~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/checkpoint.c

Version: ~ [ linux-5.7-rc7 ] ~ [ linux-5.6.14 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.42 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.124 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.181 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.224 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.224 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.84 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * fs/f2fs/checkpoint.c
  4  *
  5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6  *             http://www.samsung.com/
  7  */
  8 #include <linux/fs.h>
  9 #include <linux/bio.h>
 10 #include <linux/mpage.h>
 11 #include <linux/writeback.h>
 12 #include <linux/blkdev.h>
 13 #include <linux/f2fs_fs.h>
 14 #include <linux/pagevec.h>
 15 #include <linux/swap.h>
 16 
 17 #include "f2fs.h"
 18 #include "node.h"
 19 #include "segment.h"
 20 #include "trace.h"
 21 #include <trace/events/f2fs.h>
 22 
 23 static struct kmem_cache *ino_entry_slab;
 24 struct kmem_cache *f2fs_inode_entry_slab;
 25 
 26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
 27 {
 28         f2fs_build_fault_attr(sbi, 0, 0);
 29         set_ckpt_flags(sbi, CP_ERROR_FLAG);
 30         if (!end_io)
 31                 f2fs_flush_merged_writes(sbi);
 32 }
 33 
 34 /*
 35  * We guarantee no failure on the returned page.
 36  */
 37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 38 {
 39         struct address_space *mapping = META_MAPPING(sbi);
 40         struct page *page = NULL;
 41 repeat:
 42         page = f2fs_grab_cache_page(mapping, index, false);
 43         if (!page) {
 44                 cond_resched();
 45                 goto repeat;
 46         }
 47         f2fs_wait_on_page_writeback(page, META, true, true);
 48         if (!PageUptodate(page))
 49                 SetPageUptodate(page);
 50         return page;
 51 }
 52 
 53 /*
 54  * We guarantee no failure on the returned page.
 55  */
 56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
 57                                                         bool is_meta)
 58 {
 59         struct address_space *mapping = META_MAPPING(sbi);
 60         struct page *page;
 61         struct f2fs_io_info fio = {
 62                 .sbi = sbi,
 63                 .type = META,
 64                 .op = REQ_OP_READ,
 65                 .op_flags = REQ_META | REQ_PRIO,
 66                 .old_blkaddr = index,
 67                 .new_blkaddr = index,
 68                 .encrypted_page = NULL,
 69                 .is_meta = is_meta,
 70         };
 71         int err;
 72 
 73         if (unlikely(!is_meta))
 74                 fio.op_flags &= ~REQ_META;
 75 repeat:
 76         page = f2fs_grab_cache_page(mapping, index, false);
 77         if (!page) {
 78                 cond_resched();
 79                 goto repeat;
 80         }
 81         if (PageUptodate(page))
 82                 goto out;
 83 
 84         fio.page = page;
 85 
 86         err = f2fs_submit_page_bio(&fio);
 87         if (err) {
 88                 f2fs_put_page(page, 1);
 89                 return ERR_PTR(err);
 90         }
 91 
 92         lock_page(page);
 93         if (unlikely(page->mapping != mapping)) {
 94                 f2fs_put_page(page, 1);
 95                 goto repeat;
 96         }
 97 
 98         if (unlikely(!PageUptodate(page))) {
 99                 f2fs_put_page(page, 1);
100                 return ERR_PTR(-EIO);
101         }
102 out:
103         return page;
104 }
105 
106 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
107 {
108         return __get_meta_page(sbi, index, true);
109 }
110 
111 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
112 {
113         struct page *page;
114         int count = 0;
115 
116 retry:
117         page = __get_meta_page(sbi, index, true);
118         if (IS_ERR(page)) {
119                 if (PTR_ERR(page) == -EIO &&
120                                 ++count <= DEFAULT_RETRY_IO_COUNT)
121                         goto retry;
122                 f2fs_stop_checkpoint(sbi, false);
123         }
124         return page;
125 }
126 
127 /* for POR only */
128 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
129 {
130         return __get_meta_page(sbi, index, false);
131 }
132 
133 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
134                                         block_t blkaddr, int type)
135 {
136         switch (type) {
137         case META_NAT:
138                 break;
139         case META_SIT:
140                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
141                         return false;
142                 break;
143         case META_SSA:
144                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
145                         blkaddr < SM_I(sbi)->ssa_blkaddr))
146                         return false;
147                 break;
148         case META_CP:
149                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
150                         blkaddr < __start_cp_addr(sbi)))
151                         return false;
152                 break;
153         case META_POR:
154         case DATA_GENERIC:
155                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
156                         blkaddr < MAIN_BLKADDR(sbi))) {
157                         if (type == DATA_GENERIC) {
158                                 f2fs_msg(sbi->sb, KERN_WARNING,
159                                         "access invalid blkaddr:%u", blkaddr);
160                                 WARN_ON(1);
161                         }
162                         return false;
163                 }
164                 break;
165         case META_GENERIC:
166                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
167                         blkaddr >= MAIN_BLKADDR(sbi)))
168                         return false;
169                 break;
170         default:
171                 BUG();
172         }
173 
174         return true;
175 }
176 
177 /*
178  * Readahead CP/NAT/SIT/SSA pages
179  */
180 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
181                                                         int type, bool sync)
182 {
183         struct page *page;
184         block_t blkno = start;
185         struct f2fs_io_info fio = {
186                 .sbi = sbi,
187                 .type = META,
188                 .op = REQ_OP_READ,
189                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
190                 .encrypted_page = NULL,
191                 .in_list = false,
192                 .is_meta = (type != META_POR),
193         };
194         struct blk_plug plug;
195 
196         if (unlikely(type == META_POR))
197                 fio.op_flags &= ~REQ_META;
198 
199         blk_start_plug(&plug);
200         for (; nrpages-- > 0; blkno++) {
201 
202                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
203                         goto out;
204 
205                 switch (type) {
206                 case META_NAT:
207                         if (unlikely(blkno >=
208                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
209                                 blkno = 0;
210                         /* get nat block addr */
211                         fio.new_blkaddr = current_nat_addr(sbi,
212                                         blkno * NAT_ENTRY_PER_BLOCK);
213                         break;
214                 case META_SIT:
215                         /* get sit block addr */
216                         fio.new_blkaddr = current_sit_addr(sbi,
217                                         blkno * SIT_ENTRY_PER_BLOCK);
218                         break;
219                 case META_SSA:
220                 case META_CP:
221                 case META_POR:
222                         fio.new_blkaddr = blkno;
223                         break;
224                 default:
225                         BUG();
226                 }
227 
228                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
229                                                 fio.new_blkaddr, false);
230                 if (!page)
231                         continue;
232                 if (PageUptodate(page)) {
233                         f2fs_put_page(page, 1);
234                         continue;
235                 }
236 
237                 fio.page = page;
238                 f2fs_submit_page_bio(&fio);
239                 f2fs_put_page(page, 0);
240         }
241 out:
242         blk_finish_plug(&plug);
243         return blkno - start;
244 }
245 
246 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
247 {
248         struct page *page;
249         bool readahead = false;
250 
251         page = find_get_page(META_MAPPING(sbi), index);
252         if (!page || !PageUptodate(page))
253                 readahead = true;
254         f2fs_put_page(page, 0);
255 
256         if (readahead)
257                 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
258 }
259 
260 static int __f2fs_write_meta_page(struct page *page,
261                                 struct writeback_control *wbc,
262                                 enum iostat_type io_type)
263 {
264         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
265 
266         trace_f2fs_writepage(page, META);
267 
268         if (unlikely(f2fs_cp_error(sbi)))
269                 goto redirty_out;
270         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
271                 goto redirty_out;
272         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
273                 goto redirty_out;
274 
275         f2fs_do_write_meta_page(sbi, page, io_type);
276         dec_page_count(sbi, F2FS_DIRTY_META);
277 
278         if (wbc->for_reclaim)
279                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
280 
281         unlock_page(page);
282 
283         if (unlikely(f2fs_cp_error(sbi)))
284                 f2fs_submit_merged_write(sbi, META);
285 
286         return 0;
287 
288 redirty_out:
289         redirty_page_for_writepage(wbc, page);
290         return AOP_WRITEPAGE_ACTIVATE;
291 }
292 
293 static int f2fs_write_meta_page(struct page *page,
294                                 struct writeback_control *wbc)
295 {
296         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
297 }
298 
299 static int f2fs_write_meta_pages(struct address_space *mapping,
300                                 struct writeback_control *wbc)
301 {
302         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
303         long diff, written;
304 
305         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
306                 goto skip_write;
307 
308         /* collect a number of dirty meta pages and write together */
309         if (wbc->sync_mode != WB_SYNC_ALL &&
310                         get_pages(sbi, F2FS_DIRTY_META) <
311                                         nr_pages_to_skip(sbi, META))
312                 goto skip_write;
313 
314         /* if locked failed, cp will flush dirty pages instead */
315         if (!mutex_trylock(&sbi->cp_mutex))
316                 goto skip_write;
317 
318         trace_f2fs_writepages(mapping->host, wbc, META);
319         diff = nr_pages_to_write(sbi, META, wbc);
320         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
321         mutex_unlock(&sbi->cp_mutex);
322         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
323         return 0;
324 
325 skip_write:
326         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
327         trace_f2fs_writepages(mapping->host, wbc, META);
328         return 0;
329 }
330 
331 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
332                                 long nr_to_write, enum iostat_type io_type)
333 {
334         struct address_space *mapping = META_MAPPING(sbi);
335         pgoff_t index = 0, prev = ULONG_MAX;
336         struct pagevec pvec;
337         long nwritten = 0;
338         int nr_pages;
339         struct writeback_control wbc = {
340                 .for_reclaim = 0,
341         };
342         struct blk_plug plug;
343 
344         pagevec_init(&pvec);
345 
346         blk_start_plug(&plug);
347 
348         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
349                                 PAGECACHE_TAG_DIRTY))) {
350                 int i;
351 
352                 for (i = 0; i < nr_pages; i++) {
353                         struct page *page = pvec.pages[i];
354 
355                         if (prev == ULONG_MAX)
356                                 prev = page->index - 1;
357                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
358                                 pagevec_release(&pvec);
359                                 goto stop;
360                         }
361 
362                         lock_page(page);
363 
364                         if (unlikely(page->mapping != mapping)) {
365 continue_unlock:
366                                 unlock_page(page);
367                                 continue;
368                         }
369                         if (!PageDirty(page)) {
370                                 /* someone wrote it for us */
371                                 goto continue_unlock;
372                         }
373 
374                         f2fs_wait_on_page_writeback(page, META, true, true);
375 
376                         if (!clear_page_dirty_for_io(page))
377                                 goto continue_unlock;
378 
379                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
380                                 unlock_page(page);
381                                 break;
382                         }
383                         nwritten++;
384                         prev = page->index;
385                         if (unlikely(nwritten >= nr_to_write))
386                                 break;
387                 }
388                 pagevec_release(&pvec);
389                 cond_resched();
390         }
391 stop:
392         if (nwritten)
393                 f2fs_submit_merged_write(sbi, type);
394 
395         blk_finish_plug(&plug);
396 
397         return nwritten;
398 }
399 
400 static int f2fs_set_meta_page_dirty(struct page *page)
401 {
402         trace_f2fs_set_page_dirty(page, META);
403 
404         if (!PageUptodate(page))
405                 SetPageUptodate(page);
406         if (!PageDirty(page)) {
407                 __set_page_dirty_nobuffers(page);
408                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
409                 f2fs_set_page_private(page, 0);
410                 f2fs_trace_pid(page);
411                 return 1;
412         }
413         return 0;
414 }
415 
416 const struct address_space_operations f2fs_meta_aops = {
417         .writepage      = f2fs_write_meta_page,
418         .writepages     = f2fs_write_meta_pages,
419         .set_page_dirty = f2fs_set_meta_page_dirty,
420         .invalidatepage = f2fs_invalidate_page,
421         .releasepage    = f2fs_release_page,
422 #ifdef CONFIG_MIGRATION
423         .migratepage    = f2fs_migrate_page,
424 #endif
425 };
426 
427 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
428                                                 unsigned int devidx, int type)
429 {
430         struct inode_management *im = &sbi->im[type];
431         struct ino_entry *e, *tmp;
432 
433         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
434 
435         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
436 
437         spin_lock(&im->ino_lock);
438         e = radix_tree_lookup(&im->ino_root, ino);
439         if (!e) {
440                 e = tmp;
441                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
442                         f2fs_bug_on(sbi, 1);
443 
444                 memset(e, 0, sizeof(struct ino_entry));
445                 e->ino = ino;
446 
447                 list_add_tail(&e->list, &im->ino_list);
448                 if (type != ORPHAN_INO)
449                         im->ino_num++;
450         }
451 
452         if (type == FLUSH_INO)
453                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
454 
455         spin_unlock(&im->ino_lock);
456         radix_tree_preload_end();
457 
458         if (e != tmp)
459                 kmem_cache_free(ino_entry_slab, tmp);
460 }
461 
462 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
463 {
464         struct inode_management *im = &sbi->im[type];
465         struct ino_entry *e;
466 
467         spin_lock(&im->ino_lock);
468         e = radix_tree_lookup(&im->ino_root, ino);
469         if (e) {
470                 list_del(&e->list);
471                 radix_tree_delete(&im->ino_root, ino);
472                 im->ino_num--;
473                 spin_unlock(&im->ino_lock);
474                 kmem_cache_free(ino_entry_slab, e);
475                 return;
476         }
477         spin_unlock(&im->ino_lock);
478 }
479 
480 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
481 {
482         /* add new dirty ino entry into list */
483         __add_ino_entry(sbi, ino, 0, type);
484 }
485 
486 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
487 {
488         /* remove dirty ino entry from list */
489         __remove_ino_entry(sbi, ino, type);
490 }
491 
492 /* mode should be APPEND_INO or UPDATE_INO */
493 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
494 {
495         struct inode_management *im = &sbi->im[mode];
496         struct ino_entry *e;
497 
498         spin_lock(&im->ino_lock);
499         e = radix_tree_lookup(&im->ino_root, ino);
500         spin_unlock(&im->ino_lock);
501         return e ? true : false;
502 }
503 
504 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
505 {
506         struct ino_entry *e, *tmp;
507         int i;
508 
509         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
510                 struct inode_management *im = &sbi->im[i];
511 
512                 spin_lock(&im->ino_lock);
513                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
514                         list_del(&e->list);
515                         radix_tree_delete(&im->ino_root, e->ino);
516                         kmem_cache_free(ino_entry_slab, e);
517                         im->ino_num--;
518                 }
519                 spin_unlock(&im->ino_lock);
520         }
521 }
522 
523 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
524                                         unsigned int devidx, int type)
525 {
526         __add_ino_entry(sbi, ino, devidx, type);
527 }
528 
529 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
530                                         unsigned int devidx, int type)
531 {
532         struct inode_management *im = &sbi->im[type];
533         struct ino_entry *e;
534         bool is_dirty = false;
535 
536         spin_lock(&im->ino_lock);
537         e = radix_tree_lookup(&im->ino_root, ino);
538         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
539                 is_dirty = true;
540         spin_unlock(&im->ino_lock);
541         return is_dirty;
542 }
543 
544 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
545 {
546         struct inode_management *im = &sbi->im[ORPHAN_INO];
547         int err = 0;
548 
549         spin_lock(&im->ino_lock);
550 
551         if (time_to_inject(sbi, FAULT_ORPHAN)) {
552                 spin_unlock(&im->ino_lock);
553                 f2fs_show_injection_info(FAULT_ORPHAN);
554                 return -ENOSPC;
555         }
556 
557         if (unlikely(im->ino_num >= sbi->max_orphans))
558                 err = -ENOSPC;
559         else
560                 im->ino_num++;
561         spin_unlock(&im->ino_lock);
562 
563         return err;
564 }
565 
566 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
567 {
568         struct inode_management *im = &sbi->im[ORPHAN_INO];
569 
570         spin_lock(&im->ino_lock);
571         f2fs_bug_on(sbi, im->ino_num == 0);
572         im->ino_num--;
573         spin_unlock(&im->ino_lock);
574 }
575 
576 void f2fs_add_orphan_inode(struct inode *inode)
577 {
578         /* add new orphan ino entry into list */
579         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
580         f2fs_update_inode_page(inode);
581 }
582 
583 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
584 {
585         /* remove orphan entry from orphan list */
586         __remove_ino_entry(sbi, ino, ORPHAN_INO);
587 }
588 
589 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
590 {
591         struct inode *inode;
592         struct node_info ni;
593         int err;
594 
595         inode = f2fs_iget_retry(sbi->sb, ino);
596         if (IS_ERR(inode)) {
597                 /*
598                  * there should be a bug that we can't find the entry
599                  * to orphan inode.
600                  */
601                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
602                 return PTR_ERR(inode);
603         }
604 
605         err = dquot_initialize(inode);
606         if (err) {
607                 iput(inode);
608                 goto err_out;
609         }
610 
611         clear_nlink(inode);
612 
613         /* truncate all the data during iput */
614         iput(inode);
615 
616         err = f2fs_get_node_info(sbi, ino, &ni);
617         if (err)
618                 goto err_out;
619 
620         /* ENOMEM was fully retried in f2fs_evict_inode. */
621         if (ni.blk_addr != NULL_ADDR) {
622                 err = -EIO;
623                 goto err_out;
624         }
625         return 0;
626 
627 err_out:
628         set_sbi_flag(sbi, SBI_NEED_FSCK);
629         f2fs_msg(sbi->sb, KERN_WARNING,
630                         "%s: orphan failed (ino=%x), run fsck to fix.",
631                         __func__, ino);
632         return err;
633 }
634 
635 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
636 {
637         block_t start_blk, orphan_blocks, i, j;
638         unsigned int s_flags = sbi->sb->s_flags;
639         int err = 0;
640 #ifdef CONFIG_QUOTA
641         int quota_enabled;
642 #endif
643 
644         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
645                 return 0;
646 
647         if (s_flags & SB_RDONLY) {
648                 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
649                 sbi->sb->s_flags &= ~SB_RDONLY;
650         }
651 
652 #ifdef CONFIG_QUOTA
653         /* Needed for iput() to work correctly and not trash data */
654         sbi->sb->s_flags |= SB_ACTIVE;
655 
656         /*
657          * Turn on quotas which were not enabled for read-only mounts if
658          * filesystem has quota feature, so that they are updated correctly.
659          */
660         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
661 #endif
662 
663         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
664         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
665 
666         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
667 
668         for (i = 0; i < orphan_blocks; i++) {
669                 struct page *page;
670                 struct f2fs_orphan_block *orphan_blk;
671 
672                 page = f2fs_get_meta_page(sbi, start_blk + i);
673                 if (IS_ERR(page)) {
674                         err = PTR_ERR(page);
675                         goto out;
676                 }
677 
678                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
679                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
680                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
681                         err = recover_orphan_inode(sbi, ino);
682                         if (err) {
683                                 f2fs_put_page(page, 1);
684                                 goto out;
685                         }
686                 }
687                 f2fs_put_page(page, 1);
688         }
689         /* clear Orphan Flag */
690         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
691 out:
692         set_sbi_flag(sbi, SBI_IS_RECOVERED);
693 
694 #ifdef CONFIG_QUOTA
695         /* Turn quotas off */
696         if (quota_enabled)
697                 f2fs_quota_off_umount(sbi->sb);
698 #endif
699         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
700 
701         return err;
702 }
703 
704 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
705 {
706         struct list_head *head;
707         struct f2fs_orphan_block *orphan_blk = NULL;
708         unsigned int nentries = 0;
709         unsigned short index = 1;
710         unsigned short orphan_blocks;
711         struct page *page = NULL;
712         struct ino_entry *orphan = NULL;
713         struct inode_management *im = &sbi->im[ORPHAN_INO];
714 
715         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
716 
717         /*
718          * we don't need to do spin_lock(&im->ino_lock) here, since all the
719          * orphan inode operations are covered under f2fs_lock_op().
720          * And, spin_lock should be avoided due to page operations below.
721          */
722         head = &im->ino_list;
723 
724         /* loop for each orphan inode entry and write them in Jornal block */
725         list_for_each_entry(orphan, head, list) {
726                 if (!page) {
727                         page = f2fs_grab_meta_page(sbi, start_blk++);
728                         orphan_blk =
729                                 (struct f2fs_orphan_block *)page_address(page);
730                         memset(orphan_blk, 0, sizeof(*orphan_blk));
731                 }
732 
733                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
734 
735                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
736                         /*
737                          * an orphan block is full of 1020 entries,
738                          * then we need to flush current orphan blocks
739                          * and bring another one in memory
740                          */
741                         orphan_blk->blk_addr = cpu_to_le16(index);
742                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
743                         orphan_blk->entry_count = cpu_to_le32(nentries);
744                         set_page_dirty(page);
745                         f2fs_put_page(page, 1);
746                         index++;
747                         nentries = 0;
748                         page = NULL;
749                 }
750         }
751 
752         if (page) {
753                 orphan_blk->blk_addr = cpu_to_le16(index);
754                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
755                 orphan_blk->entry_count = cpu_to_le32(nentries);
756                 set_page_dirty(page);
757                 f2fs_put_page(page, 1);
758         }
759 }
760 
761 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
762                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
763                 unsigned long long *version)
764 {
765         unsigned long blk_size = sbi->blocksize;
766         size_t crc_offset = 0;
767         __u32 crc = 0;
768 
769         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
770         if (IS_ERR(*cp_page))
771                 return PTR_ERR(*cp_page);
772 
773         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
774 
775         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
776         if (crc_offset > (blk_size - sizeof(__le32))) {
777                 f2fs_put_page(*cp_page, 1);
778                 f2fs_msg(sbi->sb, KERN_WARNING,
779                         "invalid crc_offset: %zu", crc_offset);
780                 return -EINVAL;
781         }
782 
783         crc = cur_cp_crc(*cp_block);
784         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
785                 f2fs_put_page(*cp_page, 1);
786                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
787                 return -EINVAL;
788         }
789 
790         *version = cur_cp_version(*cp_block);
791         return 0;
792 }
793 
794 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
795                                 block_t cp_addr, unsigned long long *version)
796 {
797         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
798         struct f2fs_checkpoint *cp_block = NULL;
799         unsigned long long cur_version = 0, pre_version = 0;
800         int err;
801 
802         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
803                                         &cp_page_1, version);
804         if (err)
805                 return NULL;
806 
807         if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
808                                         sbi->blocks_per_seg) {
809                 f2fs_msg(sbi->sb, KERN_WARNING,
810                         "invalid cp_pack_total_block_count:%u",
811                         le32_to_cpu(cp_block->cp_pack_total_block_count));
812                 goto invalid_cp;
813         }
814         pre_version = *version;
815 
816         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
817         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
818                                         &cp_page_2, version);
819         if (err)
820                 goto invalid_cp;
821         cur_version = *version;
822 
823         if (cur_version == pre_version) {
824                 *version = cur_version;
825                 f2fs_put_page(cp_page_2, 1);
826                 return cp_page_1;
827         }
828         f2fs_put_page(cp_page_2, 1);
829 invalid_cp:
830         f2fs_put_page(cp_page_1, 1);
831         return NULL;
832 }
833 
834 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
835 {
836         struct f2fs_checkpoint *cp_block;
837         struct f2fs_super_block *fsb = sbi->raw_super;
838         struct page *cp1, *cp2, *cur_page;
839         unsigned long blk_size = sbi->blocksize;
840         unsigned long long cp1_version = 0, cp2_version = 0;
841         unsigned long long cp_start_blk_no;
842         unsigned int cp_blks = 1 + __cp_payload(sbi);
843         block_t cp_blk_no;
844         int i;
845 
846         sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
847                                  GFP_KERNEL);
848         if (!sbi->ckpt)
849                 return -ENOMEM;
850         /*
851          * Finding out valid cp block involves read both
852          * sets( cp pack1 and cp pack 2)
853          */
854         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
855         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
856 
857         /* The second checkpoint pack should start at the next segment */
858         cp_start_blk_no += ((unsigned long long)1) <<
859                                 le32_to_cpu(fsb->log_blocks_per_seg);
860         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
861 
862         if (cp1 && cp2) {
863                 if (ver_after(cp2_version, cp1_version))
864                         cur_page = cp2;
865                 else
866                         cur_page = cp1;
867         } else if (cp1) {
868                 cur_page = cp1;
869         } else if (cp2) {
870                 cur_page = cp2;
871         } else {
872                 goto fail_no_cp;
873         }
874 
875         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
876         memcpy(sbi->ckpt, cp_block, blk_size);
877 
878         if (cur_page == cp1)
879                 sbi->cur_cp_pack = 1;
880         else
881                 sbi->cur_cp_pack = 2;
882 
883         /* Sanity checking of checkpoint */
884         if (f2fs_sanity_check_ckpt(sbi))
885                 goto free_fail_no_cp;
886 
887         if (cp_blks <= 1)
888                 goto done;
889 
890         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
891         if (cur_page == cp2)
892                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
893 
894         for (i = 1; i < cp_blks; i++) {
895                 void *sit_bitmap_ptr;
896                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
897 
898                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
899                 if (IS_ERR(cur_page))
900                         goto free_fail_no_cp;
901                 sit_bitmap_ptr = page_address(cur_page);
902                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
903                 f2fs_put_page(cur_page, 1);
904         }
905 done:
906         f2fs_put_page(cp1, 1);
907         f2fs_put_page(cp2, 1);
908         return 0;
909 
910 free_fail_no_cp:
911         f2fs_put_page(cp1, 1);
912         f2fs_put_page(cp2, 1);
913 fail_no_cp:
914         kvfree(sbi->ckpt);
915         return -EINVAL;
916 }
917 
918 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
919 {
920         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
921         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
922 
923         if (is_inode_flag_set(inode, flag))
924                 return;
925 
926         set_inode_flag(inode, flag);
927         if (!f2fs_is_volatile_file(inode))
928                 list_add_tail(&F2FS_I(inode)->dirty_list,
929                                                 &sbi->inode_list[type]);
930         stat_inc_dirty_inode(sbi, type);
931 }
932 
933 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
934 {
935         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
936 
937         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
938                 return;
939 
940         list_del_init(&F2FS_I(inode)->dirty_list);
941         clear_inode_flag(inode, flag);
942         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
943 }
944 
945 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
946 {
947         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
948         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
949 
950         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
951                         !S_ISLNK(inode->i_mode))
952                 return;
953 
954         spin_lock(&sbi->inode_lock[type]);
955         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
956                 __add_dirty_inode(inode, type);
957         inode_inc_dirty_pages(inode);
958         spin_unlock(&sbi->inode_lock[type]);
959 
960         f2fs_set_page_private(page, 0);
961         f2fs_trace_pid(page);
962 }
963 
964 void f2fs_remove_dirty_inode(struct inode *inode)
965 {
966         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
967         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
968 
969         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
970                         !S_ISLNK(inode->i_mode))
971                 return;
972 
973         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
974                 return;
975 
976         spin_lock(&sbi->inode_lock[type]);
977         __remove_dirty_inode(inode, type);
978         spin_unlock(&sbi->inode_lock[type]);
979 }
980 
981 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
982 {
983         struct list_head *head;
984         struct inode *inode;
985         struct f2fs_inode_info *fi;
986         bool is_dir = (type == DIR_INODE);
987         unsigned long ino = 0;
988 
989         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
990                                 get_pages(sbi, is_dir ?
991                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
992 retry:
993         if (unlikely(f2fs_cp_error(sbi)))
994                 return -EIO;
995 
996         spin_lock(&sbi->inode_lock[type]);
997 
998         head = &sbi->inode_list[type];
999         if (list_empty(head)) {
1000                 spin_unlock(&sbi->inode_lock[type]);
1001                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1002                                 get_pages(sbi, is_dir ?
1003                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1004                 return 0;
1005         }
1006         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1007         inode = igrab(&fi->vfs_inode);
1008         spin_unlock(&sbi->inode_lock[type]);
1009         if (inode) {
1010                 unsigned long cur_ino = inode->i_ino;
1011 
1012                 if (is_dir)
1013                         F2FS_I(inode)->cp_task = current;
1014 
1015                 filemap_fdatawrite(inode->i_mapping);
1016 
1017                 if (is_dir)
1018                         F2FS_I(inode)->cp_task = NULL;
1019 
1020                 iput(inode);
1021                 /* We need to give cpu to another writers. */
1022                 if (ino == cur_ino)
1023                         cond_resched();
1024                 else
1025                         ino = cur_ino;
1026         } else {
1027                 /*
1028                  * We should submit bio, since it exists several
1029                  * wribacking dentry pages in the freeing inode.
1030                  */
1031                 f2fs_submit_merged_write(sbi, DATA);
1032                 cond_resched();
1033         }
1034         goto retry;
1035 }
1036 
1037 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1038 {
1039         struct list_head *head = &sbi->inode_list[DIRTY_META];
1040         struct inode *inode;
1041         struct f2fs_inode_info *fi;
1042         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1043 
1044         while (total--) {
1045                 if (unlikely(f2fs_cp_error(sbi)))
1046                         return -EIO;
1047 
1048                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1049                 if (list_empty(head)) {
1050                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1051                         return 0;
1052                 }
1053                 fi = list_first_entry(head, struct f2fs_inode_info,
1054                                                         gdirty_list);
1055                 inode = igrab(&fi->vfs_inode);
1056                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1057                 if (inode) {
1058                         sync_inode_metadata(inode, 0);
1059 
1060                         /* it's on eviction */
1061                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1062                                 f2fs_update_inode_page(inode);
1063                         iput(inode);
1064                 }
1065         }
1066         return 0;
1067 }
1068 
1069 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1070 {
1071         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1072         struct f2fs_nm_info *nm_i = NM_I(sbi);
1073         nid_t last_nid = nm_i->next_scan_nid;
1074 
1075         next_free_nid(sbi, &last_nid);
1076         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1077         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1078         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1079         ckpt->next_free_nid = cpu_to_le32(last_nid);
1080 }
1081 
1082 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1083 {
1084         if (!is_journalled_quota(sbi))
1085                 return false;
1086         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1087                 return false;
1088         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1089                 return false;
1090         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH))
1091                 return true;
1092         if (get_pages(sbi, F2FS_DIRTY_QDATA))
1093                 return true;
1094         return false;
1095 }
1096 
1097 /*
1098  * Freeze all the FS-operations for checkpoint.
1099  */
1100 static int block_operations(struct f2fs_sb_info *sbi)
1101 {
1102         struct writeback_control wbc = {
1103                 .sync_mode = WB_SYNC_ALL,
1104                 .nr_to_write = LONG_MAX,
1105                 .for_reclaim = 0,
1106         };
1107         struct blk_plug plug;
1108         int err = 0, cnt = 0;
1109 
1110         blk_start_plug(&plug);
1111 
1112 retry_flush_quotas:
1113         if (__need_flush_quota(sbi)) {
1114                 int locked;
1115 
1116                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1117                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1118                         f2fs_lock_all(sbi);
1119                         goto retry_flush_dents;
1120                 }
1121                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1122 
1123                 /* only failed during mount/umount/freeze/quotactl */
1124                 locked = down_read_trylock(&sbi->sb->s_umount);
1125                 f2fs_quota_sync(sbi->sb, -1);
1126                 if (locked)
1127                         up_read(&sbi->sb->s_umount);
1128         }
1129 
1130         f2fs_lock_all(sbi);
1131         if (__need_flush_quota(sbi)) {
1132                 f2fs_unlock_all(sbi);
1133                 cond_resched();
1134                 goto retry_flush_quotas;
1135         }
1136 
1137 retry_flush_dents:
1138         /* write all the dirty dentry pages */
1139         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1140                 f2fs_unlock_all(sbi);
1141                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1142                 if (err)
1143                         goto out;
1144                 cond_resched();
1145                 goto retry_flush_quotas;
1146         }
1147 
1148         /*
1149          * POR: we should ensure that there are no dirty node pages
1150          * until finishing nat/sit flush. inode->i_blocks can be updated.
1151          */
1152         down_write(&sbi->node_change);
1153 
1154         if (__need_flush_quota(sbi)) {
1155                 up_write(&sbi->node_change);
1156                 f2fs_unlock_all(sbi);
1157                 goto retry_flush_quotas;
1158         }
1159 
1160         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1161                 up_write(&sbi->node_change);
1162                 f2fs_unlock_all(sbi);
1163                 err = f2fs_sync_inode_meta(sbi);
1164                 if (err)
1165                         goto out;
1166                 cond_resched();
1167                 goto retry_flush_quotas;
1168         }
1169 
1170 retry_flush_nodes:
1171         down_write(&sbi->node_write);
1172 
1173         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1174                 up_write(&sbi->node_write);
1175                 atomic_inc(&sbi->wb_sync_req[NODE]);
1176                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1177                 atomic_dec(&sbi->wb_sync_req[NODE]);
1178                 if (err) {
1179                         up_write(&sbi->node_change);
1180                         f2fs_unlock_all(sbi);
1181                         goto out;
1182                 }
1183                 cond_resched();
1184                 goto retry_flush_nodes;
1185         }
1186 
1187         /*
1188          * sbi->node_change is used only for AIO write_begin path which produces
1189          * dirty node blocks and some checkpoint values by block allocation.
1190          */
1191         __prepare_cp_block(sbi);
1192         up_write(&sbi->node_change);
1193 out:
1194         blk_finish_plug(&plug);
1195         return err;
1196 }
1197 
1198 static void unblock_operations(struct f2fs_sb_info *sbi)
1199 {
1200         up_write(&sbi->node_write);
1201         f2fs_unlock_all(sbi);
1202 }
1203 
1204 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1205 {
1206         DEFINE_WAIT(wait);
1207 
1208         for (;;) {
1209                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1210 
1211                 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1212                         break;
1213 
1214                 if (unlikely(f2fs_cp_error(sbi)))
1215                         break;
1216 
1217                 io_schedule_timeout(5*HZ);
1218         }
1219         finish_wait(&sbi->cp_wait, &wait);
1220 }
1221 
1222 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1223 {
1224         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1225         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1226         unsigned long flags;
1227 
1228         spin_lock_irqsave(&sbi->cp_lock, flags);
1229 
1230         if ((cpc->reason & CP_UMOUNT) &&
1231                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1232                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1233                 disable_nat_bits(sbi, false);
1234 
1235         if (cpc->reason & CP_TRIMMED)
1236                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1237         else
1238                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1239 
1240         if (cpc->reason & CP_UMOUNT)
1241                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1242         else
1243                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1244 
1245         if (cpc->reason & CP_FASTBOOT)
1246                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1247         else
1248                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1249 
1250         if (orphan_num)
1251                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1252         else
1253                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1254 
1255         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1256                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1257 
1258         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1259                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1260         else
1261                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1262 
1263         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1264                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1265         else
1266                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1267 
1268         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1269                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1270 
1271         /* set this flag to activate crc|cp_ver for recovery */
1272         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1273         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1274 
1275         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1276 }
1277 
1278 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1279         void *src, block_t blk_addr)
1280 {
1281         struct writeback_control wbc = {
1282                 .for_reclaim = 0,
1283         };
1284 
1285         /*
1286          * pagevec_lookup_tag and lock_page again will take
1287          * some extra time. Therefore, f2fs_update_meta_pages and
1288          * f2fs_sync_meta_pages are combined in this function.
1289          */
1290         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1291         int err;
1292 
1293         f2fs_wait_on_page_writeback(page, META, true, true);
1294 
1295         memcpy(page_address(page), src, PAGE_SIZE);
1296 
1297         set_page_dirty(page);
1298         if (unlikely(!clear_page_dirty_for_io(page)))
1299                 f2fs_bug_on(sbi, 1);
1300 
1301         /* writeout cp pack 2 page */
1302         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1303         if (unlikely(err && f2fs_cp_error(sbi))) {
1304                 f2fs_put_page(page, 1);
1305                 return;
1306         }
1307 
1308         f2fs_bug_on(sbi, err);
1309         f2fs_put_page(page, 0);
1310 
1311         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1312         f2fs_submit_merged_write(sbi, META_FLUSH);
1313 }
1314 
1315 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1316 {
1317         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1318         struct f2fs_nm_info *nm_i = NM_I(sbi);
1319         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1320         block_t start_blk;
1321         unsigned int data_sum_blocks, orphan_blocks;
1322         __u32 crc32 = 0;
1323         int i;
1324         int cp_payload_blks = __cp_payload(sbi);
1325         struct super_block *sb = sbi->sb;
1326         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1327         u64 kbytes_written;
1328         int err;
1329 
1330         /* Flush all the NAT/SIT pages */
1331         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1332         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) &&
1333                                         !f2fs_cp_error(sbi));
1334 
1335         /*
1336          * modify checkpoint
1337          * version number is already updated
1338          */
1339         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1340         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1341         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1342                 ckpt->cur_node_segno[i] =
1343                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1344                 ckpt->cur_node_blkoff[i] =
1345                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1346                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1347                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1348         }
1349         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1350                 ckpt->cur_data_segno[i] =
1351                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1352                 ckpt->cur_data_blkoff[i] =
1353                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1354                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1355                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1356         }
1357 
1358         /* 2 cp  + n data seg summary + orphan inode blocks */
1359         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1360         spin_lock_irqsave(&sbi->cp_lock, flags);
1361         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1362                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1363         else
1364                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1365         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1366 
1367         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1368         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1369                         orphan_blocks);
1370 
1371         if (__remain_node_summaries(cpc->reason))
1372                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1373                                 cp_payload_blks + data_sum_blocks +
1374                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1375         else
1376                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1377                                 cp_payload_blks + data_sum_blocks +
1378                                 orphan_blocks);
1379 
1380         /* update ckpt flag for checkpoint */
1381         update_ckpt_flags(sbi, cpc);
1382 
1383         /* update SIT/NAT bitmap */
1384         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1385         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1386 
1387         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1388         *((__le32 *)((unsigned char *)ckpt +
1389                                 le32_to_cpu(ckpt->checksum_offset)))
1390                                 = cpu_to_le32(crc32);
1391 
1392         start_blk = __start_cp_next_addr(sbi);
1393 
1394         /* write nat bits */
1395         if (enabled_nat_bits(sbi, cpc)) {
1396                 __u64 cp_ver = cur_cp_version(ckpt);
1397                 block_t blk;
1398 
1399                 cp_ver |= ((__u64)crc32 << 32);
1400                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1401 
1402                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1403                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1404                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1405                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1406         }
1407 
1408         /* write out checkpoint buffer at block 0 */
1409         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1410 
1411         for (i = 1; i < 1 + cp_payload_blks; i++)
1412                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1413                                                         start_blk++);
1414 
1415         if (orphan_num) {
1416                 write_orphan_inodes(sbi, start_blk);
1417                 start_blk += orphan_blocks;
1418         }
1419 
1420         f2fs_write_data_summaries(sbi, start_blk);
1421         start_blk += data_sum_blocks;
1422 
1423         /* Record write statistics in the hot node summary */
1424         kbytes_written = sbi->kbytes_written;
1425         if (sb->s_bdev->bd_part)
1426                 kbytes_written += BD_PART_WRITTEN(sbi);
1427 
1428         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1429 
1430         if (__remain_node_summaries(cpc->reason)) {
1431                 f2fs_write_node_summaries(sbi, start_blk);
1432                 start_blk += NR_CURSEG_NODE_TYPE;
1433         }
1434 
1435         /* update user_block_counts */
1436         sbi->last_valid_block_count = sbi->total_valid_block_count;
1437         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1438 
1439         /* Here, we have one bio having CP pack except cp pack 2 page */
1440         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1441         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) &&
1442                                         !f2fs_cp_error(sbi));
1443 
1444         /* wait for previous submitted meta pages writeback */
1445         f2fs_wait_on_all_pages_writeback(sbi);
1446 
1447         /* flush all device cache */
1448         err = f2fs_flush_device_cache(sbi);
1449         if (err)
1450                 return err;
1451 
1452         /* barrier and flush checkpoint cp pack 2 page if it can */
1453         commit_checkpoint(sbi, ckpt, start_blk);
1454         f2fs_wait_on_all_pages_writeback(sbi);
1455 
1456         /*
1457          * invalidate intermediate page cache borrowed from meta inode
1458          * which are used for migration of encrypted inode's blocks.
1459          */
1460         if (f2fs_sb_has_encrypt(sbi))
1461                 invalidate_mapping_pages(META_MAPPING(sbi),
1462                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1463 
1464         f2fs_release_ino_entry(sbi, false);
1465 
1466         f2fs_reset_fsync_node_info(sbi);
1467 
1468         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1469         clear_sbi_flag(sbi, SBI_NEED_CP);
1470         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1471         sbi->unusable_block_count = 0;
1472         __set_cp_next_pack(sbi);
1473 
1474         /*
1475          * redirty superblock if metadata like node page or inode cache is
1476          * updated during writing checkpoint.
1477          */
1478         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1479                         get_pages(sbi, F2FS_DIRTY_IMETA))
1480                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1481 
1482         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1483 
1484         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1485 }
1486 
1487 /*
1488  * We guarantee that this checkpoint procedure will not fail.
1489  */
1490 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1491 {
1492         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1493         unsigned long long ckpt_ver;
1494         int err = 0;
1495 
1496         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1497                 if (cpc->reason != CP_PAUSE)
1498                         return 0;
1499                 f2fs_msg(sbi->sb, KERN_WARNING,
1500                                 "Start checkpoint disabled!");
1501         }
1502         mutex_lock(&sbi->cp_mutex);
1503 
1504         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1505                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1506                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1507                 goto out;
1508         if (unlikely(f2fs_cp_error(sbi))) {
1509                 err = -EIO;
1510                 goto out;
1511         }
1512         if (f2fs_readonly(sbi->sb)) {
1513                 err = -EROFS;
1514                 goto out;
1515         }
1516 
1517         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1518 
1519         err = block_operations(sbi);
1520         if (err)
1521                 goto out;
1522 
1523         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1524 
1525         f2fs_flush_merged_writes(sbi);
1526 
1527         /* this is the case of multiple fstrims without any changes */
1528         if (cpc->reason & CP_DISCARD) {
1529                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1530                         unblock_operations(sbi);
1531                         goto out;
1532                 }
1533 
1534                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1535                                 SIT_I(sbi)->dirty_sentries == 0 &&
1536                                 prefree_segments(sbi) == 0) {
1537                         f2fs_flush_sit_entries(sbi, cpc);
1538                         f2fs_clear_prefree_segments(sbi, cpc);
1539                         unblock_operations(sbi);
1540                         goto out;
1541                 }
1542         }
1543 
1544         /*
1545          * update checkpoint pack index
1546          * Increase the version number so that
1547          * SIT entries and seg summaries are written at correct place
1548          */
1549         ckpt_ver = cur_cp_version(ckpt);
1550         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1551 
1552         /* write cached NAT/SIT entries to NAT/SIT area */
1553         err = f2fs_flush_nat_entries(sbi, cpc);
1554         if (err)
1555                 goto stop;
1556 
1557         f2fs_flush_sit_entries(sbi, cpc);
1558 
1559         /* unlock all the fs_lock[] in do_checkpoint() */
1560         err = do_checkpoint(sbi, cpc);
1561         if (err)
1562                 f2fs_release_discard_addrs(sbi);
1563         else
1564                 f2fs_clear_prefree_segments(sbi, cpc);
1565 stop:
1566         unblock_operations(sbi);
1567         stat_inc_cp_count(sbi->stat_info);
1568 
1569         if (cpc->reason & CP_RECOVERY)
1570                 f2fs_msg(sbi->sb, KERN_NOTICE,
1571                         "checkpoint: version = %llx", ckpt_ver);
1572 
1573         /* do checkpoint periodically */
1574         f2fs_update_time(sbi, CP_TIME);
1575         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1576 out:
1577         mutex_unlock(&sbi->cp_mutex);
1578         return err;
1579 }
1580 
1581 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1582 {
1583         int i;
1584 
1585         for (i = 0; i < MAX_INO_ENTRY; i++) {
1586                 struct inode_management *im = &sbi->im[i];
1587 
1588                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1589                 spin_lock_init(&im->ino_lock);
1590                 INIT_LIST_HEAD(&im->ino_list);
1591                 im->ino_num = 0;
1592         }
1593 
1594         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1595                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1596                                 F2FS_ORPHANS_PER_BLOCK;
1597 }
1598 
1599 int __init f2fs_create_checkpoint_caches(void)
1600 {
1601         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1602                         sizeof(struct ino_entry));
1603         if (!ino_entry_slab)
1604                 return -ENOMEM;
1605         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1606                         sizeof(struct inode_entry));
1607         if (!f2fs_inode_entry_slab) {
1608                 kmem_cache_destroy(ino_entry_slab);
1609                 return -ENOMEM;
1610         }
1611         return 0;
1612 }
1613 
1614 void f2fs_destroy_checkpoint_caches(void)
1615 {
1616         kmem_cache_destroy(ino_entry_slab);
1617         kmem_cache_destroy(f2fs_inode_entry_slab);
1618 }
1619 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp