502 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3503 * or jbddirty because all the journalling code will explode. 3504 * 3505 * So what we do is to mark the page "pending dirty" and next time writepage 3506 * is called, propagate that into the buffers appropriately. 3507 */ 3508 static int ext4_journalled_set_page_dirty(struct page *page) 3509 { 3510 SetPageChecked(page); 3511 return __set_page_dirty_nobuffers(page); 3512 } 3513 3514 static const struct address_space_operations ext4_aops = { 3515 .readpage = ext4_readpage, 3516 .readpages = ext4_readpages, 3517 .writepage = ext4_writepage, 3518 .writepages = ext4_writepages, 3519 .write_begin = ext4_write_begin, 3520 .write_end = ext4_write_end, 3521 .bmap = ext4_bmap, 3522 .invalidatepage = ext4_invalidatepage, 3523 .releasepage = ext4_releasepage, 3524 .direct_IO = ext4_direct_IO, 3525 .migratepage = buffer_migrate_page, 3526 .is_partially_uptodate = block_is_partially_uptodate, 3527 .error_remove_page = generic_error_remove_page, 3528 }; 3529 3530 static const struct address_space_operations ext4_journalled_aops = { 3531 .readpage = ext4_readpage, 3532 .readpages = ext4_readpages, 3533 .writepage = ext4_writepage, 3534 .writepages = ext4_writepages, 3535 .write_begin = ext4_write_begin, 3536 .write_end = ext4_journalled_write_end, 3537 .set_page_dirty = ext4_journalled_set_page_dirty, 3538 .bmap = ext4_bmap, 3539 .invalidatepage = ext4_journalled_invalidatepage, 3540 .releasepage = ext4_releasepage, 3541 .direct_IO = ext4_direct_IO, 3542 .is_partially_uptodate = block_is_partially_uptodate, 3543 .error_remove_page = generic_error_remove_page, 3544 }; 3545 3546 static const struct address_space_operations ext4_da_aops = { 3547 .readpage = ext4_readpage, 3548 .readpages = ext4_readpages, 3549 .writepage = ext4_writepage, 3550 .writepages = ext4_writepages, 3551 .write_begin = ext4_da_write_begin, 3552 .write_end = ext4_da_write_end, 3553 .bmap = ext4_bmap, 3554 .invalidatepage = ext4_da_invalidatepage, 3555 .releasepage = ext4_releasepage, 3556 .direct_IO = ext4_direct_IO, 3557 .migratepage = buffer_migrate_page, 3558 .is_partially_uptodate = block_is_partially_uptodate, 3559 .error_remove_page = generic_error_remove_page, 3560 }; 3561 3562 void ext4_set_aops(struct inode *inode) 3563 { 3564 switch (ext4_inode_journal_mode(inode)) { 3565 case EXT4_INODE_ORDERED_DATA_MODE: 3566 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3567 break; 3568 case EXT4_INODE_WRITEBACK_DATA_MODE: 3569 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3570 break; 3571 case EXT4_INODE_JOURNAL_DATA_MODE: 3572 inode->i_mapping->a_ops = &ext4_journalled_aops; 3573 return; 3574 default: 3575 BUG(); 3576 } 3577 if (test_opt(inode->i_sb, DELALLOC)) 3578 inode->i_mapping->a_ops = &ext4_da_aops; 3579 else 3580 inode->i_mapping->a_ops = &ext4_aops; 3581 } 3582 3583 static int __ext4_block_zero_page_range(handle_t *handle, 3584 struct address_space *mapping, loff_t from, loff_t length) 3585 { 3586 ext4_fsblk_t index = from >> PAGE_SHIFT; 3587 unsigned offset = from & (PAGE_SIZE-1); 3588 unsigned blocksize, pos; 3589 ext4_lblk_t iblock; 3590 struct inode *inode = mapping->host; 3591 struct buffer_head *bh; 3592 struct page *page; 3593 int err = 0; 3594 3595 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3596 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3597 if (!page) 3598 return -ENOMEM; 3599 3600 blocksize = inode->i_sb->s_blocksize; 3601 3602 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3603 3604 if (!page_has_buffers(page)) 3605 create_empty_buffers(page, blocksize, 0); 3606 3607 /* Find the buffer that contains "offset" */ 3608 bh = page_buffers(page); 3609 pos = blocksize; 3610 while (offset >= pos) { 3611 bh = bh->b_this_page; 3612 iblock++; 3613 pos += blocksize; 3614 } 3615 if (buffer_freed(bh)) { 3616 BUFFER_TRACE(bh, "freed: skip"); 3617 goto unlock; 3618 } 3619 if (!buffer_mapped(bh)) { 3620 BUFFER_TRACE(bh, "unmapped"); 3621 ext4_get_block(inode, iblock, bh, 0); 3622 /* unmapped? It's a hole - nothing to do */ 3623 if (!buffer_mapped(bh)) { 3624 BUFFER_TRACE(bh, "still unmapped"); 3625 goto unlock; 3626 } 3627 } 3628 3629 /* Ok, it's mapped. Make sure it's up-to-date */ 3630 if (PageUptodate(page)) 3631 set_buffer_uptodate(bh); 3632 3633 if (!buffer_uptodate(bh)) { 3634 err = -EIO; 3635 ll_rw_block(READ, 1, &bh); 3636 wait_on_buffer(bh); 3637 /* Uhhuh. Read error. Complain and punt. */ 3638 if (!buffer_uptodate(bh)) 3639 goto unlock; 3640 if (S_ISREG(inode->i_mode) && 3641 ext4_encrypted_inode(inode)) { 3642 /* We expect the key to be set. */ 3643 BUG_ON(!ext4_has_encryption_key(inode)); 3644 BUG_ON(blocksize != PAGE_SIZE); 3645 WARN_ON_ONCE(ext4_decrypt(page)); 3646 } 3647 } 3648 if (ext4_should_journal_data(inode)) { 3649 BUFFER_TRACE(bh, "get write access"); 3650 err = ext4_journal_get_write_access(handle, bh); 3651 if (err) 3652 goto unlock; 3653 } 3654 zero_user(page, offset, length); 3655 BUFFER_TRACE(bh, "zeroed end of block"); 3656 3657 if (ext4_should_journal_data(inode)) { 3658 err = ext4_handle_dirty_metadata(handle, inode, bh); 3659 } else { 3660 err = 0; 3661 mark_buffer_dirty(bh); 3662 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3663 err = ext4_jbd2_file_inode(handle, inode); 3664 } 3665 3666 unlock: 3667 unlock_page(page); 3668 put_page(page); 3669 return err; 3670 } 3671 3672 /* 3673 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3674 * starting from file offset 'from'. The range to be zero'd must 3675 * be contained with in one block. If the specified range exceeds 3676 * the end of the block it will be shortened to end of the block 3677 * that cooresponds to 'from' 3678 */ 3679 static int ext4_block_zero_page_range(handle_t *handle, 3680 struct address_space *mapping, loff_t from, loff_t length) 3681 { 3682 struct inode *inode = mapping->host; 3683 unsigned offset = from & (PAGE_SIZE-1); 3684 unsigned blocksize = inode->i_sb->s_blocksize; 3685 unsigned max = blocksize - (offset & (blocksize - 1)); 3686 3687 /* 3688 * correct length if it does not fall between 3689 * 'from' and the end of the block 3690 */ 3691 if (length > max || length < 0) 3692 length = max; 3693 3694 if (IS_DAX(inode)) 3695 return dax_zero_page_range(inode, from, length, ext4_get_block); 3696 return __ext4_block_zero_page_range(handle, mapping, from, length); 3697 } 3698 3699 /* 3700 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3701 * up to the end of the block which corresponds to `from'. 3702 * This required during truncate. We need to physically zero the tail end 3703 * of that block so it doesn't yield old data if the file is later grown. 3704 */ 3705 static int ext4_block_truncate_page(handle_t *handle, 3706 struct address_space *mapping, loff_t from) 3707 { 3708 unsigned offset = from & (PAGE_SIZE-1); 3709 unsigned length; 3710 unsigned blocksize; 3711 struct inode *inode = mapping->host; 3712 3713 blocksize = inode->i_sb->s_blocksize; 3714 length = blocksize - (offset & (blocksize - 1)); 3715 3716 return ext4_block_zero_page_range(handle, mapping, from, length); 3717 } 3718 3719 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3720 loff_t lstart, loff_t length) 3721 { 3722 struct super_block *sb = inode->i_sb; 3723 struct address_space *mapping = inode->i_mapping; 3724 unsigned partial_start, partial_end; 3725 ext4_fsblk_t start, end; 3726 loff_t byte_end = (lstart + length - 1); 3727 int err = 0; 3728 3729 partial_start = lstart & (sb->s_blocksize - 1); 3730 partial_end = byte_end & (sb->s_blocksize - 1); 3731 3732 start = lstart >> sb->s_blocksize_bits; 3733 end = byte_end >> sb->s_blocksize_bits; 3734 3735 /* Handle partial zero within the single block */ 3736 if (start == end && 3737 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3738 err = ext4_block_zero_page_range(handle, mapping, 3739 lstart, length); 3740 return err; 3741 } 3742 /* Handle partial zero out on the start of the range */ 3743 if (partial_start) { 3744 err = ext4_block_zero_page_range(handle, mapping, 3745 lstart, sb->s_blocksize); 3746 if (err) 3747 return err; 3748 } 3749 /* Handle partial zero out on the end of the range */ 3750 if (partial_end != sb->s_blocksize - 1) 3751 err = ext4_block_zero_page_range(handle, mapping, 3752 byte_end - partial_end, 3753 partial_end + 1); 3754 return err; 3755 } 3756 3757 int ext4_can_truncate(struct inode *inode) 3758 { 3759 if (S_ISREG(inode->i_mode)) 3760 return 1; 3761 if (S_ISDIR(inode->i_mode)) 3762 return 1; 3763 if (S_ISLNK(inode->i_mode)) 3764 return !ext4_inode_is_fast_symlink(inode); 3765 return 0; 3766 } 3767 3768 /* 3769 * We have to make sure i_disksize gets properly updated before we truncate 3770 * page cache due to hole punching or zero range. Otherwise i_disksize update 3771 * can get lost as it may have been postponed to submission of writeback but 3772 * that will never happen after we truncate page cache. 3773 */ 3774 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3775 loff_t len) 3776 { 3777 handle_t *handle; 3778 loff_t size = i_size_read(inode); 3779 3780 WARN_ON(!inode_is_locked(inode)); 3781 if (offset > size || offset + len < size) 3782 return 0; 3783 3784 if (EXT4_I(inode)->i_disksize >= size) 3785 return 0; 3786 3787 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3788 if (IS_ERR(handle)) 3789 return PTR_ERR(handle); 3790 ext4_update_i_disksize(inode, size); 3791 ext4_mark_inode_dirty(handle, inode); 3792 ext4_journal_stop(handle); 3793 3794 return 0; 3795 } 3796 3797 /* 3798 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3799 * associated with the given offset and length 3800 * 3801 * @inode: File inode 3802 * @offset: The offset where the hole will begin 3803 * @len: The length of the hole 3804 * 3805 * Returns: 0 on success or negative on failure 3806 */ 3807 3808 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3809 { 3810 struct super_block *sb = inode->i_sb; 3811 ext4_lblk_t first_block, stop_block; 3812 struct address_space *mapping = inode->i_mapping; 3813 loff_t first_block_offset, last_block_offset; 3814 handle_t *handle; 3815 unsigned int credits; 3816 int ret = 0; 3817 3818 if (!S_ISREG(inode->i_mode)) 3819 return -EOPNOTSUPP; 3820 3821 trace_ext4_punch_hole(inode, offset, length, 0); 3822 3823 /* 3824 * Write out all dirty pages to avoid race conditions 3825 * Then release them. 3826 */ 3827 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3828 ret = filemap_write_and_wait_range(mapping, offset, 3829 offset + length - 1); 3830 if (ret) 3831 return ret; 3832 } 3833 3834 inode_lock(inode); 3835 3836 /* No need to punch hole beyond i_size */ 3837 if (offset >= inode->i_size) 3838 goto out_mutex; 3839 3840 /* 3841 * If the hole extends beyond i_size, set the hole 3842 * to end after the page that contains i_size 3843 */ 3844 if (offset + length > inode->i_size) { 3845 length = inode->i_size + 3846 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3847 offset; 3848 } 3849 3850 if (offset & (sb->s_blocksize - 1) || 3851 (offset + length) & (sb->s_blocksize - 1)) { 3852 /* 3853 * Attach jinode to inode for jbd2 if we do any zeroing of 3854 * partial block 3855 */ 3856 ret = ext4_inode_attach_jinode(inode); 3857 if (ret < 0) 3858 goto out_mutex; 3859 3860 } 3861 3862 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3863 ext4_inode_block_unlocked_dio(inode); 3864 inode_dio_wait(inode); 3865 3866 /* 3867 * Prevent page faults from reinstantiating pages we have released from 3868 * page cache. 3869 */ 3870 down_write(&EXT4_I(inode)->i_mmap_sem); 3871 first_block_offset = round_up(offset, sb->s_blocksize); 3872 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3873 3874 /* Now release the pages and zero block aligned part of pages*/ 3875 if (last_block_offset > first_block_offset) { 3876 ret = ext4_update_disksize_before_punch(inode, offset, length); 3877 if (ret) 3878 goto out_dio; 3879 truncate_pagecache_range(inode, first_block_offset, 3880 last_block_offset); 3881 } 3882 3883 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3884 credits = ext4_writepage_trans_blocks(inode); 3885 else 3886 credits = ext4_blocks_for_truncate(inode); 3887 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3888 if (IS_ERR(handle)) { 3889 ret = PTR_ERR(handle); 3890 ext4_std_error(sb, ret); 3891 goto out_dio; 3892 } 3893 3894 ret = ext4_zero_partial_blocks(handle, inode, offset, 3895 length); 3896 if (ret) 3897 goto out_stop; 3898 3899 first_block = (offset + sb->s_blocksize - 1) >> 3900 EXT4_BLOCK_SIZE_BITS(sb); 3901 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3902 3903 /* If there are no blocks to remove, return now */ 3904 if (first_block >= stop_block) 3905 goto out_stop; 3906 3907 down_write(&EXT4_I(inode)->i_data_sem); 3908 ext4_discard_preallocations(inode); 3909 3910 ret = ext4_es_remove_extent(inode, first_block, 3911 stop_block - first_block); 3912 if (ret) { 3913 up_write(&EXT4_I(inode)->i_data_sem); 3914 goto out_stop; 3915 } 3916 3917 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3918 ret = ext4_ext_remove_space(inode, first_block, 3919 stop_block - 1); 3920 else 3921 ret = ext4_ind_remove_space(handle, inode, first_block, 3922 stop_block); 3923 3924 up_write(&EXT4_I(inode)->i_data_sem); 3925 if (IS_SYNC(inode)) 3926 ext4_handle_sync(handle); 3927 3928 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3929 ext4_mark_inode_dirty(handle, inode); 3930 out_stop: 3931 ext4_journal_stop(handle); 3932 out_dio: 3933 up_write(&EXT4_I(inode)->i_mmap_sem); 3934 ext4_inode_resume_unlocked_dio(inode); 3935 out_mutex: 3936 inode_unlock(inode); 3937 return ret; 3938 } 3939 3940 int ext4_inode_attach_jinode(struct inode *inode) 3941 { 3942 struct ext4_inode_info *ei = EXT4_I(inode); 3943 struct jbd2_inode *jinode; 3944 3945 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3946 return 0; 3947 3948 jinode = jbd2_alloc_inode(GFP_KERNEL); 3949 spin_lock(&inode->i_lock); 3950 if (!ei->jinode) { 3951 if (!jinode) { 3952 spin_unlock(&inode->i_lock); 3953 return -ENOMEM; 3954 } 3955 ei->jinode = jinode; 3956 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3957 jinode = NULL; 3958 } 3959 spin_unlock(&inode->i_lock); 3960 if (unlikely(jinode != NULL)) 3961 jbd2_free_inode(jinode); 3962 return 0; 3963 } 3964 3965 /* 3966 * ext4_truncate() 3967 * 3968 * We block out ext4_get_block() block instantiations across the entire 3969 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3970 * simultaneously on behalf of the same inode. 3971 * 3972 * As we work through the truncate and commit bits of it to the journal there 3973 * is one core, guiding principle: the file's tree must always be consistent on 3974 * disk. We must be able to restart the truncate after a crash. 3975 * 3976 * The file's tree may be transiently inconsistent in memory (although it 3977 * probably isn't), but whenever we close off and commit a journal transaction, 3978 * the contents of (the filesystem + the journal) must be consistent and 3979 * restartable. It's pretty simple, really: bottom up, right to left (although 3980 * left-to-right works OK too). 3981 * 3982 * Note that at recovery time, journal replay occurs *before* the restart of 3983 * truncate against the orphan inode list. 3984 * 3985 * The committed inode has the new, desired i_size (which is the same as 3986 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3987 * that this inode's truncate did not complete and it will again call 3988 * ext4_truncate() to have another go. So there will be instantiated blocks 3989 * to the right of the truncation point in a crashed ext4 filesystem. But 3990 * that's fine - as long as they are linked from the inode, the post-crash 3991 * ext4_truncate() run will find them and release them. 3992 */ 3993 void ext4_truncate(struct inode *inode) 3994 { 3995 struct ext4_inode_info *ei = EXT4_I(inode); 3996 unsigned int credits; 3997 handle_t *handle; 3998 struct address_space *mapping = inode->i_mapping; 3999 4000 /* 4001 * There is a possibility that we're either freeing the inode 4002 * or it's a completely new inode. In those cases we might not 4003 * have i_mutex locked because it's not necessary. 4004 */ 4005 if (!(inode->i_state & (I_NEW|I_FREEING))) 4006 WARN_ON(!inode_is_locked(inode)); 4007 trace_ext4_truncate_enter(inode); 4008 4009 if (!ext4_can_truncate(inode)) 4010 return; 4011 4012 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4013 4014 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4015 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4016 4017 if (ext4_has_inline_data(inode)) { 4018 int has_inline = 1; 4019 4020 ext4_inline_data_truncate(inode, &has_inline); 4021 if (has_inline) 4022 return; 4023 } 4024 4025 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4026 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4027 if (ext4_inode_attach_jinode(inode) < 0) 4028 return; 4029 } 4030 4031 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4032 credits = ext4_writepage_trans_blocks(inode); 4033 else 4034 credits = ext4_blocks_for_truncate(inode); 4035 4036 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4037 if (IS_ERR(handle)) { 4038 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 4039 return; 4040 } 4041 4042 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4043 ext4_block_truncate_page(handle, mapping, inode->i_size); 4044 4045 /* 4046 * We add the inode to the orphan list, so that if this 4047 * truncate spans multiple transactions, and we crash, we will 4048 * resume the truncate when the filesystem recovers. It also 4049 * marks the inode dirty, to catch the new size. 4050 * 4051 * Implication: the file must always be in a sane, consistent 4052 * truncatable state while each transaction commits. 4053 */ 4054 if (ext4_orphan_add(handle, inode)) 4055 goto out_stop; 4056 4057 down_write(&EXT4_I(inode)->i_data_sem); 4058 4059 ext4_discard_preallocations(inode); 4060 4061 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4062 ext4_ext_truncate(handle, inode); 4063 else 4064 ext4_ind_truncate(handle, inode); 4065 4066 up_write(&ei->i_data_sem); 4067 4068 if (IS_SYNC(inode)) 4069 ext4_handle_sync(handle); 4070 4071 out_stop: 4072 /* 4073 * If this was a simple ftruncate() and the file will remain alive, 4074 * then we need to clear up the orphan record which we created above. 4075 * However, if this was a real unlink then we were called by 4076 * ext4_evict_inode(), and we allow that function to clean up the 4077 * orphan info for us. 4078 */ 4079 if (inode->i_nlink) 4080 ext4_orphan_del(handle, inode); 4081 4082 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4083 ext4_mark_inode_dirty(handle, inode); 4084 ext4_journal_stop(handle); 4085 4086 trace_ext4_truncate_exit(inode); 4087 } 4088 4089 /* 4090 * ext4_get_inode_loc returns with an extra refcount against the inode's 4091 * underlying buffer_head on success. If 'in_mem' is true, we have all 4092 * data in memory that is needed to recreate the on-disk version of this 4093 * inode. 4094 */ 4095 static int __ext4_get_inode_loc(struct inode *inode, 4096 struct ext4_iloc *iloc, int in_mem) 4097 { 4098 struct ext4_group_desc *gdp; 4099 struct buffer_head *bh; 4100 struct super_block *sb = inode->i_sb; 4101 ext4_fsblk_t block; 4102 int inodes_per_block, inode_offset; 4103 4104 iloc->bh = NULL; 4105 if (!ext4_valid_inum(sb, inode->i_ino)) 4106 return -EFSCORRUPTED; 4107 4108 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4109 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4110 if (!gdp) 4111 return -EIO; 4112 4113 /* 4114 * Figure out the offset within the block group inode table 4115 */ 4116 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4117 inode_offset = ((inode->i_ino - 1) % 4118 EXT4_INODES_PER_GROUP(sb)); 4119 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4120 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4121 4122 bh = sb_getblk(sb, block); 4123 if (unlikely(!bh)) 4124 return -ENOMEM; 4125 if (!buffer_uptodate(bh)) { 4126 lock_buffer(bh); 4127 4128 /* 4129 * If the buffer has the write error flag, we have failed 4130 * to write out another inode in the same block. In this 4131 * case, we don't have to read the block because we may 4132 * read the old inode data successfully. 4133 */ 4134 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4135 set_buffer_uptodate(bh); 4136 4137 if (buffer_uptodate(bh)) { 4138 /* someone brought it uptodate while we waited */ 4139 unlock_buffer(bh); 4140 goto has_buffer; 4141 } 4142 4143 /* 4144 * If we have all information of the inode in memory and this 4145 * is the only valid inode in the block, we need not read the 4146 * block. 4147 */ 4148 if (in_mem) { 4149 struct buffer_head *bitmap_bh; 4150 int i, start; 4151 4152 start = inode_offset & ~(inodes_per_block - 1); 4153 4154 /* Is the inode bitmap in cache? */ 4155 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4156 if (unlikely(!bitmap_bh)) 4157 goto make_io; 4158 4159 /* 4160 * If the inode bitmap isn't in cache then the 4161 * optimisation may end up performing two reads instead 4162 * of one, so skip it. 4163 */ 4164 if (!buffer_uptodate(bitmap_bh)) { 4165 brelse(bitmap_bh); 4166 goto make_io; 4167 } 4168 for (i = start; i < start + inodes_per_block; i++) { 4169 if (i == inode_offset) 4170 continue; 4171 if (ext4_test_bit(i, bitmap_bh->b_data)) 4172 break; 4173 } 4174 brelse(bitmap_bh); 4175 if (i == start + inodes_per_block) { 4176 /* all other inodes are free, so skip I/O */ 4177 memset(bh->b_data, 0, bh->b_size); 4178 set_buffer_uptodate(bh); 4179 unlock_buffer(bh); 4180 goto has_buffer; 4181 } 4182 } 4183 4184 make_io: 4185 /* 4186 * If we need to do any I/O, try to pre-readahead extra 4187 * blocks from the inode table. 4188 */ 4189 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4190 ext4_fsblk_t b, end, table; 4191 unsigned num; 4192 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4193 4194 table = ext4_inode_table(sb, gdp); 4195 /* s_inode_readahead_blks is always a power of 2 */ 4196 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4197 if (table > b) 4198 b = table; 4199 end = b + ra_blks; 4200 num = EXT4_INODES_PER_GROUP(sb); 4201 if (ext4_has_group_desc_csum(sb)) 4202 num -= ext4_itable_unused_count(sb, gdp); 4203 table += num / inodes_per_block; 4204 if (end > table) 4205 end = table; 4206 while (b <= end) 4207 sb_breadahead(sb, b++); 4208 } 4209 4210 /* 4211 * There are other valid inodes in the buffer, this inode 4212 * has in-inode xattrs, or we don't have this inode in memory. 4213 * Read the block from disk. 4214 */ 4215 trace_ext4_load_inode(inode); 4216 get_bh(bh); 4217 bh->b_end_io = end_buffer_read_sync; 4218 submit_bh(READ | REQ_META | REQ_PRIO, bh); 4219 wait_on_buffer(bh); 4220 if (!buffer_uptodate(bh)) { 4221 EXT4_ERROR_INODE_BLOCK(inode, block, 4222 "unable to read itable block"); 4223 brelse(bh); 4224 return -EIO; 4225 } 4226 } 4227 has_buffer: 4228 iloc->bh = bh; 4229 return 0; 4230 } 4231 4232 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4233 { 4234 /* We have all inode data except xattrs in memory here. */ 4235 return __ext4_get_inode_loc(inode, iloc, 4236 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4237 } 4238 4239 void ext4_set_inode_flags(struct inode *inode) 4240 { 4241 unsigned int flags = EXT4_I(inode)->i_flags; 4242 unsigned int new_fl = 0; 4243 4244 if (flags & EXT4_SYNC_FL) 4245 new_fl |= S_SYNC; 4246 if (flags & EXT4_APPEND_FL) 4247 new_fl |= S_APPEND; 4248 if (flags & EXT4_IMMUTABLE_FL) 4249 new_fl |= S_IMMUTABLE; 4250 if (flags & EXT4_NOATIME_FL) 4251 new_fl |= S_NOATIME; 4252 if (flags & EXT4_DIRSYNC_FL) 4253 new_fl |= S_DIRSYNC; 4254 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode)) 4255 new_fl |= S_DAX; 4256 inode_set_flags(inode, new_fl, 4257 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4258 } 4259 4260 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4261 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4262 { 4263 unsigned int vfs_fl; 4264 unsigned long old_fl, new_fl; 4265 4266 do { 4267 vfs_fl = ei->vfs_inode.i_flags; 4268 old_fl = ei->i_flags; 4269 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4270 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4271 EXT4_DIRSYNC_FL); 4272 if (vfs_fl & S_SYNC) 4273 new_fl |= EXT4_SYNC_FL; 4274 if (vfs_fl & S_APPEND) 4275 new_fl |= EXT4_APPEND_FL; 4276 if (vfs_fl & S_IMMUTABLE) 4277 new_fl |= EXT4_IMMUTABLE_FL; 4278 if (vfs_fl & S_NOATIME) 4279 new_fl |= EXT4_NOATIME_FL; 4280 if (vfs_fl & S_DIRSYNC) 4281 new_fl |= EXT4_DIRSYNC_FL; 4282 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4283 } 4284 4285 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4286 struct ext4_inode_info *ei) 4287 { 4288 blkcnt_t i_blocks ; 4289 struct inode *inode = &(ei->vfs_inode); 4290 struct super_block *sb = inode->i_sb; 4291 4292 if (ext4_has_feature_huge_file(sb)) { 4293 /* we are using combined 48 bit field */ 4294 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4295 le32_to_cpu(raw_inode->i_blocks_lo); 4296 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4297 /* i_blocks represent file system block size */ 4298 return i_blocks << (inode->i_blkbits - 9); 4299 } else { 4300 return i_blocks; 4301 } 4302 } else { 4303 return le32_to_cpu(raw_inode->i_blocks_lo); 4304 } 4305 } 4306 4307 static inline void ext4_iget_extra_inode(struct inode *inode, 4308 struct ext4_inode *raw_inode, 4309 struct ext4_inode_info *ei) 4310 { 4311 __le32 *magic = (void *)raw_inode + 4312 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4313 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4314 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4315 ext4_find_inline_data_nolock(inode); 4316 } else 4317 EXT4_I(inode)->i_inline_off = 0; 4318 } 4319 4320 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4321 { 4322 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT)) 4323 return -EOPNOTSUPP; 4324 *projid = EXT4_I(inode)->i_projid; 4325 return 0; 4326 } 4327 4328 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4329 { 4330 struct ext4_iloc iloc; 4331 struct ext4_inode *raw_inode; 4332 struct ext4_inode_info *ei; 4333 struct inode *inode; 4334 journal_t *journal = EXT4_SB(sb)->s_journal; 4335 long ret; 4336 int block; 4337 uid_t i_uid; 4338 gid_t i_gid; 4339 projid_t i_projid; 4340 4341 inode = iget_locked(sb, ino); 4342 if (!inode) 4343 return ERR_PTR(-ENOMEM); 4344 if (!(inode->i_state & I_NEW)) 4345 return inode; 4346 4347 ei = EXT4_I(inode); 4348 iloc.bh = NULL; 4349 4350 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4351 if (ret < 0) 4352 goto bad_inode; 4353 raw_inode = ext4_raw_inode(&iloc); 4354 4355 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4356 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4357 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4358 EXT4_INODE_SIZE(inode->i_sb)) { 4359 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4360 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4361 EXT4_INODE_SIZE(inode->i_sb)); 4362 ret = -EFSCORRUPTED; 4363 goto bad_inode; 4364 } 4365 } else 4366 ei->i_extra_isize = 0; 4367 4368 /* Precompute checksum seed for inode metadata */ 4369 if (ext4_has_metadata_csum(sb)) { 4370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4371 __u32 csum; 4372 __le32 inum = cpu_to_le32(inode->i_ino); 4373 __le32 gen = raw_inode->i_generation; 4374 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4375 sizeof(inum)); 4376 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4377 sizeof(gen)); 4378 } 4379 4380 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4381 EXT4_ERROR_INODE(inode, "checksum invalid"); 4382 ret = -EFSBADCRC; 4383 goto bad_inode; 4384 } 4385 4386 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4387 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4388 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4389 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) && 4390 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4391 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4392 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4393 else 4394 i_projid = EXT4_DEF_PROJID; 4395 4396 if (!(test_opt(inode->i_sb, NO_UID32))) { 4397 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4398 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4399 } 4400 i_uid_write(inode, i_uid); 4401 i_gid_write(inode, i_gid); 4402 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4403 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4404 4405 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4406 ei->i_inline_off = 0; 4407 ei->i_dir_start_lookup = 0; 4408 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4409 /* We now have enough fields to check if the inode was active or not. 4410 * This is needed because nfsd might try to access dead inodes 4411 * the test is that same one that e2fsck uses 4412 * NeilBrown 1999oct15 4413 */ 4414 if (inode->i_nlink == 0) { 4415 if ((inode->i_mode == 0 || 4416 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4417 ino != EXT4_BOOT_LOADER_INO) { 4418 /* this inode is deleted */ 4419 ret = -ESTALE; 4420 goto bad_inode; 4421 } 4422 /* The only unlinked inodes we let through here have 4423 * valid i_mode and are being read by the orphan 4424 * recovery code: that's fine, we're about to complete 4425 * the process of deleting those. 4426 * OR it is the EXT4_BOOT_LOADER_INO which is 4427 * not initialized on a new filesystem. */ 4428 } 4429 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4430 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4431 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4432 if (ext4_has_feature_64bit(sb)) 4433 ei->i_file_acl |= 4434 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4435 inode->i_size = ext4_isize(raw_inode); 4436 ei->i_disksize = inode->i_size; 4437 #ifdef CONFIG_QUOTA 4438 ei->i_reserved_quota = 0; 4439 #endif 4440 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4441 ei->i_block_group = iloc.block_group; 4442 ei->i_last_alloc_group = ~0; 4443 /* 4444 * NOTE! The in-memory inode i_data array is in little-endian order 4445 * even on big-endian machines: we do NOT byteswap the block numbers! 4446 */ 4447 for (block = 0; block < EXT4_N_BLOCKS; block++) 4448 ei->i_data[block] = raw_inode->i_block[block]; 4449 INIT_LIST_HEAD(&ei->i_orphan); 4450 4451 /* 4452 * Set transaction id's of transactions that have to be committed 4453 * to finish f[data]sync. We set them to currently running transaction 4454 * as we cannot be sure that the inode or some of its metadata isn't 4455 * part of the transaction - the inode could have been reclaimed and 4456 * now it is reread from disk. 4457 */ 4458 if (journal) { 4459 transaction_t *transaction; 4460 tid_t tid; 4461 4462 read_lock(&journal->j_state_lock); 4463 if (journal->j_running_transaction) 4464 transaction = journal->j_running_transaction; 4465 else 4466 transaction = journal->j_committing_transaction; 4467 if (transaction) 4468 tid = transaction->t_tid; 4469 else 4470 tid = journal->j_commit_sequence; 4471 read_unlock(&journal->j_state_lock); 4472 ei->i_sync_tid = tid; 4473 ei->i_datasync_tid = tid; 4474 } 4475 4476 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4477 if (ei->i_extra_isize == 0) { 4478 /* The extra space is currently unused. Use it. */ 4479 ei->i_extra_isize = sizeof(struct ext4_inode) - 4480 EXT4_GOOD_OLD_INODE_SIZE; 4481 } else { 4482 ext4_iget_extra_inode(inode, raw_inode, ei); 4483 } 4484 } 4485 4486 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4487 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4488 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4489 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4490 4491 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4492 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4493 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4494 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4495 inode->i_version |= 4496 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4497 } 4498 } 4499 4500 ret = 0; 4501 if (ei->i_file_acl && 4502 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4503 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4504 ei->i_file_acl); 4505 ret = -EFSCORRUPTED; 4506 goto bad_inode; 4507 } else if (!ext4_has_inline_data(inode)) { 4508 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4509 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4510 (S_ISLNK(inode->i_mode) && 4511 !ext4_inode_is_fast_symlink(inode)))) 4512 /* Validate extent which is part of inode */ 4513 ret = ext4_ext_check_inode(inode); 4514 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4515 (S_ISLNK(inode->i_mode) && 4516 !ext4_inode_is_fast_symlink(inode))) { 4517 /* Validate block references which are part of inode */ 4518 ret = ext4_ind_check_inode(inode); 4519 } 4520 } 4521 if (ret) 4522 goto bad_inode; 4523 4524 if (S_ISREG(inode->i_mode)) { 4525 inode->i_op = &ext4_file_inode_operations; 4526 inode->i_fop = &ext4_file_operations; 4527 ext4_set_aops(inode); 4528 } else if (S_ISDIR(inode->i_mode)) { 4529 inode->i_op = &ext4_dir_inode_operations; 4530 inode->i_fop = &ext4_dir_operations; 4531 } else if (S_ISLNK(inode->i_mode)) { 4532 if (ext4_encrypted_inode(inode)) { 4533 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4534 ext4_set_aops(inode); 4535 } else if (ext4_inode_is_fast_symlink(inode)) { 4536 inode->i_link = (char *)ei->i_data; 4537 inode->i_op = &ext4_fast_symlink_inode_operations; 4538 nd_terminate_link(ei->i_data, inode->i_size, 4539 sizeof(ei->i_data) - 1); 4540 } else { 4541 inode->i_op = &ext4_symlink_inode_operations; 4542 ext4_set_aops(inode); 4543 } 4544 inode_nohighmem(inode); 4545 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4546 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4547 inode->i_op = &ext4_special_inode_operations; 4548 if (raw_inode->i_block[0]) 4549 init_special_inode(inode, inode->i_mode, 4550 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4551 else 4552 init_special_inode(inode, inode->i_mode, 4553 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4554 } else if (ino == EXT4_BOOT_LOADER_INO) { 4555 make_bad_inode(inode); 4556 } else { 4557 ret = -EFSCORRUPTED; 4558 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4559 goto bad_inode; 4560 } 4561 brelse(iloc.bh); 4562 ext4_set_inode_flags(inode); 4563 unlock_new_inode(inode); 4564 return inode; 4565 4566 bad_inode: 4567 brelse(iloc.bh); 4568 iget_failed(inode); 4569 return ERR_PTR(ret); 4570 } 4571 4572 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4573 { 4574 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4575 return ERR_PTR(-EFSCORRUPTED); 4576 return ext4_iget(sb, ino); 4577 } 4578 4579 static int ext4_inode_blocks_set(handle_t *handle, 4580 struct ext4_inode *raw_inode, 4581 struct ext4_inode_info *ei) 4582 { 4583 struct inode *inode = &(ei->vfs_inode); 4584 u64 i_blocks = inode->i_blocks; 4585 struct super_block *sb = inode->i_sb; 4586 4587 if (i_blocks <= ~0U) { 4588 /* 4589 * i_blocks can be represented in a 32 bit variable 4590 * as multiple of 512 bytes 4591 */ 4592 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4593 raw_inode->i_blocks_high = 0; 4594 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4595 return 0; 4596 } 4597 if (!ext4_has_feature_huge_file(sb)) 4598 return -EFBIG; 4599 4600 if (i_blocks <= 0xffffffffffffULL) { 4601 /* 4602 * i_blocks can be represented in a 48 bit variable 4603 * as multiple of 512 bytes 4604 */ 4605 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4606 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4607 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4608 } else { 4609 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4610 /* i_block is stored in file system block size */ 4611 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4612 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4613 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4614 } 4615 return 0; 4616 } 4617 4618 struct other_inode { 4619 unsigned long orig_ino; 4620 struct ext4_inode *raw_inode; 4621 }; 4622 4623 static int other_inode_match(struct inode * inode, unsigned long ino, 4624 void *data) 4625 { 4626 struct other_inode *oi = (struct other_inode *) data; 4627 4628 if ((inode->i_ino != ino) || 4629 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4630 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4631 ((inode->i_state & I_DIRTY_TIME) == 0)) 4632 return 0; 4633 spin_lock(&inode->i_lock); 4634 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4635 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4636 (inode->i_state & I_DIRTY_TIME)) { 4637 struct ext4_inode_info *ei = EXT4_I(inode); 4638 4639 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4640 spin_unlock(&inode->i_lock); 4641 4642 spin_lock(&ei->i_raw_lock); 4643 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4644 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4645 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4646 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4647 spin_unlock(&ei->i_raw_lock); 4648 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4649 return -1; 4650 } 4651 spin_unlock(&inode->i_lock); 4652 return -1; 4653 } 4654 4655 /* 4656 * Opportunistically update the other time fields for other inodes in 4657 * the same inode table block. 4658 */ 4659 static void ext4_update_other_inodes_time(struct super_block *sb, 4660 unsigned long orig_ino, char *buf) 4661 { 4662 struct other_inode oi; 4663 unsigned long ino; 4664 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4665 int inode_size = EXT4_INODE_SIZE(sb); 4666 4667 oi.orig_ino = orig_ino; 4668 /* 4669 * Calculate the first inode in the inode table block. Inode 4670 * numbers are one-based. That is, the first inode in a block 4671 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4672 */ 4673 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4674 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4675 if (ino == orig_ino) 4676 continue; 4677 oi.raw_inode = (struct ext4_inode *) buf; 4678 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4679 } 4680 } 4681 4682 /* 4683 * Post the struct inode info into an on-disk inode location in the 4684 * buffer-cache. This gobbles the caller's reference to the 4685 * buffer_head in the inode location struct. 4686 * 4687 * The caller must have write access to iloc->bh. 4688 */ 4689 static int ext4_do_update_inode(handle_t *handle, 4690 struct inode *inode, 4691 struct ext4_iloc *iloc) 4692 { 4693 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4694 struct ext4_inode_info *ei = EXT4_I(inode); 4695 struct buffer_head *bh = iloc->bh; 4696 struct super_block *sb = inode->i_sb; 4697 int err = 0, rc, block; 4698 int need_datasync = 0, set_large_file = 0; 4699 uid_t i_uid; 4700 gid_t i_gid; 4701 projid_t i_projid; 4702 4703 spin_lock(&ei->i_raw_lock); 4704 4705 /* For fields not tracked in the in-memory inode, 4706 * initialise them to zero for new inodes. */ 4707 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4708 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4709 4710 ext4_get_inode_flags(ei); 4711 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4712 i_uid = i_uid_read(inode); 4713 i_gid = i_gid_read(inode); 4714 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4715 if (!(test_opt(inode->i_sb, NO_UID32))) { 4716 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4717 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4718 /* 4719 * Fix up interoperability with old kernels. Otherwise, old inodes get 4720 * re-used with the upper 16 bits of the uid/gid intact 4721 */ 4722 if (!ei->i_dtime) { 4723 raw_inode->i_uid_high = 4724 cpu_to_le16(high_16_bits(i_uid)); 4725 raw_inode->i_gid_high = 4726 cpu_to_le16(high_16_bits(i_gid)); 4727 } else { 4728 raw_inode->i_uid_high = 0; 4729 raw_inode->i_gid_high = 0; 4730 } 4731 } else { 4732 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4733 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4734 raw_inode->i_uid_high = 0; 4735 raw_inode->i_gid_high = 0; 4736 } 4737 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4738 4739 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4740 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4741 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4742 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4743 4744 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4745 if (err) { 4746 spin_unlock(&ei->i_raw_lock); 4747 goto out_brelse; 4748 } 4749 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4750 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4751 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4752 raw_inode->i_file_acl_high = 4753 cpu_to_le16(ei->i_file_acl >> 32); 4754 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4755 if (ei->i_disksize != ext4_isize(raw_inode)) { 4756 ext4_isize_set(raw_inode, ei->i_disksize); 4757 need_datasync = 1; 4758 } 4759 if (ei->i_disksize > 0x7fffffffULL) { 4760 if (!ext4_has_feature_large_file(sb) || 4761 EXT4_SB(sb)->s_es->s_rev_level == 4762 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4763 set_large_file = 1; 4764 } 4765 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4766 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4767 if (old_valid_dev(inode->i_rdev)) { 4768 raw_inode->i_block[0] = 4769 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4770 raw_inode->i_block[1] = 0; 4771 } else { 4772 raw_inode->i_block[0] = 0; 4773 raw_inode->i_block[1] = 4774 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4775 raw_inode->i_block[2] = 0; 4776 } 4777 } else if (!ext4_has_inline_data(inode)) { 4778 for (block = 0; block < EXT4_N_BLOCKS; block++) 4779 raw_inode->i_block[block] = ei->i_data[block]; 4780 } 4781 4782 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4783 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4784 if (ei->i_extra_isize) { 4785 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4786 raw_inode->i_version_hi = 4787 cpu_to_le32(inode->i_version >> 32); 4788 raw_inode->i_extra_isize = 4789 cpu_to_le16(ei->i_extra_isize); 4790 } 4791 } 4792 4793 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 4794 EXT4_FEATURE_RO_COMPAT_PROJECT) && 4795 i_projid != EXT4_DEF_PROJID); 4796 4797 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4798 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4799 raw_inode->i_projid = cpu_to_le32(i_projid); 4800 4801 ext4_inode_csum_set(inode, raw_inode, ei); 4802 spin_unlock(&ei->i_raw_lock); 4803 if (inode->i_sb->s_flags & MS_LAZYTIME) 4804 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4805 bh->b_data); 4806 4807 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4808 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4809 if (!err) 4810 err = rc; 4811 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4812 if (set_large_file) { 4813 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4814 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4815 if (err) 4816 goto out_brelse; 4817 ext4_update_dynamic_rev(sb); 4818 ext4_set_feature_large_file(sb); 4819 ext4_handle_sync(handle); 4820 err = ext4_handle_dirty_super(handle, sb); 4821 } 4822 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4823 out_brelse: 4824 brelse(bh); 4825 ext4_std_error(inode->i_sb, err); 4826 return err; 4827 } 4828 4829 /* 4830 * ext4_write_inode() 4831 * 4832 * We are called from a few places: 4833 * 4834 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4835 * Here, there will be no transaction running. We wait for any running 4836 * transaction to commit. 4837 * 4838 * - Within flush work (sys_sync(), kupdate and such). 4839 * We wait on commit, if told to. 4840 * 4841 * - Within iput_final() -> write_inode_now() 4842 * We wait on commit, if told to. 4843 * 4844 * In all cases it is actually safe for us to return without doing anything, 4845 * because the inode has been copied into a raw inode buffer in 4846 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4847 * writeback. 4848 * 4849 * Note that we are absolutely dependent upon all inode dirtiers doing the 4850 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4851 * which we are interested. 4852 * 4853 * It would be a bug for them to not do this. The code: 4854 * 4855 * mark_inode_dirty(inode) 4856 * stuff(); 4857 * inode->i_size = expr; 4858 * 4859 * is in error because write_inode() could occur while `stuff()' is running, 4860 * and the new i_size will be lost. Plus the inode will no longer be on the 4861 * superblock's dirty inode list. 4862 */ 4863 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4864 { 4865 int err; 4866 4867 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4868 return 0; 4869 4870 if (EXT4_SB(inode->i_sb)->s_journal) { 4871 if (ext4_journal_current_handle()) { 4872 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4873 dump_stack(); 4874 return -EIO; 4875 } 4876 4877 /* 4878 * No need to force transaction in WB_SYNC_NONE mode. Also 4879 * ext4_sync_fs() will force the commit after everything is 4880 * written. 4881 */ 4882 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4883 return 0; 4884 4885 err = ext4_force_commit(inode->i_sb); 4886 } else { 4887 struct ext4_iloc iloc; 4888 4889 err = __ext4_get_inode_loc(inode, &iloc, 0); 4890 if (err) 4891 return err; 4892 /* 4893 * sync(2) will flush the whole buffer cache. No need to do 4894 * it here separately for each inode. 4895 */ 4896 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4897 sync_dirty_buffer(iloc.bh); 4898 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4899 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4900 "IO error syncing inode"); 4901 err = -EIO; 4902 } 4903 brelse(iloc.bh); 4904 } 4905 return err; 4906 } 4907 4908 /* 4909 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4910 * buffers that are attached to a page stradding i_size and are undergoing 4911 * commit. In that case we have to wait for commit to finish and try again. 4912 */ 4913 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4914 { 4915 struct page *page; 4916 unsigned offset; 4917 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4918 tid_t commit_tid = 0; 4919 int ret; 4920 4921 offset = inode->i_size & (PAGE_SIZE - 1); 4922 /* 4923 * All buffers in the last page remain valid? Then there's nothing to 4924 * do. We do the check mainly to optimize the common PAGE_SIZE == 4925 * blocksize case 4926 */ 4927 if (offset > PAGE_SIZE - (1 << inode->i_blkbits)) 4928 return; 4929 while (1) { 4930 page = find_lock_page(inode->i_mapping, 4931 inode->i_size >> PAGE_SHIFT); 4932 if (!page) 4933 return; 4934 ret = __ext4_journalled_invalidatepage(page, offset, 4935 PAGE_SIZE - offset); 4936 unlock_page(page); 4937 put_page(page); 4938 if (ret != -EBUSY) 4939 return; 4940 commit_tid = 0; 4941 read_lock(&journal->j_state_lock); 4942 if (journal->j_committing_transaction) 4943 commit_tid = journal->j_committing_transaction->t_tid; 4944 read_unlock(&journal->j_state_lock); 4945 if (commit_tid) 4946 jbd2_log_wait_commit(journal, commit_tid); 4947 } 4948 } 4949 4950 /* 4951 * ext4_setattr() 4952 * 4953 * Called from notify_change. 4954 * 4955 * We want to trap VFS attempts to truncate the file as soon as 4956 * possible. In particular, we want to make sure that when the VFS 4957 * shrinks i_size, we put the inode on the orphan list and modify 4958 * i_disksize immediately, so that during the subsequent flushing of 4959 * dirty pages and freeing of disk blocks, we can guarantee that any 4960 * commit will leave the blocks being flushed in an unused state on 4961 * disk. (On recovery, the inode will get truncated and the blocks will 4962 * be freed, so we have a strong guarantee that no future commit will 4963 * leave these blocks visible to the user.) 4964 * 4965 * Another thing we have to assure is that if we are in ordered mode 4966 * and inode is still attached to the committing transaction, we must 4967 * we start writeout of all the dirty pages which are being truncated. 4968 * This way we are sure that all the data written in the previous 4969 * transaction are already on disk (truncate waits for pages under 4970 * writeback). 4971 * 4972 * Called with inode->i_mutex down. 4973 */ 4974 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4975 { 4976 struct inode *inode = d_inode(dentry); 4977 int error, rc = 0; 4978 int orphan = 0; 4979 const unsigned int ia_valid = attr->ia_valid; 4980 4981 error = inode_change_ok(inode, attr); 4982 if (error) 4983 return error; 4984 4985 if (is_quota_modification(inode, attr)) { 4986 error = dquot_initialize(inode); 4987 if (error) 4988 return error; 4989 } 4990 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4991 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4992 handle_t *handle; 4993 4994 /* (user+group)*(old+new) structure, inode write (sb, 4995 * inode block, ? - but truncate inode update has it) */ 4996 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4997 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4998 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4999 if (IS_ERR(handle)) { 5000 error = PTR_ERR(handle); 5001 goto err_out; 5002 } 5003 error = dquot_transfer(inode, attr); 5004 if (error) { 5005 ext4_journal_stop(handle); 5006 return error; 5007 } 5008 /* Update corresponding info in inode so that everything is in 5009 * one transaction */ 5010 if (attr->ia_valid & ATTR_UID) 5011 inode->i_uid = attr->ia_uid; 5012 if (attr->ia_valid & ATTR_GID) 5013 inode->i_gid = attr->ia_gid; 5014 error = ext4_mark_inode_dirty(handle, inode); 5015 ext4_journal_stop(handle); 5016 } 5017 5018 if (attr->ia_valid & ATTR_SIZE) { 5019 handle_t *handle; 5020 loff_t oldsize = inode->i_size; 5021 int shrink = (attr->ia_size <= inode->i_size); 5022 5023 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5024 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5025 5026 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5027 return -EFBIG; 5028 } 5029 if (!S_ISREG(inode->i_mode)) 5030 return -EINVAL; 5031 5032 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5033 inode_inc_iversion(inode); 5034 5035 if (ext4_should_order_data(inode) && 5036 (attr->ia_size < inode->i_size)) { 5037 error = ext4_begin_ordered_truncate(inode, 5038 attr->ia_size); 5039 if (error) 5040 goto err_out; 5041 } 5042 if (attr->ia_size != inode->i_size) { 5043 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5044 if (IS_ERR(handle)) { 5045 error = PTR_ERR(handle); 5046 goto err_out; 5047 } 5048 if (ext4_handle_valid(handle) && shrink) { 5049 error = ext4_orphan_add(handle, inode); 5050 orphan = 1; 5051 } 5052 /* 5053 * Update c/mtime on truncate up, ext4_truncate() will 5054 * update c/mtime in shrink case below 5055 */ 5056 if (!shrink) { 5057 inode->i_mtime = ext4_current_time(inode); 5058 inode->i_ctime = inode->i_mtime; 5059 } 5060 down_write(&EXT4_I(inode)->i_data_sem); 5061 EXT4_I(inode)->i_disksize = attr->ia_size; 5062 rc = ext4_mark_inode_dirty(handle, inode); 5063 if (!error) 5064 error = rc; 5065 /* 5066 * We have to update i_size under i_data_sem together 5067 * with i_disksize to avoid races with writeback code 5068 * running ext4_wb_update_i_disksize(). 5069 */ 5070 if (!error) 5071 i_size_write(inode, attr->ia_size); 5072 up_write(&EXT4_I(inode)->i_data_sem); 5073 ext4_journal_stop(handle); 5074 if (error) { 5075 if (orphan) 5076 ext4_orphan_del(NULL, inode); 5077 goto err_out; 5078 } 5079 } 5080 if (!shrink) 5081 pagecache_isize_extended(inode, oldsize, inode->i_size); 5082 5083 /* 5084 * Blocks are going to be removed from the inode. Wait 5085 * for dio in flight. Temporarily disable 5086 * dioread_nolock to prevent livelock. 5087 */ 5088 if (orphan) { 5089 if (!ext4_should_journal_data(inode)) { 5090 ext4_inode_block_unlocked_dio(inode); 5091 inode_dio_wait(inode); 5092 ext4_inode_resume_unlocked_dio(inode); 5093 } else 5094 ext4_wait_for_tail_page_commit(inode); 5095 } 5096 down_write(&EXT4_I(inode)->i_mmap_sem); 5097 /* 5098 * Truncate pagecache after we've waited for commit 5099 * in data=journal mode to make pages freeable. 5100 */ 5101 truncate_pagecache(inode, inode->i_size); 5102 if (shrink) 5103 ext4_truncate(inode); 5104 up_write(&EXT4_I(inode)->i_mmap_sem); 5105 } 5106 5107 if (!rc) { 5108 setattr_copy(inode, attr); 5109 mark_inode_dirty(inode); 5110 } 5111 5112 /* 5113 * If the call to ext4_truncate failed to get a transaction handle at 5114 * all, we need to clean up the in-core orphan list manually. 5115 */ 5116 if (orphan && inode->i_nlink) 5117 ext4_orphan_del(NULL, inode); 5118 5119 if (!rc && (ia_valid & ATTR_MODE)) 5120 rc = posix_acl_chmod(inode, inode->i_mode); 5121 5122 err_out: 5123 ext4_std_error(inode->i_sb, error); 5124 if (!error) 5125 error = rc; 5126 return error; 5127 } 5128 5129 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5130 struct kstat *stat) 5131 { 5132 struct inode *inode; 5133 unsigned long long delalloc_blocks; 5134 5135 inode = d_inode(dentry); 5136 generic_fillattr(inode, stat); 5137 5138 /* 5139 * If there is inline data in the inode, the inode will normally not 5140 * have data blocks allocated (it may have an external xattr block). 5141 * Report at least one sector for such files, so tools like tar, rsync, 5142 * others doen't incorrectly think the file is completely sparse. 5143 */ 5144 if (unlikely(ext4_has_inline_data(inode))) 5145 stat->blocks += (stat->size + 511) >> 9; 5146 5147 /* 5148 * We can't update i_blocks if the block allocation is delayed 5149 * otherwise in the case of system crash before the real block 5150 * allocation is done, we will have i_blocks inconsistent with 5151 * on-disk file blocks. 5152 * We always keep i_blocks updated together with real 5153 * allocation. But to not confuse with user, stat 5154 * will return the blocks that include the delayed allocation 5155 * blocks for this file. 5156 */ 5157 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5158 EXT4_I(inode)->i_reserved_data_blocks); 5159 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5160 return 0; 5161 } 5162 5163 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5164 int pextents) 5165 { 5166 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5167 return ext4_ind_trans_blocks(inode, lblocks); 5168 return ext4_ext_index_trans_blocks(inode, pextents); 5169 } 5170 5171 /* 5172 * Account for index blocks, block groups bitmaps and block group 5173 * descriptor blocks if modify datablocks and index blocks 5174 * worse case, the indexs blocks spread over different block groups 5175 * 5176 * If datablocks are discontiguous, they are possible to spread over 5177 * different block groups too. If they are contiguous, with flexbg, 5178 * they could still across block group boundary. 5179 * 5180 * Also account for superblock, inode, quota and xattr blocks 5181 */ 5182 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5183 int pextents) 5184 { 5185 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5186 int gdpblocks; 5187 int idxblocks; 5188 int ret = 0; 5189 5190 /* 5191 * How many index blocks need to touch to map @lblocks logical blocks 5192 * to @pextents physical extents? 5193 */ 5194 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5195 5196 ret = idxblocks; 5197 5198 /* 5199 * Now let's see how many group bitmaps and group descriptors need 5200 * to account 5201 */ 5202 groups = idxblocks + pextents; 5203 gdpblocks = groups; 5204 if (groups > ngroups) 5205 groups = ngroups; 5206 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5207 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5208 5209 /* bitmaps and block group descriptor blocks */ 5210 ret += groups + gdpblocks; 5211 5212 /* Blocks for super block, inode, quota and xattr blocks */ 5213 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5214 5215 return ret; 5216 } 5217 5218 /* 5219 * Calculate the total number of credits to reserve to fit 5220 * the modification of a single pages into a single transaction, 5221 * which may include multiple chunks of block allocations. 5222 * 5223 * This could be called via ext4_write_begin() 5224 * 5225 * We need to consider the worse case, when 5226 * one new block per extent. 5227 */ 5228 int ext4_writepage_trans_blocks(struct inode *inode) 5229 { 5230 int bpp = ext4_journal_blocks_per_page(inode); 5231 int ret; 5232 5233 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5234 5235 /* Account for data blocks for journalled mode */ 5236 if (ext4_should_journal_data(inode)) 5237 ret += bpp; 5238 return ret; 5239 } 5240 5241 /* 5242 * Calculate the journal credits for a chunk of data modification. 5243 * 5244 * This is called from DIO, fallocate or whoever calling 5245 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5246 * 5247 * journal buffers for data blocks are not included here, as DIO 5248 * and fallocate do no need to journal data buffers. 5249 */ 5250 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5251 { 5252 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5253 } 5254 5255 /* 5256 * The caller must have previously called ext4_reserve_inode_write(). 5257 * Give this, we know that the caller already has write access to iloc->bh. 5258 */ 5259 int ext4_mark_iloc_dirty(handle_t *handle, 5260 struct inode *inode, struct ext4_iloc *iloc) 5261 { 5262 int err = 0; 5263 5264 if (IS_I_VERSION(inode)) 5265 inode_inc_iversion(inode); 5266 5267 /* the do_update_inode consumes one bh->b_count */ 5268 get_bh(iloc->bh); 5269 5270 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5271 err = ext4_do_update_inode(handle, inode, iloc); 5272 put_bh(iloc->bh); 5273 return err; 5274 } 5275 5276 /* 5277 * On success, We end up with an outstanding reference count against 5278 * iloc->bh. This _must_ be cleaned up later. 5279 */ 5280 5281 int 5282 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5283 struct ext4_iloc *iloc) 5284 { 5285 int err; 5286 5287 err = ext4_get_inode_loc(inode, iloc); 5288 if (!err) { 5289 BUFFER_TRACE(iloc->bh, "get_write_access"); 5290 err = ext4_journal_get_write_access(handle, iloc->bh); 5291 if (err) { 5292 brelse(iloc->bh); 5293 iloc->bh = NULL; 5294 } 5295 } 5296 ext4_std_error(inode->i_sb, err); 5297 return err; 5298 } 5299 5300 /* 5301 * Expand an inode by new_extra_isize bytes. 5302 * Returns 0 on success or negative error number on failure. 5303 */ 5304 static int ext4_expand_extra_isize(struct inode *inode, 5305 unsigned int new_extra_isize, 5306 struct ext4_iloc iloc, 5307 handle_t *handle) 5308 { 5309 struct ext4_inode *raw_inode; 5310 struct ext4_xattr_ibody_header *header; 5311 5312 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5313 return 0; 5314 5315 raw_inode = ext4_raw_inode(&iloc); 5316 5317 header = IHDR(inode, raw_inode); 5318 5319 /* No extended attributes present */ 5320 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5321 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5322 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5323 new_extra_isize); 5324 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5325 return 0; 5326 } 5327 5328 /* try to expand with EAs present */ 5329 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5330 raw_inode, handle); 5331 } 5332 5333 /* 5334 * What we do here is to mark the in-core inode as clean with respect to inode 5335 * dirtiness (it may still be data-dirty). 5336 * This means that the in-core inode may be reaped by prune_icache 5337 * without having to perform any I/O. This is a very good thing, 5338 * because *any* task may call prune_icache - even ones which 5339 * have a transaction open against a different journal. 5340 * 5341 * Is this cheating? Not really. Sure, we haven't written the 5342 * inode out, but prune_icache isn't a user-visible syncing function. 5343 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5344 * we start and wait on commits. 5345 */ 5346 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5347 { 5348 struct ext4_iloc iloc; 5349 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5350 static unsigned int mnt_count; 5351 int err, ret; 5352 5353 might_sleep(); 5354 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5355 err = ext4_reserve_inode_write(handle, inode, &iloc); 5356 if (err) 5357 return err; 5358 if (ext4_handle_valid(handle) && 5359 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5360 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5361 /* 5362 * We need extra buffer credits since we may write into EA block 5363 * with this same handle. If journal_extend fails, then it will 5364 * only result in a minor loss of functionality for that inode. 5365 * If this is felt to be critical, then e2fsck should be run to 5366 * force a large enough s_min_extra_isize. 5367 */ 5368 if ((jbd2_journal_extend(handle, 5369 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5370 ret = ext4_expand_extra_isize(inode, 5371 sbi->s_want_extra_isize, 5372 iloc, handle); 5373 if (ret) { 5374 ext4_set_inode_state(inode, 5375 EXT4_STATE_NO_EXPAND); 5376 if (mnt_count != 5377 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5378 ext4_warning(inode->i_sb, 5379 "Unable to expand inode %lu. Delete" 5380 " some EAs or run e2fsck.", 5381 inode->i_ino); 5382 mnt_count = 5383 le16_to_cpu(sbi->s_es->s_mnt_count); 5384 } 5385 } 5386 } 5387 } 5388 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5389 } 5390 5391 /* 5392 * ext4_dirty_inode() is called from __mark_inode_dirty() 5393 * 5394 * We're really interested in the case where a file is being extended. 5395 * i_size has been changed by generic_commit_write() and we thus need 5396 * to include the updated inode in the current transaction. 5397 * 5398 * Also, dquot_alloc_block() will always dirty the inode when blocks 5399 * are allocated to the file. 5400 * 5401 * If the inode is marked synchronous, we don't honour that here - doing 5402 * so would cause a commit on atime updates, which we don't bother doing. 5403 * We handle synchronous inodes at the highest possible level. 5404 * 5405 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5406 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5407 * to copy into the on-disk inode structure are the timestamp files. 5408 */ 5409 void ext4_dirty_inode(struct inode *inode, int flags) 5410 { 5411 handle_t *handle; 5412 5413 if (flags == I_DIRTY_TIME) 5414 return; 5415 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5416 if (IS_ERR(handle)) 5417 goto out; 5418 5419 ext4_mark_inode_dirty(handle, inode); 5420 5421 ext4_journal_stop(handle); 5422 out: 5423 return; 5424 } 5425 5426 #if 0 5427 /* 5428 * Bind an inode's backing buffer_head into this transaction, to prevent 5429 * it from being flushed to disk early. Unlike 5430 * ext4_reserve_inode_write, this leaves behind no bh reference and 5431 * returns no iloc structure, so the caller needs to repeat the iloc 5432 * lookup to mark the inode dirty later. 5433 */ 5434 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5435 { 5436 struct ext4_iloc iloc; 5437 5438 int err = 0; 5439 if (handle) { 5440 err = ext4_get_inode_loc(inode, &iloc); 5441 if (!err) { 5442 BUFFER_TRACE(iloc.bh, "get_write_access"); 5443 err = jbd2_journal_get_write_access(handle, iloc.bh); 5444 if (!err) 5445 err = ext4_handle_dirty_metadata(handle, 5446 NULL, 5447 iloc.bh); 5448 brelse(iloc.bh); 5449 } 5450 } 5451 ext4_std_error(inode->i_sb, err); 5452 return err; 5453 } 5454 #endif 5455 5456 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5457 { 5458 journal_t *journal; 5459 handle_t *handle; 5460 int err; 5461 5462 /* 5463 * We have to be very careful here: changing a data block's 5464 * journaling status dynamically is dangerous. If we write a 5465 * data block to the journal, change the status and then delete 5466 * that block, we risk forgetting to revoke the old log record 5467 * from the journal and so a subsequent replay can corrupt data. 5468 * So, first we make sure that the journal is empty and that 5469 * nobody is changing anything. 5470 */ 5471 5472 journal = EXT4_JOURNAL(inode); 5473 if (!journal) 5474 return 0; 5475 if (is_journal_aborted(journal)) 5476 return -EROFS; 5477 /* We have to allocate physical blocks for delalloc blocks 5478 * before flushing journal. otherwise delalloc blocks can not 5479 * be allocated any more. even more truncate on delalloc blocks 5480 * could trigger BUG by flushing delalloc blocks in journal. 5481 * There is no delalloc block in non-journal data mode. 5482 */ 5483 if (val && test_opt(inode->i_sb, DELALLOC)) { 5484 err = ext4_alloc_da_blocks(inode); 5485 if (err < 0) 5486 return err; 5487 } 5488 5489 /* Wait for all existing dio workers */ 5490 ext4_inode_block_unlocked_dio(inode); 5491 inode_dio_wait(inode); 5492 5493 jbd2_journal_lock_updates(journal); 5494 5495 /* 5496 * OK, there are no updates running now, and all cached data is 5497 * synced to disk. We are now in a completely consistent state 5498 * which doesn't have anything in the journal, and we know that 5499 * no filesystem updates are running, so it is safe to modify 5500 * the inode's in-core data-journaling state flag now. 5501 */ 5502 5503 if (val) 5504 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5505 else { 5506 err = jbd2_journal_flush(journal); 5507 if (err < 0) { 5508 jbd2_journal_unlock_updates(journal); 5509 ext4_inode_resume_unlocked_dio(inode); 5510 return err; 5511 } 5512 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5513 } 5514 ext4_set_aops(inode); 5515 5516 jbd2_journal_unlock_updates(journal); 5517 ext4_inode_resume_unlocked_dio(inode); 5518 5519 /* Finally we can mark the inode as dirty. */ 5520 5521 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5522 if (IS_ERR(handle)) 5523 return PTR_ERR(handle); 5524 5525 err = ext4_mark_inode_dirty(handle, inode); 5526 ext4_handle_sync(handle); 5527 ext4_journal_stop(handle); 5528 ext4_std_error(inode->i_sb, err); 5529 5530 return err; 5531 } 5532 5533 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5534 { 5535 return !buffer_mapped(bh); 5536 } 5537 5538 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5539 { 5540 struct page *page = vmf->page; 5541 loff_t size; 5542 unsigned long len; 5543 int ret; 5544 struct file *file = vma->vm_file; 5545 struct inode *inode = file_inode(file); 5546 struct address_space *mapping = inode->i_mapping; 5547 handle_t *handle; 5548 get_block_t *get_block; 5549 int retries = 0; 5550 5551 sb_start_pagefault(inode->i_sb); 5552 file_update_time(vma->vm_file); 5553 5554 down_read(&EXT4_I(inode)->i_mmap_sem); 5555 /* Delalloc case is easy... */ 5556 if (test_opt(inode->i_sb, DELALLOC) && 5557 !ext4_should_journal_data(inode) && 5558 !ext4_nonda_switch(inode->i_sb)) { 5559 do { 5560 ret = block_page_mkwrite(vma, vmf, 5561 ext4_da_get_block_prep); 5562 } while (ret == -ENOSPC && 5563 ext4_should_retry_alloc(inode->i_sb, &retries)); 5564 goto out_ret; 5565 } 5566 5567 lock_page(page); 5568 size = i_size_read(inode); 5569 /* Page got truncated from under us? */ 5570 if (page->mapping != mapping || page_offset(page) > size) { 5571 unlock_page(page); 5572 ret = VM_FAULT_NOPAGE; 5573 goto out; 5574 } 5575 5576 if (page->index == size >> PAGE_SHIFT) 5577 len = size & ~PAGE_MASK; 5578 else 5579 len = PAGE_SIZE; 5580 /* 5581 * Return if we have all the buffers mapped. This avoids the need to do 5582 * journal_start/journal_stop which can block and take a long time 5583 */ 5584 if (page_has_buffers(page)) { 5585 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5586 0, len, NULL, 5587 ext4_bh_unmapped)) { 5588 /* Wait so that we don't change page under IO */ 5589 wait_for_stable_page(page); 5590 ret = VM_FAULT_LOCKED; 5591 goto out; 5592 } 5593 } 5594 unlock_page(page); 5595 /* OK, we need to fill the hole... */ 5596 if (ext4_should_dioread_nolock(inode)) 5597 get_block = ext4_get_block_unwritten; 5598 else 5599 get_block = ext4_get_block; 5600 retry_alloc: 5601 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5602 ext4_writepage_trans_blocks(inode)); 5603 if (IS_ERR(handle)) { 5604 ret = VM_FAULT_SIGBUS; 5605 goto out; 5606 } 5607 ret = block_page_mkwrite(vma, vmf, get_block); 5608 if (!ret && ext4_should_journal_data(inode)) { 5609 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5610 PAGE_SIZE, NULL, do_journal_get_write_access)) { 5611 unlock_page(page); 5612 ret = VM_FAULT_SIGBUS; 5613 ext4_journal_stop(handle); 5614 goto out; 5615 } 5616 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5617 } 5618 ext4_journal_stop(handle); 5619 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5620 goto retry_alloc; 5621 out_ret: 5622 ret = block_page_mkwrite_return(ret); 5623 out: 5624 up_read(&EXT4_I(inode)->i_mmap_sem); 5625 sb_end_pagefault(inode->i_sb); 5626 return ret; 5627 } 5628 5629 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 5630 { 5631 struct inode *inode = file_inode(vma->vm_file); 5632 int err; 5633 5634 down_read(&EXT4_I(inode)->i_mmap_sem); 5635 err = filemap_fault(vma, vmf); 5636 up_read(&EXT4_I(inode)->i_mmap_sem); 5637 5638 return err; 5639 } 5640 5641 /* 5642 * Find the first extent at or after @lblk in an inode that is not a hole. 5643 * Search for @map_len blocks at most. The extent is returned in @result. 5644 * 5645 * The function returns 1 if we found an extent. The function returns 0 in 5646 * case there is no extent at or after @lblk and in that case also sets 5647 * @result->es_len to 0. In case of error, the error code is returned. 5648 */ 5649 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 5650 unsigned int map_len, struct extent_status *result) 5651 { 5652 struct ext4_map_blocks map; 5653 struct extent_status es = {}; 5654 int ret; 5655 5656 map.m_lblk = lblk; 5657 map.m_len = map_len; 5658 5659 /* 5660 * For non-extent based files this loop may iterate several times since 5661 * we do not determine full hole size. 5662 */ 5663 while (map.m_len > 0) { 5664 ret = ext4_map_blocks(NULL, inode, &map, 0); 5665 if (ret < 0) 5666 return ret; 5667 /* There's extent covering m_lblk? Just return it. */ 5668 if (ret > 0) { 5669 int status; 5670 5671 ext4_es_store_pblock(result, map.m_pblk); 5672 result->es_lblk = map.m_lblk; 5673 result->es_len = map.m_len; 5674 if (map.m_flags & EXT4_MAP_UNWRITTEN) 5675 status = EXTENT_STATUS_UNWRITTEN; 5676 else 5677 status = EXTENT_STATUS_WRITTEN; 5678 ext4_es_store_status(result, status); 5679 return 1; 5680 } 5681 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 5682 map.m_lblk + map.m_len - 1, 5683 &es); 5684 /* Is delalloc data before next block in extent tree? */ 5685 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 5686 ext4_lblk_t offset = 0; 5687 5688 if (es.es_lblk < lblk) 5689 offset = lblk - es.es_lblk; 5690 result->es_lblk = es.es_lblk + offset; 5691 ext4_es_store_pblock(result, 5692 ext4_es_pblock(&es) + offset); 5693 result->es_len = es.es_len - offset; 5694 ext4_es_store_status(result, ext4_es_status(&es)); 5695 5696 return 1; 5697 } 5698 /* There's a hole at m_lblk, advance us after it */ 5699 map.m_lblk += map.m_len; 5700 map_len -= map.m_len; 5701 map.m_len = map_len; 5702 cond_resched(); 5703 } 5704 result->es_len = 0; 5705 return 0; 5706 } 5707
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.