~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/checkpoint.c

Version: ~ [ linux-5.19-rc3 ] ~ [ linux-5.18.5 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.48 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.123 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.199 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.248 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.284 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.319 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * fs/f2fs/checkpoint.c
  3  *
  4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5  *             http://www.samsung.com/
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  */
 11 #include <linux/fs.h>
 12 #include <linux/bio.h>
 13 #include <linux/mpage.h>
 14 #include <linux/writeback.h>
 15 #include <linux/blkdev.h>
 16 #include <linux/f2fs_fs.h>
 17 #include <linux/pagevec.h>
 18 #include <linux/swap.h>
 19 
 20 #include "f2fs.h"
 21 #include "node.h"
 22 #include "segment.h"
 23 #include "trace.h"
 24 #include <trace/events/f2fs.h>
 25 
 26 static struct kmem_cache *ino_entry_slab;
 27 struct kmem_cache *inode_entry_slab;
 28 
 29 /*
 30  * We guarantee no failure on the returned page.
 31  */
 32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 33 {
 34         struct address_space *mapping = META_MAPPING(sbi);
 35         struct page *page = NULL;
 36 repeat:
 37         page = grab_cache_page(mapping, index);
 38         if (!page) {
 39                 cond_resched();
 40                 goto repeat;
 41         }
 42         f2fs_wait_on_page_writeback(page, META);
 43         SetPageUptodate(page);
 44         return page;
 45 }
 46 
 47 /*
 48  * We guarantee no failure on the returned page.
 49  */
 50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
 51                                                         bool is_meta)
 52 {
 53         struct address_space *mapping = META_MAPPING(sbi);
 54         struct page *page;
 55         struct f2fs_io_info fio = {
 56                 .sbi = sbi,
 57                 .type = META,
 58                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
 59                 .blk_addr = index,
 60                 .encrypted_page = NULL,
 61         };
 62 
 63         if (unlikely(!is_meta))
 64                 fio.rw &= ~REQ_META;
 65 repeat:
 66         page = grab_cache_page(mapping, index);
 67         if (!page) {
 68                 cond_resched();
 69                 goto repeat;
 70         }
 71         if (PageUptodate(page))
 72                 goto out;
 73 
 74         fio.page = page;
 75 
 76         if (f2fs_submit_page_bio(&fio)) {
 77                 f2fs_put_page(page, 1);
 78                 goto repeat;
 79         }
 80 
 81         lock_page(page);
 82         if (unlikely(page->mapping != mapping)) {
 83                 f2fs_put_page(page, 1);
 84                 goto repeat;
 85         }
 86 
 87         /*
 88          * if there is any IO error when accessing device, make our filesystem
 89          * readonly and make sure do not write checkpoint with non-uptodate
 90          * meta page.
 91          */
 92         if (unlikely(!PageUptodate(page)))
 93                 f2fs_stop_checkpoint(sbi);
 94 out:
 95         return page;
 96 }
 97 
 98 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 99 {
100         return __get_meta_page(sbi, index, true);
101 }
102 
103 /* for POR only */
104 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
105 {
106         return __get_meta_page(sbi, index, false);
107 }
108 
109 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
110 {
111         switch (type) {
112         case META_NAT:
113                 break;
114         case META_SIT:
115                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
116                         return false;
117                 break;
118         case META_SSA:
119                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
120                         blkaddr < SM_I(sbi)->ssa_blkaddr))
121                         return false;
122                 break;
123         case META_CP:
124                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
125                         blkaddr < __start_cp_addr(sbi)))
126                         return false;
127                 break;
128         case META_POR:
129                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
130                         blkaddr < MAIN_BLKADDR(sbi)))
131                         return false;
132                 break;
133         default:
134                 BUG();
135         }
136 
137         return true;
138 }
139 
140 /*
141  * Readahead CP/NAT/SIT/SSA pages
142  */
143 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
144                                                         int type, bool sync)
145 {
146         block_t prev_blk_addr = 0;
147         struct page *page;
148         block_t blkno = start;
149         struct f2fs_io_info fio = {
150                 .sbi = sbi,
151                 .type = META,
152                 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
153                 .encrypted_page = NULL,
154         };
155 
156         if (unlikely(type == META_POR))
157                 fio.rw &= ~REQ_META;
158 
159         for (; nrpages-- > 0; blkno++) {
160 
161                 if (!is_valid_blkaddr(sbi, blkno, type))
162                         goto out;
163 
164                 switch (type) {
165                 case META_NAT:
166                         if (unlikely(blkno >=
167                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
168                                 blkno = 0;
169                         /* get nat block addr */
170                         fio.blk_addr = current_nat_addr(sbi,
171                                         blkno * NAT_ENTRY_PER_BLOCK);
172                         break;
173                 case META_SIT:
174                         /* get sit block addr */
175                         fio.blk_addr = current_sit_addr(sbi,
176                                         blkno * SIT_ENTRY_PER_BLOCK);
177                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
178                                 goto out;
179                         prev_blk_addr = fio.blk_addr;
180                         break;
181                 case META_SSA:
182                 case META_CP:
183                 case META_POR:
184                         fio.blk_addr = blkno;
185                         break;
186                 default:
187                         BUG();
188                 }
189 
190                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
191                 if (!page)
192                         continue;
193                 if (PageUptodate(page)) {
194                         f2fs_put_page(page, 1);
195                         continue;
196                 }
197 
198                 fio.page = page;
199                 f2fs_submit_page_mbio(&fio);
200                 f2fs_put_page(page, 0);
201         }
202 out:
203         f2fs_submit_merged_bio(sbi, META, READ);
204         return blkno - start;
205 }
206 
207 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
208 {
209         struct page *page;
210         bool readahead = false;
211 
212         page = find_get_page(META_MAPPING(sbi), index);
213         if (!page || (page && !PageUptodate(page)))
214                 readahead = true;
215         f2fs_put_page(page, 0);
216 
217         if (readahead)
218                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
219 }
220 
221 static int f2fs_write_meta_page(struct page *page,
222                                 struct writeback_control *wbc)
223 {
224         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
225 
226         trace_f2fs_writepage(page, META);
227 
228         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
229                 goto redirty_out;
230         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
231                 goto redirty_out;
232         if (unlikely(f2fs_cp_error(sbi)))
233                 goto redirty_out;
234 
235         f2fs_wait_on_page_writeback(page, META);
236         write_meta_page(sbi, page);
237         dec_page_count(sbi, F2FS_DIRTY_META);
238         unlock_page(page);
239 
240         if (wbc->for_reclaim || unlikely(f2fs_cp_error(sbi)))
241                 f2fs_submit_merged_bio(sbi, META, WRITE);
242         return 0;
243 
244 redirty_out:
245         redirty_page_for_writepage(wbc, page);
246         return AOP_WRITEPAGE_ACTIVATE;
247 }
248 
249 static int f2fs_write_meta_pages(struct address_space *mapping,
250                                 struct writeback_control *wbc)
251 {
252         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
253         long diff, written;
254 
255         trace_f2fs_writepages(mapping->host, wbc, META);
256 
257         /* collect a number of dirty meta pages and write together */
258         if (wbc->for_kupdate ||
259                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
260                 goto skip_write;
261 
262         /* if mounting is failed, skip writing node pages */
263         mutex_lock(&sbi->cp_mutex);
264         diff = nr_pages_to_write(sbi, META, wbc);
265         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
266         mutex_unlock(&sbi->cp_mutex);
267         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
268         return 0;
269 
270 skip_write:
271         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
272         return 0;
273 }
274 
275 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
276                                                 long nr_to_write)
277 {
278         struct address_space *mapping = META_MAPPING(sbi);
279         pgoff_t index = 0, end = LONG_MAX, prev = LONG_MAX;
280         struct pagevec pvec;
281         long nwritten = 0;
282         struct writeback_control wbc = {
283                 .for_reclaim = 0,
284         };
285 
286         pagevec_init(&pvec, 0);
287 
288         while (index <= end) {
289                 int i, nr_pages;
290                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291                                 PAGECACHE_TAG_DIRTY,
292                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
293                 if (unlikely(nr_pages == 0))
294                         break;
295 
296                 for (i = 0; i < nr_pages; i++) {
297                         struct page *page = pvec.pages[i];
298 
299                         if (prev == LONG_MAX)
300                                 prev = page->index - 1;
301                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
302                                 pagevec_release(&pvec);
303                                 goto stop;
304                         }
305 
306                         lock_page(page);
307 
308                         if (unlikely(page->mapping != mapping)) {
309 continue_unlock:
310                                 unlock_page(page);
311                                 continue;
312                         }
313                         if (!PageDirty(page)) {
314                                 /* someone wrote it for us */
315                                 goto continue_unlock;
316                         }
317 
318                         if (!clear_page_dirty_for_io(page))
319                                 goto continue_unlock;
320 
321                         if (mapping->a_ops->writepage(page, &wbc)) {
322                                 unlock_page(page);
323                                 break;
324                         }
325                         nwritten++;
326                         prev = page->index;
327                         if (unlikely(nwritten >= nr_to_write))
328                                 break;
329                 }
330                 pagevec_release(&pvec);
331                 cond_resched();
332         }
333 stop:
334         if (nwritten)
335                 f2fs_submit_merged_bio(sbi, type, WRITE);
336 
337         return nwritten;
338 }
339 
340 static int f2fs_set_meta_page_dirty(struct page *page)
341 {
342         trace_f2fs_set_page_dirty(page, META);
343 
344         SetPageUptodate(page);
345         if (!PageDirty(page)) {
346                 __set_page_dirty_nobuffers(page);
347                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
348                 SetPagePrivate(page);
349                 f2fs_trace_pid(page);
350                 return 1;
351         }
352         return 0;
353 }
354 
355 const struct address_space_operations f2fs_meta_aops = {
356         .writepage      = f2fs_write_meta_page,
357         .writepages     = f2fs_write_meta_pages,
358         .set_page_dirty = f2fs_set_meta_page_dirty,
359         .invalidatepage = f2fs_invalidate_page,
360         .releasepage    = f2fs_release_page,
361 };
362 
363 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
364 {
365         struct inode_management *im = &sbi->im[type];
366         struct ino_entry *e, *tmp;
367 
368         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
369 retry:
370         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
371 
372         spin_lock(&im->ino_lock);
373         e = radix_tree_lookup(&im->ino_root, ino);
374         if (!e) {
375                 e = tmp;
376                 if (radix_tree_insert(&im->ino_root, ino, e)) {
377                         spin_unlock(&im->ino_lock);
378                         radix_tree_preload_end();
379                         goto retry;
380                 }
381                 memset(e, 0, sizeof(struct ino_entry));
382                 e->ino = ino;
383 
384                 list_add_tail(&e->list, &im->ino_list);
385                 if (type != ORPHAN_INO)
386                         im->ino_num++;
387         }
388         spin_unlock(&im->ino_lock);
389         radix_tree_preload_end();
390 
391         if (e != tmp)
392                 kmem_cache_free(ino_entry_slab, tmp);
393 }
394 
395 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
396 {
397         struct inode_management *im = &sbi->im[type];
398         struct ino_entry *e;
399 
400         spin_lock(&im->ino_lock);
401         e = radix_tree_lookup(&im->ino_root, ino);
402         if (e) {
403                 list_del(&e->list);
404                 radix_tree_delete(&im->ino_root, ino);
405                 im->ino_num--;
406                 spin_unlock(&im->ino_lock);
407                 kmem_cache_free(ino_entry_slab, e);
408                 return;
409         }
410         spin_unlock(&im->ino_lock);
411 }
412 
413 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
414 {
415         /* add new dirty ino entry into list */
416         __add_ino_entry(sbi, ino, type);
417 }
418 
419 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
420 {
421         /* remove dirty ino entry from list */
422         __remove_ino_entry(sbi, ino, type);
423 }
424 
425 /* mode should be APPEND_INO or UPDATE_INO */
426 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
427 {
428         struct inode_management *im = &sbi->im[mode];
429         struct ino_entry *e;
430 
431         spin_lock(&im->ino_lock);
432         e = radix_tree_lookup(&im->ino_root, ino);
433         spin_unlock(&im->ino_lock);
434         return e ? true : false;
435 }
436 
437 void release_ino_entry(struct f2fs_sb_info *sbi)
438 {
439         struct ino_entry *e, *tmp;
440         int i;
441 
442         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
443                 struct inode_management *im = &sbi->im[i];
444 
445                 spin_lock(&im->ino_lock);
446                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
447                         list_del(&e->list);
448                         radix_tree_delete(&im->ino_root, e->ino);
449                         kmem_cache_free(ino_entry_slab, e);
450                         im->ino_num--;
451                 }
452                 spin_unlock(&im->ino_lock);
453         }
454 }
455 
456 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
457 {
458         struct inode_management *im = &sbi->im[ORPHAN_INO];
459         int err = 0;
460 
461         spin_lock(&im->ino_lock);
462         if (unlikely(im->ino_num >= sbi->max_orphans))
463                 err = -ENOSPC;
464         else
465                 im->ino_num++;
466         spin_unlock(&im->ino_lock);
467 
468         return err;
469 }
470 
471 void release_orphan_inode(struct f2fs_sb_info *sbi)
472 {
473         struct inode_management *im = &sbi->im[ORPHAN_INO];
474 
475         spin_lock(&im->ino_lock);
476         f2fs_bug_on(sbi, im->ino_num == 0);
477         im->ino_num--;
478         spin_unlock(&im->ino_lock);
479 }
480 
481 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
482 {
483         /* add new orphan ino entry into list */
484         __add_ino_entry(sbi, ino, ORPHAN_INO);
485 }
486 
487 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
488 {
489         /* remove orphan entry from orphan list */
490         __remove_ino_entry(sbi, ino, ORPHAN_INO);
491 }
492 
493 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
494 {
495         struct inode *inode;
496 
497         inode = f2fs_iget(sbi->sb, ino);
498         if (IS_ERR(inode)) {
499                 /*
500                  * there should be a bug that we can't find the entry
501                  * to orphan inode.
502                  */
503                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
504                 return PTR_ERR(inode);
505         }
506 
507         clear_nlink(inode);
508 
509         /* truncate all the data during iput */
510         iput(inode);
511         return 0;
512 }
513 
514 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
515 {
516         block_t start_blk, orphan_blocks, i, j;
517         int err;
518 
519         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
520                 return 0;
521 
522         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
523         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
524 
525         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
526 
527         for (i = 0; i < orphan_blocks; i++) {
528                 struct page *page = get_meta_page(sbi, start_blk + i);
529                 struct f2fs_orphan_block *orphan_blk;
530 
531                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
532                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
533                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
534                         err = recover_orphan_inode(sbi, ino);
535                         if (err) {
536                                 f2fs_put_page(page, 1);
537                                 return err;
538                         }
539                 }
540                 f2fs_put_page(page, 1);
541         }
542         /* clear Orphan Flag */
543         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
544         return 0;
545 }
546 
547 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
548 {
549         struct list_head *head;
550         struct f2fs_orphan_block *orphan_blk = NULL;
551         unsigned int nentries = 0;
552         unsigned short index = 1;
553         unsigned short orphan_blocks;
554         struct page *page = NULL;
555         struct ino_entry *orphan = NULL;
556         struct inode_management *im = &sbi->im[ORPHAN_INO];
557 
558         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
559 
560         /*
561          * we don't need to do spin_lock(&im->ino_lock) here, since all the
562          * orphan inode operations are covered under f2fs_lock_op().
563          * And, spin_lock should be avoided due to page operations below.
564          */
565         head = &im->ino_list;
566 
567         /* loop for each orphan inode entry and write them in Jornal block */
568         list_for_each_entry(orphan, head, list) {
569                 if (!page) {
570                         page = grab_meta_page(sbi, start_blk++);
571                         orphan_blk =
572                                 (struct f2fs_orphan_block *)page_address(page);
573                         memset(orphan_blk, 0, sizeof(*orphan_blk));
574                 }
575 
576                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
577 
578                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
579                         /*
580                          * an orphan block is full of 1020 entries,
581                          * then we need to flush current orphan blocks
582                          * and bring another one in memory
583                          */
584                         orphan_blk->blk_addr = cpu_to_le16(index);
585                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
586                         orphan_blk->entry_count = cpu_to_le32(nentries);
587                         set_page_dirty(page);
588                         f2fs_put_page(page, 1);
589                         index++;
590                         nentries = 0;
591                         page = NULL;
592                 }
593         }
594 
595         if (page) {
596                 orphan_blk->blk_addr = cpu_to_le16(index);
597                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
598                 orphan_blk->entry_count = cpu_to_le32(nentries);
599                 set_page_dirty(page);
600                 f2fs_put_page(page, 1);
601         }
602 }
603 
604 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
605                                 block_t cp_addr, unsigned long long *version)
606 {
607         struct page *cp_page_1, *cp_page_2 = NULL;
608         unsigned long blk_size = sbi->blocksize;
609         struct f2fs_checkpoint *cp_block;
610         unsigned long long cur_version = 0, pre_version = 0;
611         size_t crc_offset;
612         __u32 crc = 0;
613 
614         /* Read the 1st cp block in this CP pack */
615         cp_page_1 = get_meta_page(sbi, cp_addr);
616 
617         /* get the version number */
618         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
619         crc_offset = le32_to_cpu(cp_block->checksum_offset);
620         if (crc_offset >= blk_size)
621                 goto invalid_cp1;
622 
623         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
624         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
625                 goto invalid_cp1;
626 
627         pre_version = cur_cp_version(cp_block);
628 
629         /* Read the 2nd cp block in this CP pack */
630         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
631         cp_page_2 = get_meta_page(sbi, cp_addr);
632 
633         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
634         crc_offset = le32_to_cpu(cp_block->checksum_offset);
635         if (crc_offset >= blk_size)
636                 goto invalid_cp2;
637 
638         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
639         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
640                 goto invalid_cp2;
641 
642         cur_version = cur_cp_version(cp_block);
643 
644         if (cur_version == pre_version) {
645                 *version = cur_version;
646                 f2fs_put_page(cp_page_2, 1);
647                 return cp_page_1;
648         }
649 invalid_cp2:
650         f2fs_put_page(cp_page_2, 1);
651 invalid_cp1:
652         f2fs_put_page(cp_page_1, 1);
653         return NULL;
654 }
655 
656 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
657 {
658         struct f2fs_checkpoint *cp_block;
659         struct f2fs_super_block *fsb = sbi->raw_super;
660         struct page *cp1, *cp2, *cur_page;
661         unsigned long blk_size = sbi->blocksize;
662         unsigned long long cp1_version = 0, cp2_version = 0;
663         unsigned long long cp_start_blk_no;
664         unsigned int cp_blks = 1 + __cp_payload(sbi);
665         block_t cp_blk_no;
666         int i;
667 
668         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
669         if (!sbi->ckpt)
670                 return -ENOMEM;
671         /*
672          * Finding out valid cp block involves read both
673          * sets( cp pack1 and cp pack 2)
674          */
675         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
676         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
677 
678         /* The second checkpoint pack should start at the next segment */
679         cp_start_blk_no += ((unsigned long long)1) <<
680                                 le32_to_cpu(fsb->log_blocks_per_seg);
681         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
682 
683         if (cp1 && cp2) {
684                 if (ver_after(cp2_version, cp1_version))
685                         cur_page = cp2;
686                 else
687                         cur_page = cp1;
688         } else if (cp1) {
689                 cur_page = cp1;
690         } else if (cp2) {
691                 cur_page = cp2;
692         } else {
693                 goto fail_no_cp;
694         }
695 
696         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
697         memcpy(sbi->ckpt, cp_block, blk_size);
698 
699         if (cp_blks <= 1)
700                 goto done;
701 
702         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
703         if (cur_page == cp2)
704                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
705 
706         for (i = 1; i < cp_blks; i++) {
707                 void *sit_bitmap_ptr;
708                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
709 
710                 cur_page = get_meta_page(sbi, cp_blk_no + i);
711                 sit_bitmap_ptr = page_address(cur_page);
712                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
713                 f2fs_put_page(cur_page, 1);
714         }
715 done:
716         f2fs_put_page(cp1, 1);
717         f2fs_put_page(cp2, 1);
718         return 0;
719 
720 fail_no_cp:
721         kfree(sbi->ckpt);
722         return -EINVAL;
723 }
724 
725 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
726 {
727         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
728         struct f2fs_inode_info *fi = F2FS_I(inode);
729         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
730 
731         if (is_inode_flag_set(fi, flag))
732                 return;
733 
734         set_inode_flag(fi, flag);
735         list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
736         stat_inc_dirty_inode(sbi, type);
737 }
738 
739 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
740 {
741         struct f2fs_inode_info *fi = F2FS_I(inode);
742         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
743 
744         if (get_dirty_pages(inode) ||
745                         !is_inode_flag_set(F2FS_I(inode), flag))
746                 return;
747 
748         list_del_init(&fi->dirty_list);
749         clear_inode_flag(fi, flag);
750         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
751 }
752 
753 void update_dirty_page(struct inode *inode, struct page *page)
754 {
755         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
756         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
757 
758         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
759                         !S_ISLNK(inode->i_mode))
760                 return;
761 
762         spin_lock(&sbi->inode_lock[type]);
763         __add_dirty_inode(inode, type);
764         inode_inc_dirty_pages(inode);
765         spin_unlock(&sbi->inode_lock[type]);
766 
767         SetPagePrivate(page);
768         f2fs_trace_pid(page);
769 }
770 
771 void add_dirty_dir_inode(struct inode *inode)
772 {
773         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
774 
775         spin_lock(&sbi->inode_lock[DIR_INODE]);
776         __add_dirty_inode(inode, DIR_INODE);
777         spin_unlock(&sbi->inode_lock[DIR_INODE]);
778 }
779 
780 void remove_dirty_inode(struct inode *inode)
781 {
782         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
783         struct f2fs_inode_info *fi = F2FS_I(inode);
784         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
785 
786         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
787                         !S_ISLNK(inode->i_mode))
788                 return;
789 
790         spin_lock(&sbi->inode_lock[type]);
791         __remove_dirty_inode(inode, type);
792         spin_unlock(&sbi->inode_lock[type]);
793 
794         /* Only from the recovery routine */
795         if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
796                 clear_inode_flag(fi, FI_DELAY_IPUT);
797                 iput(inode);
798         }
799 }
800 
801 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
802 {
803         struct list_head *head;
804         struct inode *inode;
805         struct f2fs_inode_info *fi;
806         bool is_dir = (type == DIR_INODE);
807 
808         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
809                                 get_pages(sbi, is_dir ?
810                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
811 retry:
812         if (unlikely(f2fs_cp_error(sbi)))
813                 return -EIO;
814 
815         spin_lock(&sbi->inode_lock[type]);
816 
817         head = &sbi->inode_list[type];
818         if (list_empty(head)) {
819                 spin_unlock(&sbi->inode_lock[type]);
820                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
821                                 get_pages(sbi, is_dir ?
822                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
823                 return 0;
824         }
825         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
826         inode = igrab(&fi->vfs_inode);
827         spin_unlock(&sbi->inode_lock[type]);
828         if (inode) {
829                 filemap_fdatawrite(inode->i_mapping);
830                 iput(inode);
831         } else {
832                 /*
833                  * We should submit bio, since it exists several
834                  * wribacking dentry pages in the freeing inode.
835                  */
836                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
837                 cond_resched();
838         }
839         goto retry;
840 }
841 
842 /*
843  * Freeze all the FS-operations for checkpoint.
844  */
845 static int block_operations(struct f2fs_sb_info *sbi)
846 {
847         struct writeback_control wbc = {
848                 .sync_mode = WB_SYNC_ALL,
849                 .nr_to_write = LONG_MAX,
850                 .for_reclaim = 0,
851         };
852         struct blk_plug plug;
853         int err = 0;
854 
855         blk_start_plug(&plug);
856 
857 retry_flush_dents:
858         f2fs_lock_all(sbi);
859         /* write all the dirty dentry pages */
860         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
861                 f2fs_unlock_all(sbi);
862                 err = sync_dirty_inodes(sbi, DIR_INODE);
863                 if (err)
864                         goto out;
865                 goto retry_flush_dents;
866         }
867 
868         /*
869          * POR: we should ensure that there are no dirty node pages
870          * until finishing nat/sit flush.
871          */
872 retry_flush_nodes:
873         down_write(&sbi->node_write);
874 
875         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
876                 up_write(&sbi->node_write);
877                 err = sync_node_pages(sbi, 0, &wbc);
878                 if (err) {
879                         f2fs_unlock_all(sbi);
880                         goto out;
881                 }
882                 goto retry_flush_nodes;
883         }
884 out:
885         blk_finish_plug(&plug);
886         return err;
887 }
888 
889 static void unblock_operations(struct f2fs_sb_info *sbi)
890 {
891         up_write(&sbi->node_write);
892         f2fs_unlock_all(sbi);
893 }
894 
895 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
896 {
897         DEFINE_WAIT(wait);
898 
899         for (;;) {
900                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
901 
902                 if (!get_pages(sbi, F2FS_WRITEBACK))
903                         break;
904 
905                 io_schedule();
906         }
907         finish_wait(&sbi->cp_wait, &wait);
908 }
909 
910 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
911 {
912         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
913         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
914         struct f2fs_nm_info *nm_i = NM_I(sbi);
915         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
916         nid_t last_nid = nm_i->next_scan_nid;
917         block_t start_blk;
918         unsigned int data_sum_blocks, orphan_blocks;
919         __u32 crc32 = 0;
920         int i;
921         int cp_payload_blks = __cp_payload(sbi);
922         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
923         bool invalidate = false;
924 
925         /*
926          * This avoids to conduct wrong roll-forward operations and uses
927          * metapages, so should be called prior to sync_meta_pages below.
928          */
929         if (discard_next_dnode(sbi, discard_blk))
930                 invalidate = true;
931 
932         /* Flush all the NAT/SIT pages */
933         while (get_pages(sbi, F2FS_DIRTY_META)) {
934                 sync_meta_pages(sbi, META, LONG_MAX);
935                 if (unlikely(f2fs_cp_error(sbi)))
936                         return -EIO;
937         }
938 
939         next_free_nid(sbi, &last_nid);
940 
941         /*
942          * modify checkpoint
943          * version number is already updated
944          */
945         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
946         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
947         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
948         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
949                 ckpt->cur_node_segno[i] =
950                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
951                 ckpt->cur_node_blkoff[i] =
952                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
953                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
954                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
955         }
956         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
957                 ckpt->cur_data_segno[i] =
958                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
959                 ckpt->cur_data_blkoff[i] =
960                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
961                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
962                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
963         }
964 
965         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
966         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
967         ckpt->next_free_nid = cpu_to_le32(last_nid);
968 
969         /* 2 cp  + n data seg summary + orphan inode blocks */
970         data_sum_blocks = npages_for_summary_flush(sbi, false);
971         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
972                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
973         else
974                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
975 
976         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
977         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
978                         orphan_blocks);
979 
980         if (__remain_node_summaries(cpc->reason))
981                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
982                                 cp_payload_blks + data_sum_blocks +
983                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
984         else
985                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
986                                 cp_payload_blks + data_sum_blocks +
987                                 orphan_blocks);
988 
989         if (cpc->reason == CP_UMOUNT)
990                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
991         else
992                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
993 
994         if (cpc->reason == CP_FASTBOOT)
995                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
996         else
997                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
998 
999         if (orphan_num)
1000                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1001         else
1002                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1003 
1004         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1005                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1006 
1007         /* update SIT/NAT bitmap */
1008         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1009         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1010 
1011         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
1012         *((__le32 *)((unsigned char *)ckpt +
1013                                 le32_to_cpu(ckpt->checksum_offset)))
1014                                 = cpu_to_le32(crc32);
1015 
1016         start_blk = __start_cp_addr(sbi);
1017 
1018         /* need to wait for end_io results */
1019         wait_on_all_pages_writeback(sbi);
1020         if (unlikely(f2fs_cp_error(sbi)))
1021                 return -EIO;
1022 
1023         /* write out checkpoint buffer at block 0 */
1024         update_meta_page(sbi, ckpt, start_blk++);
1025 
1026         for (i = 1; i < 1 + cp_payload_blks; i++)
1027                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1028                                                         start_blk++);
1029 
1030         if (orphan_num) {
1031                 write_orphan_inodes(sbi, start_blk);
1032                 start_blk += orphan_blocks;
1033         }
1034 
1035         write_data_summaries(sbi, start_blk);
1036         start_blk += data_sum_blocks;
1037         if (__remain_node_summaries(cpc->reason)) {
1038                 write_node_summaries(sbi, start_blk);
1039                 start_blk += NR_CURSEG_NODE_TYPE;
1040         }
1041 
1042         /* writeout checkpoint block */
1043         update_meta_page(sbi, ckpt, start_blk);
1044 
1045         /* wait for previous submitted node/meta pages writeback */
1046         wait_on_all_pages_writeback(sbi);
1047 
1048         if (unlikely(f2fs_cp_error(sbi)))
1049                 return -EIO;
1050 
1051         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1052         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1053 
1054         /* update user_block_counts */
1055         sbi->last_valid_block_count = sbi->total_valid_block_count;
1056         sbi->alloc_valid_block_count = 0;
1057 
1058         /* Here, we only have one bio having CP pack */
1059         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1060 
1061         /* wait for previous submitted meta pages writeback */
1062         wait_on_all_pages_writeback(sbi);
1063 
1064         /*
1065          * invalidate meta page which is used temporarily for zeroing out
1066          * block at the end of warm node chain.
1067          */
1068         if (invalidate)
1069                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1070                                                                 discard_blk);
1071 
1072         release_ino_entry(sbi);
1073 
1074         if (unlikely(f2fs_cp_error(sbi)))
1075                 return -EIO;
1076 
1077         clear_prefree_segments(sbi, cpc);
1078         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1079 
1080         return 0;
1081 }
1082 
1083 /*
1084  * We guarantee that this checkpoint procedure will not fail.
1085  */
1086 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1087 {
1088         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1089         unsigned long long ckpt_ver;
1090         int err = 0;
1091 
1092         mutex_lock(&sbi->cp_mutex);
1093 
1094         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1095                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1096                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1097                 goto out;
1098         if (unlikely(f2fs_cp_error(sbi))) {
1099                 err = -EIO;
1100                 goto out;
1101         }
1102         if (f2fs_readonly(sbi->sb)) {
1103                 err = -EROFS;
1104                 goto out;
1105         }
1106 
1107         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1108 
1109         err = block_operations(sbi);
1110         if (err)
1111                 goto out;
1112 
1113         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1114 
1115         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1116         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1117         f2fs_submit_merged_bio(sbi, META, WRITE);
1118 
1119         /*
1120          * update checkpoint pack index
1121          * Increase the version number so that
1122          * SIT entries and seg summaries are written at correct place
1123          */
1124         ckpt_ver = cur_cp_version(ckpt);
1125         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1126 
1127         /* write cached NAT/SIT entries to NAT/SIT area */
1128         flush_nat_entries(sbi);
1129         flush_sit_entries(sbi, cpc);
1130 
1131         /* unlock all the fs_lock[] in do_checkpoint() */
1132         err = do_checkpoint(sbi, cpc);
1133 
1134         unblock_operations(sbi);
1135         stat_inc_cp_count(sbi->stat_info);
1136 
1137         if (cpc->reason == CP_RECOVERY)
1138                 f2fs_msg(sbi->sb, KERN_NOTICE,
1139                         "checkpoint: version = %llx", ckpt_ver);
1140 
1141         /* do checkpoint periodically */
1142         f2fs_update_time(sbi, CP_TIME);
1143         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1144 out:
1145         mutex_unlock(&sbi->cp_mutex);
1146         return err;
1147 }
1148 
1149 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1150 {
1151         int i;
1152 
1153         for (i = 0; i < MAX_INO_ENTRY; i++) {
1154                 struct inode_management *im = &sbi->im[i];
1155 
1156                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1157                 spin_lock_init(&im->ino_lock);
1158                 INIT_LIST_HEAD(&im->ino_list);
1159                 im->ino_num = 0;
1160         }
1161 
1162         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1163                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1164                                 F2FS_ORPHANS_PER_BLOCK;
1165 }
1166 
1167 int __init create_checkpoint_caches(void)
1168 {
1169         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1170                         sizeof(struct ino_entry));
1171         if (!ino_entry_slab)
1172                 return -ENOMEM;
1173         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1174                         sizeof(struct inode_entry));
1175         if (!inode_entry_slab) {
1176                 kmem_cache_destroy(ino_entry_slab);
1177                 return -ENOMEM;
1178         }
1179         return 0;
1180 }
1181 
1182 void destroy_checkpoint_caches(void)
1183 {
1184         kmem_cache_destroy(ino_entry_slab);
1185         kmem_cache_destroy(inode_entry_slab);
1186 }
1187 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp