~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/f2fs.h

Version: ~ [ linux-5.19-rc3 ] ~ [ linux-5.18.5 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.48 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.123 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.199 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.248 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.284 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.319 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * fs/f2fs/f2fs.h
  4  *
  5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6  *             http://www.samsung.com/
  7  */
  8 #ifndef _LINUX_F2FS_H
  9 #define _LINUX_F2FS_H
 10 
 11 #include <linux/uio.h>
 12 #include <linux/types.h>
 13 #include <linux/page-flags.h>
 14 #include <linux/buffer_head.h>
 15 #include <linux/slab.h>
 16 #include <linux/crc32.h>
 17 #include <linux/magic.h>
 18 #include <linux/kobject.h>
 19 #include <linux/sched.h>
 20 #include <linux/cred.h>
 21 #include <linux/vmalloc.h>
 22 #include <linux/bio.h>
 23 #include <linux/blkdev.h>
 24 #include <linux/quotaops.h>
 25 #include <crypto/hash.h>
 26 
 27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
 28 #include <linux/fscrypt.h>
 29 
 30 #ifdef CONFIG_F2FS_CHECK_FS
 31 #define f2fs_bug_on(sbi, condition)     BUG_ON(condition)
 32 #else
 33 #define f2fs_bug_on(sbi, condition)                                     \
 34         do {                                                            \
 35                 if (unlikely(condition)) {                              \
 36                         WARN_ON(1);                                     \
 37                         set_sbi_flag(sbi, SBI_NEED_FSCK);               \
 38                 }                                                       \
 39         } while (0)
 40 #endif
 41 
 42 enum {
 43         FAULT_KMALLOC,
 44         FAULT_KVMALLOC,
 45         FAULT_PAGE_ALLOC,
 46         FAULT_PAGE_GET,
 47         FAULT_ALLOC_BIO,
 48         FAULT_ALLOC_NID,
 49         FAULT_ORPHAN,
 50         FAULT_BLOCK,
 51         FAULT_DIR_DEPTH,
 52         FAULT_EVICT_INODE,
 53         FAULT_TRUNCATE,
 54         FAULT_READ_IO,
 55         FAULT_CHECKPOINT,
 56         FAULT_DISCARD,
 57         FAULT_WRITE_IO,
 58         FAULT_MAX,
 59 };
 60 
 61 #ifdef CONFIG_F2FS_FAULT_INJECTION
 62 #define F2FS_ALL_FAULT_TYPE             ((1 << FAULT_MAX) - 1)
 63 
 64 struct f2fs_fault_info {
 65         atomic_t inject_ops;
 66         unsigned int inject_rate;
 67         unsigned int inject_type;
 68 };
 69 
 70 extern char *f2fs_fault_name[FAULT_MAX];
 71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
 72 #endif
 73 
 74 /*
 75  * For mount options
 76  */
 77 #define F2FS_MOUNT_BG_GC                0x00000001
 78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
 79 #define F2FS_MOUNT_DISCARD              0x00000004
 80 #define F2FS_MOUNT_NOHEAP               0x00000008
 81 #define F2FS_MOUNT_XATTR_USER           0x00000010
 82 #define F2FS_MOUNT_POSIX_ACL            0x00000020
 83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
 84 #define F2FS_MOUNT_INLINE_XATTR         0x00000080
 85 #define F2FS_MOUNT_INLINE_DATA          0x00000100
 86 #define F2FS_MOUNT_INLINE_DENTRY        0x00000200
 87 #define F2FS_MOUNT_FLUSH_MERGE          0x00000400
 88 #define F2FS_MOUNT_NOBARRIER            0x00000800
 89 #define F2FS_MOUNT_FASTBOOT             0x00001000
 90 #define F2FS_MOUNT_EXTENT_CACHE         0x00002000
 91 #define F2FS_MOUNT_FORCE_FG_GC          0x00004000
 92 #define F2FS_MOUNT_DATA_FLUSH           0x00008000
 93 #define F2FS_MOUNT_FAULT_INJECTION      0x00010000
 94 #define F2FS_MOUNT_ADAPTIVE             0x00020000
 95 #define F2FS_MOUNT_LFS                  0x00040000
 96 #define F2FS_MOUNT_USRQUOTA             0x00080000
 97 #define F2FS_MOUNT_GRPQUOTA             0x00100000
 98 #define F2FS_MOUNT_PRJQUOTA             0x00200000
 99 #define F2FS_MOUNT_QUOTA                0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE    0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT         0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT   0x02000000
103 
104 #define F2FS_OPTION(sbi)        ((sbi)->mount_opt)
105 #define clear_opt(sbi, option)  (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)    (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)   (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b) (typecheck(unsigned long long, a) &&            \
110                 typecheck(unsigned long long, b) &&                     \
111                 ((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;    /*
114                          * should not change u32, since it is the on-disk block
115                          * address format, __le32.
116                          */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120         unsigned int opt;
121         int write_io_size_bits;         /* Write IO size bits */
122         block_t root_reserved_blocks;   /* root reserved blocks */
123         kuid_t s_resuid;                /* reserved blocks for uid */
124         kgid_t s_resgid;                /* reserved blocks for gid */
125         int active_logs;                /* # of active logs */
126         int inline_xattr_size;          /* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128         struct f2fs_fault_info fault_info;      /* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131         /* Names of quota files with journalled quota */
132         char *s_qf_names[MAXQUOTAS];
133         int s_jquota_fmt;                       /* Format of quota to use */
134 #endif
135         /* For which write hints are passed down to block layer */
136         int whint_mode;
137         int alloc_mode;                 /* segment allocation policy */
138         int fsync_mode;                 /* fsync policy */
139         bool test_dummy_encryption;     /* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT            0x0001
143 #define F2FS_FEATURE_BLKZONED           0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE       0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR         0x0008
146 #define F2FS_FEATURE_PRJQUOTA           0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM       0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR      0x0040
149 #define F2FS_FEATURE_QUOTA_INO          0x0080
150 #define F2FS_FEATURE_INODE_CRTIME       0x0100
151 #define F2FS_FEATURE_LOST_FOUND         0x0200
152 #define F2FS_FEATURE_VERITY             0x0400  /* reserved */
153 #define F2FS_FEATURE_SB_CHKSUM          0x0800
154 
155 #define F2FS_HAS_FEATURE(sb, mask)                                      \
156         ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
157 #define F2FS_SET_FEATURE(sb, mask)                                      \
158         (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
159 #define F2FS_CLEAR_FEATURE(sb, mask)                                    \
160         (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
161 
162 /*
163  * Default values for user and/or group using reserved blocks
164  */
165 #define F2FS_DEF_RESUID         0
166 #define F2FS_DEF_RESGID         0
167 
168 /*
169  * For checkpoint manager
170  */
171 enum {
172         NAT_BITMAP,
173         SIT_BITMAP
174 };
175 
176 #define CP_UMOUNT       0x00000001
177 #define CP_FASTBOOT     0x00000002
178 #define CP_SYNC         0x00000004
179 #define CP_RECOVERY     0x00000008
180 #define CP_DISCARD      0x00000010
181 #define CP_TRIMMED      0x00000020
182 #define CP_PAUSE        0x00000040
183 
184 #define MAX_DISCARD_BLOCKS(sbi)         BLKS_PER_SEC(sbi)
185 #define DEF_MAX_DISCARD_REQUEST         8       /* issue 8 discards per round */
186 #define DEF_MIN_DISCARD_ISSUE_TIME      50      /* 50 ms, if exists */
187 #define DEF_MID_DISCARD_ISSUE_TIME      500     /* 500 ms, if device busy */
188 #define DEF_MAX_DISCARD_ISSUE_TIME      60000   /* 60 s, if no candidates */
189 #define DEF_DISCARD_URGENT_UTIL         80      /* do more discard over 80% */
190 #define DEF_CP_INTERVAL                 60      /* 60 secs */
191 #define DEF_IDLE_INTERVAL               5       /* 5 secs */
192 #define DEF_DISABLE_INTERVAL            5       /* 5 secs */
193 
194 struct cp_control {
195         int reason;
196         __u64 trim_start;
197         __u64 trim_end;
198         __u64 trim_minlen;
199 };
200 
201 /*
202  * indicate meta/data type
203  */
204 enum {
205         META_CP,
206         META_NAT,
207         META_SIT,
208         META_SSA,
209         META_MAX,
210         META_POR,
211         DATA_GENERIC,
212         META_GENERIC,
213 };
214 
215 /* for the list of ino */
216 enum {
217         ORPHAN_INO,             /* for orphan ino list */
218         APPEND_INO,             /* for append ino list */
219         UPDATE_INO,             /* for update ino list */
220         TRANS_DIR_INO,          /* for trasactions dir ino list */
221         FLUSH_INO,              /* for multiple device flushing */
222         MAX_INO_ENTRY,          /* max. list */
223 };
224 
225 struct ino_entry {
226         struct list_head list;          /* list head */
227         nid_t ino;                      /* inode number */
228         unsigned int dirty_device;      /* dirty device bitmap */
229 };
230 
231 /* for the list of inodes to be GCed */
232 struct inode_entry {
233         struct list_head list;  /* list head */
234         struct inode *inode;    /* vfs inode pointer */
235 };
236 
237 struct fsync_node_entry {
238         struct list_head list;  /* list head */
239         struct page *page;      /* warm node page pointer */
240         unsigned int seq_id;    /* sequence id */
241 };
242 
243 /* for the bitmap indicate blocks to be discarded */
244 struct discard_entry {
245         struct list_head list;  /* list head */
246         block_t start_blkaddr;  /* start blockaddr of current segment */
247         unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
248 };
249 
250 /* default discard granularity of inner discard thread, unit: block count */
251 #define DEFAULT_DISCARD_GRANULARITY             16
252 
253 /* max discard pend list number */
254 #define MAX_PLIST_NUM           512
255 #define plist_idx(blk_num)      ((blk_num) >= MAX_PLIST_NUM ?           \
256                                         (MAX_PLIST_NUM - 1) : (blk_num - 1))
257 
258 enum {
259         D_PREP,                 /* initial */
260         D_PARTIAL,              /* partially submitted */
261         D_SUBMIT,               /* all submitted */
262         D_DONE,                 /* finished */
263 };
264 
265 struct discard_info {
266         block_t lstart;                 /* logical start address */
267         block_t len;                    /* length */
268         block_t start;                  /* actual start address in dev */
269 };
270 
271 struct discard_cmd {
272         struct rb_node rb_node;         /* rb node located in rb-tree */
273         union {
274                 struct {
275                         block_t lstart; /* logical start address */
276                         block_t len;    /* length */
277                         block_t start;  /* actual start address in dev */
278                 };
279                 struct discard_info di; /* discard info */
280 
281         };
282         struct list_head list;          /* command list */
283         struct completion wait;         /* compleation */
284         struct block_device *bdev;      /* bdev */
285         unsigned short ref;             /* reference count */
286         unsigned char state;            /* state */
287         unsigned char issuing;          /* issuing discard */
288         int error;                      /* bio error */
289         spinlock_t lock;                /* for state/bio_ref updating */
290         unsigned short bio_ref;         /* bio reference count */
291 };
292 
293 enum {
294         DPOLICY_BG,
295         DPOLICY_FORCE,
296         DPOLICY_FSTRIM,
297         DPOLICY_UMOUNT,
298         MAX_DPOLICY,
299 };
300 
301 struct discard_policy {
302         int type;                       /* type of discard */
303         unsigned int min_interval;      /* used for candidates exist */
304         unsigned int mid_interval;      /* used for device busy */
305         unsigned int max_interval;      /* used for candidates not exist */
306         unsigned int max_requests;      /* # of discards issued per round */
307         unsigned int io_aware_gran;     /* minimum granularity discard not be aware of I/O */
308         bool io_aware;                  /* issue discard in idle time */
309         bool sync;                      /* submit discard with REQ_SYNC flag */
310         bool ordered;                   /* issue discard by lba order */
311         unsigned int granularity;       /* discard granularity */
312 };
313 
314 struct discard_cmd_control {
315         struct task_struct *f2fs_issue_discard; /* discard thread */
316         struct list_head entry_list;            /* 4KB discard entry list */
317         struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
318         struct list_head wait_list;             /* store on-flushing entries */
319         struct list_head fstrim_list;           /* in-flight discard from fstrim */
320         wait_queue_head_t discard_wait_queue;   /* waiting queue for wake-up */
321         unsigned int discard_wake;              /* to wake up discard thread */
322         struct mutex cmd_lock;
323         unsigned int nr_discards;               /* # of discards in the list */
324         unsigned int max_discards;              /* max. discards to be issued */
325         unsigned int discard_granularity;       /* discard granularity */
326         unsigned int undiscard_blks;            /* # of undiscard blocks */
327         unsigned int next_pos;                  /* next discard position */
328         atomic_t issued_discard;                /* # of issued discard */
329         atomic_t issing_discard;                /* # of issing discard */
330         atomic_t discard_cmd_cnt;               /* # of cached cmd count */
331         struct rb_root_cached root;             /* root of discard rb-tree */
332         bool rbtree_check;                      /* config for consistence check */
333 };
334 
335 /* for the list of fsync inodes, used only during recovery */
336 struct fsync_inode_entry {
337         struct list_head list;  /* list head */
338         struct inode *inode;    /* vfs inode pointer */
339         block_t blkaddr;        /* block address locating the last fsync */
340         block_t last_dentry;    /* block address locating the last dentry */
341 };
342 
343 #define nats_in_cursum(jnl)             (le16_to_cpu((jnl)->n_nats))
344 #define sits_in_cursum(jnl)             (le16_to_cpu((jnl)->n_sits))
345 
346 #define nat_in_journal(jnl, i)          ((jnl)->nat_j.entries[i].ne)
347 #define nid_in_journal(jnl, i)          ((jnl)->nat_j.entries[i].nid)
348 #define sit_in_journal(jnl, i)          ((jnl)->sit_j.entries[i].se)
349 #define segno_in_journal(jnl, i)        ((jnl)->sit_j.entries[i].segno)
350 
351 #define MAX_NAT_JENTRIES(jnl)   (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
352 #define MAX_SIT_JENTRIES(jnl)   (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
353 
354 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
355 {
356         int before = nats_in_cursum(journal);
357 
358         journal->n_nats = cpu_to_le16(before + i);
359         return before;
360 }
361 
362 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
363 {
364         int before = sits_in_cursum(journal);
365 
366         journal->n_sits = cpu_to_le16(before + i);
367         return before;
368 }
369 
370 static inline bool __has_cursum_space(struct f2fs_journal *journal,
371                                                         int size, int type)
372 {
373         if (type == NAT_JOURNAL)
374                 return size <= MAX_NAT_JENTRIES(journal);
375         return size <= MAX_SIT_JENTRIES(journal);
376 }
377 
378 /*
379  * ioctl commands
380  */
381 #define F2FS_IOC_GETFLAGS               FS_IOC_GETFLAGS
382 #define F2FS_IOC_SETFLAGS               FS_IOC_SETFLAGS
383 #define F2FS_IOC_GETVERSION             FS_IOC_GETVERSION
384 
385 #define F2FS_IOCTL_MAGIC                0xf5
386 #define F2FS_IOC_START_ATOMIC_WRITE     _IO(F2FS_IOCTL_MAGIC, 1)
387 #define F2FS_IOC_COMMIT_ATOMIC_WRITE    _IO(F2FS_IOCTL_MAGIC, 2)
388 #define F2FS_IOC_START_VOLATILE_WRITE   _IO(F2FS_IOCTL_MAGIC, 3)
389 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
390 #define F2FS_IOC_ABORT_VOLATILE_WRITE   _IO(F2FS_IOCTL_MAGIC, 5)
391 #define F2FS_IOC_GARBAGE_COLLECT        _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
392 #define F2FS_IOC_WRITE_CHECKPOINT       _IO(F2FS_IOCTL_MAGIC, 7)
393 #define F2FS_IOC_DEFRAGMENT             _IOWR(F2FS_IOCTL_MAGIC, 8,      \
394                                                 struct f2fs_defragment)
395 #define F2FS_IOC_MOVE_RANGE             _IOWR(F2FS_IOCTL_MAGIC, 9,      \
396                                                 struct f2fs_move_range)
397 #define F2FS_IOC_FLUSH_DEVICE           _IOW(F2FS_IOCTL_MAGIC, 10,      \
398                                                 struct f2fs_flush_device)
399 #define F2FS_IOC_GARBAGE_COLLECT_RANGE  _IOW(F2FS_IOCTL_MAGIC, 11,      \
400                                                 struct f2fs_gc_range)
401 #define F2FS_IOC_GET_FEATURES           _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
402 #define F2FS_IOC_SET_PIN_FILE           _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
403 #define F2FS_IOC_GET_PIN_FILE           _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
404 #define F2FS_IOC_PRECACHE_EXTENTS       _IO(F2FS_IOCTL_MAGIC, 15)
405 
406 #define F2FS_IOC_SET_ENCRYPTION_POLICY  FS_IOC_SET_ENCRYPTION_POLICY
407 #define F2FS_IOC_GET_ENCRYPTION_POLICY  FS_IOC_GET_ENCRYPTION_POLICY
408 #define F2FS_IOC_GET_ENCRYPTION_PWSALT  FS_IOC_GET_ENCRYPTION_PWSALT
409 
410 /*
411  * should be same as XFS_IOC_GOINGDOWN.
412  * Flags for going down operation used by FS_IOC_GOINGDOWN
413  */
414 #define F2FS_IOC_SHUTDOWN       _IOR('X', 125, __u32)   /* Shutdown */
415 #define F2FS_GOING_DOWN_FULLSYNC        0x0     /* going down with full sync */
416 #define F2FS_GOING_DOWN_METASYNC        0x1     /* going down with metadata */
417 #define F2FS_GOING_DOWN_NOSYNC          0x2     /* going down */
418 #define F2FS_GOING_DOWN_METAFLUSH       0x3     /* going down with meta flush */
419 
420 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
421 /*
422  * ioctl commands in 32 bit emulation
423  */
424 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
425 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
426 #define F2FS_IOC32_GETVERSION           FS_IOC32_GETVERSION
427 #endif
428 
429 #define F2FS_IOC_FSGETXATTR             FS_IOC_FSGETXATTR
430 #define F2FS_IOC_FSSETXATTR             FS_IOC_FSSETXATTR
431 
432 struct f2fs_gc_range {
433         u32 sync;
434         u64 start;
435         u64 len;
436 };
437 
438 struct f2fs_defragment {
439         u64 start;
440         u64 len;
441 };
442 
443 struct f2fs_move_range {
444         u32 dst_fd;             /* destination fd */
445         u64 pos_in;             /* start position in src_fd */
446         u64 pos_out;            /* start position in dst_fd */
447         u64 len;                /* size to move */
448 };
449 
450 struct f2fs_flush_device {
451         u32 dev_num;            /* device number to flush */
452         u32 segments;           /* # of segments to flush */
453 };
454 
455 /* for inline stuff */
456 #define DEF_INLINE_RESERVED_SIZE        1
457 #define DEF_MIN_INLINE_SIZE             1
458 static inline int get_extra_isize(struct inode *inode);
459 static inline int get_inline_xattr_addrs(struct inode *inode);
460 #define MAX_INLINE_DATA(inode)  (sizeof(__le32) *                       \
461                                 (CUR_ADDRS_PER_INODE(inode) -           \
462                                 get_inline_xattr_addrs(inode) - \
463                                 DEF_INLINE_RESERVED_SIZE))
464 
465 /* for inline dir */
466 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
467                                 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
468                                 BITS_PER_BYTE + 1))
469 #define INLINE_DENTRY_BITMAP_SIZE(inode)        ((NR_INLINE_DENTRY(inode) + \
470                                         BITS_PER_BYTE - 1) / BITS_PER_BYTE)
471 #define INLINE_RESERVED_SIZE(inode)     (MAX_INLINE_DATA(inode) - \
472                                 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
473                                 NR_INLINE_DENTRY(inode) + \
474                                 INLINE_DENTRY_BITMAP_SIZE(inode)))
475 
476 /*
477  * For INODE and NODE manager
478  */
479 /* for directory operations */
480 struct f2fs_dentry_ptr {
481         struct inode *inode;
482         void *bitmap;
483         struct f2fs_dir_entry *dentry;
484         __u8 (*filename)[F2FS_SLOT_LEN];
485         int max;
486         int nr_bitmap;
487 };
488 
489 static inline void make_dentry_ptr_block(struct inode *inode,
490                 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
491 {
492         d->inode = inode;
493         d->max = NR_DENTRY_IN_BLOCK;
494         d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
495         d->bitmap = t->dentry_bitmap;
496         d->dentry = t->dentry;
497         d->filename = t->filename;
498 }
499 
500 static inline void make_dentry_ptr_inline(struct inode *inode,
501                                         struct f2fs_dentry_ptr *d, void *t)
502 {
503         int entry_cnt = NR_INLINE_DENTRY(inode);
504         int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
505         int reserved_size = INLINE_RESERVED_SIZE(inode);
506 
507         d->inode = inode;
508         d->max = entry_cnt;
509         d->nr_bitmap = bitmap_size;
510         d->bitmap = t;
511         d->dentry = t + bitmap_size + reserved_size;
512         d->filename = t + bitmap_size + reserved_size +
513                                         SIZE_OF_DIR_ENTRY * entry_cnt;
514 }
515 
516 /*
517  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
518  * as its node offset to distinguish from index node blocks.
519  * But some bits are used to mark the node block.
520  */
521 #define XATTR_NODE_OFFSET       ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
522                                 >> OFFSET_BIT_SHIFT)
523 enum {
524         ALLOC_NODE,                     /* allocate a new node page if needed */
525         LOOKUP_NODE,                    /* look up a node without readahead */
526         LOOKUP_NODE_RA,                 /*
527                                          * look up a node with readahead called
528                                          * by get_data_block.
529                                          */
530 };
531 
532 #define DEFAULT_RETRY_IO_COUNT  8       /* maximum retry read IO count */
533 
534 /* maximum retry quota flush count */
535 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT         8
536 
537 #define F2FS_LINK_MAX   0xffffffff      /* maximum link count per file */
538 
539 #define MAX_DIR_RA_PAGES        4       /* maximum ra pages of dir */
540 
541 /* for in-memory extent cache entry */
542 #define F2FS_MIN_EXTENT_LEN     64      /* minimum extent length */
543 
544 /* number of extent info in extent cache we try to shrink */
545 #define EXTENT_CACHE_SHRINK_NUMBER      128
546 
547 struct rb_entry {
548         struct rb_node rb_node;         /* rb node located in rb-tree */
549         unsigned int ofs;               /* start offset of the entry */
550         unsigned int len;               /* length of the entry */
551 };
552 
553 struct extent_info {
554         unsigned int fofs;              /* start offset in a file */
555         unsigned int len;               /* length of the extent */
556         u32 blk;                        /* start block address of the extent */
557 };
558 
559 struct extent_node {
560         struct rb_node rb_node;
561         union {
562                 struct {
563                         unsigned int fofs;
564                         unsigned int len;
565                         u32 blk;
566                 };
567                 struct extent_info ei;  /* extent info */
568 
569         };
570         struct list_head list;          /* node in global extent list of sbi */
571         struct extent_tree *et;         /* extent tree pointer */
572 };
573 
574 struct extent_tree {
575         nid_t ino;                      /* inode number */
576         struct rb_root_cached root;     /* root of extent info rb-tree */
577         struct extent_node *cached_en;  /* recently accessed extent node */
578         struct extent_info largest;     /* largested extent info */
579         struct list_head list;          /* to be used by sbi->zombie_list */
580         rwlock_t lock;                  /* protect extent info rb-tree */
581         atomic_t node_cnt;              /* # of extent node in rb-tree*/
582         bool largest_updated;           /* largest extent updated */
583 };
584 
585 /*
586  * This structure is taken from ext4_map_blocks.
587  *
588  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
589  */
590 #define F2FS_MAP_NEW            (1 << BH_New)
591 #define F2FS_MAP_MAPPED         (1 << BH_Mapped)
592 #define F2FS_MAP_UNWRITTEN      (1 << BH_Unwritten)
593 #define F2FS_MAP_FLAGS          (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
594                                 F2FS_MAP_UNWRITTEN)
595 
596 struct f2fs_map_blocks {
597         block_t m_pblk;
598         block_t m_lblk;
599         unsigned int m_len;
600         unsigned int m_flags;
601         pgoff_t *m_next_pgofs;          /* point next possible non-hole pgofs */
602         pgoff_t *m_next_extent;         /* point to next possible extent */
603         int m_seg_type;
604 };
605 
606 /* for flag in get_data_block */
607 enum {
608         F2FS_GET_BLOCK_DEFAULT,
609         F2FS_GET_BLOCK_FIEMAP,
610         F2FS_GET_BLOCK_BMAP,
611         F2FS_GET_BLOCK_DIO,
612         F2FS_GET_BLOCK_PRE_DIO,
613         F2FS_GET_BLOCK_PRE_AIO,
614         F2FS_GET_BLOCK_PRECACHE,
615 };
616 
617 /*
618  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
619  */
620 #define FADVISE_COLD_BIT        0x01
621 #define FADVISE_LOST_PINO_BIT   0x02
622 #define FADVISE_ENCRYPT_BIT     0x04
623 #define FADVISE_ENC_NAME_BIT    0x08
624 #define FADVISE_KEEP_SIZE_BIT   0x10
625 #define FADVISE_HOT_BIT         0x20
626 #define FADVISE_VERITY_BIT      0x40    /* reserved */
627 
628 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
629 
630 #define file_is_cold(inode)     is_file(inode, FADVISE_COLD_BIT)
631 #define file_wrong_pino(inode)  is_file(inode, FADVISE_LOST_PINO_BIT)
632 #define file_set_cold(inode)    set_file(inode, FADVISE_COLD_BIT)
633 #define file_lost_pino(inode)   set_file(inode, FADVISE_LOST_PINO_BIT)
634 #define file_clear_cold(inode)  clear_file(inode, FADVISE_COLD_BIT)
635 #define file_got_pino(inode)    clear_file(inode, FADVISE_LOST_PINO_BIT)
636 #define file_is_encrypt(inode)  is_file(inode, FADVISE_ENCRYPT_BIT)
637 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
638 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
639 #define file_enc_name(inode)    is_file(inode, FADVISE_ENC_NAME_BIT)
640 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
641 #define file_keep_isize(inode)  is_file(inode, FADVISE_KEEP_SIZE_BIT)
642 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
643 #define file_is_hot(inode)      is_file(inode, FADVISE_HOT_BIT)
644 #define file_set_hot(inode)     set_file(inode, FADVISE_HOT_BIT)
645 #define file_clear_hot(inode)   clear_file(inode, FADVISE_HOT_BIT)
646 
647 #define DEF_DIR_LEVEL           0
648 
649 enum {
650         GC_FAILURE_PIN,
651         GC_FAILURE_ATOMIC,
652         MAX_GC_FAILURE
653 };
654 
655 struct f2fs_inode_info {
656         struct inode vfs_inode;         /* serve a vfs inode */
657         unsigned long i_flags;          /* keep an inode flags for ioctl */
658         unsigned char i_advise;         /* use to give file attribute hints */
659         unsigned char i_dir_level;      /* use for dentry level for large dir */
660         unsigned int i_current_depth;   /* only for directory depth */
661         /* for gc failure statistic */
662         unsigned int i_gc_failures[MAX_GC_FAILURE];
663         unsigned int i_pino;            /* parent inode number */
664         umode_t i_acl_mode;             /* keep file acl mode temporarily */
665 
666         /* Use below internally in f2fs*/
667         unsigned long flags;            /* use to pass per-file flags */
668         struct rw_semaphore i_sem;      /* protect fi info */
669         atomic_t dirty_pages;           /* # of dirty pages */
670         f2fs_hash_t chash;              /* hash value of given file name */
671         unsigned int clevel;            /* maximum level of given file name */
672         struct task_struct *task;       /* lookup and create consistency */
673         struct task_struct *cp_task;    /* separate cp/wb IO stats*/
674         nid_t i_xattr_nid;              /* node id that contains xattrs */
675         loff_t  last_disk_size;         /* lastly written file size */
676 
677 #ifdef CONFIG_QUOTA
678         struct dquot *i_dquot[MAXQUOTAS];
679 
680         /* quota space reservation, managed internally by quota code */
681         qsize_t i_reserved_quota;
682 #endif
683         struct list_head dirty_list;    /* dirty list for dirs and files */
684         struct list_head gdirty_list;   /* linked in global dirty list */
685         struct list_head inmem_ilist;   /* list for inmem inodes */
686         struct list_head inmem_pages;   /* inmemory pages managed by f2fs */
687         struct task_struct *inmem_task; /* store inmemory task */
688         struct mutex inmem_lock;        /* lock for inmemory pages */
689         struct extent_tree *extent_tree;        /* cached extent_tree entry */
690 
691         /* avoid racing between foreground op and gc */
692         struct rw_semaphore i_gc_rwsem[2];
693         struct rw_semaphore i_mmap_sem;
694         struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
695 
696         int i_extra_isize;              /* size of extra space located in i_addr */
697         kprojid_t i_projid;             /* id for project quota */
698         int i_inline_xattr_size;        /* inline xattr size */
699         struct timespec64 i_crtime;     /* inode creation time */
700         struct timespec64 i_disk_time[4];/* inode disk times */
701 };
702 
703 static inline void get_extent_info(struct extent_info *ext,
704                                         struct f2fs_extent *i_ext)
705 {
706         ext->fofs = le32_to_cpu(i_ext->fofs);
707         ext->blk = le32_to_cpu(i_ext->blk);
708         ext->len = le32_to_cpu(i_ext->len);
709 }
710 
711 static inline void set_raw_extent(struct extent_info *ext,
712                                         struct f2fs_extent *i_ext)
713 {
714         i_ext->fofs = cpu_to_le32(ext->fofs);
715         i_ext->blk = cpu_to_le32(ext->blk);
716         i_ext->len = cpu_to_le32(ext->len);
717 }
718 
719 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
720                                                 u32 blk, unsigned int len)
721 {
722         ei->fofs = fofs;
723         ei->blk = blk;
724         ei->len = len;
725 }
726 
727 static inline bool __is_discard_mergeable(struct discard_info *back,
728                         struct discard_info *front, unsigned int max_len)
729 {
730         return (back->lstart + back->len == front->lstart) &&
731                 (back->len + front->len <= max_len);
732 }
733 
734 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
735                         struct discard_info *back, unsigned int max_len)
736 {
737         return __is_discard_mergeable(back, cur, max_len);
738 }
739 
740 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
741                         struct discard_info *front, unsigned int max_len)
742 {
743         return __is_discard_mergeable(cur, front, max_len);
744 }
745 
746 static inline bool __is_extent_mergeable(struct extent_info *back,
747                                                 struct extent_info *front)
748 {
749         return (back->fofs + back->len == front->fofs &&
750                         back->blk + back->len == front->blk);
751 }
752 
753 static inline bool __is_back_mergeable(struct extent_info *cur,
754                                                 struct extent_info *back)
755 {
756         return __is_extent_mergeable(back, cur);
757 }
758 
759 static inline bool __is_front_mergeable(struct extent_info *cur,
760                                                 struct extent_info *front)
761 {
762         return __is_extent_mergeable(cur, front);
763 }
764 
765 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
766 static inline void __try_update_largest_extent(struct extent_tree *et,
767                                                 struct extent_node *en)
768 {
769         if (en->ei.len > et->largest.len) {
770                 et->largest = en->ei;
771                 et->largest_updated = true;
772         }
773 }
774 
775 /*
776  * For free nid management
777  */
778 enum nid_state {
779         FREE_NID,               /* newly added to free nid list */
780         PREALLOC_NID,           /* it is preallocated */
781         MAX_NID_STATE,
782 };
783 
784 struct f2fs_nm_info {
785         block_t nat_blkaddr;            /* base disk address of NAT */
786         nid_t max_nid;                  /* maximum possible node ids */
787         nid_t available_nids;           /* # of available node ids */
788         nid_t next_scan_nid;            /* the next nid to be scanned */
789         unsigned int ram_thresh;        /* control the memory footprint */
790         unsigned int ra_nid_pages;      /* # of nid pages to be readaheaded */
791         unsigned int dirty_nats_ratio;  /* control dirty nats ratio threshold */
792 
793         /* NAT cache management */
794         struct radix_tree_root nat_root;/* root of the nat entry cache */
795         struct radix_tree_root nat_set_root;/* root of the nat set cache */
796         struct rw_semaphore nat_tree_lock;      /* protect nat_tree_lock */
797         struct list_head nat_entries;   /* cached nat entry list (clean) */
798         spinlock_t nat_list_lock;       /* protect clean nat entry list */
799         unsigned int nat_cnt;           /* the # of cached nat entries */
800         unsigned int dirty_nat_cnt;     /* total num of nat entries in set */
801         unsigned int nat_blocks;        /* # of nat blocks */
802 
803         /* free node ids management */
804         struct radix_tree_root free_nid_root;/* root of the free_nid cache */
805         struct list_head free_nid_list;         /* list for free nids excluding preallocated nids */
806         unsigned int nid_cnt[MAX_NID_STATE];    /* the number of free node id */
807         spinlock_t nid_list_lock;       /* protect nid lists ops */
808         struct mutex build_lock;        /* lock for build free nids */
809         unsigned char **free_nid_bitmap;
810         unsigned char *nat_block_bitmap;
811         unsigned short *free_nid_count; /* free nid count of NAT block */
812 
813         /* for checkpoint */
814         char *nat_bitmap;               /* NAT bitmap pointer */
815 
816         unsigned int nat_bits_blocks;   /* # of nat bits blocks */
817         unsigned char *nat_bits;        /* NAT bits blocks */
818         unsigned char *full_nat_bits;   /* full NAT pages */
819         unsigned char *empty_nat_bits;  /* empty NAT pages */
820 #ifdef CONFIG_F2FS_CHECK_FS
821         char *nat_bitmap_mir;           /* NAT bitmap mirror */
822 #endif
823         int bitmap_size;                /* bitmap size */
824 };
825 
826 /*
827  * this structure is used as one of function parameters.
828  * all the information are dedicated to a given direct node block determined
829  * by the data offset in a file.
830  */
831 struct dnode_of_data {
832         struct inode *inode;            /* vfs inode pointer */
833         struct page *inode_page;        /* its inode page, NULL is possible */
834         struct page *node_page;         /* cached direct node page */
835         nid_t nid;                      /* node id of the direct node block */
836         unsigned int ofs_in_node;       /* data offset in the node page */
837         bool inode_page_locked;         /* inode page is locked or not */
838         bool node_changed;              /* is node block changed */
839         char cur_level;                 /* level of hole node page */
840         char max_level;                 /* level of current page located */
841         block_t data_blkaddr;           /* block address of the node block */
842 };
843 
844 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
845                 struct page *ipage, struct page *npage, nid_t nid)
846 {
847         memset(dn, 0, sizeof(*dn));
848         dn->inode = inode;
849         dn->inode_page = ipage;
850         dn->node_page = npage;
851         dn->nid = nid;
852 }
853 
854 /*
855  * For SIT manager
856  *
857  * By default, there are 6 active log areas across the whole main area.
858  * When considering hot and cold data separation to reduce cleaning overhead,
859  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
860  * respectively.
861  * In the current design, you should not change the numbers intentionally.
862  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
863  * logs individually according to the underlying devices. (default: 6)
864  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
865  * data and 8 for node logs.
866  */
867 #define NR_CURSEG_DATA_TYPE     (3)
868 #define NR_CURSEG_NODE_TYPE     (3)
869 #define NR_CURSEG_TYPE  (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
870 
871 enum {
872         CURSEG_HOT_DATA = 0,    /* directory entry blocks */
873         CURSEG_WARM_DATA,       /* data blocks */
874         CURSEG_COLD_DATA,       /* multimedia or GCed data blocks */
875         CURSEG_HOT_NODE,        /* direct node blocks of directory files */
876         CURSEG_WARM_NODE,       /* direct node blocks of normal files */
877         CURSEG_COLD_NODE,       /* indirect node blocks */
878         NO_CHECK_TYPE,
879 };
880 
881 struct flush_cmd {
882         struct completion wait;
883         struct llist_node llnode;
884         nid_t ino;
885         int ret;
886 };
887 
888 struct flush_cmd_control {
889         struct task_struct *f2fs_issue_flush;   /* flush thread */
890         wait_queue_head_t flush_wait_queue;     /* waiting queue for wake-up */
891         atomic_t issued_flush;                  /* # of issued flushes */
892         atomic_t issing_flush;                  /* # of issing flushes */
893         struct llist_head issue_list;           /* list for command issue */
894         struct llist_node *dispatch_list;       /* list for command dispatch */
895 };
896 
897 struct f2fs_sm_info {
898         struct sit_info *sit_info;              /* whole segment information */
899         struct free_segmap_info *free_info;     /* free segment information */
900         struct dirty_seglist_info *dirty_info;  /* dirty segment information */
901         struct curseg_info *curseg_array;       /* active segment information */
902 
903         struct rw_semaphore curseg_lock;        /* for preventing curseg change */
904 
905         block_t seg0_blkaddr;           /* block address of 0'th segment */
906         block_t main_blkaddr;           /* start block address of main area */
907         block_t ssa_blkaddr;            /* start block address of SSA area */
908 
909         unsigned int segment_count;     /* total # of segments */
910         unsigned int main_segments;     /* # of segments in main area */
911         unsigned int reserved_segments; /* # of reserved segments */
912         unsigned int ovp_segments;      /* # of overprovision segments */
913 
914         /* a threshold to reclaim prefree segments */
915         unsigned int rec_prefree_segments;
916 
917         /* for batched trimming */
918         unsigned int trim_sections;             /* # of sections to trim */
919 
920         struct list_head sit_entry_set; /* sit entry set list */
921 
922         unsigned int ipu_policy;        /* in-place-update policy */
923         unsigned int min_ipu_util;      /* in-place-update threshold */
924         unsigned int min_fsync_blocks;  /* threshold for fsync */
925         unsigned int min_seq_blocks;    /* threshold for sequential blocks */
926         unsigned int min_hot_blocks;    /* threshold for hot block allocation */
927         unsigned int min_ssr_sections;  /* threshold to trigger SSR allocation */
928 
929         /* for flush command control */
930         struct flush_cmd_control *fcc_info;
931 
932         /* for discard command control */
933         struct discard_cmd_control *dcc_info;
934 };
935 
936 /*
937  * For superblock
938  */
939 /*
940  * COUNT_TYPE for monitoring
941  *
942  * f2fs monitors the number of several block types such as on-writeback,
943  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
944  */
945 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
946 enum count_type {
947         F2FS_DIRTY_DENTS,
948         F2FS_DIRTY_DATA,
949         F2FS_DIRTY_QDATA,
950         F2FS_DIRTY_NODES,
951         F2FS_DIRTY_META,
952         F2FS_INMEM_PAGES,
953         F2FS_DIRTY_IMETA,
954         F2FS_WB_CP_DATA,
955         F2FS_WB_DATA,
956         F2FS_RD_DATA,
957         F2FS_RD_NODE,
958         F2FS_RD_META,
959         NR_COUNT_TYPE,
960 };
961 
962 /*
963  * The below are the page types of bios used in submit_bio().
964  * The available types are:
965  * DATA                 User data pages. It operates as async mode.
966  * NODE                 Node pages. It operates as async mode.
967  * META                 FS metadata pages such as SIT, NAT, CP.
968  * NR_PAGE_TYPE         The number of page types.
969  * META_FLUSH           Make sure the previous pages are written
970  *                      with waiting the bio's completion
971  * ...                  Only can be used with META.
972  */
973 #define PAGE_TYPE_OF_BIO(type)  ((type) > META ? META : (type))
974 enum page_type {
975         DATA,
976         NODE,
977         META,
978         NR_PAGE_TYPE,
979         META_FLUSH,
980         INMEM,          /* the below types are used by tracepoints only. */
981         INMEM_DROP,
982         INMEM_INVALIDATE,
983         INMEM_REVOKE,
984         IPU,
985         OPU,
986 };
987 
988 enum temp_type {
989         HOT = 0,        /* must be zero for meta bio */
990         WARM,
991         COLD,
992         NR_TEMP_TYPE,
993 };
994 
995 enum need_lock_type {
996         LOCK_REQ = 0,
997         LOCK_DONE,
998         LOCK_RETRY,
999 };
1000 
1001 enum cp_reason_type {
1002         CP_NO_NEEDED,
1003         CP_NON_REGULAR,
1004         CP_HARDLINK,
1005         CP_SB_NEED_CP,
1006         CP_WRONG_PINO,
1007         CP_NO_SPC_ROLL,
1008         CP_NODE_NEED_CP,
1009         CP_FASTBOOT_MODE,
1010         CP_SPEC_LOG_NUM,
1011         CP_RECOVER_DIR,
1012 };
1013 
1014 enum iostat_type {
1015         APP_DIRECT_IO,                  /* app direct IOs */
1016         APP_BUFFERED_IO,                /* app buffered IOs */
1017         APP_WRITE_IO,                   /* app write IOs */
1018         APP_MAPPED_IO,                  /* app mapped IOs */
1019         FS_DATA_IO,                     /* data IOs from kworker/fsync/reclaimer */
1020         FS_NODE_IO,                     /* node IOs from kworker/fsync/reclaimer */
1021         FS_META_IO,                     /* meta IOs from kworker/reclaimer */
1022         FS_GC_DATA_IO,                  /* data IOs from forground gc */
1023         FS_GC_NODE_IO,                  /* node IOs from forground gc */
1024         FS_CP_DATA_IO,                  /* data IOs from checkpoint */
1025         FS_CP_NODE_IO,                  /* node IOs from checkpoint */
1026         FS_CP_META_IO,                  /* meta IOs from checkpoint */
1027         FS_DISCARD,                     /* discard */
1028         NR_IO_TYPE,
1029 };
1030 
1031 struct f2fs_io_info {
1032         struct f2fs_sb_info *sbi;       /* f2fs_sb_info pointer */
1033         nid_t ino;              /* inode number */
1034         enum page_type type;    /* contains DATA/NODE/META/META_FLUSH */
1035         enum temp_type temp;    /* contains HOT/WARM/COLD */
1036         int op;                 /* contains REQ_OP_ */
1037         int op_flags;           /* req_flag_bits */
1038         block_t new_blkaddr;    /* new block address to be written */
1039         block_t old_blkaddr;    /* old block address before Cow */
1040         struct page *page;      /* page to be written */
1041         struct page *encrypted_page;    /* encrypted page */
1042         struct list_head list;          /* serialize IOs */
1043         bool submitted;         /* indicate IO submission */
1044         int need_lock;          /* indicate we need to lock cp_rwsem */
1045         bool in_list;           /* indicate fio is in io_list */
1046         bool is_meta;           /* indicate borrow meta inode mapping or not */
1047         bool retry;             /* need to reallocate block address */
1048         enum iostat_type io_type;       /* io type */
1049         struct writeback_control *io_wbc; /* writeback control */
1050         unsigned char version;          /* version of the node */
1051 };
1052 
1053 #define is_read_io(rw) ((rw) == READ)
1054 struct f2fs_bio_info {
1055         struct f2fs_sb_info *sbi;       /* f2fs superblock */
1056         struct bio *bio;                /* bios to merge */
1057         sector_t last_block_in_bio;     /* last block number */
1058         struct f2fs_io_info fio;        /* store buffered io info. */
1059         struct rw_semaphore io_rwsem;   /* blocking op for bio */
1060         spinlock_t io_lock;             /* serialize DATA/NODE IOs */
1061         struct list_head io_list;       /* track fios */
1062 };
1063 
1064 #define FDEV(i)                         (sbi->devs[i])
1065 #define RDEV(i)                         (raw_super->devs[i])
1066 struct f2fs_dev_info {
1067         struct block_device *bdev;
1068         char path[MAX_PATH_LEN];
1069         unsigned int total_segments;
1070         block_t start_blk;
1071         block_t end_blk;
1072 #ifdef CONFIG_BLK_DEV_ZONED
1073         unsigned int nr_blkz;                   /* Total number of zones */
1074         u8 *blkz_type;                          /* Array of zones type */
1075 #endif
1076 };
1077 
1078 enum inode_type {
1079         DIR_INODE,                      /* for dirty dir inode */
1080         FILE_INODE,                     /* for dirty regular/symlink inode */
1081         DIRTY_META,                     /* for all dirtied inode metadata */
1082         ATOMIC_FILE,                    /* for all atomic files */
1083         NR_INODE_TYPE,
1084 };
1085 
1086 /* for inner inode cache management */
1087 struct inode_management {
1088         struct radix_tree_root ino_root;        /* ino entry array */
1089         spinlock_t ino_lock;                    /* for ino entry lock */
1090         struct list_head ino_list;              /* inode list head */
1091         unsigned long ino_num;                  /* number of entries */
1092 };
1093 
1094 /* For s_flag in struct f2fs_sb_info */
1095 enum {
1096         SBI_IS_DIRTY,                           /* dirty flag for checkpoint */
1097         SBI_IS_CLOSE,                           /* specify unmounting */
1098         SBI_NEED_FSCK,                          /* need fsck.f2fs to fix */
1099         SBI_POR_DOING,                          /* recovery is doing or not */
1100         SBI_NEED_SB_WRITE,                      /* need to recover superblock */
1101         SBI_NEED_CP,                            /* need to checkpoint */
1102         SBI_IS_SHUTDOWN,                        /* shutdown by ioctl */
1103         SBI_IS_RECOVERED,                       /* recovered orphan/data */
1104         SBI_CP_DISABLED,                        /* CP was disabled last mount */
1105         SBI_QUOTA_NEED_FLUSH,                   /* need to flush quota info in CP */
1106         SBI_QUOTA_SKIP_FLUSH,                   /* skip flushing quota in current CP */
1107         SBI_QUOTA_NEED_REPAIR,                  /* quota file may be corrupted */
1108 };
1109 
1110 enum {
1111         CP_TIME,
1112         REQ_TIME,
1113         DISCARD_TIME,
1114         GC_TIME,
1115         DISABLE_TIME,
1116         MAX_TIME,
1117 };
1118 
1119 enum {
1120         GC_NORMAL,
1121         GC_IDLE_CB,
1122         GC_IDLE_GREEDY,
1123         GC_URGENT,
1124 };
1125 
1126 enum {
1127         WHINT_MODE_OFF,         /* not pass down write hints */
1128         WHINT_MODE_USER,        /* try to pass down hints given by users */
1129         WHINT_MODE_FS,          /* pass down hints with F2FS policy */
1130 };
1131 
1132 enum {
1133         ALLOC_MODE_DEFAULT,     /* stay default */
1134         ALLOC_MODE_REUSE,       /* reuse segments as much as possible */
1135 };
1136 
1137 enum fsync_mode {
1138         FSYNC_MODE_POSIX,       /* fsync follows posix semantics */
1139         FSYNC_MODE_STRICT,      /* fsync behaves in line with ext4 */
1140         FSYNC_MODE_NOBARRIER,   /* fsync behaves nobarrier based on posix */
1141 };
1142 
1143 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1144 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1145                         (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1146 #else
1147 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1148 #endif
1149 
1150 struct f2fs_sb_info {
1151         struct super_block *sb;                 /* pointer to VFS super block */
1152         struct proc_dir_entry *s_proc;          /* proc entry */
1153         struct f2fs_super_block *raw_super;     /* raw super block pointer */
1154         struct rw_semaphore sb_lock;            /* lock for raw super block */
1155         int valid_super_block;                  /* valid super block no */
1156         unsigned long s_flag;                           /* flags for sbi */
1157         struct mutex writepages;                /* mutex for writepages() */
1158 
1159 #ifdef CONFIG_BLK_DEV_ZONED
1160         unsigned int blocks_per_blkz;           /* F2FS blocks per zone */
1161         unsigned int log_blocks_per_blkz;       /* log2 F2FS blocks per zone */
1162 #endif
1163 
1164         /* for node-related operations */
1165         struct f2fs_nm_info *nm_info;           /* node manager */
1166         struct inode *node_inode;               /* cache node blocks */
1167 
1168         /* for segment-related operations */
1169         struct f2fs_sm_info *sm_info;           /* segment manager */
1170 
1171         /* for bio operations */
1172         struct f2fs_bio_info *write_io[NR_PAGE_TYPE];   /* for write bios */
1173         struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1174                                                 /* bio ordering for NODE/DATA */
1175         /* keep migration IO order for LFS mode */
1176         struct rw_semaphore io_order_lock;
1177         mempool_t *write_io_dummy;              /* Dummy pages */
1178 
1179         /* for checkpoint */
1180         struct f2fs_checkpoint *ckpt;           /* raw checkpoint pointer */
1181         int cur_cp_pack;                        /* remain current cp pack */
1182         spinlock_t cp_lock;                     /* for flag in ckpt */
1183         struct inode *meta_inode;               /* cache meta blocks */
1184         struct mutex cp_mutex;                  /* checkpoint procedure lock */
1185         struct rw_semaphore cp_rwsem;           /* blocking FS operations */
1186         struct rw_semaphore node_write;         /* locking node writes */
1187         struct rw_semaphore node_change;        /* locking node change */
1188         wait_queue_head_t cp_wait;
1189         unsigned long last_time[MAX_TIME];      /* to store time in jiffies */
1190         long interval_time[MAX_TIME];           /* to store thresholds */
1191 
1192         struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1193 
1194         spinlock_t fsync_node_lock;             /* for node entry lock */
1195         struct list_head fsync_node_list;       /* node list head */
1196         unsigned int fsync_seg_id;              /* sequence id */
1197         unsigned int fsync_node_num;            /* number of node entries */
1198 
1199         /* for orphan inode, use 0'th array */
1200         unsigned int max_orphans;               /* max orphan inodes */
1201 
1202         /* for inode management */
1203         struct list_head inode_list[NR_INODE_TYPE];     /* dirty inode list */
1204         spinlock_t inode_lock[NR_INODE_TYPE];   /* for dirty inode list lock */
1205 
1206         /* for extent tree cache */
1207         struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1208         struct mutex extent_tree_lock;  /* locking extent radix tree */
1209         struct list_head extent_list;           /* lru list for shrinker */
1210         spinlock_t extent_lock;                 /* locking extent lru list */
1211         atomic_t total_ext_tree;                /* extent tree count */
1212         struct list_head zombie_list;           /* extent zombie tree list */
1213         atomic_t total_zombie_tree;             /* extent zombie tree count */
1214         atomic_t total_ext_node;                /* extent info count */
1215 
1216         /* basic filesystem units */
1217         unsigned int log_sectors_per_block;     /* log2 sectors per block */
1218         unsigned int log_blocksize;             /* log2 block size */
1219         unsigned int blocksize;                 /* block size */
1220         unsigned int root_ino_num;              /* root inode number*/
1221         unsigned int node_ino_num;              /* node inode number*/
1222         unsigned int meta_ino_num;              /* meta inode number*/
1223         unsigned int log_blocks_per_seg;        /* log2 blocks per segment */
1224         unsigned int blocks_per_seg;            /* blocks per segment */
1225         unsigned int segs_per_sec;              /* segments per section */
1226         unsigned int secs_per_zone;             /* sections per zone */
1227         unsigned int total_sections;            /* total section count */
1228         unsigned int total_node_count;          /* total node block count */
1229         unsigned int total_valid_node_count;    /* valid node block count */
1230         loff_t max_file_blocks;                 /* max block index of file */
1231         int dir_level;                          /* directory level */
1232         int readdir_ra;                         /* readahead inode in readdir */
1233 
1234         block_t user_block_count;               /* # of user blocks */
1235         block_t total_valid_block_count;        /* # of valid blocks */
1236         block_t discard_blks;                   /* discard command candidats */
1237         block_t last_valid_block_count;         /* for recovery */
1238         block_t reserved_blocks;                /* configurable reserved blocks */
1239         block_t current_reserved_blocks;        /* current reserved blocks */
1240 
1241         /* Additional tracking for no checkpoint mode */
1242         block_t unusable_block_count;           /* # of blocks saved by last cp */
1243 
1244         unsigned int nquota_files;              /* # of quota sysfile */
1245 
1246         u32 s_next_generation;                  /* for NFS support */
1247 
1248         /* # of pages, see count_type */
1249         atomic_t nr_pages[NR_COUNT_TYPE];
1250         /* # of allocated blocks */
1251         struct percpu_counter alloc_valid_block_count;
1252 
1253         /* writeback control */
1254         atomic_t wb_sync_req[META];     /* count # of WB_SYNC threads */
1255 
1256         /* valid inode count */
1257         struct percpu_counter total_valid_inode_count;
1258 
1259         struct f2fs_mount_info mount_opt;       /* mount options */
1260 
1261         /* for cleaning operations */
1262         struct mutex gc_mutex;                  /* mutex for GC */
1263         struct f2fs_gc_kthread  *gc_thread;     /* GC thread */
1264         unsigned int cur_victim_sec;            /* current victim section num */
1265         unsigned int gc_mode;                   /* current GC state */
1266         /* for skip statistic */
1267         unsigned long long skipped_atomic_files[2];     /* FG_GC and BG_GC */
1268         unsigned long long skipped_gc_rwsem;            /* FG_GC only */
1269 
1270         /* threshold for gc trials on pinned files */
1271         u64 gc_pin_file_threshold;
1272 
1273         /* maximum # of trials to find a victim segment for SSR and GC */
1274         unsigned int max_victim_search;
1275 
1276         /*
1277          * for stat information.
1278          * one is for the LFS mode, and the other is for the SSR mode.
1279          */
1280 #ifdef CONFIG_F2FS_STAT_FS
1281         struct f2fs_stat_info *stat_info;       /* FS status information */
1282         atomic_t meta_count[META_MAX];          /* # of meta blocks */
1283         unsigned int segment_count[2];          /* # of allocated segments */
1284         unsigned int block_count[2];            /* # of allocated blocks */
1285         atomic_t inplace_count;         /* # of inplace update */
1286         atomic64_t total_hit_ext;               /* # of lookup extent cache */
1287         atomic64_t read_hit_rbtree;             /* # of hit rbtree extent node */
1288         atomic64_t read_hit_largest;            /* # of hit largest extent node */
1289         atomic64_t read_hit_cached;             /* # of hit cached extent node */
1290         atomic_t inline_xattr;                  /* # of inline_xattr inodes */
1291         atomic_t inline_inode;                  /* # of inline_data inodes */
1292         atomic_t inline_dir;                    /* # of inline_dentry inodes */
1293         atomic_t aw_cnt;                        /* # of atomic writes */
1294         atomic_t vw_cnt;                        /* # of volatile writes */
1295         atomic_t max_aw_cnt;                    /* max # of atomic writes */
1296         atomic_t max_vw_cnt;                    /* max # of volatile writes */
1297         int bg_gc;                              /* background gc calls */
1298         unsigned int io_skip_bggc;              /* skip background gc for in-flight IO */
1299         unsigned int other_skip_bggc;           /* skip background gc for other reasons */
1300         unsigned int ndirty_inode[NR_INODE_TYPE];       /* # of dirty inodes */
1301 #endif
1302         spinlock_t stat_lock;                   /* lock for stat operations */
1303 
1304         /* For app/fs IO statistics */
1305         spinlock_t iostat_lock;
1306         unsigned long long write_iostat[NR_IO_TYPE];
1307         bool iostat_enable;
1308 
1309         /* For sysfs suppport */
1310         struct kobject s_kobj;
1311         struct completion s_kobj_unregister;
1312 
1313         /* For shrinker support */
1314         struct list_head s_list;
1315         int s_ndevs;                            /* number of devices */
1316         struct f2fs_dev_info *devs;             /* for device list */
1317         unsigned int dirty_device;              /* for checkpoint data flush */
1318         spinlock_t dev_lock;                    /* protect dirty_device */
1319         struct mutex umount_mutex;
1320         unsigned int shrinker_run_no;
1321 
1322         /* For write statistics */
1323         u64 sectors_written_start;
1324         u64 kbytes_written;
1325 
1326         /* Reference to checksum algorithm driver via cryptoapi */
1327         struct crypto_shash *s_chksum_driver;
1328 
1329         /* Precomputed FS UUID checksum for seeding other checksums */
1330         __u32 s_chksum_seed;
1331 };
1332 
1333 #ifdef CONFIG_F2FS_FAULT_INJECTION
1334 #define f2fs_show_injection_info(type)                                  \
1335         printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",      \
1336                 KERN_INFO, f2fs_fault_name[type],                       \
1337                 __func__, __builtin_return_address(0))
1338 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1339 {
1340         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1341 
1342         if (!ffi->inject_rate)
1343                 return false;
1344 
1345         if (!IS_FAULT_SET(ffi, type))
1346                 return false;
1347 
1348         atomic_inc(&ffi->inject_ops);
1349         if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1350                 atomic_set(&ffi->inject_ops, 0);
1351                 return true;
1352         }
1353         return false;
1354 }
1355 #else
1356 #define f2fs_show_injection_info(type) do { } while (0)
1357 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1358 {
1359         return false;
1360 }
1361 #endif
1362 
1363 /* For write statistics. Suppose sector size is 512 bytes,
1364  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1365  */
1366 #define BD_PART_WRITTEN(s)                                               \
1367 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1368                 (s)->sectors_written_start) >> 1)
1369 
1370 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1371 {
1372         unsigned long now = jiffies;
1373 
1374         sbi->last_time[type] = now;
1375 
1376         /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1377         if (type == REQ_TIME) {
1378                 sbi->last_time[DISCARD_TIME] = now;
1379                 sbi->last_time[GC_TIME] = now;
1380         }
1381 }
1382 
1383 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1384 {
1385         unsigned long interval = sbi->interval_time[type] * HZ;
1386 
1387         return time_after(jiffies, sbi->last_time[type] + interval);
1388 }
1389 
1390 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1391                                                 int type)
1392 {
1393         unsigned long interval = sbi->interval_time[type] * HZ;
1394         unsigned int wait_ms = 0;
1395         long delta;
1396 
1397         delta = (sbi->last_time[type] + interval) - jiffies;
1398         if (delta > 0)
1399                 wait_ms = jiffies_to_msecs(delta);
1400 
1401         return wait_ms;
1402 }
1403 
1404 /*
1405  * Inline functions
1406  */
1407 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1408                               const void *address, unsigned int length)
1409 {
1410         struct {
1411                 struct shash_desc shash;
1412                 char ctx[4];
1413         } desc;
1414         int err;
1415 
1416         BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1417 
1418         desc.shash.tfm = sbi->s_chksum_driver;
1419         desc.shash.flags = 0;
1420         *(u32 *)desc.ctx = crc;
1421 
1422         err = crypto_shash_update(&desc.shash, address, length);
1423         BUG_ON(err);
1424 
1425         return *(u32 *)desc.ctx;
1426 }
1427 
1428 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1429                            unsigned int length)
1430 {
1431         return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1432 }
1433 
1434 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1435                                   void *buf, size_t buf_size)
1436 {
1437         return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1438 }
1439 
1440 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1441                               const void *address, unsigned int length)
1442 {
1443         return __f2fs_crc32(sbi, crc, address, length);
1444 }
1445 
1446 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1447 {
1448         return container_of(inode, struct f2fs_inode_info, vfs_inode);
1449 }
1450 
1451 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1452 {
1453         return sb->s_fs_info;
1454 }
1455 
1456 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1457 {
1458         return F2FS_SB(inode->i_sb);
1459 }
1460 
1461 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1462 {
1463         return F2FS_I_SB(mapping->host);
1464 }
1465 
1466 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1467 {
1468         return F2FS_M_SB(page->mapping);
1469 }
1470 
1471 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1472 {
1473         return (struct f2fs_super_block *)(sbi->raw_super);
1474 }
1475 
1476 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1477 {
1478         return (struct f2fs_checkpoint *)(sbi->ckpt);
1479 }
1480 
1481 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1482 {
1483         return (struct f2fs_node *)page_address(page);
1484 }
1485 
1486 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1487 {
1488         return &((struct f2fs_node *)page_address(page))->i;
1489 }
1490 
1491 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1492 {
1493         return (struct f2fs_nm_info *)(sbi->nm_info);
1494 }
1495 
1496 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1497 {
1498         return (struct f2fs_sm_info *)(sbi->sm_info);
1499 }
1500 
1501 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1502 {
1503         return (struct sit_info *)(SM_I(sbi)->sit_info);
1504 }
1505 
1506 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1507 {
1508         return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1509 }
1510 
1511 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1512 {
1513         return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1514 }
1515 
1516 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1517 {
1518         return sbi->meta_inode->i_mapping;
1519 }
1520 
1521 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1522 {
1523         return sbi->node_inode->i_mapping;
1524 }
1525 
1526 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1527 {
1528         return test_bit(type, &sbi->s_flag);
1529 }
1530 
1531 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1532 {
1533         set_bit(type, &sbi->s_flag);
1534 }
1535 
1536 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1537 {
1538         clear_bit(type, &sbi->s_flag);
1539 }
1540 
1541 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1542 {
1543         return le64_to_cpu(cp->checkpoint_ver);
1544 }
1545 
1546 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1547 {
1548         if (type < F2FS_MAX_QUOTAS)
1549                 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1550         return 0;
1551 }
1552 
1553 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1554 {
1555         size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1556         return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1557 }
1558 
1559 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1560 {
1561         unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1562 
1563         return ckpt_flags & f;
1564 }
1565 
1566 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1567 {
1568         return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1569 }
1570 
1571 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1572 {
1573         unsigned int ckpt_flags;
1574 
1575         ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1576         ckpt_flags |= f;
1577         cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1578 }
1579 
1580 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1581 {
1582         unsigned long flags;
1583 
1584         spin_lock_irqsave(&sbi->cp_lock, flags);
1585         __set_ckpt_flags(F2FS_CKPT(sbi), f);
1586         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1587 }
1588 
1589 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1590 {
1591         unsigned int ckpt_flags;
1592 
1593         ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1594         ckpt_flags &= (~f);
1595         cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1596 }
1597 
1598 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1599 {
1600         unsigned long flags;
1601 
1602         spin_lock_irqsave(&sbi->cp_lock, flags);
1603         __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1604         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1605 }
1606 
1607 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1608 {
1609         unsigned long flags;
1610 
1611         set_sbi_flag(sbi, SBI_NEED_FSCK);
1612 
1613         if (lock)
1614                 spin_lock_irqsave(&sbi->cp_lock, flags);
1615         __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1616         kfree(NM_I(sbi)->nat_bits);
1617         NM_I(sbi)->nat_bits = NULL;
1618         if (lock)
1619                 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1620 }
1621 
1622 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1623                                         struct cp_control *cpc)
1624 {
1625         bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1626 
1627         return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1628 }
1629 
1630 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1631 {
1632         down_read(&sbi->cp_rwsem);
1633 }
1634 
1635 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1636 {
1637         return down_read_trylock(&sbi->cp_rwsem);
1638 }
1639 
1640 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1641 {
1642         up_read(&sbi->cp_rwsem);
1643 }
1644 
1645 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1646 {
1647         down_write(&sbi->cp_rwsem);
1648 }
1649 
1650 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1651 {
1652         up_write(&sbi->cp_rwsem);
1653 }
1654 
1655 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1656 {
1657         int reason = CP_SYNC;
1658 
1659         if (test_opt(sbi, FASTBOOT))
1660                 reason = CP_FASTBOOT;
1661         if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1662                 reason = CP_UMOUNT;
1663         return reason;
1664 }
1665 
1666 static inline bool __remain_node_summaries(int reason)
1667 {
1668         return (reason & (CP_UMOUNT | CP_FASTBOOT));
1669 }
1670 
1671 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1672 {
1673         return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1674                         is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1675 }
1676 
1677 /*
1678  * Check whether the inode has blocks or not
1679  */
1680 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1681 {
1682         block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1683 
1684         return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1685 }
1686 
1687 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1688 {
1689         return ofs == XATTR_NODE_OFFSET;
1690 }
1691 
1692 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1693                                         struct inode *inode, bool cap)
1694 {
1695         if (!inode)
1696                 return true;
1697         if (!test_opt(sbi, RESERVE_ROOT))
1698                 return false;
1699         if (IS_NOQUOTA(inode))
1700                 return true;
1701         if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1702                 return true;
1703         if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1704                                         in_group_p(F2FS_OPTION(sbi).s_resgid))
1705                 return true;
1706         if (cap && capable(CAP_SYS_RESOURCE))
1707                 return true;
1708         return false;
1709 }
1710 
1711 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1712 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1713                                  struct inode *inode, blkcnt_t *count)
1714 {
1715         blkcnt_t diff = 0, release = 0;
1716         block_t avail_user_block_count;
1717         int ret;
1718 
1719         ret = dquot_reserve_block(inode, *count);
1720         if (ret)
1721                 return ret;
1722 
1723         if (time_to_inject(sbi, FAULT_BLOCK)) {
1724                 f2fs_show_injection_info(FAULT_BLOCK);
1725                 release = *count;
1726                 goto enospc;
1727         }
1728 
1729         /*
1730          * let's increase this in prior to actual block count change in order
1731          * for f2fs_sync_file to avoid data races when deciding checkpoint.
1732          */
1733         percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1734 
1735         spin_lock(&sbi->stat_lock);
1736         sbi->total_valid_block_count += (block_t)(*count);
1737         avail_user_block_count = sbi->user_block_count -
1738                                         sbi->current_reserved_blocks;
1739 
1740         if (!__allow_reserved_blocks(sbi, inode, true))
1741                 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1742         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1743                 avail_user_block_count -= sbi->unusable_block_count;
1744         if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1745                 diff = sbi->total_valid_block_count - avail_user_block_count;
1746                 if (diff > *count)
1747                         diff = *count;
1748                 *count -= diff;
1749                 release = diff;
1750                 sbi->total_valid_block_count -= diff;
1751                 if (!*count) {
1752                         spin_unlock(&sbi->stat_lock);
1753                         goto enospc;
1754                 }
1755         }
1756         spin_unlock(&sbi->stat_lock);
1757 
1758         if (unlikely(release)) {
1759                 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1760                 dquot_release_reservation_block(inode, release);
1761         }
1762         f2fs_i_blocks_write(inode, *count, true, true);
1763         return 0;
1764 
1765 enospc:
1766         percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1767         dquot_release_reservation_block(inode, release);
1768         return -ENOSPC;
1769 }
1770 
1771 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1772                                                 struct inode *inode,
1773                                                 block_t count)
1774 {
1775         blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1776 
1777         spin_lock(&sbi->stat_lock);
1778         f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1779         f2fs_bug_on(sbi, inode->i_blocks < sectors);
1780         sbi->total_valid_block_count -= (block_t)count;
1781         if (sbi->reserved_blocks &&
1782                 sbi->current_reserved_blocks < sbi->reserved_blocks)
1783                 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1784                                         sbi->current_reserved_blocks + count);
1785         spin_unlock(&sbi->stat_lock);
1786         f2fs_i_blocks_write(inode, count, false, true);
1787 }
1788 
1789 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1790 {
1791         atomic_inc(&sbi->nr_pages[count_type]);
1792 
1793         if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1794                 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA ||
1795                 count_type == F2FS_RD_DATA || count_type == F2FS_RD_NODE ||
1796                 count_type == F2FS_RD_META)
1797                 return;
1798 
1799         set_sbi_flag(sbi, SBI_IS_DIRTY);
1800 }
1801 
1802 static inline void inode_inc_dirty_pages(struct inode *inode)
1803 {
1804         atomic_inc(&F2FS_I(inode)->dirty_pages);
1805         inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1806                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1807         if (IS_NOQUOTA(inode))
1808                 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1809 }
1810 
1811 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1812 {
1813         atomic_dec(&sbi->nr_pages[count_type]);
1814 }
1815 
1816 static inline void inode_dec_dirty_pages(struct inode *inode)
1817 {
1818         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1819                         !S_ISLNK(inode->i_mode))
1820                 return;
1821 
1822         atomic_dec(&F2FS_I(inode)->dirty_pages);
1823         dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1824                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1825         if (IS_NOQUOTA(inode))
1826                 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1827 }
1828 
1829 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1830 {
1831         return atomic_read(&sbi->nr_pages[count_type]);
1832 }
1833 
1834 static inline int get_dirty_pages(struct inode *inode)
1835 {
1836         return atomic_read(&F2FS_I(inode)->dirty_pages);
1837 }
1838 
1839 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1840 {
1841         unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1842         unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1843                                                 sbi->log_blocks_per_seg;
1844 
1845         return segs / sbi->segs_per_sec;
1846 }
1847 
1848 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1849 {
1850         return sbi->total_valid_block_count;
1851 }
1852 
1853 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1854 {
1855         return sbi->discard_blks;
1856 }
1857 
1858 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1859 {
1860         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1861 
1862         /* return NAT or SIT bitmap */
1863         if (flag == NAT_BITMAP)
1864                 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1865         else if (flag == SIT_BITMAP)
1866                 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1867 
1868         return 0;
1869 }
1870 
1871 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1872 {
1873         return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1874 }
1875 
1876 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1877 {
1878         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1879         int offset;
1880 
1881         if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1882                 offset = (flag == SIT_BITMAP) ?
1883                         le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1884                 return &ckpt->sit_nat_version_bitmap + offset;
1885         }
1886 
1887         if (__cp_payload(sbi) > 0) {
1888                 if (flag == NAT_BITMAP)
1889                         return &ckpt->sit_nat_version_bitmap;
1890                 else
1891                         return (unsigned char *)ckpt + F2FS_BLKSIZE;
1892         } else {
1893                 offset = (flag == NAT_BITMAP) ?
1894                         le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1895                 return &ckpt->sit_nat_version_bitmap + offset;
1896         }
1897 }
1898 
1899 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1900 {
1901         block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1902 
1903         if (sbi->cur_cp_pack == 2)
1904                 start_addr += sbi->blocks_per_seg;
1905         return start_addr;
1906 }
1907 
1908 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1909 {
1910         block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1911 
1912         if (sbi->cur_cp_pack == 1)
1913                 start_addr += sbi->blocks_per_seg;
1914         return start_addr;
1915 }
1916 
1917 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1918 {
1919         sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1920 }
1921 
1922 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1923 {
1924         return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1925 }
1926 
1927 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1928                                         struct inode *inode, bool is_inode)
1929 {
1930         block_t valid_block_count;
1931         unsigned int valid_node_count;
1932         int err;
1933 
1934         if (is_inode) {
1935                 if (inode) {
1936                         err = dquot_alloc_inode(inode);
1937                         if (err)
1938                                 return err;
1939                 }
1940         } else {
1941                 err = dquot_reserve_block(inode, 1);
1942                 if (err)
1943                         return err;
1944         }
1945 
1946         if (time_to_inject(sbi, FAULT_BLOCK)) {
1947                 f2fs_show_injection_info(FAULT_BLOCK);
1948                 goto enospc;
1949         }
1950 
1951         spin_lock(&sbi->stat_lock);
1952 
1953         valid_block_count = sbi->total_valid_block_count +
1954                                         sbi->current_reserved_blocks + 1;
1955 
1956         if (!__allow_reserved_blocks(sbi, inode, false))
1957                 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1958         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1959                 valid_block_count += sbi->unusable_block_count;
1960 
1961         if (unlikely(valid_block_count > sbi->user_block_count)) {
1962                 spin_unlock(&sbi->stat_lock);
1963                 goto enospc;
1964         }
1965 
1966         valid_node_count = sbi->total_valid_node_count + 1;
1967         if (unlikely(valid_node_count > sbi->total_node_count)) {
1968                 spin_unlock(&sbi->stat_lock);
1969                 goto enospc;
1970         }
1971 
1972         sbi->total_valid_node_count++;
1973         sbi->total_valid_block_count++;
1974         spin_unlock(&sbi->stat_lock);
1975 
1976         if (inode) {
1977                 if (is_inode)
1978                         f2fs_mark_inode_dirty_sync(inode, true);
1979                 else
1980                         f2fs_i_blocks_write(inode, 1, true, true);
1981         }
1982 
1983         percpu_counter_inc(&sbi->alloc_valid_block_count);
1984         return 0;
1985 
1986 enospc:
1987         if (is_inode) {
1988                 if (inode)
1989                         dquot_free_inode(inode);
1990         } else {
1991                 dquot_release_reservation_block(inode, 1);
1992         }
1993         return -ENOSPC;
1994 }
1995 
1996 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1997                                         struct inode *inode, bool is_inode)
1998 {
1999         spin_lock(&sbi->stat_lock);
2000 
2001         f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2002         f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2003         f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2004 
2005         sbi->total_valid_node_count--;
2006         sbi->total_valid_block_count--;
2007         if (sbi->reserved_blocks &&
2008                 sbi->current_reserved_blocks < sbi->reserved_blocks)
2009                 sbi->current_reserved_blocks++;
2010 
2011         spin_unlock(&sbi->stat_lock);
2012 
2013         if (is_inode)
2014                 dquot_free_inode(inode);
2015         else
2016                 f2fs_i_blocks_write(inode, 1, false, true);
2017 }
2018 
2019 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2020 {
2021         return sbi->total_valid_node_count;
2022 }
2023 
2024 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2025 {
2026         percpu_counter_inc(&sbi->total_valid_inode_count);
2027 }
2028 
2029 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2030 {
2031         percpu_counter_dec(&sbi->total_valid_inode_count);
2032 }
2033 
2034 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2035 {
2036         return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2037 }
2038 
2039 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2040                                                 pgoff_t index, bool for_write)
2041 {
2042         struct page *page;
2043 
2044         if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2045                 if (!for_write)
2046                         page = find_get_page_flags(mapping, index,
2047                                                         FGP_LOCK | FGP_ACCESSED);
2048                 else
2049                         page = find_lock_page(mapping, index);
2050                 if (page)
2051                         return page;
2052 
2053                 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2054                         f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2055                         return NULL;
2056                 }
2057         }
2058 
2059         if (!for_write)
2060                 return grab_cache_page(mapping, index);
2061         return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2062 }
2063 
2064 static inline struct page *f2fs_pagecache_get_page(
2065                                 struct address_space *mapping, pgoff_t index,
2066                                 int fgp_flags, gfp_t gfp_mask)
2067 {
2068         if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2069                 f2fs_show_injection_info(FAULT_PAGE_GET);
2070                 return NULL;
2071         }
2072 
2073         return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2074 }
2075 
2076 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2077 {
2078         char *src_kaddr = kmap(src);
2079         char *dst_kaddr = kmap(dst);
2080 
2081         memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2082         kunmap(dst);
2083         kunmap(src);
2084 }
2085 
2086 static inline void f2fs_put_page(struct page *page, int unlock)
2087 {
2088         if (!page)
2089                 return;
2090 
2091         if (unlock) {
2092                 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2093                 unlock_page(page);
2094         }
2095         put_page(page);
2096 }
2097 
2098 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2099 {
2100         if (dn->node_page)
2101                 f2fs_put_page(dn->node_page, 1);
2102         if (dn->inode_page && dn->node_page != dn->inode_page)
2103                 f2fs_put_page(dn->inode_page, 0);
2104         dn->node_page = NULL;
2105         dn->inode_page = NULL;
2106 }
2107 
2108 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2109                                         size_t size)
2110 {
2111         return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2112 }
2113 
2114 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2115                                                 gfp_t flags)
2116 {
2117         void *entry;
2118 
2119         entry = kmem_cache_alloc(cachep, flags);
2120         if (!entry)
2121                 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2122         return entry;
2123 }
2124 
2125 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2126                                                 int npages, bool no_fail)
2127 {
2128         struct bio *bio;
2129 
2130         if (no_fail) {
2131                 /* No failure on bio allocation */
2132                 bio = bio_alloc(GFP_NOIO, npages);
2133                 if (!bio)
2134                         bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2135                 return bio;
2136         }
2137         if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2138                 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2139                 return NULL;
2140         }
2141 
2142         return bio_alloc(GFP_KERNEL, npages);
2143 }
2144 
2145 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2146 {
2147         if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2148                 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2149                 get_pages(sbi, F2FS_WB_CP_DATA))
2150                 return false;
2151         return f2fs_time_over(sbi, type);
2152 }
2153 
2154 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2155                                 unsigned long index, void *item)
2156 {
2157         while (radix_tree_insert(root, index, item))
2158                 cond_resched();
2159 }
2160 
2161 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2162 
2163 static inline bool IS_INODE(struct page *page)
2164 {
2165         struct f2fs_node *p = F2FS_NODE(page);
2166 
2167         return RAW_IS_INODE(p);
2168 }
2169 
2170 static inline int offset_in_addr(struct f2fs_inode *i)
2171 {
2172         return (i->i_inline & F2FS_EXTRA_ATTR) ?
2173                         (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2174 }
2175 
2176 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2177 {
2178         return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2179 }
2180 
2181 static inline int f2fs_has_extra_attr(struct inode *inode);
2182 static inline block_t datablock_addr(struct inode *inode,
2183                         struct page *node_page, unsigned int offset)
2184 {
2185         struct f2fs_node *raw_node;
2186         __le32 *addr_array;
2187         int base = 0;
2188         bool is_inode = IS_INODE(node_page);
2189 
2190         raw_node = F2FS_NODE(node_page);
2191 
2192         /* from GC path only */
2193         if (is_inode) {
2194                 if (!inode)
2195                         base = offset_in_addr(&raw_node->i);
2196                 else if (f2fs_has_extra_attr(inode))
2197                         base = get_extra_isize(inode);
2198         }
2199 
2200         addr_array = blkaddr_in_node(raw_node);
2201         return le32_to_cpu(addr_array[base + offset]);
2202 }
2203 
2204 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2205 {
2206         int mask;
2207 
2208         addr += (nr >> 3);
2209         mask = 1 << (7 - (nr & 0x07));
2210         return mask & *addr;
2211 }
2212 
2213 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2214 {
2215         int mask;
2216 
2217         addr += (nr >> 3);
2218         mask = 1 << (7 - (nr & 0x07));
2219         *addr |= mask;
2220 }
2221 
2222 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2223 {
2224         int mask;
2225 
2226         addr += (nr >> 3);
2227         mask = 1 << (7 - (nr & 0x07));
2228         *addr &= ~mask;
2229 }
2230 
2231 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2232 {
2233         int mask;
2234         int ret;
2235 
2236         addr += (nr >> 3);
2237         mask = 1 << (7 - (nr & 0x07));
2238         ret = mask & *addr;
2239         *addr |= mask;
2240         return ret;
2241 }
2242 
2243 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2244 {
2245         int mask;
2246         int ret;
2247 
2248         addr += (nr >> 3);
2249         mask = 1 << (7 - (nr & 0x07));
2250         ret = mask & *addr;
2251         *addr &= ~mask;
2252         return ret;
2253 }
2254 
2255 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2256 {
2257         int mask;
2258 
2259         addr += (nr >> 3);
2260         mask = 1 << (7 - (nr & 0x07));
2261         *addr ^= mask;
2262 }
2263 
2264 /*
2265  * Inode flags
2266  */
2267 #define F2FS_SECRM_FL                   0x00000001 /* Secure deletion */
2268 #define F2FS_UNRM_FL                    0x00000002 /* Undelete */
2269 #define F2FS_COMPR_FL                   0x00000004 /* Compress file */
2270 #define F2FS_SYNC_FL                    0x00000008 /* Synchronous updates */
2271 #define F2FS_IMMUTABLE_FL               0x00000010 /* Immutable file */
2272 #define F2FS_APPEND_FL                  0x00000020 /* writes to file may only append */
2273 #define F2FS_NODUMP_FL                  0x00000040 /* do not dump file */
2274 #define F2FS_NOATIME_FL                 0x00000080 /* do not update atime */
2275 /* Reserved for compression usage... */
2276 #define F2FS_DIRTY_FL                   0x00000100
2277 #define F2FS_COMPRBLK_FL                0x00000200 /* One or more compressed clusters */
2278 #define F2FS_NOCOMPR_FL                 0x00000400 /* Don't compress */
2279 #define F2FS_ENCRYPT_FL                 0x00000800 /* encrypted file */
2280 /* End compression flags --- maybe not all used */
2281 #define F2FS_INDEX_FL                   0x00001000 /* hash-indexed directory */
2282 #define F2FS_IMAGIC_FL                  0x00002000 /* AFS directory */
2283 #define F2FS_JOURNAL_DATA_FL            0x00004000 /* file data should be journaled */
2284 #define F2FS_NOTAIL_FL                  0x00008000 /* file tail should not be merged */
2285 #define F2FS_DIRSYNC_FL                 0x00010000 /* dirsync behaviour (directories only) */
2286 #define F2FS_TOPDIR_FL                  0x00020000 /* Top of directory hierarchies*/
2287 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2288 #define F2FS_EXTENTS_FL                 0x00080000 /* Inode uses extents */
2289 #define F2FS_EA_INODE_FL                0x00200000 /* Inode used for large EA */
2290 #define F2FS_EOFBLOCKS_FL               0x00400000 /* Blocks allocated beyond EOF */
2291 #define F2FS_INLINE_DATA_FL             0x10000000 /* Inode has inline data. */
2292 #define F2FS_PROJINHERIT_FL             0x20000000 /* Create with parents projid */
2293 #define F2FS_RESERVED_FL                0x80000000 /* reserved for ext4 lib */
2294 
2295 #define F2FS_FL_USER_VISIBLE            0x304BDFFF /* User visible flags */
2296 #define F2FS_FL_USER_MODIFIABLE         0x204BC0FF /* User modifiable flags */
2297 
2298 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2299 #define F2FS_FL_XFLAG_VISIBLE           (F2FS_SYNC_FL | \
2300                                          F2FS_IMMUTABLE_FL | \
2301                                          F2FS_APPEND_FL | \
2302                                          F2FS_NODUMP_FL | \
2303                                          F2FS_NOATIME_FL | \
2304                                          F2FS_PROJINHERIT_FL)
2305 
2306 /* Flags that should be inherited by new inodes from their parent. */
2307 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2308                            F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2309                            F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2310                            F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2311                            F2FS_PROJINHERIT_FL)
2312 
2313 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2314 #define F2FS_REG_FLMASK         (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2315 
2316 /* Flags that are appropriate for non-directories/regular files. */
2317 #define F2FS_OTHER_FLMASK       (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2318 
2319 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2320 {
2321         if (S_ISDIR(mode))
2322                 return flags;
2323         else if (S_ISREG(mode))
2324                 return flags & F2FS_REG_FLMASK;
2325         else
2326                 return flags & F2FS_OTHER_FLMASK;
2327 }
2328 
2329 /* used for f2fs_inode_info->flags */
2330 enum {
2331         FI_NEW_INODE,           /* indicate newly allocated inode */
2332         FI_DIRTY_INODE,         /* indicate inode is dirty or not */
2333         FI_AUTO_RECOVER,        /* indicate inode is recoverable */
2334         FI_DIRTY_DIR,           /* indicate directory has dirty pages */
2335         FI_INC_LINK,            /* need to increment i_nlink */
2336         FI_ACL_MODE,            /* indicate acl mode */
2337         FI_NO_ALLOC,            /* should not allocate any blocks */
2338         FI_FREE_NID,            /* free allocated nide */
2339         FI_NO_EXTENT,           /* not to use the extent cache */
2340         FI_INLINE_XATTR,        /* used for inline xattr */
2341         FI_INLINE_DATA,         /* used for inline data*/
2342         FI_INLINE_DENTRY,       /* used for inline dentry */
2343         FI_APPEND_WRITE,        /* inode has appended data */
2344         FI_UPDATE_WRITE,        /* inode has in-place-update data */
2345         FI_NEED_IPU,            /* used for ipu per file */
2346         FI_ATOMIC_FILE,         /* indicate atomic file */
2347         FI_ATOMIC_COMMIT,       /* indicate the state of atomical committing */
2348         FI_VOLATILE_FILE,       /* indicate volatile file */
2349         FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2350         FI_DROP_CACHE,          /* drop dirty page cache */
2351         FI_DATA_EXIST,          /* indicate data exists */
2352         FI_INLINE_DOTS,         /* indicate inline dot dentries */
2353         FI_DO_DEFRAG,           /* indicate defragment is running */
2354         FI_DIRTY_FILE,          /* indicate regular/symlink has dirty pages */
2355         FI_NO_PREALLOC,         /* indicate skipped preallocated blocks */
2356         FI_HOT_DATA,            /* indicate file is hot */
2357         FI_EXTRA_ATTR,          /* indicate file has extra attribute */
2358         FI_PROJ_INHERIT,        /* indicate file inherits projectid */
2359         FI_PIN_FILE,            /* indicate file should not be gced */
2360         FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2361 };
2362 
2363 static inline void __mark_inode_dirty_flag(struct inode *inode,
2364                                                 int flag, bool set)
2365 {
2366         switch (flag) {
2367         case FI_INLINE_XATTR:
2368         case FI_INLINE_DATA:
2369         case FI_INLINE_DENTRY:
2370         case FI_NEW_INODE:
2371                 if (set)
2372                         return;
2373         case FI_DATA_EXIST:
2374         case FI_INLINE_DOTS:
2375         case FI_PIN_FILE:
2376                 f2fs_mark_inode_dirty_sync(inode, true);
2377         }
2378 }
2379 
2380 static inline void set_inode_flag(struct inode *inode, int flag)
2381 {
2382         if (!test_bit(flag, &F2FS_I(inode)->flags))
2383                 set_bit(flag, &F2FS_I(inode)->flags);
2384         __mark_inode_dirty_flag(inode, flag, true);
2385 }
2386 
2387 static inline int is_inode_flag_set(struct inode *inode, int flag)
2388 {
2389         return test_bit(flag, &F2FS_I(inode)->flags);
2390 }
2391 
2392 static inline void clear_inode_flag(struct inode *inode, int flag)
2393 {
2394         if (test_bit(flag, &F2FS_I(inode)->flags))
2395                 clear_bit(flag, &F2FS_I(inode)->flags);
2396         __mark_inode_dirty_flag(inode, flag, false);
2397 }
2398 
2399 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2400 {
2401         F2FS_I(inode)->i_acl_mode = mode;
2402         set_inode_flag(inode, FI_ACL_MODE);
2403         f2fs_mark_inode_dirty_sync(inode, false);
2404 }
2405 
2406 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2407 {
2408         if (inc)
2409                 inc_nlink(inode);
2410         else
2411                 drop_nlink(inode);
2412         f2fs_mark_inode_dirty_sync(inode, true);
2413 }
2414 
2415 static inline void f2fs_i_blocks_write(struct inode *inode,
2416                                         block_t diff, bool add, bool claim)
2417 {
2418         bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2419         bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2420 
2421         /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2422         if (add) {
2423                 if (claim)
2424                         dquot_claim_block(inode, diff);
2425                 else
2426                         dquot_alloc_block_nofail(inode, diff);
2427         } else {
2428                 dquot_free_block(inode, diff);
2429         }
2430 
2431         f2fs_mark_inode_dirty_sync(inode, true);
2432         if (clean || recover)
2433                 set_inode_flag(inode, FI_AUTO_RECOVER);
2434 }
2435 
2436 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2437 {
2438         bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2439         bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2440 
2441         if (i_size_read(inode) == i_size)
2442                 return;
2443 
2444         i_size_write(inode, i_size);
2445         f2fs_mark_inode_dirty_sync(inode, true);
2446         if (clean || recover)
2447                 set_inode_flag(inode, FI_AUTO_RECOVER);
2448 }
2449 
2450 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2451 {
2452         F2FS_I(inode)->i_current_depth = depth;
2453         f2fs_mark_inode_dirty_sync(inode, true);
2454 }
2455 
2456 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2457                                         unsigned int count)
2458 {
2459         F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2460         f2fs_mark_inode_dirty_sync(inode, true);
2461 }
2462 
2463 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2464 {
2465         F2FS_I(inode)->i_xattr_nid = xnid;
2466         f2fs_mark_inode_dirty_sync(inode, true);
2467 }
2468 
2469 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2470 {
2471         F2FS_I(inode)->i_pino = pino;
2472         f2fs_mark_inode_dirty_sync(inode, true);
2473 }
2474 
2475 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2476 {
2477         struct f2fs_inode_info *fi = F2FS_I(inode);
2478 
2479         if (ri->i_inline & F2FS_INLINE_XATTR)
2480                 set_bit(FI_INLINE_XATTR, &fi->flags);
2481         if (ri->i_inline & F2FS_INLINE_DATA)
2482                 set_bit(FI_INLINE_DATA, &fi->flags);
2483         if (ri->i_inline & F2FS_INLINE_DENTRY)
2484                 set_bit(FI_INLINE_DENTRY, &fi->flags);
2485         if (ri->i_inline & F2FS_DATA_EXIST)
2486                 set_bit(FI_DATA_EXIST, &fi->flags);
2487         if (ri->i_inline & F2FS_INLINE_DOTS)
2488                 set_bit(FI_INLINE_DOTS, &fi->flags);
2489         if (ri->i_inline & F2FS_EXTRA_ATTR)
2490                 set_bit(FI_EXTRA_ATTR, &fi->flags);
2491         if (ri->i_inline & F2FS_PIN_FILE)
2492                 set_bit(FI_PIN_FILE, &fi->flags);
2493 }
2494 
2495 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2496 {
2497         ri->i_inline = 0;
2498 
2499         if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2500                 ri->i_inline |= F2FS_INLINE_XATTR;
2501         if (is_inode_flag_set(inode, FI_INLINE_DATA))
2502                 ri->i_inline |= F2FS_INLINE_DATA;
2503         if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2504                 ri->i_inline |= F2FS_INLINE_DENTRY;
2505         if (is_inode_flag_set(inode, FI_DATA_EXIST))
2506                 ri->i_inline |= F2FS_DATA_EXIST;
2507         if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2508                 ri->i_inline |= F2FS_INLINE_DOTS;
2509         if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2510                 ri->i_inline |= F2FS_EXTRA_ATTR;
2511         if (is_inode_flag_set(inode, FI_PIN_FILE))
2512                 ri->i_inline |= F2FS_PIN_FILE;
2513 }
2514 
2515 static inline int f2fs_has_extra_attr(struct inode *inode)
2516 {
2517         return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2518 }
2519 
2520 static inline int f2fs_has_inline_xattr(struct inode *inode)
2521 {
2522         return is_inode_flag_set(inode, FI_INLINE_XATTR);
2523 }
2524 
2525 static inline unsigned int addrs_per_inode(struct inode *inode)
2526 {
2527         return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2528 }
2529 
2530 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2531 {
2532         struct f2fs_inode *ri = F2FS_INODE(page);
2533 
2534         return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2535                                         get_inline_xattr_addrs(inode)]);
2536 }
2537 
2538 static inline int inline_xattr_size(struct inode *inode)
2539 {
2540         return get_inline_xattr_addrs(inode) * sizeof(__le32);
2541 }
2542 
2543 static inline int f2fs_has_inline_data(struct inode *inode)
2544 {
2545         return is_inode_flag_set(inode, FI_INLINE_DATA);
2546 }
2547 
2548 static inline int f2fs_exist_data(struct inode *inode)
2549 {
2550         return is_inode_flag_set(inode, FI_DATA_EXIST);
2551 }
2552 
2553 static inline int f2fs_has_inline_dots(struct inode *inode)
2554 {
2555         return is_inode_flag_set(inode, FI_INLINE_DOTS);
2556 }
2557 
2558 static inline bool f2fs_is_pinned_file(struct inode *inode)
2559 {
2560         return is_inode_flag_set(inode, FI_PIN_FILE);
2561 }
2562 
2563 static inline bool f2fs_is_atomic_file(struct inode *inode)
2564 {
2565         return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2566 }
2567 
2568 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2569 {
2570         return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2571 }
2572 
2573 static inline bool f2fs_is_volatile_file(struct inode *inode)
2574 {
2575         return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2576 }
2577 
2578 static inline bool f2fs_is_first_block_written(struct inode *inode)
2579 {
2580         return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2581 }
2582 
2583 static inline bool f2fs_is_drop_cache(struct inode *inode)
2584 {
2585         return is_inode_flag_set(inode, FI_DROP_CACHE);
2586 }
2587 
2588 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2589 {
2590         struct f2fs_inode *ri = F2FS_INODE(page);
2591         int extra_size = get_extra_isize(inode);
2592 
2593         return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2594 }
2595 
2596 static inline int f2fs_has_inline_dentry(struct inode *inode)
2597 {
2598         return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2599 }
2600 
2601 static inline int is_file(struct inode *inode, int type)
2602 {
2603         return F2FS_I(inode)->i_advise & type;
2604 }
2605 
2606 static inline void set_file(struct inode *inode, int type)
2607 {
2608         F2FS_I(inode)->i_advise |= type;
2609         f2fs_mark_inode_dirty_sync(inode, true);
2610 }
2611 
2612 static inline void clear_file(struct inode *inode, int type)
2613 {
2614         F2FS_I(inode)->i_advise &= ~type;
2615         f2fs_mark_inode_dirty_sync(inode, true);
2616 }
2617 
2618 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2619 {
2620         bool ret;
2621 
2622         if (dsync) {
2623                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2624 
2625                 spin_lock(&sbi->inode_lock[DIRTY_META]);
2626                 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2627                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2628                 return ret;
2629         }
2630         if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2631                         file_keep_isize(inode) ||
2632                         i_size_read(inode) & ~PAGE_MASK)
2633                 return false;
2634 
2635         if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2636                 return false;
2637         if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2638                 return false;
2639         if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2640                 return false;
2641         if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2642                                                 &F2FS_I(inode)->i_crtime))
2643                 return false;
2644 
2645         down_read(&F2FS_I(inode)->i_sem);
2646         ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2647         up_read(&F2FS_I(inode)->i_sem);
2648 
2649         return ret;
2650 }
2651 
2652 static inline bool f2fs_readonly(struct super_block *sb)
2653 {
2654         return sb_rdonly(sb);
2655 }
2656 
2657 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2658 {
2659         return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2660 }
2661 
2662 static inline bool is_dot_dotdot(const struct qstr *str)
2663 {
2664         if (str->len == 1 && str->name[0] == '.')
2665                 return true;
2666 
2667         if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2668                 return true;
2669 
2670         return false;
2671 }
2672 
2673 static inline bool f2fs_may_extent_tree(struct inode *inode)
2674 {
2675         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2676 
2677         if (!test_opt(sbi, EXTENT_CACHE) ||
2678                         is_inode_flag_set(inode, FI_NO_EXTENT))
2679                 return false;
2680 
2681         /*
2682          * for recovered files during mount do not create extents
2683          * if shrinker is not registered.
2684          */
2685         if (list_empty(&sbi->s_list))
2686                 return false;
2687 
2688         return S_ISREG(inode->i_mode);
2689 }
2690 
2691 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2692                                         size_t size, gfp_t flags)
2693 {
2694         if (time_to_inject(sbi, FAULT_KMALLOC)) {
2695                 f2fs_show_injection_info(FAULT_KMALLOC);
2696                 return NULL;
2697         }
2698 
2699         return kmalloc(size, flags);
2700 }
2701 
2702 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2703                                         size_t size, gfp_t flags)
2704 {
2705         return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2706 }
2707 
2708 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2709                                         size_t size, gfp_t flags)
2710 {
2711         if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2712                 f2fs_show_injection_info(FAULT_KVMALLOC);
2713                 return NULL;
2714         }
2715 
2716         return kvmalloc(size, flags);
2717 }
2718 
2719 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2720                                         size_t size, gfp_t flags)
2721 {
2722         return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2723 }
2724 
2725 static inline int get_extra_isize(struct inode *inode)
2726 {
2727         return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2728 }
2729 
2730 static inline int get_inline_xattr_addrs(struct inode *inode)
2731 {
2732         return F2FS_I(inode)->i_inline_xattr_size;
2733 }
2734 
2735 #define f2fs_get_inode_mode(i) \
2736         ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2737          (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2738 
2739 #define F2FS_TOTAL_EXTRA_ATTR_SIZE                      \
2740         (offsetof(struct f2fs_inode, i_extra_end) -     \
2741         offsetof(struct f2fs_inode, i_extra_isize))     \
2742 
2743 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2744 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)              \
2745                 ((offsetof(typeof(*f2fs_inode), field) +        \
2746                 sizeof((f2fs_inode)->field))                    \
2747                 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))     \
2748 
2749 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2750 {
2751         int i;
2752 
2753         spin_lock(&sbi->iostat_lock);
2754         for (i = 0; i < NR_IO_TYPE; i++)
2755                 sbi->write_iostat[i] = 0;
2756         spin_unlock(&sbi->iostat_lock);
2757 }
2758 
2759 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2760                         enum iostat_type type, unsigned long long io_bytes)
2761 {
2762         if (!sbi->iostat_enable)
2763                 return;
2764         spin_lock(&sbi->iostat_lock);
2765         sbi->write_iostat[type] += io_bytes;
2766 
2767         if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2768                 sbi->write_iostat[APP_BUFFERED_IO] =
2769                         sbi->write_iostat[APP_WRITE_IO] -
2770                         sbi->write_iostat[APP_DIRECT_IO];
2771         spin_unlock(&sbi->iostat_lock);
2772 }
2773 
2774 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META &&       \
2775                                 (!is_read_io(fio->op) || fio->is_meta))
2776 
2777 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2778                                         block_t blkaddr, int type);
2779 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2780 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2781                                         block_t blkaddr, int type)
2782 {
2783         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2784                 f2fs_msg(sbi->sb, KERN_ERR,
2785                         "invalid blkaddr: %u, type: %d, run fsck to fix.",
2786                         blkaddr, type);
2787                 f2fs_bug_on(sbi, 1);
2788         }
2789 }
2790 
2791 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2792 {
2793         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2794                 return false;
2795         return true;
2796 }
2797 
2798 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2799                                                 block_t blkaddr)
2800 {
2801         if (!__is_valid_data_blkaddr(blkaddr))
2802                 return false;
2803         verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2804         return true;
2805 }
2806 
2807 /*
2808  * file.c
2809  */
2810 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2811 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2812 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock,
2813                                                         bool buf_write);
2814 int f2fs_truncate(struct inode *inode);
2815 int f2fs_getattr(const struct path *path, struct kstat *stat,
2816                         u32 request_mask, unsigned int flags);
2817 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2818 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2819 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2820 int f2fs_precache_extents(struct inode *inode);
2821 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2822 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2823 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2824 int f2fs_pin_file_control(struct inode *inode, bool inc);
2825 
2826 /*
2827  * inode.c
2828  */
2829 void f2fs_set_inode_flags(struct inode *inode);
2830 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2831 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2832 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2833 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2834 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2835 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2836 void f2fs_update_inode_page(struct inode *inode);
2837 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2838 void f2fs_evict_inode(struct inode *inode);
2839 void f2fs_handle_failed_inode(struct inode *inode);
2840 
2841 /*
2842  * namei.c
2843  */
2844 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2845                                                         bool hot, bool set);
2846 struct dentry *f2fs_get_parent(struct dentry *child);
2847 
2848 /*
2849  * dir.c
2850  */
2851 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2852 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2853                         f2fs_hash_t namehash, int *max_slots,
2854                         struct f2fs_dentry_ptr *d);
2855 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2856                         unsigned int start_pos, struct fscrypt_str *fstr);
2857 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2858                         struct f2fs_dentry_ptr *d);
2859 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2860                         const struct qstr *new_name,
2861                         const struct qstr *orig_name, struct page *dpage);
2862 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2863                         unsigned int current_depth);
2864 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2865 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2866 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2867                         struct fscrypt_name *fname, struct page **res_page);
2868 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2869                         const struct qstr *child, struct page **res_page);
2870 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2871 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2872                         struct page **page);
2873 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2874                         struct page *page, struct inode *inode);
2875 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2876                         const struct qstr *name, f2fs_hash_t name_hash,
2877                         unsigned int bit_pos);
2878 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2879                         const struct qstr *orig_name,
2880                         struct inode *inode, nid_t ino, umode_t mode);
2881 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2882                         struct inode *inode, nid_t ino, umode_t mode);
2883 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2884                         struct inode *inode, nid_t ino, umode_t mode);
2885 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2886                         struct inode *dir, struct inode *inode);
2887 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2888 bool f2fs_empty_dir(struct inode *dir);
2889 
2890 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2891 {
2892         return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2893                                 inode, inode->i_ino, inode->i_mode);
2894 }
2895 
2896 /*
2897  * super.c
2898  */
2899 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2900 void f2fs_inode_synced(struct inode *inode);
2901 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2902 int f2fs_quota_sync(struct super_block *sb, int type);
2903 void f2fs_quota_off_umount(struct super_block *sb);
2904 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2905 int f2fs_sync_fs(struct super_block *sb, int sync);
2906 extern __printf(3, 4)
2907 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2908 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2909 
2910 /*
2911  * hash.c
2912  */
2913 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2914                                 struct fscrypt_name *fname);
2915 
2916 /*
2917  * node.c
2918  */
2919 struct dnode_of_data;
2920 struct node_info;
2921 
2922 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2923 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2924 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2925 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2926 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2927 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2928 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2929 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2930 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2931 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2932                                                 struct node_info *ni);
2933 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2934 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2935 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2936 int f2fs_truncate_xattr_node(struct inode *inode);
2937 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2938                                         unsigned int seq_id);
2939 int f2fs_remove_inode_page(struct inode *inode);
2940 struct page *f2fs_new_inode_page(struct inode *inode);
2941 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2942 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2943 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2944 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2945 int f2fs_move_node_page(struct page *node_page, int gc_type);
2946 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2947                         struct writeback_control *wbc, bool atomic,
2948                         unsigned int *seq_id);
2949 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2950                         struct writeback_control *wbc,
2951                         bool do_balance, enum iostat_type io_type);
2952 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2953 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2954 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2955 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2956 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2957 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2958 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2959 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2960 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2961                         unsigned int segno, struct f2fs_summary_block *sum);
2962 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2963 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2964 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2965 int __init f2fs_create_node_manager_caches(void);
2966 void f2fs_destroy_node_manager_caches(void);
2967 
2968 /*
2969  * segment.c
2970  */
2971 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2972 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2973 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2974 void f2fs_drop_inmem_pages(struct inode *inode);
2975 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
2976 int f2fs_commit_inmem_pages(struct inode *inode);
2977 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2978 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2979 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2980 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
2981 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2982 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2983 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2984 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2985 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
2986 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
2987 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2988 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2989                                         struct cp_control *cpc);
2990 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
2991 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
2992 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
2993 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2994 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
2995 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2996 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2997                                         struct cp_control *cpc);
2998 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2999 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3000                                         block_t blk_addr);
3001 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3002                                                 enum iostat_type io_type);
3003 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3004 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3005                         struct f2fs_io_info *fio);
3006 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3007 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3008                         block_t old_blkaddr, block_t new_blkaddr,
3009                         bool recover_curseg, bool recover_newaddr);
3010 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3011                         block_t old_addr, block_t new_addr,
3012                         unsigned char version, bool recover_curseg,
3013                         bool recover_newaddr);
3014 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3015                         block_t old_blkaddr, block_t *new_blkaddr,
3016                         struct f2fs_summary *sum, int type,
3017                         struct f2fs_io_info *fio, bool add_list);
3018 void f2fs_wait_on_page_writeback(struct page *page,
3019                         enum page_type type, bool ordered);
3020 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3021 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3022                                                                 block_t len);
3023 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3024 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3025 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3026                         unsigned int val, int alloc);
3027 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3028 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3029 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3030 int __init f2fs_create_segment_manager_caches(void);
3031 void f2fs_destroy_segment_manager_caches(void);
3032 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3033 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3034                         enum page_type type, enum temp_type temp);
3035 
3036 /*
3037  * checkpoint.c
3038  */
3039 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3040 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3041 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3042 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3043 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3044 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3045                                         block_t blkaddr, int type);
3046 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3047                         int type, bool sync);
3048 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3049 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3050                         long nr_to_write, enum iostat_type io_type);
3051 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3052 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3053 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3054 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3055 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3056                                         unsigned int devidx, int type);
3057 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3058                                         unsigned int devidx, int type);
3059 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3060 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3061 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3062 void f2fs_add_orphan_inode(struct inode *inode);
3063 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3064 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3065 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3066 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3067 void f2fs_remove_dirty_inode(struct inode *inode);
3068 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3069 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3070 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3071 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3072 int __init f2fs_create_checkpoint_caches(void);
3073 void f2fs_destroy_checkpoint_caches(void);
3074 
3075 /*
3076  * data.c
3077  */
3078 int f2fs_init_post_read_processing(void);
3079 void f2fs_destroy_post_read_processing(void);
3080 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3081 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3082                                 struct inode *inode, struct page *page,
3083                                 nid_t ino, enum page_type type);
3084 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3085 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3086 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3087 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3088                         block_t blk_addr, struct bio *bio);
3089 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3090 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3091 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3092 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3093 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3094 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3095 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3096 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3097 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3098                         int op_flags, bool for_write);
3099 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3100 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3101                         bool for_write);
3102 struct page *f2fs_get_new_data_page(struct inode *inode,
3103                         struct page *ipage, pgoff_t index, bool new_i_size);
3104 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3105 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3106 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3107                         int create, int flag);
3108 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3109                         u64 start, u64 len);
3110 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3111 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3112 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3113                         unsigned int length);
3114 int f2fs_release_page(struct page *page, gfp_t wait);
3115 #ifdef CONFIG_MIGRATION
3116 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3117                         struct page *page, enum migrate_mode mode);
3118 #endif
3119 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3120 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3121 
3122 /*
3123  * gc.c
3124  */
3125 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3126 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3127 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3128 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3129                         unsigned int segno);
3130 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3131 
3132 /*
3133  * recovery.c
3134  */
3135 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3136 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3137 
3138 /*
3139  * debug.c
3140  */
3141 #ifdef CONFIG_F2FS_STAT_FS
3142 struct f2fs_stat_info {
3143         struct list_head stat_list;
3144         struct f2fs_sb_info *sbi;
3145         int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3146         int main_area_segs, main_area_sections, main_area_zones;
3147         unsigned long long hit_largest, hit_cached, hit_rbtree;
3148         unsigned long long hit_total, total_ext;
3149         int ext_tree, zombie_tree, ext_node;
3150         int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3151         int ndirty_data, ndirty_qdata;
3152         int inmem_pages;
3153         unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3154         int nats, dirty_nats, sits, dirty_sits;
3155         int free_nids, avail_nids, alloc_nids;
3156         int total_count, utilization;
3157         int bg_gc, nr_wb_cp_data, nr_wb_data;
3158         int nr_rd_data, nr_rd_node, nr_rd_meta;
3159         unsigned int io_skip_bggc, other_skip_bggc;
3160         int nr_flushing, nr_flushed, flush_list_empty;
3161         int nr_discarding, nr_discarded;
3162         int nr_discard_cmd;
3163         unsigned int undiscard_blks;
3164         int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3165         int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3166         unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3167         unsigned int bimodal, avg_vblocks;
3168         int util_free, util_valid, util_invalid;
3169         int rsvd_segs, overp_segs;
3170         int dirty_count, node_pages, meta_pages;
3171         int prefree_count, call_count, cp_count, bg_cp_count;
3172         int tot_segs, node_segs, data_segs, free_segs, free_secs;
3173         int bg_node_segs, bg_data_segs;
3174         int tot_blks, data_blks, node_blks;
3175         int bg_data_blks, bg_node_blks;
3176         unsigned long long skipped_atomic_files[2];
3177         int curseg[NR_CURSEG_TYPE];
3178         int cursec[NR_CURSEG_TYPE];
3179         int curzone[NR_CURSEG_TYPE];
3180 
3181         unsigned int meta_count[META_MAX];
3182         unsigned int segment_count[2];
3183         unsigned int block_count[2];
3184         unsigned int inplace_count;
3185         unsigned long long base_mem, cache_mem, page_mem;
3186 };
3187 
3188 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3189 {
3190         return (struct f2fs_stat_info *)sbi->stat_info;
3191 }
3192 
3193 #define stat_inc_cp_count(si)           ((si)->cp_count++)
3194 #define stat_inc_bg_cp_count(si)        ((si)->bg_cp_count++)
3195 #define stat_inc_call_count(si)         ((si)->call_count++)
3196 #define stat_inc_bggc_count(sbi)        ((sbi)->bg_gc++)
3197 #define stat_io_skip_bggc_count(sbi)    ((sbi)->io_skip_bggc++)
3198 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3199 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3200 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3201 #define stat_inc_total_hit(sbi)         (atomic64_inc(&(sbi)->total_hit_ext))
3202 #define stat_inc_rbtree_node_hit(sbi)   (atomic64_inc(&(sbi)->read_hit_rbtree))
3203 #define stat_inc_largest_node_hit(sbi)  (atomic64_inc(&(sbi)->read_hit_largest))
3204 #define stat_inc_cached_node_hit(sbi)   (atomic64_inc(&(sbi)->read_hit_cached))
3205 #define stat_inc_inline_xattr(inode)                                    \
3206         do {                                                            \
3207                 if (f2fs_has_inline_xattr(inode))                       \
3208                         (atomic_inc(&F2FS_I_SB(inode)->inline_xattr));  \
3209         } while (0)
3210 #define stat_dec_inline_xattr(inode)                                    \
3211         do {                                                            \
3212                 if (f2fs_has_inline_xattr(inode))                       \
3213                         (atomic_dec(&F2FS_I_SB(inode)->inline_xattr));  \
3214         } while (0)
3215 #define stat_inc_inline_inode(inode)                                    \
3216         do {                                                            \
3217                 if (f2fs_has_inline_data(inode))                        \
3218                         (atomic_inc(&F2FS_I_SB(inode)->inline_inode));  \
3219         } while (0)
3220 #define stat_dec_inline_inode(inode)                                    \
3221         do {                                                            \
3222                 if (f2fs_has_inline_data(inode))                        \
3223                         (atomic_dec(&F2FS_I_SB(inode)->inline_inode));  \
3224         } while (0)
3225 #define stat_inc_inline_dir(inode)                                      \
3226         do {                                                            \
3227                 if (f2fs_has_inline_dentry(inode))                      \
3228                         (atomic_inc(&F2FS_I_SB(inode)->inline_dir));    \
3229         } while (0)
3230 #define stat_dec_inline_dir(inode)                                      \
3231         do {                                                            \
3232                 if (f2fs_has_inline_dentry(inode))                      \
3233                         (atomic_dec(&F2FS_I_SB(inode)->inline_dir));    \
3234         } while (0)
3235 #define stat_inc_meta_count(sbi, blkaddr)                               \
3236         do {                                                            \
3237                 if (blkaddr < SIT_I(sbi)->sit_base_addr)                \
3238                         atomic_inc(&(sbi)->meta_count[META_CP]);        \
3239                 else if (blkaddr < NM_I(sbi)->nat_blkaddr)              \
3240                         atomic_inc(&(sbi)->meta_count[META_SIT]);       \
3241                 else if (blkaddr < SM_I(sbi)->ssa_blkaddr)              \
3242                         atomic_inc(&(sbi)->meta_count[META_NAT]);       \
3243                 else if (blkaddr < SM_I(sbi)->main_blkaddr)             \
3244                         atomic_inc(&(sbi)->meta_count[META_SSA]);       \
3245         } while (0)
3246 #define stat_inc_seg_type(sbi, curseg)                                  \
3247                 ((sbi)->segment_count[(curseg)->alloc_type]++)
3248 #define stat_inc_block_count(sbi, curseg)                               \
3249                 ((sbi)->block_count[(curseg)->alloc_type]++)
3250 #define stat_inc_inplace_blocks(sbi)                                    \
3251                 (atomic_inc(&(sbi)->inplace_count))
3252 #define stat_inc_atomic_write(inode)                                    \
3253                 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3254 #define stat_dec_atomic_write(inode)                                    \
3255                 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3256 #define stat_update_max_atomic_write(inode)                             \
3257         do {                                                            \
3258                 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);       \
3259                 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);   \
3260                 if (cur > max)                                          \
3261                         atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3262         } while (0)
3263 #define stat_inc_volatile_write(inode)                                  \
3264                 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3265 #define stat_dec_volatile_write(inode)                                  \
3266                 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3267 #define stat_update_max_volatile_write(inode)                           \
3268         do {                                                            \
3269                 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);       \
3270                 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);   \
3271                 if (cur > max)                                          \
3272                         atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3273         } while (0)
3274 #define stat_inc_seg_count(sbi, type, gc_type)                          \
3275         do {                                                            \
3276                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
3277                 si->tot_segs++;                                         \
3278                 if ((type) == SUM_TYPE_DATA) {                          \
3279                         si->data_segs++;                                \
3280                         si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3281                 } else {                                                \
3282                         si->node_segs++;                                \
3283                         si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3284                 }                                                       \
3285         } while (0)
3286 
3287 #define stat_inc_tot_blk_count(si, blks)                                \
3288         ((si)->tot_blks += (blks))
3289 
3290 #define stat_inc_data_blk_count(sbi, blks, gc_type)                     \
3291         do {                                                            \
3292                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
3293                 stat_inc_tot_blk_count(si, blks);                       \
3294                 si->data_blks += (blks);                                \
3295                 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;  \
3296         } while (0)
3297 
3298 #define stat_inc_node_blk_count(sbi, blks, gc_type)                     \
3299         do {                                                            \
3300                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
3301                 stat_inc_tot_blk_count(si, blks);                       \
3302                 si->node_blks += (blks);                                \
3303                 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;  \
3304         } while (0)
3305 
3306 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3307 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3308 int __init f2fs_create_root_stats(void);
3309 void f2fs_destroy_root_stats(void);
3310 #else
3311 #define stat_inc_cp_count(si)                           do { } while (0)
3312 #define stat_inc_bg_cp_count(si)                        do { } while (0)
3313 #define stat_inc_call_count(si)                         do { } while (0)
3314 #define stat_inc_bggc_count(si)                         do { } while (0)
3315 #define stat_io_skip_bggc_count(sbi)                    do { } while (0)
3316 #define stat_other_skip_bggc_count(sbi)                 do { } while (0)
3317 #define stat_inc_dirty_inode(sbi, type)                 do { } while (0)
3318 #define stat_dec_dirty_inode(sbi, type)                 do { } while (0)
3319 #define stat_inc_total_hit(sb)                          do { } while (0)
3320 #define stat_inc_rbtree_node_hit(sb)                    do { } while (0)
3321 #define stat_inc_largest_node_hit(sbi)                  do { } while (0)
3322 #define stat_inc_cached_node_hit(sbi)                   do { } while (0)
3323 #define stat_inc_inline_xattr(inode)                    do { } while (0)
3324 #define stat_dec_inline_xattr(inode)                    do { } while (0)
3325 #define stat_inc_inline_inode(inode)                    do { } while (0)
3326 #define stat_dec_inline_inode(inode)                    do { } while (0)
3327 #define stat_inc_inline_dir(inode)                      do { } while (0)
3328 #define stat_dec_inline_dir(inode)                      do { } while (0)
3329 #define stat_inc_atomic_write(inode)                    do { } while (0)
3330 #define stat_dec_atomic_write(inode)                    do { } while (0)
3331 #define stat_update_max_atomic_write(inode)             do { } while (0)
3332 #define stat_inc_volatile_write(inode)                  do { } while (0)
3333 #define stat_dec_volatile_write(inode)                  do { } while (0)
3334 #define stat_update_max_volatile_write(inode)           do { } while (0)
3335 #define stat_inc_meta_count(sbi, blkaddr)               do { } while (0)
3336 #define stat_inc_seg_type(sbi, curseg)                  do { } while (0)
3337 #define stat_inc_block_count(sbi, curseg)               do { } while (0)
3338 #define stat_inc_inplace_blocks(sbi)                    do { } while (0)
3339 #define stat_inc_seg_count(sbi, type, gc_type)          do { } while (0)
3340 #define stat_inc_tot_blk_count(si, blks)                do { } while (0)
3341 #define stat_inc_data_blk_count(sbi, blks, gc_type)     do { } while (0)
3342 #define stat_inc_node_blk_count(sbi, blks, gc_type)     do { } while (0)
3343 
3344 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3345 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3346 static inline int __init f2fs_create_root_stats(void) { return 0; }
3347 static inline void f2fs_destroy_root_stats(void) { }
3348 #endif
3349 
3350 extern const struct file_operations f2fs_dir_operations;
3351 extern const struct file_operations f2fs_file_operations;
3352 extern const struct inode_operations f2fs_file_inode_operations;
3353 extern const struct address_space_operations f2fs_dblock_aops;
3354 extern const struct address_space_operations f2fs_node_aops;
3355 extern const struct address_space_operations f2fs_meta_aops;
3356 extern const struct inode_operations f2fs_dir_inode_operations;
3357 extern const struct inode_operations f2fs_symlink_inode_operations;
3358 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3359 extern const struct inode_operations f2fs_special_inode_operations;
3360 extern struct kmem_cache *f2fs_inode_entry_slab;
3361 
3362 /*
3363  * inline.c
3364  */
3365 bool f2fs_may_inline_data(struct inode *inode);
3366 bool f2fs_may_inline_dentry(struct inode *inode);
3367 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3368 void f2fs_truncate_inline_inode(struct inode *inode,
3369                                                 struct page *ipage, u64 from);
3370 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3371 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3372 int f2fs_convert_inline_inode(struct inode *inode);
3373 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3374 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3375 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3376                         struct fscrypt_name *fname, struct page **res_page);
3377 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3378                         struct page *ipage);
3379 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3380                         const struct qstr *orig_name,
3381                         struct inode *inode, nid_t ino, umode_t mode);
3382 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3383                                 struct page *page, struct inode *dir,
3384                                 struct inode *inode);
3385 bool f2fs_empty_inline_dir(struct inode *dir);
3386 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3387                         struct fscrypt_str *fstr);
3388 int f2fs_inline_data_fiemap(struct inode *inode,
3389                         struct fiemap_extent_info *fieinfo,
3390                         __u64 start, __u64 len);
3391 
3392 /*
3393  * shrinker.c
3394  */
3395 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3396                         struct shrink_control *sc);
3397 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3398                         struct shrink_control *sc);
3399 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3400 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3401 
3402 /*
3403  * extent_cache.c
3404  */
3405 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3406                                 struct rb_entry *cached_re, unsigned int ofs);
3407 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3408                                 struct rb_root_cached *root,
3409                                 struct rb_node **parent,
3410                                 unsigned int ofs, bool *leftmost);
3411 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3412                 struct rb_entry *cached_re, unsigned int ofs,
3413                 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3414                 struct rb_node ***insert_p, struct rb_node **insert_parent,
3415                 bool force, bool *leftmost);
3416 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3417                                                 struct rb_root_cached *root);
3418 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3419 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3420 void f2fs_drop_extent_tree(struct inode *inode);
3421 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3422 void f2fs_destroy_extent_tree(struct inode *inode);
3423 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3424                         struct extent_info *ei);
3425 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3426 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3427                         pgoff_t fofs, block_t blkaddr, unsigned int len);
3428 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3429 int __init f2fs_create_extent_cache(void);
3430 void f2fs_destroy_extent_cache(void);
3431 
3432 /*
3433  * sysfs.c
3434  */
3435 int __init f2fs_init_sysfs(void);
3436 void f2fs_exit_sysfs(void);
3437 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3438 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3439 
3440 /*
3441  * crypto support
3442  */
3443 static inline bool f2fs_encrypted_inode(struct inode *inode)
3444 {
3445         return file_is_encrypt(inode);
3446 }
3447 
3448 static inline bool f2fs_encrypted_file(struct inode *inode)
3449 {
3450         return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3451 }
3452 
3453 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3454 {
3455 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3456         file_set_encrypt(inode);
3457         f2fs_set_inode_flags(inode);
3458 #endif
3459 }
3460 
3461 /*
3462  * Returns true if the reads of the inode's data need to undergo some
3463  * postprocessing step, like decryption or authenticity verification.
3464  */
3465 static inline bool f2fs_post_read_required(struct inode *inode)
3466 {
3467         return f2fs_encrypted_file(inode);
3468 }
3469 
3470 #define F2FS_FEATURE_FUNCS(name, flagname) \
3471 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3472 { \
3473         return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3474 }
3475 
3476 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3477 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3478 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3479 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3480 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3481 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3482 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3483 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3484 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3485 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3486 
3487 #ifdef CONFIG_BLK_DEV_ZONED
3488 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3489                         struct block_device *bdev, block_t blkaddr)
3490 {
3491         unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3492         int i;
3493 
3494         for (i = 0; i < sbi->s_ndevs; i++)
3495                 if (FDEV(i).bdev == bdev)
3496                         return FDEV(i).blkz_type[zno];
3497         return -EINVAL;
3498 }
3499 #endif
3500 
3501 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3502 {
3503         return f2fs_sb_has_blkzoned(sbi->sb);
3504 }
3505 
3506 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3507 {
3508         return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3509 }
3510 
3511 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3512 {
3513         return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3514                                         f2fs_hw_should_discard(sbi);
3515 }
3516 
3517 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3518 {
3519         clear_opt(sbi, ADAPTIVE);
3520         clear_opt(sbi, LFS);
3521 
3522         switch (mt) {
3523         case F2FS_MOUNT_ADAPTIVE:
3524                 set_opt(sbi, ADAPTIVE);
3525                 break;
3526         case F2FS_MOUNT_LFS:
3527                 set_opt(sbi, LFS);
3528                 break;
3529         }
3530 }
3531 
3532 static inline bool f2fs_may_encrypt(struct inode *inode)
3533 {
3534 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3535         umode_t mode = inode->i_mode;
3536 
3537         return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3538 #else
3539         return false;
3540 #endif
3541 }
3542 
3543 static inline int block_unaligned_IO(struct inode *inode,
3544                                 struct kiocb *iocb, struct iov_iter *iter)
3545 {
3546         unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3547         unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3548         loff_t offset = iocb->ki_pos;
3549         unsigned long align = offset | iov_iter_alignment(iter);
3550 
3551         return align & blocksize_mask;
3552 }
3553 
3554 static inline int allow_outplace_dio(struct inode *inode,
3555                                 struct kiocb *iocb, struct iov_iter *iter)
3556 {
3557         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3558         int rw = iov_iter_rw(iter);
3559 
3560         return (test_opt(sbi, LFS) && (rw == WRITE) &&
3561                                 !block_unaligned_IO(inode, iocb, iter));
3562 }
3563 
3564 static inline bool f2fs_force_buffered_io(struct inode *inode,
3565                                 struct kiocb *iocb, struct iov_iter *iter)
3566 {
3567         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3568         int rw = iov_iter_rw(iter);
3569 
3570         if (f2fs_post_read_required(inode))
3571                 return true;
3572         if (sbi->s_ndevs)
3573                 return true;
3574         /*
3575          * for blkzoned device, fallback direct IO to buffered IO, so
3576          * all IOs can be serialized by log-structured write.
3577          */
3578         if (f2fs_sb_has_blkzoned(sbi->sb))
3579                 return true;
3580         if (test_opt(sbi, LFS) && (rw == WRITE) &&
3581                                 block_unaligned_IO(inode, iocb, iter))
3582                 return true;
3583         if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3584                 return true;
3585 
3586         return false;
3587 }
3588 
3589 #ifdef CONFIG_F2FS_FAULT_INJECTION
3590 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3591                                                         unsigned int type);
3592 #else
3593 #define f2fs_build_fault_attr(sbi, rate, type)          do { } while (0)
3594 #endif
3595 
3596 #endif
3597 
3598 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3599 {
3600 #ifdef CONFIG_QUOTA
3601         if (f2fs_sb_has_quota_ino(sbi->sb))
3602                 return true;
3603         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3604                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3605                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3606                 return true;
3607 #endif
3608         return false;
3609 }
3610 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp