~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/file.c

Version: ~ [ linux-5.11-rc3 ] ~ [ linux-5.10.7 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.89 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.167 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.215 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.251 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.251 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * fs/f2fs/file.c
  3  *
  4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5  *             http://www.samsung.com/
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  */
 11 #include <linux/fs.h>
 12 #include <linux/f2fs_fs.h>
 13 #include <linux/stat.h>
 14 #include <linux/buffer_head.h>
 15 #include <linux/writeback.h>
 16 #include <linux/blkdev.h>
 17 #include <linux/falloc.h>
 18 #include <linux/types.h>
 19 #include <linux/compat.h>
 20 #include <linux/uaccess.h>
 21 #include <linux/mount.h>
 22 #include <linux/pagevec.h>
 23 #include <linux/uuid.h>
 24 #include <linux/file.h>
 25 
 26 #include "f2fs.h"
 27 #include "node.h"
 28 #include "segment.h"
 29 #include "xattr.h"
 30 #include "acl.h"
 31 #include "gc.h"
 32 #include "trace.h"
 33 #include <trace/events/f2fs.h>
 34 
 35 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
 36                                                 struct vm_fault *vmf)
 37 {
 38         struct page *page = vmf->page;
 39         struct inode *inode = file_inode(vma->vm_file);
 40         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 41         struct dnode_of_data dn;
 42         int err;
 43 
 44         sb_start_pagefault(inode->i_sb);
 45 
 46         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
 47 
 48         /* block allocation */
 49         f2fs_lock_op(sbi);
 50         set_new_dnode(&dn, inode, NULL, NULL, 0);
 51         err = f2fs_reserve_block(&dn, page->index);
 52         if (err) {
 53                 f2fs_unlock_op(sbi);
 54                 goto out;
 55         }
 56         f2fs_put_dnode(&dn);
 57         f2fs_unlock_op(sbi);
 58 
 59         f2fs_balance_fs(sbi, dn.node_changed);
 60 
 61         file_update_time(vma->vm_file);
 62         lock_page(page);
 63         if (unlikely(page->mapping != inode->i_mapping ||
 64                         page_offset(page) > i_size_read(inode) ||
 65                         !PageUptodate(page))) {
 66                 unlock_page(page);
 67                 err = -EFAULT;
 68                 goto out;
 69         }
 70 
 71         /*
 72          * check to see if the page is mapped already (no holes)
 73          */
 74         if (PageMappedToDisk(page))
 75                 goto mapped;
 76 
 77         /* page is wholly or partially inside EOF */
 78         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
 79                                                 i_size_read(inode)) {
 80                 unsigned offset;
 81                 offset = i_size_read(inode) & ~PAGE_MASK;
 82                 zero_user_segment(page, offset, PAGE_SIZE);
 83         }
 84         set_page_dirty(page);
 85         if (!PageUptodate(page))
 86                 SetPageUptodate(page);
 87 
 88         trace_f2fs_vm_page_mkwrite(page, DATA);
 89 mapped:
 90         /* fill the page */
 91         f2fs_wait_on_page_writeback(page, DATA, false);
 92 
 93         /* wait for GCed encrypted page writeback */
 94         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
 95                 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
 96 
 97         /* if gced page is attached, don't write to cold segment */
 98         clear_cold_data(page);
 99 out:
100         sb_end_pagefault(inode->i_sb);
101         f2fs_update_time(sbi, REQ_TIME);
102         return block_page_mkwrite_return(err);
103 }
104 
105 static const struct vm_operations_struct f2fs_file_vm_ops = {
106         .fault          = filemap_fault,
107         .map_pages      = filemap_map_pages,
108         .page_mkwrite   = f2fs_vm_page_mkwrite,
109 };
110 
111 static int get_parent_ino(struct inode *inode, nid_t *pino)
112 {
113         struct dentry *dentry;
114 
115         inode = igrab(inode);
116         dentry = d_find_any_alias(inode);
117         iput(inode);
118         if (!dentry)
119                 return 0;
120 
121         if (update_dent_inode(inode, inode, &dentry->d_name)) {
122                 dput(dentry);
123                 return 0;
124         }
125 
126         *pino = parent_ino(dentry);
127         dput(dentry);
128         return 1;
129 }
130 
131 static inline bool need_do_checkpoint(struct inode *inode)
132 {
133         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
134         bool need_cp = false;
135 
136         if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
137                 need_cp = true;
138         else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
139                 need_cp = true;
140         else if (file_wrong_pino(inode))
141                 need_cp = true;
142         else if (!space_for_roll_forward(sbi))
143                 need_cp = true;
144         else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
145                 need_cp = true;
146         else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
147                 need_cp = true;
148         else if (test_opt(sbi, FASTBOOT))
149                 need_cp = true;
150         else if (sbi->active_logs == 2)
151                 need_cp = true;
152 
153         return need_cp;
154 }
155 
156 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
157 {
158         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
159         bool ret = false;
160         /* But we need to avoid that there are some inode updates */
161         if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
162                 ret = true;
163         f2fs_put_page(i, 0);
164         return ret;
165 }
166 
167 static void try_to_fix_pino(struct inode *inode)
168 {
169         struct f2fs_inode_info *fi = F2FS_I(inode);
170         nid_t pino;
171 
172         down_write(&fi->i_sem);
173         fi->xattr_ver = 0;
174         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
175                         get_parent_ino(inode, &pino)) {
176                 f2fs_i_pino_write(inode, pino);
177                 file_got_pino(inode);
178         }
179         up_write(&fi->i_sem);
180 }
181 
182 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
183                                                 int datasync, bool atomic)
184 {
185         struct inode *inode = file->f_mapping->host;
186         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
187         nid_t ino = inode->i_ino;
188         int ret = 0;
189         bool need_cp = false;
190         struct writeback_control wbc = {
191                 .sync_mode = WB_SYNC_ALL,
192                 .nr_to_write = LONG_MAX,
193                 .for_reclaim = 0,
194         };
195 
196         if (unlikely(f2fs_readonly(inode->i_sb)))
197                 return 0;
198 
199         trace_f2fs_sync_file_enter(inode);
200 
201         /* if fdatasync is triggered, let's do in-place-update */
202         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
203                 set_inode_flag(inode, FI_NEED_IPU);
204         ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
205         clear_inode_flag(inode, FI_NEED_IPU);
206 
207         if (ret) {
208                 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
209                 return ret;
210         }
211 
212         /* if the inode is dirty, let's recover all the time */
213         if (!datasync && !f2fs_skip_inode_update(inode)) {
214                 f2fs_write_inode(inode, NULL);
215                 goto go_write;
216         }
217 
218         /*
219          * if there is no written data, don't waste time to write recovery info.
220          */
221         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
222                         !exist_written_data(sbi, ino, APPEND_INO)) {
223 
224                 /* it may call write_inode just prior to fsync */
225                 if (need_inode_page_update(sbi, ino))
226                         goto go_write;
227 
228                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
229                                 exist_written_data(sbi, ino, UPDATE_INO))
230                         goto flush_out;
231                 goto out;
232         }
233 go_write:
234         /*
235          * Both of fdatasync() and fsync() are able to be recovered from
236          * sudden-power-off.
237          */
238         down_read(&F2FS_I(inode)->i_sem);
239         need_cp = need_do_checkpoint(inode);
240         up_read(&F2FS_I(inode)->i_sem);
241 
242         if (need_cp) {
243                 /* all the dirty node pages should be flushed for POR */
244                 ret = f2fs_sync_fs(inode->i_sb, 1);
245 
246                 /*
247                  * We've secured consistency through sync_fs. Following pino
248                  * will be used only for fsynced inodes after checkpoint.
249                  */
250                 try_to_fix_pino(inode);
251                 clear_inode_flag(inode, FI_APPEND_WRITE);
252                 clear_inode_flag(inode, FI_UPDATE_WRITE);
253                 goto out;
254         }
255 sync_nodes:
256         ret = fsync_node_pages(sbi, inode, &wbc, atomic);
257         if (ret)
258                 goto out;
259 
260         /* if cp_error was enabled, we should avoid infinite loop */
261         if (unlikely(f2fs_cp_error(sbi))) {
262                 ret = -EIO;
263                 goto out;
264         }
265 
266         if (need_inode_block_update(sbi, ino)) {
267                 f2fs_mark_inode_dirty_sync(inode);
268                 f2fs_write_inode(inode, NULL);
269                 goto sync_nodes;
270         }
271 
272         ret = wait_on_node_pages_writeback(sbi, ino);
273         if (ret)
274                 goto out;
275 
276         /* once recovery info is written, don't need to tack this */
277         remove_ino_entry(sbi, ino, APPEND_INO);
278         clear_inode_flag(inode, FI_APPEND_WRITE);
279 flush_out:
280         remove_ino_entry(sbi, ino, UPDATE_INO);
281         clear_inode_flag(inode, FI_UPDATE_WRITE);
282         ret = f2fs_issue_flush(sbi);
283         f2fs_update_time(sbi, REQ_TIME);
284 out:
285         trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
286         f2fs_trace_ios(NULL, 1);
287         return ret;
288 }
289 
290 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
291 {
292         return f2fs_do_sync_file(file, start, end, datasync, false);
293 }
294 
295 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
296                                                 pgoff_t pgofs, int whence)
297 {
298         struct pagevec pvec;
299         int nr_pages;
300 
301         if (whence != SEEK_DATA)
302                 return 0;
303 
304         /* find first dirty page index */
305         pagevec_init(&pvec, 0);
306         nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
307                                         PAGECACHE_TAG_DIRTY, 1);
308         pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
309         pagevec_release(&pvec);
310         return pgofs;
311 }
312 
313 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
314                                                         int whence)
315 {
316         switch (whence) {
317         case SEEK_DATA:
318                 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
319                         (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
320                         return true;
321                 break;
322         case SEEK_HOLE:
323                 if (blkaddr == NULL_ADDR)
324                         return true;
325                 break;
326         }
327         return false;
328 }
329 
330 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
331 {
332         struct inode *inode = file->f_mapping->host;
333         loff_t maxbytes = inode->i_sb->s_maxbytes;
334         struct dnode_of_data dn;
335         pgoff_t pgofs, end_offset, dirty;
336         loff_t data_ofs = offset;
337         loff_t isize;
338         int err = 0;
339 
340         inode_lock(inode);
341 
342         isize = i_size_read(inode);
343         if (offset >= isize)
344                 goto fail;
345 
346         /* handle inline data case */
347         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
348                 if (whence == SEEK_HOLE)
349                         data_ofs = isize;
350                 goto found;
351         }
352 
353         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
354 
355         dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
356 
357         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
358                 set_new_dnode(&dn, inode, NULL, NULL, 0);
359                 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
360                 if (err && err != -ENOENT) {
361                         goto fail;
362                 } else if (err == -ENOENT) {
363                         /* direct node does not exists */
364                         if (whence == SEEK_DATA) {
365                                 pgofs = get_next_page_offset(&dn, pgofs);
366                                 continue;
367                         } else {
368                                 goto found;
369                         }
370                 }
371 
372                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
373 
374                 /* find data/hole in dnode block */
375                 for (; dn.ofs_in_node < end_offset;
376                                 dn.ofs_in_node++, pgofs++,
377                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
378                         block_t blkaddr;
379                         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
380 
381                         if (__found_offset(blkaddr, dirty, pgofs, whence)) {
382                                 f2fs_put_dnode(&dn);
383                                 goto found;
384                         }
385                 }
386                 f2fs_put_dnode(&dn);
387         }
388 
389         if (whence == SEEK_DATA)
390                 goto fail;
391 found:
392         if (whence == SEEK_HOLE && data_ofs > isize)
393                 data_ofs = isize;
394         inode_unlock(inode);
395         return vfs_setpos(file, data_ofs, maxbytes);
396 fail:
397         inode_unlock(inode);
398         return -ENXIO;
399 }
400 
401 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
402 {
403         struct inode *inode = file->f_mapping->host;
404         loff_t maxbytes = inode->i_sb->s_maxbytes;
405 
406         switch (whence) {
407         case SEEK_SET:
408         case SEEK_CUR:
409         case SEEK_END:
410                 return generic_file_llseek_size(file, offset, whence,
411                                                 maxbytes, i_size_read(inode));
412         case SEEK_DATA:
413         case SEEK_HOLE:
414                 if (offset < 0)
415                         return -ENXIO;
416                 return f2fs_seek_block(file, offset, whence);
417         }
418 
419         return -EINVAL;
420 }
421 
422 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
423 {
424         struct inode *inode = file_inode(file);
425         int err;
426 
427         if (f2fs_encrypted_inode(inode)) {
428                 err = fscrypt_get_encryption_info(inode);
429                 if (err)
430                         return 0;
431                 if (!f2fs_encrypted_inode(inode))
432                         return -ENOKEY;
433         }
434 
435         /* we don't need to use inline_data strictly */
436         err = f2fs_convert_inline_inode(inode);
437         if (err)
438                 return err;
439 
440         file_accessed(file);
441         vma->vm_ops = &f2fs_file_vm_ops;
442         return 0;
443 }
444 
445 static int f2fs_file_open(struct inode *inode, struct file *filp)
446 {
447         int ret = generic_file_open(inode, filp);
448         struct dentry *dir;
449 
450         if (!ret && f2fs_encrypted_inode(inode)) {
451                 ret = fscrypt_get_encryption_info(inode);
452                 if (ret)
453                         return -EACCES;
454                 if (!fscrypt_has_encryption_key(inode))
455                         return -ENOKEY;
456         }
457         dir = dget_parent(file_dentry(filp));
458         if (f2fs_encrypted_inode(d_inode(dir)) &&
459                         !fscrypt_has_permitted_context(d_inode(dir), inode)) {
460                 dput(dir);
461                 return -EPERM;
462         }
463         dput(dir);
464         return ret;
465 }
466 
467 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
468 {
469         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
470         struct f2fs_node *raw_node;
471         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
472         __le32 *addr;
473 
474         raw_node = F2FS_NODE(dn->node_page);
475         addr = blkaddr_in_node(raw_node) + ofs;
476 
477         for (; count > 0; count--, addr++, dn->ofs_in_node++) {
478                 block_t blkaddr = le32_to_cpu(*addr);
479                 if (blkaddr == NULL_ADDR)
480                         continue;
481 
482                 dn->data_blkaddr = NULL_ADDR;
483                 set_data_blkaddr(dn);
484                 invalidate_blocks(sbi, blkaddr);
485                 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
486                         clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
487                 nr_free++;
488         }
489 
490         if (nr_free) {
491                 pgoff_t fofs;
492                 /*
493                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
494                  * we will invalidate all blkaddr in the whole range.
495                  */
496                 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
497                                                         dn->inode) + ofs;
498                 f2fs_update_extent_cache_range(dn, fofs, 0, len);
499                 dec_valid_block_count(sbi, dn->inode, nr_free);
500         }
501         dn->ofs_in_node = ofs;
502 
503         f2fs_update_time(sbi, REQ_TIME);
504         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
505                                          dn->ofs_in_node, nr_free);
506         return nr_free;
507 }
508 
509 void truncate_data_blocks(struct dnode_of_data *dn)
510 {
511         truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
512 }
513 
514 static int truncate_partial_data_page(struct inode *inode, u64 from,
515                                                                 bool cache_only)
516 {
517         unsigned offset = from & (PAGE_SIZE - 1);
518         pgoff_t index = from >> PAGE_SHIFT;
519         struct address_space *mapping = inode->i_mapping;
520         struct page *page;
521 
522         if (!offset && !cache_only)
523                 return 0;
524 
525         if (cache_only) {
526                 page = f2fs_grab_cache_page(mapping, index, false);
527                 if (page && PageUptodate(page))
528                         goto truncate_out;
529                 f2fs_put_page(page, 1);
530                 return 0;
531         }
532 
533         page = get_lock_data_page(inode, index, true);
534         if (IS_ERR(page))
535                 return 0;
536 truncate_out:
537         f2fs_wait_on_page_writeback(page, DATA, true);
538         zero_user(page, offset, PAGE_SIZE - offset);
539         if (!cache_only || !f2fs_encrypted_inode(inode) ||
540                                         !S_ISREG(inode->i_mode))
541                 set_page_dirty(page);
542         f2fs_put_page(page, 1);
543         return 0;
544 }
545 
546 int truncate_blocks(struct inode *inode, u64 from, bool lock)
547 {
548         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
549         unsigned int blocksize = inode->i_sb->s_blocksize;
550         struct dnode_of_data dn;
551         pgoff_t free_from;
552         int count = 0, err = 0;
553         struct page *ipage;
554         bool truncate_page = false;
555 
556         trace_f2fs_truncate_blocks_enter(inode, from);
557 
558         free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
559 
560         if (free_from >= sbi->max_file_blocks)
561                 goto free_partial;
562 
563         if (lock)
564                 f2fs_lock_op(sbi);
565 
566         ipage = get_node_page(sbi, inode->i_ino);
567         if (IS_ERR(ipage)) {
568                 err = PTR_ERR(ipage);
569                 goto out;
570         }
571 
572         if (f2fs_has_inline_data(inode)) {
573                 if (truncate_inline_inode(ipage, from))
574                         set_page_dirty(ipage);
575                 f2fs_put_page(ipage, 1);
576                 truncate_page = true;
577                 goto out;
578         }
579 
580         set_new_dnode(&dn, inode, ipage, NULL, 0);
581         err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
582         if (err) {
583                 if (err == -ENOENT)
584                         goto free_next;
585                 goto out;
586         }
587 
588         count = ADDRS_PER_PAGE(dn.node_page, inode);
589 
590         count -= dn.ofs_in_node;
591         f2fs_bug_on(sbi, count < 0);
592 
593         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
594                 truncate_data_blocks_range(&dn, count);
595                 free_from += count;
596         }
597 
598         f2fs_put_dnode(&dn);
599 free_next:
600         err = truncate_inode_blocks(inode, free_from);
601 out:
602         if (lock)
603                 f2fs_unlock_op(sbi);
604 free_partial:
605         /* lastly zero out the first data page */
606         if (!err)
607                 err = truncate_partial_data_page(inode, from, truncate_page);
608 
609         trace_f2fs_truncate_blocks_exit(inode, err);
610         return err;
611 }
612 
613 int f2fs_truncate(struct inode *inode)
614 {
615         int err;
616 
617         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
618                                 S_ISLNK(inode->i_mode)))
619                 return 0;
620 
621         trace_f2fs_truncate(inode);
622 
623         /* we should check inline_data size */
624         if (!f2fs_may_inline_data(inode)) {
625                 err = f2fs_convert_inline_inode(inode);
626                 if (err)
627                         return err;
628         }
629 
630         err = truncate_blocks(inode, i_size_read(inode), true);
631         if (err)
632                 return err;
633 
634         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
635         f2fs_mark_inode_dirty_sync(inode);
636         return 0;
637 }
638 
639 int f2fs_getattr(struct vfsmount *mnt,
640                          struct dentry *dentry, struct kstat *stat)
641 {
642         struct inode *inode = d_inode(dentry);
643         generic_fillattr(inode, stat);
644         stat->blocks <<= 3;
645         return 0;
646 }
647 
648 #ifdef CONFIG_F2FS_FS_POSIX_ACL
649 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
650 {
651         unsigned int ia_valid = attr->ia_valid;
652 
653         if (ia_valid & ATTR_UID)
654                 inode->i_uid = attr->ia_uid;
655         if (ia_valid & ATTR_GID)
656                 inode->i_gid = attr->ia_gid;
657         if (ia_valid & ATTR_ATIME)
658                 inode->i_atime = timespec_trunc(attr->ia_atime,
659                                                 inode->i_sb->s_time_gran);
660         if (ia_valid & ATTR_MTIME)
661                 inode->i_mtime = timespec_trunc(attr->ia_mtime,
662                                                 inode->i_sb->s_time_gran);
663         if (ia_valid & ATTR_CTIME)
664                 inode->i_ctime = timespec_trunc(attr->ia_ctime,
665                                                 inode->i_sb->s_time_gran);
666         if (ia_valid & ATTR_MODE) {
667                 umode_t mode = attr->ia_mode;
668 
669                 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
670                         mode &= ~S_ISGID;
671                 set_acl_inode(inode, mode);
672         }
673 }
674 #else
675 #define __setattr_copy setattr_copy
676 #endif
677 
678 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
679 {
680         struct inode *inode = d_inode(dentry);
681         int err;
682 
683         err = inode_change_ok(inode, attr);
684         if (err)
685                 return err;
686 
687         if (attr->ia_valid & ATTR_SIZE) {
688                 if (f2fs_encrypted_inode(inode) &&
689                                 fscrypt_get_encryption_info(inode))
690                         return -EACCES;
691 
692                 if (attr->ia_size <= i_size_read(inode)) {
693                         truncate_setsize(inode, attr->ia_size);
694                         err = f2fs_truncate(inode);
695                         if (err)
696                                 return err;
697                         f2fs_balance_fs(F2FS_I_SB(inode), true);
698                 } else {
699                         /*
700                          * do not trim all blocks after i_size if target size is
701                          * larger than i_size.
702                          */
703                         truncate_setsize(inode, attr->ia_size);
704 
705                         /* should convert inline inode here */
706                         if (!f2fs_may_inline_data(inode)) {
707                                 err = f2fs_convert_inline_inode(inode);
708                                 if (err)
709                                         return err;
710                         }
711                         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
712                 }
713         }
714 
715         __setattr_copy(inode, attr);
716 
717         if (attr->ia_valid & ATTR_MODE) {
718                 err = posix_acl_chmod(inode, get_inode_mode(inode));
719                 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
720                         inode->i_mode = F2FS_I(inode)->i_acl_mode;
721                         clear_inode_flag(inode, FI_ACL_MODE);
722                 }
723         }
724 
725         f2fs_mark_inode_dirty_sync(inode);
726         return err;
727 }
728 
729 const struct inode_operations f2fs_file_inode_operations = {
730         .getattr        = f2fs_getattr,
731         .setattr        = f2fs_setattr,
732         .get_acl        = f2fs_get_acl,
733         .set_acl        = f2fs_set_acl,
734 #ifdef CONFIG_F2FS_FS_XATTR
735         .setxattr       = generic_setxattr,
736         .getxattr       = generic_getxattr,
737         .listxattr      = f2fs_listxattr,
738         .removexattr    = generic_removexattr,
739 #endif
740         .fiemap         = f2fs_fiemap,
741 };
742 
743 static int fill_zero(struct inode *inode, pgoff_t index,
744                                         loff_t start, loff_t len)
745 {
746         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
747         struct page *page;
748 
749         if (!len)
750                 return 0;
751 
752         f2fs_balance_fs(sbi, true);
753 
754         f2fs_lock_op(sbi);
755         page = get_new_data_page(inode, NULL, index, false);
756         f2fs_unlock_op(sbi);
757 
758         if (IS_ERR(page))
759                 return PTR_ERR(page);
760 
761         f2fs_wait_on_page_writeback(page, DATA, true);
762         zero_user(page, start, len);
763         set_page_dirty(page);
764         f2fs_put_page(page, 1);
765         return 0;
766 }
767 
768 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
769 {
770         int err;
771 
772         while (pg_start < pg_end) {
773                 struct dnode_of_data dn;
774                 pgoff_t end_offset, count;
775 
776                 set_new_dnode(&dn, inode, NULL, NULL, 0);
777                 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
778                 if (err) {
779                         if (err == -ENOENT) {
780                                 pg_start++;
781                                 continue;
782                         }
783                         return err;
784                 }
785 
786                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
787                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
788 
789                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
790 
791                 truncate_data_blocks_range(&dn, count);
792                 f2fs_put_dnode(&dn);
793 
794                 pg_start += count;
795         }
796         return 0;
797 }
798 
799 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
800 {
801         pgoff_t pg_start, pg_end;
802         loff_t off_start, off_end;
803         int ret;
804 
805         ret = f2fs_convert_inline_inode(inode);
806         if (ret)
807                 return ret;
808 
809         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
810         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
811 
812         off_start = offset & (PAGE_SIZE - 1);
813         off_end = (offset + len) & (PAGE_SIZE - 1);
814 
815         if (pg_start == pg_end) {
816                 ret = fill_zero(inode, pg_start, off_start,
817                                                 off_end - off_start);
818                 if (ret)
819                         return ret;
820         } else {
821                 if (off_start) {
822                         ret = fill_zero(inode, pg_start++, off_start,
823                                                 PAGE_SIZE - off_start);
824                         if (ret)
825                                 return ret;
826                 }
827                 if (off_end) {
828                         ret = fill_zero(inode, pg_end, 0, off_end);
829                         if (ret)
830                                 return ret;
831                 }
832 
833                 if (pg_start < pg_end) {
834                         struct address_space *mapping = inode->i_mapping;
835                         loff_t blk_start, blk_end;
836                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
837 
838                         f2fs_balance_fs(sbi, true);
839 
840                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
841                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
842                         truncate_inode_pages_range(mapping, blk_start,
843                                         blk_end - 1);
844 
845                         f2fs_lock_op(sbi);
846                         ret = truncate_hole(inode, pg_start, pg_end);
847                         f2fs_unlock_op(sbi);
848                 }
849         }
850 
851         return ret;
852 }
853 
854 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
855                                 int *do_replace, pgoff_t off, pgoff_t len)
856 {
857         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
858         struct dnode_of_data dn;
859         int ret, done, i;
860 
861 next_dnode:
862         set_new_dnode(&dn, inode, NULL, NULL, 0);
863         ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
864         if (ret && ret != -ENOENT) {
865                 return ret;
866         } else if (ret == -ENOENT) {
867                 if (dn.max_level == 0)
868                         return -ENOENT;
869                 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
870                 blkaddr += done;
871                 do_replace += done;
872                 goto next;
873         }
874 
875         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
876                                                         dn.ofs_in_node, len);
877         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
878                 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
879                 if (!is_checkpointed_data(sbi, *blkaddr)) {
880 
881                         if (test_opt(sbi, LFS)) {
882                                 f2fs_put_dnode(&dn);
883                                 return -ENOTSUPP;
884                         }
885 
886                         /* do not invalidate this block address */
887                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
888                         *do_replace = 1;
889                 }
890         }
891         f2fs_put_dnode(&dn);
892 next:
893         len -= done;
894         off += done;
895         if (len)
896                 goto next_dnode;
897         return 0;
898 }
899 
900 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
901                                 int *do_replace, pgoff_t off, int len)
902 {
903         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
904         struct dnode_of_data dn;
905         int ret, i;
906 
907         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
908                 if (*do_replace == 0)
909                         continue;
910 
911                 set_new_dnode(&dn, inode, NULL, NULL, 0);
912                 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
913                 if (ret) {
914                         dec_valid_block_count(sbi, inode, 1);
915                         invalidate_blocks(sbi, *blkaddr);
916                 } else {
917                         f2fs_update_data_blkaddr(&dn, *blkaddr);
918                 }
919                 f2fs_put_dnode(&dn);
920         }
921         return 0;
922 }
923 
924 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
925                         block_t *blkaddr, int *do_replace,
926                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
927 {
928         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
929         pgoff_t i = 0;
930         int ret;
931 
932         while (i < len) {
933                 if (blkaddr[i] == NULL_ADDR && !full) {
934                         i++;
935                         continue;
936                 }
937 
938                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
939                         struct dnode_of_data dn;
940                         struct node_info ni;
941                         size_t new_size;
942                         pgoff_t ilen;
943 
944                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
945                         ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
946                         if (ret)
947                                 return ret;
948 
949                         get_node_info(sbi, dn.nid, &ni);
950                         ilen = min((pgoff_t)
951                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
952                                                 dn.ofs_in_node, len - i);
953                         do {
954                                 dn.data_blkaddr = datablock_addr(dn.node_page,
955                                                                 dn.ofs_in_node);
956                                 truncate_data_blocks_range(&dn, 1);
957 
958                                 if (do_replace[i]) {
959                                         f2fs_i_blocks_write(src_inode,
960                                                                 1, false);
961                                         f2fs_i_blocks_write(dst_inode,
962                                                                 1, true);
963                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
964                                         blkaddr[i], ni.version, true, false);
965 
966                                         do_replace[i] = 0;
967                                 }
968                                 dn.ofs_in_node++;
969                                 i++;
970                                 new_size = (dst + i) << PAGE_SHIFT;
971                                 if (dst_inode->i_size < new_size)
972                                         f2fs_i_size_write(dst_inode, new_size);
973                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
974 
975                         f2fs_put_dnode(&dn);
976                 } else {
977                         struct page *psrc, *pdst;
978 
979                         psrc = get_lock_data_page(src_inode, src + i, true);
980                         if (IS_ERR(psrc))
981                                 return PTR_ERR(psrc);
982                         pdst = get_new_data_page(dst_inode, NULL, dst + i,
983                                                                 true);
984                         if (IS_ERR(pdst)) {
985                                 f2fs_put_page(psrc, 1);
986                                 return PTR_ERR(pdst);
987                         }
988                         f2fs_copy_page(psrc, pdst);
989                         set_page_dirty(pdst);
990                         f2fs_put_page(pdst, 1);
991                         f2fs_put_page(psrc, 1);
992 
993                         ret = truncate_hole(src_inode, src + i, src + i + 1);
994                         if (ret)
995                                 return ret;
996                         i++;
997                 }
998         }
999         return 0;
1000 }
1001 
1002 static int __exchange_data_block(struct inode *src_inode,
1003                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1004                         pgoff_t len, bool full)
1005 {
1006         block_t *src_blkaddr;
1007         int *do_replace;
1008         pgoff_t olen;
1009         int ret;
1010 
1011         while (len) {
1012                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1013 
1014                 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1015                 if (!src_blkaddr)
1016                         return -ENOMEM;
1017 
1018                 do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1019                 if (!do_replace) {
1020                         kvfree(src_blkaddr);
1021                         return -ENOMEM;
1022                 }
1023 
1024                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1025                                         do_replace, src, olen);
1026                 if (ret)
1027                         goto roll_back;
1028 
1029                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1030                                         do_replace, src, dst, olen, full);
1031                 if (ret)
1032                         goto roll_back;
1033 
1034                 src += olen;
1035                 dst += olen;
1036                 len -= olen;
1037 
1038                 kvfree(src_blkaddr);
1039                 kvfree(do_replace);
1040         }
1041         return 0;
1042 
1043 roll_back:
1044         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1045         kvfree(src_blkaddr);
1046         kvfree(do_replace);
1047         return ret;
1048 }
1049 
1050 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1051 {
1052         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1053         pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1054         int ret;
1055 
1056         f2fs_balance_fs(sbi, true);
1057         f2fs_lock_op(sbi);
1058 
1059         f2fs_drop_extent_tree(inode);
1060 
1061         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1062         f2fs_unlock_op(sbi);
1063         return ret;
1064 }
1065 
1066 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1067 {
1068         pgoff_t pg_start, pg_end;
1069         loff_t new_size;
1070         int ret;
1071 
1072         if (offset + len >= i_size_read(inode))
1073                 return -EINVAL;
1074 
1075         /* collapse range should be aligned to block size of f2fs. */
1076         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1077                 return -EINVAL;
1078 
1079         ret = f2fs_convert_inline_inode(inode);
1080         if (ret)
1081                 return ret;
1082 
1083         pg_start = offset >> PAGE_SHIFT;
1084         pg_end = (offset + len) >> PAGE_SHIFT;
1085 
1086         /* write out all dirty pages from offset */
1087         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1088         if (ret)
1089                 return ret;
1090 
1091         truncate_pagecache(inode, offset);
1092 
1093         ret = f2fs_do_collapse(inode, pg_start, pg_end);
1094         if (ret)
1095                 return ret;
1096 
1097         /* write out all moved pages, if possible */
1098         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1099         truncate_pagecache(inode, offset);
1100 
1101         new_size = i_size_read(inode) - len;
1102         truncate_pagecache(inode, new_size);
1103 
1104         ret = truncate_blocks(inode, new_size, true);
1105         if (!ret)
1106                 f2fs_i_size_write(inode, new_size);
1107 
1108         return ret;
1109 }
1110 
1111 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1112                                                                 pgoff_t end)
1113 {
1114         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1115         pgoff_t index = start;
1116         unsigned int ofs_in_node = dn->ofs_in_node;
1117         blkcnt_t count = 0;
1118         int ret;
1119 
1120         for (; index < end; index++, dn->ofs_in_node++) {
1121                 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1122                         count++;
1123         }
1124 
1125         dn->ofs_in_node = ofs_in_node;
1126         ret = reserve_new_blocks(dn, count);
1127         if (ret)
1128                 return ret;
1129 
1130         dn->ofs_in_node = ofs_in_node;
1131         for (index = start; index < end; index++, dn->ofs_in_node++) {
1132                 dn->data_blkaddr =
1133                                 datablock_addr(dn->node_page, dn->ofs_in_node);
1134                 /*
1135                  * reserve_new_blocks will not guarantee entire block
1136                  * allocation.
1137                  */
1138                 if (dn->data_blkaddr == NULL_ADDR) {
1139                         ret = -ENOSPC;
1140                         break;
1141                 }
1142                 if (dn->data_blkaddr != NEW_ADDR) {
1143                         invalidate_blocks(sbi, dn->data_blkaddr);
1144                         dn->data_blkaddr = NEW_ADDR;
1145                         set_data_blkaddr(dn);
1146                 }
1147         }
1148 
1149         f2fs_update_extent_cache_range(dn, start, 0, index - start);
1150 
1151         return ret;
1152 }
1153 
1154 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1155                                                                 int mode)
1156 {
1157         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1158         struct address_space *mapping = inode->i_mapping;
1159         pgoff_t index, pg_start, pg_end;
1160         loff_t new_size = i_size_read(inode);
1161         loff_t off_start, off_end;
1162         int ret = 0;
1163 
1164         ret = inode_newsize_ok(inode, (len + offset));
1165         if (ret)
1166                 return ret;
1167 
1168         ret = f2fs_convert_inline_inode(inode);
1169         if (ret)
1170                 return ret;
1171 
1172         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1173         if (ret)
1174                 return ret;
1175 
1176         truncate_pagecache_range(inode, offset, offset + len - 1);
1177 
1178         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1179         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1180 
1181         off_start = offset & (PAGE_SIZE - 1);
1182         off_end = (offset + len) & (PAGE_SIZE - 1);
1183 
1184         if (pg_start == pg_end) {
1185                 ret = fill_zero(inode, pg_start, off_start,
1186                                                 off_end - off_start);
1187                 if (ret)
1188                         return ret;
1189 
1190                 if (offset + len > new_size)
1191                         new_size = offset + len;
1192                 new_size = max_t(loff_t, new_size, offset + len);
1193         } else {
1194                 if (off_start) {
1195                         ret = fill_zero(inode, pg_start++, off_start,
1196                                                 PAGE_SIZE - off_start);
1197                         if (ret)
1198                                 return ret;
1199 
1200                         new_size = max_t(loff_t, new_size,
1201                                         (loff_t)pg_start << PAGE_SHIFT);
1202                 }
1203 
1204                 for (index = pg_start; index < pg_end;) {
1205                         struct dnode_of_data dn;
1206                         unsigned int end_offset;
1207                         pgoff_t end;
1208 
1209                         f2fs_lock_op(sbi);
1210 
1211                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1212                         ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1213                         if (ret) {
1214                                 f2fs_unlock_op(sbi);
1215                                 goto out;
1216                         }
1217 
1218                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1219                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1220 
1221                         ret = f2fs_do_zero_range(&dn, index, end);
1222                         f2fs_put_dnode(&dn);
1223                         f2fs_unlock_op(sbi);
1224                         if (ret)
1225                                 goto out;
1226 
1227                         index = end;
1228                         new_size = max_t(loff_t, new_size,
1229                                         (loff_t)index << PAGE_SHIFT);
1230                 }
1231 
1232                 if (off_end) {
1233                         ret = fill_zero(inode, pg_end, 0, off_end);
1234                         if (ret)
1235                                 goto out;
1236 
1237                         new_size = max_t(loff_t, new_size, offset + len);
1238                 }
1239         }
1240 
1241 out:
1242         if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1243                 f2fs_i_size_write(inode, new_size);
1244 
1245         return ret;
1246 }
1247 
1248 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1249 {
1250         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1251         pgoff_t nr, pg_start, pg_end, delta, idx;
1252         loff_t new_size;
1253         int ret = 0;
1254 
1255         new_size = i_size_read(inode) + len;
1256         if (new_size > inode->i_sb->s_maxbytes)
1257                 return -EFBIG;
1258 
1259         if (offset >= i_size_read(inode))
1260                 return -EINVAL;
1261 
1262         /* insert range should be aligned to block size of f2fs. */
1263         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1264                 return -EINVAL;
1265 
1266         ret = f2fs_convert_inline_inode(inode);
1267         if (ret)
1268                 return ret;
1269 
1270         f2fs_balance_fs(sbi, true);
1271 
1272         ret = truncate_blocks(inode, i_size_read(inode), true);
1273         if (ret)
1274                 return ret;
1275 
1276         /* write out all dirty pages from offset */
1277         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1278         if (ret)
1279                 return ret;
1280 
1281         truncate_pagecache(inode, offset);
1282 
1283         pg_start = offset >> PAGE_SHIFT;
1284         pg_end = (offset + len) >> PAGE_SHIFT;
1285         delta = pg_end - pg_start;
1286         idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1287 
1288         while (!ret && idx > pg_start) {
1289                 nr = idx - pg_start;
1290                 if (nr > delta)
1291                         nr = delta;
1292                 idx -= nr;
1293 
1294                 f2fs_lock_op(sbi);
1295                 f2fs_drop_extent_tree(inode);
1296 
1297                 ret = __exchange_data_block(inode, inode, idx,
1298                                         idx + delta, nr, false);
1299                 f2fs_unlock_op(sbi);
1300         }
1301 
1302         /* write out all moved pages, if possible */
1303         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1304         truncate_pagecache(inode, offset);
1305 
1306         if (!ret)
1307                 f2fs_i_size_write(inode, new_size);
1308         return ret;
1309 }
1310 
1311 static int expand_inode_data(struct inode *inode, loff_t offset,
1312                                         loff_t len, int mode)
1313 {
1314         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1315         struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1316         pgoff_t pg_end;
1317         loff_t new_size = i_size_read(inode);
1318         loff_t off_end;
1319         int ret;
1320 
1321         ret = inode_newsize_ok(inode, (len + offset));
1322         if (ret)
1323                 return ret;
1324 
1325         ret = f2fs_convert_inline_inode(inode);
1326         if (ret)
1327                 return ret;
1328 
1329         f2fs_balance_fs(sbi, true);
1330 
1331         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1332         off_end = (offset + len) & (PAGE_SIZE - 1);
1333 
1334         map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1335         map.m_len = pg_end - map.m_lblk;
1336         if (off_end)
1337                 map.m_len++;
1338 
1339         ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1340         if (ret) {
1341                 pgoff_t last_off;
1342 
1343                 if (!map.m_len)
1344                         return ret;
1345 
1346                 last_off = map.m_lblk + map.m_len - 1;
1347 
1348                 /* update new size to the failed position */
1349                 new_size = (last_off == pg_end) ? offset + len:
1350                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1351         } else {
1352                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1353         }
1354 
1355         if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1356                 f2fs_i_size_write(inode, new_size);
1357 
1358         return ret;
1359 }
1360 
1361 static long f2fs_fallocate(struct file *file, int mode,
1362                                 loff_t offset, loff_t len)
1363 {
1364         struct inode *inode = file_inode(file);
1365         long ret = 0;
1366 
1367         /* f2fs only support ->fallocate for regular file */
1368         if (!S_ISREG(inode->i_mode))
1369                 return -EINVAL;
1370 
1371         if (f2fs_encrypted_inode(inode) &&
1372                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1373                 return -EOPNOTSUPP;
1374 
1375         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1376                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1377                         FALLOC_FL_INSERT_RANGE))
1378                 return -EOPNOTSUPP;
1379 
1380         inode_lock(inode);
1381 
1382         if (mode & FALLOC_FL_PUNCH_HOLE) {
1383                 if (offset >= inode->i_size)
1384                         goto out;
1385 
1386                 ret = punch_hole(inode, offset, len);
1387         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1388                 ret = f2fs_collapse_range(inode, offset, len);
1389         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1390                 ret = f2fs_zero_range(inode, offset, len, mode);
1391         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1392                 ret = f2fs_insert_range(inode, offset, len);
1393         } else {
1394                 ret = expand_inode_data(inode, offset, len, mode);
1395         }
1396 
1397         if (!ret) {
1398                 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1399                 f2fs_mark_inode_dirty_sync(inode);
1400                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1401         }
1402 
1403 out:
1404         inode_unlock(inode);
1405 
1406         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1407         return ret;
1408 }
1409 
1410 static int f2fs_release_file(struct inode *inode, struct file *filp)
1411 {
1412         /*
1413          * f2fs_relase_file is called at every close calls. So we should
1414          * not drop any inmemory pages by close called by other process.
1415          */
1416         if (!(filp->f_mode & FMODE_WRITE) ||
1417                         atomic_read(&inode->i_writecount) != 1)
1418                 return 0;
1419 
1420         /* some remained atomic pages should discarded */
1421         if (f2fs_is_atomic_file(inode))
1422                 drop_inmem_pages(inode);
1423         if (f2fs_is_volatile_file(inode)) {
1424                 clear_inode_flag(inode, FI_VOLATILE_FILE);
1425                 set_inode_flag(inode, FI_DROP_CACHE);
1426                 filemap_fdatawrite(inode->i_mapping);
1427                 clear_inode_flag(inode, FI_DROP_CACHE);
1428         }
1429         return 0;
1430 }
1431 
1432 #define F2FS_REG_FLMASK         (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1433 #define F2FS_OTHER_FLMASK       (FS_NODUMP_FL | FS_NOATIME_FL)
1434 
1435 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1436 {
1437         if (S_ISDIR(mode))
1438                 return flags;
1439         else if (S_ISREG(mode))
1440                 return flags & F2FS_REG_FLMASK;
1441         else
1442                 return flags & F2FS_OTHER_FLMASK;
1443 }
1444 
1445 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1446 {
1447         struct inode *inode = file_inode(filp);
1448         struct f2fs_inode_info *fi = F2FS_I(inode);
1449         unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1450         return put_user(flags, (int __user *)arg);
1451 }
1452 
1453 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1454 {
1455         struct inode *inode = file_inode(filp);
1456         struct f2fs_inode_info *fi = F2FS_I(inode);
1457         unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1458         unsigned int oldflags;
1459         int ret;
1460 
1461         if (!inode_owner_or_capable(inode))
1462                 return -EACCES;
1463 
1464         if (get_user(flags, (int __user *)arg))
1465                 return -EFAULT;
1466 
1467         ret = mnt_want_write_file(filp);
1468         if (ret)
1469                 return ret;
1470 
1471         flags = f2fs_mask_flags(inode->i_mode, flags);
1472 
1473         inode_lock(inode);
1474 
1475         oldflags = fi->i_flags;
1476 
1477         if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1478                 if (!capable(CAP_LINUX_IMMUTABLE)) {
1479                         inode_unlock(inode);
1480                         ret = -EPERM;
1481                         goto out;
1482                 }
1483         }
1484 
1485         flags = flags & FS_FL_USER_MODIFIABLE;
1486         flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1487         fi->i_flags = flags;
1488         inode_unlock(inode);
1489 
1490         inode->i_ctime = CURRENT_TIME;
1491         f2fs_set_inode_flags(inode);
1492 out:
1493         mnt_drop_write_file(filp);
1494         return ret;
1495 }
1496 
1497 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1498 {
1499         struct inode *inode = file_inode(filp);
1500 
1501         return put_user(inode->i_generation, (int __user *)arg);
1502 }
1503 
1504 static int f2fs_ioc_start_atomic_write(struct file *filp)
1505 {
1506         struct inode *inode = file_inode(filp);
1507         int ret;
1508 
1509         if (!inode_owner_or_capable(inode))
1510                 return -EACCES;
1511 
1512         ret = mnt_want_write_file(filp);
1513         if (ret)
1514                 return ret;
1515 
1516         inode_lock(inode);
1517 
1518         if (f2fs_is_atomic_file(inode))
1519                 goto out;
1520 
1521         ret = f2fs_convert_inline_inode(inode);
1522         if (ret)
1523                 goto out;
1524 
1525         set_inode_flag(inode, FI_ATOMIC_FILE);
1526         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1527 
1528         if (!get_dirty_pages(inode))
1529                 goto out;
1530 
1531         f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1532                 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1533                                         inode->i_ino, get_dirty_pages(inode));
1534         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1535         if (ret)
1536                 clear_inode_flag(inode, FI_ATOMIC_FILE);
1537 out:
1538         inode_unlock(inode);
1539         mnt_drop_write_file(filp);
1540         return ret;
1541 }
1542 
1543 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1544 {
1545         struct inode *inode = file_inode(filp);
1546         int ret;
1547 
1548         if (!inode_owner_or_capable(inode))
1549                 return -EACCES;
1550 
1551         ret = mnt_want_write_file(filp);
1552         if (ret)
1553                 return ret;
1554 
1555         inode_lock(inode);
1556 
1557         if (f2fs_is_volatile_file(inode))
1558                 goto err_out;
1559 
1560         if (f2fs_is_atomic_file(inode)) {
1561                 clear_inode_flag(inode, FI_ATOMIC_FILE);
1562                 ret = commit_inmem_pages(inode);
1563                 if (ret) {
1564                         set_inode_flag(inode, FI_ATOMIC_FILE);
1565                         goto err_out;
1566                 }
1567         }
1568 
1569         ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1570 err_out:
1571         inode_unlock(inode);
1572         mnt_drop_write_file(filp);
1573         return ret;
1574 }
1575 
1576 static int f2fs_ioc_start_volatile_write(struct file *filp)
1577 {
1578         struct inode *inode = file_inode(filp);
1579         int ret;
1580 
1581         if (!inode_owner_or_capable(inode))
1582                 return -EACCES;
1583 
1584         ret = mnt_want_write_file(filp);
1585         if (ret)
1586                 return ret;
1587 
1588         inode_lock(inode);
1589 
1590         if (f2fs_is_volatile_file(inode))
1591                 goto out;
1592 
1593         ret = f2fs_convert_inline_inode(inode);
1594         if (ret)
1595                 goto out;
1596 
1597         set_inode_flag(inode, FI_VOLATILE_FILE);
1598         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1599 out:
1600         inode_unlock(inode);
1601         mnt_drop_write_file(filp);
1602         return ret;
1603 }
1604 
1605 static int f2fs_ioc_release_volatile_write(struct file *filp)
1606 {
1607         struct inode *inode = file_inode(filp);
1608         int ret;
1609 
1610         if (!inode_owner_or_capable(inode))
1611                 return -EACCES;
1612 
1613         ret = mnt_want_write_file(filp);
1614         if (ret)
1615                 return ret;
1616 
1617         inode_lock(inode);
1618 
1619         if (!f2fs_is_volatile_file(inode))
1620                 goto out;
1621 
1622         if (!f2fs_is_first_block_written(inode)) {
1623                 ret = truncate_partial_data_page(inode, 0, true);
1624                 goto out;
1625         }
1626 
1627         ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1628 out:
1629         inode_unlock(inode);
1630         mnt_drop_write_file(filp);
1631         return ret;
1632 }
1633 
1634 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1635 {
1636         struct inode *inode = file_inode(filp);
1637         int ret;
1638 
1639         if (!inode_owner_or_capable(inode))
1640                 return -EACCES;
1641 
1642         ret = mnt_want_write_file(filp);
1643         if (ret)
1644                 return ret;
1645 
1646         inode_lock(inode);
1647 
1648         if (f2fs_is_atomic_file(inode))
1649                 drop_inmem_pages(inode);
1650         if (f2fs_is_volatile_file(inode)) {
1651                 clear_inode_flag(inode, FI_VOLATILE_FILE);
1652                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1653         }
1654 
1655         inode_unlock(inode);
1656 
1657         mnt_drop_write_file(filp);
1658         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1659         return ret;
1660 }
1661 
1662 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1663 {
1664         struct inode *inode = file_inode(filp);
1665         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1666         struct super_block *sb = sbi->sb;
1667         __u32 in;
1668         int ret;
1669 
1670         if (!capable(CAP_SYS_ADMIN))
1671                 return -EPERM;
1672 
1673         if (get_user(in, (__u32 __user *)arg))
1674                 return -EFAULT;
1675 
1676         ret = mnt_want_write_file(filp);
1677         if (ret)
1678                 return ret;
1679 
1680         switch (in) {
1681         case F2FS_GOING_DOWN_FULLSYNC:
1682                 sb = freeze_bdev(sb->s_bdev);
1683                 if (sb && !IS_ERR(sb)) {
1684                         f2fs_stop_checkpoint(sbi, false);
1685                         thaw_bdev(sb->s_bdev, sb);
1686                 }
1687                 break;
1688         case F2FS_GOING_DOWN_METASYNC:
1689                 /* do checkpoint only */
1690                 f2fs_sync_fs(sb, 1);
1691                 f2fs_stop_checkpoint(sbi, false);
1692                 break;
1693         case F2FS_GOING_DOWN_NOSYNC:
1694                 f2fs_stop_checkpoint(sbi, false);
1695                 break;
1696         case F2FS_GOING_DOWN_METAFLUSH:
1697                 sync_meta_pages(sbi, META, LONG_MAX);
1698                 f2fs_stop_checkpoint(sbi, false);
1699                 break;
1700         default:
1701                 ret = -EINVAL;
1702                 goto out;
1703         }
1704         f2fs_update_time(sbi, REQ_TIME);
1705 out:
1706         mnt_drop_write_file(filp);
1707         return ret;
1708 }
1709 
1710 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1711 {
1712         struct inode *inode = file_inode(filp);
1713         struct super_block *sb = inode->i_sb;
1714         struct request_queue *q = bdev_get_queue(sb->s_bdev);
1715         struct fstrim_range range;
1716         int ret;
1717 
1718         if (!capable(CAP_SYS_ADMIN))
1719                 return -EPERM;
1720 
1721         if (!blk_queue_discard(q))
1722                 return -EOPNOTSUPP;
1723 
1724         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1725                                 sizeof(range)))
1726                 return -EFAULT;
1727 
1728         ret = mnt_want_write_file(filp);
1729         if (ret)
1730                 return ret;
1731 
1732         range.minlen = max((unsigned int)range.minlen,
1733                                 q->limits.discard_granularity);
1734         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1735         mnt_drop_write_file(filp);
1736         if (ret < 0)
1737                 return ret;
1738 
1739         if (copy_to_user((struct fstrim_range __user *)arg, &range,
1740                                 sizeof(range)))
1741                 return -EFAULT;
1742         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1743         return 0;
1744 }
1745 
1746 static bool uuid_is_nonzero(__u8 u[16])
1747 {
1748         int i;
1749 
1750         for (i = 0; i < 16; i++)
1751                 if (u[i])
1752                         return true;
1753         return false;
1754 }
1755 
1756 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1757 {
1758         struct fscrypt_policy policy;
1759         struct inode *inode = file_inode(filp);
1760 
1761         if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1762                                                         sizeof(policy)))
1763                 return -EFAULT;
1764 
1765         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1766 
1767         return fscrypt_process_policy(filp, &policy);
1768 }
1769 
1770 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1771 {
1772         struct fscrypt_policy policy;
1773         struct inode *inode = file_inode(filp);
1774         int err;
1775 
1776         err = fscrypt_get_policy(inode, &policy);
1777         if (err)
1778                 return err;
1779 
1780         if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1781                 return -EFAULT;
1782         return 0;
1783 }
1784 
1785 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1786 {
1787         struct inode *inode = file_inode(filp);
1788         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1789         int err;
1790 
1791         if (!f2fs_sb_has_crypto(inode->i_sb))
1792                 return -EOPNOTSUPP;
1793 
1794         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1795                 goto got_it;
1796 
1797         err = mnt_want_write_file(filp);
1798         if (err)
1799                 return err;
1800 
1801         /* update superblock with uuid */
1802         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1803 
1804         err = f2fs_commit_super(sbi, false);
1805         if (err) {
1806                 /* undo new data */
1807                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1808                 mnt_drop_write_file(filp);
1809                 return err;
1810         }
1811         mnt_drop_write_file(filp);
1812 got_it:
1813         if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1814                                                                         16))
1815                 return -EFAULT;
1816         return 0;
1817 }
1818 
1819 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1820 {
1821         struct inode *inode = file_inode(filp);
1822         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1823         __u32 sync;
1824         int ret;
1825 
1826         if (!capable(CAP_SYS_ADMIN))
1827                 return -EPERM;
1828 
1829         if (get_user(sync, (__u32 __user *)arg))
1830                 return -EFAULT;
1831 
1832         if (f2fs_readonly(sbi->sb))
1833                 return -EROFS;
1834 
1835         ret = mnt_want_write_file(filp);
1836         if (ret)
1837                 return ret;
1838 
1839         if (!sync) {
1840                 if (!mutex_trylock(&sbi->gc_mutex)) {
1841                         ret = -EBUSY;
1842                         goto out;
1843                 }
1844         } else {
1845                 mutex_lock(&sbi->gc_mutex);
1846         }
1847 
1848         ret = f2fs_gc(sbi, sync);
1849 out:
1850         mnt_drop_write_file(filp);
1851         return ret;
1852 }
1853 
1854 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1855 {
1856         struct inode *inode = file_inode(filp);
1857         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1858         int ret;
1859 
1860         if (!capable(CAP_SYS_ADMIN))
1861                 return -EPERM;
1862 
1863         if (f2fs_readonly(sbi->sb))
1864                 return -EROFS;
1865 
1866         ret = mnt_want_write_file(filp);
1867         if (ret)
1868                 return ret;
1869 
1870         ret = f2fs_sync_fs(sbi->sb, 1);
1871 
1872         mnt_drop_write_file(filp);
1873         return ret;
1874 }
1875 
1876 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1877                                         struct file *filp,
1878                                         struct f2fs_defragment *range)
1879 {
1880         struct inode *inode = file_inode(filp);
1881         struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1882         struct extent_info ei;
1883         pgoff_t pg_start, pg_end;
1884         unsigned int blk_per_seg = sbi->blocks_per_seg;
1885         unsigned int total = 0, sec_num;
1886         unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1887         block_t blk_end = 0;
1888         bool fragmented = false;
1889         int err;
1890 
1891         /* if in-place-update policy is enabled, don't waste time here */
1892         if (need_inplace_update(inode))
1893                 return -EINVAL;
1894 
1895         pg_start = range->start >> PAGE_SHIFT;
1896         pg_end = (range->start + range->len) >> PAGE_SHIFT;
1897 
1898         f2fs_balance_fs(sbi, true);
1899 
1900         inode_lock(inode);
1901 
1902         /* writeback all dirty pages in the range */
1903         err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1904                                                 range->start + range->len - 1);
1905         if (err)
1906                 goto out;
1907 
1908         /*
1909          * lookup mapping info in extent cache, skip defragmenting if physical
1910          * block addresses are continuous.
1911          */
1912         if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1913                 if (ei.fofs + ei.len >= pg_end)
1914                         goto out;
1915         }
1916 
1917         map.m_lblk = pg_start;
1918 
1919         /*
1920          * lookup mapping info in dnode page cache, skip defragmenting if all
1921          * physical block addresses are continuous even if there are hole(s)
1922          * in logical blocks.
1923          */
1924         while (map.m_lblk < pg_end) {
1925                 map.m_len = pg_end - map.m_lblk;
1926                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1927                 if (err)
1928                         goto out;
1929 
1930                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1931                         map.m_lblk++;
1932                         continue;
1933                 }
1934 
1935                 if (blk_end && blk_end != map.m_pblk) {
1936                         fragmented = true;
1937                         break;
1938                 }
1939                 blk_end = map.m_pblk + map.m_len;
1940 
1941                 map.m_lblk += map.m_len;
1942         }
1943 
1944         if (!fragmented)
1945                 goto out;
1946 
1947         map.m_lblk = pg_start;
1948         map.m_len = pg_end - pg_start;
1949 
1950         sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1951 
1952         /*
1953          * make sure there are enough free section for LFS allocation, this can
1954          * avoid defragment running in SSR mode when free section are allocated
1955          * intensively
1956          */
1957         if (has_not_enough_free_secs(sbi, sec_num)) {
1958                 err = -EAGAIN;
1959                 goto out;
1960         }
1961 
1962         while (map.m_lblk < pg_end) {
1963                 pgoff_t idx;
1964                 int cnt = 0;
1965 
1966 do_map:
1967                 map.m_len = pg_end - map.m_lblk;
1968                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1969                 if (err)
1970                         goto clear_out;
1971 
1972                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1973                         map.m_lblk++;
1974                         continue;
1975                 }
1976 
1977                 set_inode_flag(inode, FI_DO_DEFRAG);
1978 
1979                 idx = map.m_lblk;
1980                 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1981                         struct page *page;
1982 
1983                         page = get_lock_data_page(inode, idx, true);
1984                         if (IS_ERR(page)) {
1985                                 err = PTR_ERR(page);
1986                                 goto clear_out;
1987                         }
1988 
1989                         set_page_dirty(page);
1990                         f2fs_put_page(page, 1);
1991 
1992                         idx++;
1993                         cnt++;
1994                         total++;
1995                 }
1996 
1997                 map.m_lblk = idx;
1998 
1999                 if (idx < pg_end && cnt < blk_per_seg)
2000                         goto do_map;
2001 
2002                 clear_inode_flag(inode, FI_DO_DEFRAG);
2003 
2004                 err = filemap_fdatawrite(inode->i_mapping);
2005                 if (err)
2006                         goto out;
2007         }
2008 clear_out:
2009         clear_inode_flag(inode, FI_DO_DEFRAG);
2010 out:
2011         inode_unlock(inode);
2012         if (!err)
2013                 range->len = (u64)total << PAGE_SHIFT;
2014         return err;
2015 }
2016 
2017 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2018 {
2019         struct inode *inode = file_inode(filp);
2020         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2021         struct f2fs_defragment range;
2022         int err;
2023 
2024         if (!capable(CAP_SYS_ADMIN))
2025                 return -EPERM;
2026 
2027         if (!S_ISREG(inode->i_mode))
2028                 return -EINVAL;
2029 
2030         err = mnt_want_write_file(filp);
2031         if (err)
2032                 return err;
2033 
2034         if (f2fs_readonly(sbi->sb)) {
2035                 err = -EROFS;
2036                 goto out;
2037         }
2038 
2039         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2040                                                         sizeof(range))) {
2041                 err = -EFAULT;
2042                 goto out;
2043         }
2044 
2045         /* verify alignment of offset & size */
2046         if (range.start & (F2FS_BLKSIZE - 1) ||
2047                 range.len & (F2FS_BLKSIZE - 1)) {
2048                 err = -EINVAL;
2049                 goto out;
2050         }
2051 
2052         err = f2fs_defragment_range(sbi, filp, &range);
2053         f2fs_update_time(sbi, REQ_TIME);
2054         if (err < 0)
2055                 goto out;
2056 
2057         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2058                                                         sizeof(range)))
2059                 err = -EFAULT;
2060 out:
2061         mnt_drop_write_file(filp);
2062         return err;
2063 }
2064 
2065 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2066                         struct file *file_out, loff_t pos_out, size_t len)
2067 {
2068         struct inode *src = file_inode(file_in);
2069         struct inode *dst = file_inode(file_out);
2070         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2071         size_t olen = len, dst_max_i_size = 0;
2072         size_t dst_osize;
2073         int ret;
2074 
2075         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2076                                 src->i_sb != dst->i_sb)
2077                 return -EXDEV;
2078 
2079         if (unlikely(f2fs_readonly(src->i_sb)))
2080                 return -EROFS;
2081 
2082         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2083                 return -EINVAL;
2084 
2085         if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2086                 return -EOPNOTSUPP;
2087 
2088         inode_lock(src);
2089         if (src != dst) {
2090                 if (!inode_trylock(dst)) {
2091                         ret = -EBUSY;
2092                         goto out;
2093                 }
2094         }
2095 
2096         ret = -EINVAL;
2097         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2098                 goto out_unlock;
2099         if (len == 0)
2100                 olen = len = src->i_size - pos_in;
2101         if (pos_in + len == src->i_size)
2102                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2103         if (len == 0) {
2104                 ret = 0;
2105                 goto out_unlock;
2106         }
2107 
2108         dst_osize = dst->i_size;
2109         if (pos_out + olen > dst->i_size)
2110                 dst_max_i_size = pos_out + olen;
2111 
2112         /* verify the end result is block aligned */
2113         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2114                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2115                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2116                 goto out_unlock;
2117 
2118         ret = f2fs_convert_inline_inode(src);
2119         if (ret)
2120                 goto out_unlock;
2121 
2122         ret = f2fs_convert_inline_inode(dst);
2123         if (ret)
2124                 goto out_unlock;
2125 
2126         /* write out all dirty pages from offset */
2127         ret = filemap_write_and_wait_range(src->i_mapping,
2128                                         pos_in, pos_in + len);
2129         if (ret)
2130                 goto out_unlock;
2131 
2132         ret = filemap_write_and_wait_range(dst->i_mapping,
2133                                         pos_out, pos_out + len);
2134         if (ret)
2135                 goto out_unlock;
2136 
2137         f2fs_balance_fs(sbi, true);
2138         f2fs_lock_op(sbi);
2139         ret = __exchange_data_block(src, dst, pos_in,
2140                                 pos_out, len >> F2FS_BLKSIZE_BITS, false);
2141 
2142         if (!ret) {
2143                 if (dst_max_i_size)
2144                         f2fs_i_size_write(dst, dst_max_i_size);
2145                 else if (dst_osize != dst->i_size)
2146                         f2fs_i_size_write(dst, dst_osize);
2147         }
2148         f2fs_unlock_op(sbi);
2149 out_unlock:
2150         if (src != dst)
2151                 inode_unlock(dst);
2152 out:
2153         inode_unlock(src);
2154         return ret;
2155 }
2156 
2157 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2158 {
2159         struct f2fs_move_range range;
2160         struct fd dst;
2161         int err;
2162 
2163         if (!(filp->f_mode & FMODE_READ) ||
2164                         !(filp->f_mode & FMODE_WRITE))
2165                 return -EBADF;
2166 
2167         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2168                                                         sizeof(range)))
2169                 return -EFAULT;
2170 
2171         dst = fdget(range.dst_fd);
2172         if (!dst.file)
2173                 return -EBADF;
2174 
2175         if (!(dst.file->f_mode & FMODE_WRITE)) {
2176                 err = -EBADF;
2177                 goto err_out;
2178         }
2179 
2180         err = mnt_want_write_file(filp);
2181         if (err)
2182                 goto err_out;
2183 
2184         err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2185                                         range.pos_out, range.len);
2186 
2187         mnt_drop_write_file(filp);
2188 
2189         if (copy_to_user((struct f2fs_move_range __user *)arg,
2190                                                 &range, sizeof(range)))
2191                 err = -EFAULT;
2192 err_out:
2193         fdput(dst);
2194         return err;
2195 }
2196 
2197 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2198 {
2199         switch (cmd) {
2200         case F2FS_IOC_GETFLAGS:
2201                 return f2fs_ioc_getflags(filp, arg);
2202         case F2FS_IOC_SETFLAGS:
2203                 return f2fs_ioc_setflags(filp, arg);
2204         case F2FS_IOC_GETVERSION:
2205                 return f2fs_ioc_getversion(filp, arg);
2206         case F2FS_IOC_START_ATOMIC_WRITE:
2207                 return f2fs_ioc_start_atomic_write(filp);
2208         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2209                 return f2fs_ioc_commit_atomic_write(filp);
2210         case F2FS_IOC_START_VOLATILE_WRITE:
2211                 return f2fs_ioc_start_volatile_write(filp);
2212         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2213                 return f2fs_ioc_release_volatile_write(filp);
2214         case F2FS_IOC_ABORT_VOLATILE_WRITE:
2215                 return f2fs_ioc_abort_volatile_write(filp);
2216         case F2FS_IOC_SHUTDOWN:
2217                 return f2fs_ioc_shutdown(filp, arg);
2218         case FITRIM:
2219                 return f2fs_ioc_fitrim(filp, arg);
2220         case F2FS_IOC_SET_ENCRYPTION_POLICY:
2221                 return f2fs_ioc_set_encryption_policy(filp, arg);
2222         case F2FS_IOC_GET_ENCRYPTION_POLICY:
2223                 return f2fs_ioc_get_encryption_policy(filp, arg);
2224         case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2225                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2226         case F2FS_IOC_GARBAGE_COLLECT:
2227                 return f2fs_ioc_gc(filp, arg);
2228         case F2FS_IOC_WRITE_CHECKPOINT:
2229                 return f2fs_ioc_write_checkpoint(filp, arg);
2230         case F2FS_IOC_DEFRAGMENT:
2231                 return f2fs_ioc_defragment(filp, arg);
2232         case F2FS_IOC_MOVE_RANGE:
2233                 return f2fs_ioc_move_range(filp, arg);
2234         default:
2235                 return -ENOTTY;
2236         }
2237 }
2238 
2239 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2240 {
2241         struct file *file = iocb->ki_filp;
2242         struct inode *inode = file_inode(file);
2243         struct blk_plug plug;
2244         ssize_t ret;
2245 
2246         if (f2fs_encrypted_inode(inode) &&
2247                                 !fscrypt_has_encryption_key(inode) &&
2248                                 fscrypt_get_encryption_info(inode))
2249                 return -EACCES;
2250 
2251         inode_lock(inode);
2252         ret = generic_write_checks(iocb, from);
2253         if (ret > 0) {
2254                 ret = f2fs_preallocate_blocks(iocb, from);
2255                 if (!ret) {
2256                         blk_start_plug(&plug);
2257                         ret = __generic_file_write_iter(iocb, from);
2258                         blk_finish_plug(&plug);
2259                 }
2260         }
2261         inode_unlock(inode);
2262 
2263         if (ret > 0)
2264                 ret = generic_write_sync(iocb, ret);
2265         return ret;
2266 }
2267 
2268 #ifdef CONFIG_COMPAT
2269 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2270 {
2271         switch (cmd) {
2272         case F2FS_IOC32_GETFLAGS:
2273                 cmd = F2FS_IOC_GETFLAGS;
2274                 break;
2275         case F2FS_IOC32_SETFLAGS:
2276                 cmd = F2FS_IOC_SETFLAGS;
2277                 break;
2278         case F2FS_IOC32_GETVERSION:
2279                 cmd = F2FS_IOC_GETVERSION;
2280                 break;
2281         case F2FS_IOC_START_ATOMIC_WRITE:
2282         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2283         case F2FS_IOC_START_VOLATILE_WRITE:
2284         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2285         case F2FS_IOC_ABORT_VOLATILE_WRITE:
2286         case F2FS_IOC_SHUTDOWN:
2287         case F2FS_IOC_SET_ENCRYPTION_POLICY:
2288         case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2289         case F2FS_IOC_GET_ENCRYPTION_POLICY:
2290         case F2FS_IOC_GARBAGE_COLLECT:
2291         case F2FS_IOC_WRITE_CHECKPOINT:
2292         case F2FS_IOC_DEFRAGMENT:
2293                 break;
2294         case F2FS_IOC_MOVE_RANGE:
2295                 break;
2296         default:
2297                 return -ENOIOCTLCMD;
2298         }
2299         return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2300 }
2301 #endif
2302 
2303 const struct file_operations f2fs_file_operations = {
2304         .llseek         = f2fs_llseek,
2305         .read_iter      = generic_file_read_iter,
2306         .write_iter     = f2fs_file_write_iter,
2307         .open           = f2fs_file_open,
2308         .release        = f2fs_release_file,
2309         .mmap           = f2fs_file_mmap,
2310         .fsync          = f2fs_sync_file,
2311         .fallocate      = f2fs_fallocate,
2312         .unlocked_ioctl = f2fs_ioctl,
2313 #ifdef CONFIG_COMPAT
2314         .compat_ioctl   = f2fs_compat_ioctl,
2315 #endif
2316         .splice_read    = generic_file_splice_read,
2317         .splice_write   = iter_file_splice_write,
2318 };
2319 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp