~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/data.c

Version: ~ [ linux-5.15-rc5 ] ~ [ linux-5.14.11 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.72 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.152 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.210 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.250 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.286 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.288 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * fs/f2fs/data.c
  3  *
  4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5  *             http://www.samsung.com/
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  */
 11 #include <linux/fs.h>
 12 #include <linux/f2fs_fs.h>
 13 #include <linux/buffer_head.h>
 14 #include <linux/mpage.h>
 15 #include <linux/aio.h>
 16 #include <linux/writeback.h>
 17 #include <linux/backing-dev.h>
 18 #include <linux/blkdev.h>
 19 #include <linux/bio.h>
 20 #include <linux/prefetch.h>
 21 
 22 #include "f2fs.h"
 23 #include "node.h"
 24 #include "segment.h"
 25 #include <trace/events/f2fs.h>
 26 
 27 static void f2fs_read_end_io(struct bio *bio, int err)
 28 {
 29         struct bio_vec *bvec;
 30         int i;
 31 
 32         bio_for_each_segment_all(bvec, bio, i) {
 33                 struct page *page = bvec->bv_page;
 34 
 35                 if (!err) {
 36                         SetPageUptodate(page);
 37                 } else {
 38                         ClearPageUptodate(page);
 39                         SetPageError(page);
 40                 }
 41                 unlock_page(page);
 42         }
 43         bio_put(bio);
 44 }
 45 
 46 static void f2fs_write_end_io(struct bio *bio, int err)
 47 {
 48         struct f2fs_sb_info *sbi = bio->bi_private;
 49         struct bio_vec *bvec;
 50         int i;
 51 
 52         bio_for_each_segment_all(bvec, bio, i) {
 53                 struct page *page = bvec->bv_page;
 54 
 55                 if (unlikely(err)) {
 56                         set_page_dirty(page);
 57                         set_bit(AS_EIO, &page->mapping->flags);
 58                         f2fs_stop_checkpoint(sbi);
 59                 }
 60                 end_page_writeback(page);
 61                 dec_page_count(sbi, F2FS_WRITEBACK);
 62         }
 63 
 64         if (sbi->wait_io) {
 65                 complete(sbi->wait_io);
 66                 sbi->wait_io = NULL;
 67         }
 68 
 69         if (!get_pages(sbi, F2FS_WRITEBACK) &&
 70                         !list_empty(&sbi->cp_wait.task_list))
 71                 wake_up(&sbi->cp_wait);
 72 
 73         bio_put(bio);
 74 }
 75 
 76 /*
 77  * Low-level block read/write IO operations.
 78  */
 79 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
 80                                 int npages, bool is_read)
 81 {
 82         struct bio *bio;
 83 
 84         /* No failure on bio allocation */
 85         bio = bio_alloc(GFP_NOIO, npages);
 86 
 87         bio->bi_bdev = sbi->sb->s_bdev;
 88         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
 89         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
 90         bio->bi_private = sbi;
 91 
 92         return bio;
 93 }
 94 
 95 static void __submit_merged_bio(struct f2fs_bio_info *io)
 96 {
 97         struct f2fs_io_info *fio = &io->fio;
 98         int rw;
 99 
100         if (!io->bio)
101                 return;
102 
103         rw = fio->rw;
104 
105         if (is_read_io(rw)) {
106                 trace_f2fs_submit_read_bio(io->sbi->sb, rw,
107                                                 fio->type, io->bio);
108                 submit_bio(rw, io->bio);
109         } else {
110                 trace_f2fs_submit_write_bio(io->sbi->sb, rw,
111                                                 fio->type, io->bio);
112                 /*
113                  * META_FLUSH is only from the checkpoint procedure, and we
114                  * should wait this metadata bio for FS consistency.
115                  */
116                 if (fio->type == META_FLUSH) {
117                         DECLARE_COMPLETION_ONSTACK(wait);
118                         io->sbi->wait_io = &wait;
119                         submit_bio(rw, io->bio);
120                         wait_for_completion(&wait);
121                 } else {
122                         submit_bio(rw, io->bio);
123                 }
124         }
125 
126         io->bio = NULL;
127 }
128 
129 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
130                                 enum page_type type, int rw)
131 {
132         enum page_type btype = PAGE_TYPE_OF_BIO(type);
133         struct f2fs_bio_info *io;
134 
135         io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
136 
137         down_write(&io->io_rwsem);
138 
139         /* change META to META_FLUSH in the checkpoint procedure */
140         if (type >= META_FLUSH) {
141                 io->fio.type = META_FLUSH;
142                 if (test_opt(sbi, NOBARRIER))
143                         io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
144                 else
145                         io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
146         }
147         __submit_merged_bio(io);
148         up_write(&io->io_rwsem);
149 }
150 
151 /*
152  * Fill the locked page with data located in the block address.
153  * Return unlocked page.
154  */
155 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
156                                         block_t blk_addr, int rw)
157 {
158         struct bio *bio;
159 
160         trace_f2fs_submit_page_bio(page, blk_addr, rw);
161 
162         /* Allocate a new bio */
163         bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw));
164 
165         if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
166                 bio_put(bio);
167                 f2fs_put_page(page, 1);
168                 return -EFAULT;
169         }
170 
171         submit_bio(rw, bio);
172         return 0;
173 }
174 
175 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
176                         block_t blk_addr, struct f2fs_io_info *fio)
177 {
178         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
179         struct f2fs_bio_info *io;
180         bool is_read = is_read_io(fio->rw);
181 
182         io = is_read ? &sbi->read_io : &sbi->write_io[btype];
183 
184         verify_block_addr(sbi, blk_addr);
185 
186         down_write(&io->io_rwsem);
187 
188         if (!is_read)
189                 inc_page_count(sbi, F2FS_WRITEBACK);
190 
191         if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
192                                                 io->fio.rw != fio->rw))
193                 __submit_merged_bio(io);
194 alloc_new:
195         if (io->bio == NULL) {
196                 int bio_blocks = MAX_BIO_BLOCKS(sbi);
197 
198                 io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read);
199                 io->fio = *fio;
200         }
201 
202         if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
203                                                         PAGE_CACHE_SIZE) {
204                 __submit_merged_bio(io);
205                 goto alloc_new;
206         }
207 
208         io->last_block_in_bio = blk_addr;
209 
210         up_write(&io->io_rwsem);
211         trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr);
212 }
213 
214 /*
215  * Lock ordering for the change of data block address:
216  * ->data_page
217  *  ->node_page
218  *    update block addresses in the node page
219  */
220 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
221 {
222         struct f2fs_node *rn;
223         __le32 *addr_array;
224         struct page *node_page = dn->node_page;
225         unsigned int ofs_in_node = dn->ofs_in_node;
226 
227         f2fs_wait_on_page_writeback(node_page, NODE);
228 
229         rn = F2FS_NODE(node_page);
230 
231         /* Get physical address of data block */
232         addr_array = blkaddr_in_node(rn);
233         addr_array[ofs_in_node] = cpu_to_le32(new_addr);
234         set_page_dirty(node_page);
235 }
236 
237 int reserve_new_block(struct dnode_of_data *dn)
238 {
239         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
240 
241         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
242                 return -EPERM;
243         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
244                 return -ENOSPC;
245 
246         trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
247 
248         __set_data_blkaddr(dn, NEW_ADDR);
249         dn->data_blkaddr = NEW_ADDR;
250         mark_inode_dirty(dn->inode);
251         sync_inode_page(dn);
252         return 0;
253 }
254 
255 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
256 {
257         bool need_put = dn->inode_page ? false : true;
258         int err;
259 
260         /* if inode_page exists, index should be zero */
261         f2fs_bug_on(F2FS_I_SB(dn->inode), !need_put && index);
262 
263         err = get_dnode_of_data(dn, index, ALLOC_NODE);
264         if (err)
265                 return err;
266 
267         if (dn->data_blkaddr == NULL_ADDR)
268                 err = reserve_new_block(dn);
269         if (err || need_put)
270                 f2fs_put_dnode(dn);
271         return err;
272 }
273 
274 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
275                                         struct buffer_head *bh_result)
276 {
277         struct f2fs_inode_info *fi = F2FS_I(inode);
278         pgoff_t start_fofs, end_fofs;
279         block_t start_blkaddr;
280 
281         if (is_inode_flag_set(fi, FI_NO_EXTENT))
282                 return 0;
283 
284         read_lock(&fi->ext.ext_lock);
285         if (fi->ext.len == 0) {
286                 read_unlock(&fi->ext.ext_lock);
287                 return 0;
288         }
289 
290         stat_inc_total_hit(inode->i_sb);
291 
292         start_fofs = fi->ext.fofs;
293         end_fofs = fi->ext.fofs + fi->ext.len - 1;
294         start_blkaddr = fi->ext.blk_addr;
295 
296         if (pgofs >= start_fofs && pgofs <= end_fofs) {
297                 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
298                 size_t count;
299 
300                 clear_buffer_new(bh_result);
301                 map_bh(bh_result, inode->i_sb,
302                                 start_blkaddr + pgofs - start_fofs);
303                 count = end_fofs - pgofs + 1;
304                 if (count < (UINT_MAX >> blkbits))
305                         bh_result->b_size = (count << blkbits);
306                 else
307                         bh_result->b_size = UINT_MAX;
308 
309                 stat_inc_read_hit(inode->i_sb);
310                 read_unlock(&fi->ext.ext_lock);
311                 return 1;
312         }
313         read_unlock(&fi->ext.ext_lock);
314         return 0;
315 }
316 
317 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
318 {
319         struct f2fs_inode_info *fi = F2FS_I(dn->inode);
320         pgoff_t fofs, start_fofs, end_fofs;
321         block_t start_blkaddr, end_blkaddr;
322         int need_update = true;
323 
324         f2fs_bug_on(F2FS_I_SB(dn->inode), blk_addr == NEW_ADDR);
325         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
326                                                         dn->ofs_in_node;
327 
328         /* Update the page address in the parent node */
329         __set_data_blkaddr(dn, blk_addr);
330 
331         if (is_inode_flag_set(fi, FI_NO_EXTENT))
332                 return;
333 
334         write_lock(&fi->ext.ext_lock);
335 
336         start_fofs = fi->ext.fofs;
337         end_fofs = fi->ext.fofs + fi->ext.len - 1;
338         start_blkaddr = fi->ext.blk_addr;
339         end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
340 
341         /* Drop and initialize the matched extent */
342         if (fi->ext.len == 1 && fofs == start_fofs)
343                 fi->ext.len = 0;
344 
345         /* Initial extent */
346         if (fi->ext.len == 0) {
347                 if (blk_addr != NULL_ADDR) {
348                         fi->ext.fofs = fofs;
349                         fi->ext.blk_addr = blk_addr;
350                         fi->ext.len = 1;
351                 }
352                 goto end_update;
353         }
354 
355         /* Front merge */
356         if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
357                 fi->ext.fofs--;
358                 fi->ext.blk_addr--;
359                 fi->ext.len++;
360                 goto end_update;
361         }
362 
363         /* Back merge */
364         if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
365                 fi->ext.len++;
366                 goto end_update;
367         }
368 
369         /* Split the existing extent */
370         if (fi->ext.len > 1 &&
371                 fofs >= start_fofs && fofs <= end_fofs) {
372                 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
373                         fi->ext.len = fofs - start_fofs;
374                 } else {
375                         fi->ext.fofs = fofs + 1;
376                         fi->ext.blk_addr = start_blkaddr +
377                                         fofs - start_fofs + 1;
378                         fi->ext.len -= fofs - start_fofs + 1;
379                 }
380         } else {
381                 need_update = false;
382         }
383 
384         /* Finally, if the extent is very fragmented, let's drop the cache. */
385         if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
386                 fi->ext.len = 0;
387                 set_inode_flag(fi, FI_NO_EXTENT);
388                 need_update = true;
389         }
390 end_update:
391         write_unlock(&fi->ext.ext_lock);
392         if (need_update)
393                 sync_inode_page(dn);
394         return;
395 }
396 
397 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
398 {
399         struct address_space *mapping = inode->i_mapping;
400         struct dnode_of_data dn;
401         struct page *page;
402         int err;
403 
404         page = find_get_page(mapping, index);
405         if (page && PageUptodate(page))
406                 return page;
407         f2fs_put_page(page, 0);
408 
409         set_new_dnode(&dn, inode, NULL, NULL, 0);
410         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
411         if (err)
412                 return ERR_PTR(err);
413         f2fs_put_dnode(&dn);
414 
415         if (dn.data_blkaddr == NULL_ADDR)
416                 return ERR_PTR(-ENOENT);
417 
418         /* By fallocate(), there is no cached page, but with NEW_ADDR */
419         if (unlikely(dn.data_blkaddr == NEW_ADDR))
420                 return ERR_PTR(-EINVAL);
421 
422         page = grab_cache_page(mapping, index);
423         if (!page)
424                 return ERR_PTR(-ENOMEM);
425 
426         if (PageUptodate(page)) {
427                 unlock_page(page);
428                 return page;
429         }
430 
431         err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, dn.data_blkaddr,
432                                         sync ? READ_SYNC : READA);
433         if (err)
434                 return ERR_PTR(err);
435 
436         if (sync) {
437                 wait_on_page_locked(page);
438                 if (unlikely(!PageUptodate(page))) {
439                         f2fs_put_page(page, 0);
440                         return ERR_PTR(-EIO);
441                 }
442         }
443         return page;
444 }
445 
446 /*
447  * If it tries to access a hole, return an error.
448  * Because, the callers, functions in dir.c and GC, should be able to know
449  * whether this page exists or not.
450  */
451 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
452 {
453         struct address_space *mapping = inode->i_mapping;
454         struct dnode_of_data dn;
455         struct page *page;
456         int err;
457 
458 repeat:
459         page = grab_cache_page(mapping, index);
460         if (!page)
461                 return ERR_PTR(-ENOMEM);
462 
463         set_new_dnode(&dn, inode, NULL, NULL, 0);
464         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
465         if (err) {
466                 f2fs_put_page(page, 1);
467                 return ERR_PTR(err);
468         }
469         f2fs_put_dnode(&dn);
470 
471         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
472                 f2fs_put_page(page, 1);
473                 return ERR_PTR(-ENOENT);
474         }
475 
476         if (PageUptodate(page))
477                 return page;
478 
479         /*
480          * A new dentry page is allocated but not able to be written, since its
481          * new inode page couldn't be allocated due to -ENOSPC.
482          * In such the case, its blkaddr can be remained as NEW_ADDR.
483          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
484          */
485         if (dn.data_blkaddr == NEW_ADDR) {
486                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
487                 SetPageUptodate(page);
488                 return page;
489         }
490 
491         err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
492                                         dn.data_blkaddr, READ_SYNC);
493         if (err)
494                 return ERR_PTR(err);
495 
496         lock_page(page);
497         if (unlikely(!PageUptodate(page))) {
498                 f2fs_put_page(page, 1);
499                 return ERR_PTR(-EIO);
500         }
501         if (unlikely(page->mapping != mapping)) {
502                 f2fs_put_page(page, 1);
503                 goto repeat;
504         }
505         return page;
506 }
507 
508 /*
509  * Caller ensures that this data page is never allocated.
510  * A new zero-filled data page is allocated in the page cache.
511  *
512  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
513  * f2fs_unlock_op().
514  * Note that, ipage is set only by make_empty_dir.
515  */
516 struct page *get_new_data_page(struct inode *inode,
517                 struct page *ipage, pgoff_t index, bool new_i_size)
518 {
519         struct address_space *mapping = inode->i_mapping;
520         struct page *page;
521         struct dnode_of_data dn;
522         int err;
523 
524         set_new_dnode(&dn, inode, ipage, NULL, 0);
525         err = f2fs_reserve_block(&dn, index);
526         if (err)
527                 return ERR_PTR(err);
528 repeat:
529         page = grab_cache_page(mapping, index);
530         if (!page) {
531                 err = -ENOMEM;
532                 goto put_err;
533         }
534 
535         if (PageUptodate(page))
536                 return page;
537 
538         if (dn.data_blkaddr == NEW_ADDR) {
539                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
540                 SetPageUptodate(page);
541         } else {
542                 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
543                                                 dn.data_blkaddr, READ_SYNC);
544                 if (err)
545                         goto put_err;
546 
547                 lock_page(page);
548                 if (unlikely(!PageUptodate(page))) {
549                         f2fs_put_page(page, 1);
550                         err = -EIO;
551                         goto put_err;
552                 }
553                 if (unlikely(page->mapping != mapping)) {
554                         f2fs_put_page(page, 1);
555                         goto repeat;
556                 }
557         }
558 
559         if (new_i_size &&
560                 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
561                 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
562                 /* Only the directory inode sets new_i_size */
563                 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
564         }
565         return page;
566 
567 put_err:
568         f2fs_put_dnode(&dn);
569         return ERR_PTR(err);
570 }
571 
572 static int __allocate_data_block(struct dnode_of_data *dn)
573 {
574         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
575         struct f2fs_inode_info *fi = F2FS_I(dn->inode);
576         struct f2fs_summary sum;
577         block_t new_blkaddr;
578         struct node_info ni;
579         pgoff_t fofs;
580         int type;
581 
582         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
583                 return -EPERM;
584         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
585                 return -ENOSPC;
586 
587         __set_data_blkaddr(dn, NEW_ADDR);
588         dn->data_blkaddr = NEW_ADDR;
589 
590         get_node_info(sbi, dn->nid, &ni);
591         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
592 
593         type = CURSEG_WARM_DATA;
594 
595         allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type);
596 
597         /* direct IO doesn't use extent cache to maximize the performance */
598         set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
599         update_extent_cache(new_blkaddr, dn);
600         clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
601 
602         /* update i_size */
603         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
604                                                         dn->ofs_in_node;
605         if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
606                 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
607 
608         dn->data_blkaddr = new_blkaddr;
609         return 0;
610 }
611 
612 /*
613  * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
614  * If original data blocks are allocated, then give them to blockdev.
615  * Otherwise,
616  *     a. preallocate requested block addresses
617  *     b. do not use extent cache for better performance
618  *     c. give the block addresses to blockdev
619  */
620 static int __get_data_block(struct inode *inode, sector_t iblock,
621                         struct buffer_head *bh_result, int create, bool fiemap)
622 {
623         unsigned int blkbits = inode->i_sb->s_blocksize_bits;
624         unsigned maxblocks = bh_result->b_size >> blkbits;
625         struct dnode_of_data dn;
626         int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
627         pgoff_t pgofs, end_offset;
628         int err = 0, ofs = 1;
629         bool allocated = false;
630 
631         /* Get the page offset from the block offset(iblock) */
632         pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
633 
634         if (check_extent_cache(inode, pgofs, bh_result))
635                 goto out;
636 
637         if (create) {
638                 f2fs_balance_fs(F2FS_I_SB(inode));
639                 f2fs_lock_op(F2FS_I_SB(inode));
640         }
641 
642         /* When reading holes, we need its node page */
643         set_new_dnode(&dn, inode, NULL, NULL, 0);
644         err = get_dnode_of_data(&dn, pgofs, mode);
645         if (err) {
646                 if (err == -ENOENT)
647                         err = 0;
648                 goto unlock_out;
649         }
650         if (dn.data_blkaddr == NEW_ADDR && !fiemap)
651                 goto put_out;
652 
653         if (dn.data_blkaddr != NULL_ADDR) {
654                 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
655         } else if (create) {
656                 err = __allocate_data_block(&dn);
657                 if (err)
658                         goto put_out;
659                 allocated = true;
660                 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
661         } else {
662                 goto put_out;
663         }
664 
665         end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
666         bh_result->b_size = (((size_t)1) << blkbits);
667         dn.ofs_in_node++;
668         pgofs++;
669 
670 get_next:
671         if (dn.ofs_in_node >= end_offset) {
672                 if (allocated)
673                         sync_inode_page(&dn);
674                 allocated = false;
675                 f2fs_put_dnode(&dn);
676 
677                 set_new_dnode(&dn, inode, NULL, NULL, 0);
678                 err = get_dnode_of_data(&dn, pgofs, mode);
679                 if (err) {
680                         if (err == -ENOENT)
681                                 err = 0;
682                         goto unlock_out;
683                 }
684                 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
685                         goto put_out;
686 
687                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
688         }
689 
690         if (maxblocks > (bh_result->b_size >> blkbits)) {
691                 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
692                 if (blkaddr == NULL_ADDR && create) {
693                         err = __allocate_data_block(&dn);
694                         if (err)
695                                 goto sync_out;
696                         allocated = true;
697                         blkaddr = dn.data_blkaddr;
698                 }
699                 /* Give more consecutive addresses for the readahead */
700                 if (blkaddr == (bh_result->b_blocknr + ofs)) {
701                         ofs++;
702                         dn.ofs_in_node++;
703                         pgofs++;
704                         bh_result->b_size += (((size_t)1) << blkbits);
705                         goto get_next;
706                 }
707         }
708 sync_out:
709         if (allocated)
710                 sync_inode_page(&dn);
711 put_out:
712         f2fs_put_dnode(&dn);
713 unlock_out:
714         if (create)
715                 f2fs_unlock_op(F2FS_I_SB(inode));
716 out:
717         trace_f2fs_get_data_block(inode, iblock, bh_result, err);
718         return err;
719 }
720 
721 static int get_data_block(struct inode *inode, sector_t iblock,
722                         struct buffer_head *bh_result, int create)
723 {
724         return __get_data_block(inode, iblock, bh_result, create, false);
725 }
726 
727 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
728                         struct buffer_head *bh_result, int create)
729 {
730         return __get_data_block(inode, iblock, bh_result, create, true);
731 }
732 
733 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
734                 u64 start, u64 len)
735 {
736         return generic_block_fiemap(inode, fieinfo,
737                                 start, len, get_data_block_fiemap);
738 }
739 
740 static int f2fs_read_data_page(struct file *file, struct page *page)
741 {
742         struct inode *inode = page->mapping->host;
743         int ret;
744 
745         trace_f2fs_readpage(page, DATA);
746 
747         /* If the file has inline data, try to read it directly */
748         if (f2fs_has_inline_data(inode))
749                 ret = f2fs_read_inline_data(inode, page);
750         else
751                 ret = mpage_readpage(page, get_data_block);
752 
753         return ret;
754 }
755 
756 static int f2fs_read_data_pages(struct file *file,
757                         struct address_space *mapping,
758                         struct list_head *pages, unsigned nr_pages)
759 {
760         struct inode *inode = file->f_mapping->host;
761 
762         /* If the file has inline data, skip readpages */
763         if (f2fs_has_inline_data(inode))
764                 return 0;
765 
766         return mpage_readpages(mapping, pages, nr_pages, get_data_block);
767 }
768 
769 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
770 {
771         struct inode *inode = page->mapping->host;
772         block_t old_blkaddr, new_blkaddr;
773         struct dnode_of_data dn;
774         int err = 0;
775 
776         set_new_dnode(&dn, inode, NULL, NULL, 0);
777         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
778         if (err)
779                 return err;
780 
781         old_blkaddr = dn.data_blkaddr;
782 
783         /* This page is already truncated */
784         if (old_blkaddr == NULL_ADDR)
785                 goto out_writepage;
786 
787         set_page_writeback(page);
788 
789         /*
790          * If current allocation needs SSR,
791          * it had better in-place writes for updated data.
792          */
793         if (unlikely(old_blkaddr != NEW_ADDR &&
794                         !is_cold_data(page) &&
795                         need_inplace_update(inode))) {
796                 rewrite_data_page(page, old_blkaddr, fio);
797                 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
798         } else {
799                 write_data_page(page, &dn, &new_blkaddr, fio);
800                 update_extent_cache(new_blkaddr, &dn);
801                 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
802         }
803 out_writepage:
804         f2fs_put_dnode(&dn);
805         return err;
806 }
807 
808 static int f2fs_write_data_page(struct page *page,
809                                         struct writeback_control *wbc)
810 {
811         struct inode *inode = page->mapping->host;
812         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
813         loff_t i_size = i_size_read(inode);
814         const pgoff_t end_index = ((unsigned long long) i_size)
815                                                         >> PAGE_CACHE_SHIFT;
816         unsigned offset = 0;
817         bool need_balance_fs = false;
818         int err = 0;
819         struct f2fs_io_info fio = {
820                 .type = DATA,
821                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
822         };
823 
824         trace_f2fs_writepage(page, DATA);
825 
826         if (page->index < end_index)
827                 goto write;
828 
829         /*
830          * If the offset is out-of-range of file size,
831          * this page does not have to be written to disk.
832          */
833         offset = i_size & (PAGE_CACHE_SIZE - 1);
834         if ((page->index >= end_index + 1) || !offset)
835                 goto out;
836 
837         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
838 write:
839         if (unlikely(sbi->por_doing))
840                 goto redirty_out;
841 
842         /* Dentry blocks are controlled by checkpoint */
843         if (S_ISDIR(inode->i_mode)) {
844                 if (unlikely(f2fs_cp_error(sbi)))
845                         goto redirty_out;
846                 err = do_write_data_page(page, &fio);
847                 goto done;
848         }
849 
850         /* we should bypass data pages to proceed the kworkder jobs */
851         if (unlikely(f2fs_cp_error(sbi))) {
852                 SetPageError(page);
853                 unlock_page(page);
854                 goto out;
855         }
856 
857         if (!wbc->for_reclaim)
858                 need_balance_fs = true;
859         else if (has_not_enough_free_secs(sbi, 0))
860                 goto redirty_out;
861 
862         f2fs_lock_op(sbi);
863         if (f2fs_has_inline_data(inode) || f2fs_may_inline(inode))
864                 err = f2fs_write_inline_data(inode, page, offset);
865         else
866                 err = do_write_data_page(page, &fio);
867         f2fs_unlock_op(sbi);
868 done:
869         if (err && err != -ENOENT)
870                 goto redirty_out;
871 
872         clear_cold_data(page);
873 out:
874         inode_dec_dirty_pages(inode);
875         unlock_page(page);
876         if (need_balance_fs)
877                 f2fs_balance_fs(sbi);
878         if (wbc->for_reclaim)
879                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
880         return 0;
881 
882 redirty_out:
883         redirty_page_for_writepage(wbc, page);
884         return AOP_WRITEPAGE_ACTIVATE;
885 }
886 
887 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
888                         void *data)
889 {
890         struct address_space *mapping = data;
891         int ret = mapping->a_ops->writepage(page, wbc);
892         mapping_set_error(mapping, ret);
893         return ret;
894 }
895 
896 static int f2fs_write_data_pages(struct address_space *mapping,
897                             struct writeback_control *wbc)
898 {
899         struct inode *inode = mapping->host;
900         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
901         bool locked = false;
902         int ret;
903         long diff;
904 
905         trace_f2fs_writepages(mapping->host, wbc, DATA);
906 
907         /* deal with chardevs and other special file */
908         if (!mapping->a_ops->writepage)
909                 return 0;
910 
911         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
912                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
913                         available_free_memory(sbi, DIRTY_DENTS))
914                 goto skip_write;
915 
916         diff = nr_pages_to_write(sbi, DATA, wbc);
917 
918         if (!S_ISDIR(inode->i_mode)) {
919                 mutex_lock(&sbi->writepages);
920                 locked = true;
921         }
922         ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
923         if (locked)
924                 mutex_unlock(&sbi->writepages);
925 
926         f2fs_submit_merged_bio(sbi, DATA, WRITE);
927 
928         remove_dirty_dir_inode(inode);
929 
930         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
931         return ret;
932 
933 skip_write:
934         wbc->pages_skipped += get_dirty_pages(inode);
935         return 0;
936 }
937 
938 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
939 {
940         struct inode *inode = mapping->host;
941 
942         if (to > inode->i_size) {
943                 truncate_pagecache(inode, inode->i_size);
944                 truncate_blocks(inode, inode->i_size, true);
945         }
946 }
947 
948 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
949                 loff_t pos, unsigned len, unsigned flags,
950                 struct page **pagep, void **fsdata)
951 {
952         struct inode *inode = mapping->host;
953         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
954         struct page *page;
955         pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
956         struct dnode_of_data dn;
957         int err = 0;
958 
959         trace_f2fs_write_begin(inode, pos, len, flags);
960 
961         f2fs_balance_fs(sbi);
962 repeat:
963         err = f2fs_convert_inline_data(inode, pos + len, NULL);
964         if (err)
965                 goto fail;
966 
967         page = grab_cache_page_write_begin(mapping, index, flags);
968         if (!page) {
969                 err = -ENOMEM;
970                 goto fail;
971         }
972 
973         /* to avoid latency during memory pressure */
974         unlock_page(page);
975 
976         *pagep = page;
977 
978         if (f2fs_has_inline_data(inode) && (pos + len) <= MAX_INLINE_DATA)
979                 goto inline_data;
980 
981         f2fs_lock_op(sbi);
982         set_new_dnode(&dn, inode, NULL, NULL, 0);
983         err = f2fs_reserve_block(&dn, index);
984         f2fs_unlock_op(sbi);
985         if (err) {
986                 f2fs_put_page(page, 0);
987                 goto fail;
988         }
989 inline_data:
990         lock_page(page);
991         if (unlikely(page->mapping != mapping)) {
992                 f2fs_put_page(page, 1);
993                 goto repeat;
994         }
995 
996         f2fs_wait_on_page_writeback(page, DATA);
997 
998         if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
999                 return 0;
1000 
1001         if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1002                 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1003                 unsigned end = start + len;
1004 
1005                 /* Reading beyond i_size is simple: memset to zero */
1006                 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1007                 goto out;
1008         }
1009 
1010         if (f2fs_has_inline_data(inode)) {
1011                 err = f2fs_read_inline_data(inode, page);
1012                 if (err) {
1013                         page_cache_release(page);
1014                         goto fail;
1015                 }
1016         } else if (dn.data_blkaddr == NEW_ADDR) {
1017                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1018         } else {
1019                 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
1020                                            READ_SYNC);
1021                 if (err)
1022                         goto fail;
1023 
1024                 lock_page(page);
1025                 if (unlikely(!PageUptodate(page))) {
1026                         f2fs_put_page(page, 1);
1027                         err = -EIO;
1028                         goto fail;
1029                 }
1030                 if (unlikely(page->mapping != mapping)) {
1031                         f2fs_put_page(page, 1);
1032                         goto repeat;
1033                 }
1034         }
1035 out:
1036         SetPageUptodate(page);
1037         clear_cold_data(page);
1038         return 0;
1039 fail:
1040         f2fs_write_failed(mapping, pos + len);
1041         return err;
1042 }
1043 
1044 static int f2fs_write_end(struct file *file,
1045                         struct address_space *mapping,
1046                         loff_t pos, unsigned len, unsigned copied,
1047                         struct page *page, void *fsdata)
1048 {
1049         struct inode *inode = page->mapping->host;
1050 
1051         trace_f2fs_write_end(inode, pos, len, copied);
1052 
1053         if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode))
1054                 register_inmem_page(inode, page);
1055         else
1056                 set_page_dirty(page);
1057 
1058         if (pos + copied > i_size_read(inode)) {
1059                 i_size_write(inode, pos + copied);
1060                 mark_inode_dirty(inode);
1061                 update_inode_page(inode);
1062         }
1063 
1064         f2fs_put_page(page, 1);
1065         return copied;
1066 }
1067 
1068 static int check_direct_IO(struct inode *inode, int rw,
1069                 struct iov_iter *iter, loff_t offset)
1070 {
1071         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1072 
1073         if (rw == READ)
1074                 return 0;
1075 
1076         if (offset & blocksize_mask)
1077                 return -EINVAL;
1078 
1079         if (iov_iter_alignment(iter) & blocksize_mask)
1080                 return -EINVAL;
1081 
1082         return 0;
1083 }
1084 
1085 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
1086                 struct iov_iter *iter, loff_t offset)
1087 {
1088         struct file *file = iocb->ki_filp;
1089         struct address_space *mapping = file->f_mapping;
1090         struct inode *inode = mapping->host;
1091         size_t count = iov_iter_count(iter);
1092         int err;
1093 
1094         /* Let buffer I/O handle the inline data case. */
1095         if (f2fs_has_inline_data(inode))
1096                 return 0;
1097 
1098         if (check_direct_IO(inode, rw, iter, offset))
1099                 return 0;
1100 
1101         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1102 
1103         err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1104         if (err < 0 && (rw & WRITE))
1105                 f2fs_write_failed(mapping, offset + count);
1106 
1107         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1108 
1109         return err;
1110 }
1111 
1112 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
1113                                       unsigned int length)
1114 {
1115         struct inode *inode = page->mapping->host;
1116 
1117         if (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE)
1118                 return;
1119 
1120         if (PageDirty(page))
1121                 inode_dec_dirty_pages(inode);
1122         ClearPagePrivate(page);
1123 }
1124 
1125 static int f2fs_release_data_page(struct page *page, gfp_t wait)
1126 {
1127         ClearPagePrivate(page);
1128         return 1;
1129 }
1130 
1131 static int f2fs_set_data_page_dirty(struct page *page)
1132 {
1133         struct address_space *mapping = page->mapping;
1134         struct inode *inode = mapping->host;
1135 
1136         trace_f2fs_set_page_dirty(page, DATA);
1137 
1138         SetPageUptodate(page);
1139         mark_inode_dirty(inode);
1140 
1141         if (!PageDirty(page)) {
1142                 __set_page_dirty_nobuffers(page);
1143                 update_dirty_page(inode, page);
1144                 return 1;
1145         }
1146         return 0;
1147 }
1148 
1149 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1150 {
1151         struct inode *inode = mapping->host;
1152 
1153         if (f2fs_has_inline_data(inode))
1154                 return 0;
1155 
1156         return generic_block_bmap(mapping, block, get_data_block);
1157 }
1158 
1159 const struct address_space_operations f2fs_dblock_aops = {
1160         .readpage       = f2fs_read_data_page,
1161         .readpages      = f2fs_read_data_pages,
1162         .writepage      = f2fs_write_data_page,
1163         .writepages     = f2fs_write_data_pages,
1164         .write_begin    = f2fs_write_begin,
1165         .write_end      = f2fs_write_end,
1166         .set_page_dirty = f2fs_set_data_page_dirty,
1167         .invalidatepage = f2fs_invalidate_data_page,
1168         .releasepage    = f2fs_release_data_page,
1169         .direct_IO      = f2fs_direct_IO,
1170         .bmap           = f2fs_bmap,
1171 };
1172 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp