~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/node.c

Version: ~ [ linux-5.5-rc1 ] ~ [ linux-5.4.2 ] ~ [ linux-5.3.15 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.88 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.158 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.206 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.206 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.78 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * fs/f2fs/node.c
  4  *
  5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6  *             http://www.samsung.com/
  7  */
  8 #include <linux/fs.h>
  9 #include <linux/f2fs_fs.h>
 10 #include <linux/mpage.h>
 11 #include <linux/backing-dev.h>
 12 #include <linux/blkdev.h>
 13 #include <linux/pagevec.h>
 14 #include <linux/swap.h>
 15 
 16 #include "f2fs.h"
 17 #include "node.h"
 18 #include "segment.h"
 19 #include "xattr.h"
 20 #include "trace.h"
 21 #include <trace/events/f2fs.h>
 22 
 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
 24 
 25 static struct kmem_cache *nat_entry_slab;
 26 static struct kmem_cache *free_nid_slab;
 27 static struct kmem_cache *nat_entry_set_slab;
 28 static struct kmem_cache *fsync_node_entry_slab;
 29 
 30 /*
 31  * Check whether the given nid is within node id range.
 32  */
 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
 34 {
 35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
 36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
 37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
 38                           __func__, nid);
 39                 return -EFSCORRUPTED;
 40         }
 41         return 0;
 42 }
 43 
 44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
 45 {
 46         struct f2fs_nm_info *nm_i = NM_I(sbi);
 47         struct sysinfo val;
 48         unsigned long avail_ram;
 49         unsigned long mem_size = 0;
 50         bool res = false;
 51 
 52         si_meminfo(&val);
 53 
 54         /* only uses low memory */
 55         avail_ram = val.totalram - val.totalhigh;
 56 
 57         /*
 58          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
 59          */
 60         if (type == FREE_NIDS) {
 61                 mem_size = (nm_i->nid_cnt[FREE_NID] *
 62                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
 63                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 64         } else if (type == NAT_ENTRIES) {
 65                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
 66                                                         PAGE_SHIFT;
 67                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 68                 if (excess_cached_nats(sbi))
 69                         res = false;
 70         } else if (type == DIRTY_DENTS) {
 71                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
 72                         return false;
 73                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
 74                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 75         } else if (type == INO_ENTRIES) {
 76                 int i;
 77 
 78                 for (i = 0; i < MAX_INO_ENTRY; i++)
 79                         mem_size += sbi->im[i].ino_num *
 80                                                 sizeof(struct ino_entry);
 81                 mem_size >>= PAGE_SHIFT;
 82                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 83         } else if (type == EXTENT_CACHE) {
 84                 mem_size = (atomic_read(&sbi->total_ext_tree) *
 85                                 sizeof(struct extent_tree) +
 86                                 atomic_read(&sbi->total_ext_node) *
 87                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
 88                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 89         } else if (type == INMEM_PAGES) {
 90                 /* it allows 20% / total_ram for inmemory pages */
 91                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
 92                 res = mem_size < (val.totalram / 5);
 93         } else {
 94                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
 95                         return true;
 96         }
 97         return res;
 98 }
 99 
100 static void clear_node_page_dirty(struct page *page)
101 {
102         if (PageDirty(page)) {
103                 f2fs_clear_page_cache_dirty_tag(page);
104                 clear_page_dirty_for_io(page);
105                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106         }
107         ClearPageUptodate(page);
108 }
109 
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112         return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113 }
114 
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117         struct page *src_page;
118         struct page *dst_page;
119         pgoff_t dst_off;
120         void *src_addr;
121         void *dst_addr;
122         struct f2fs_nm_info *nm_i = NM_I(sbi);
123 
124         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125 
126         /* get current nat block page with lock */
127         src_page = get_current_nat_page(sbi, nid);
128         if (IS_ERR(src_page))
129                 return src_page;
130         dst_page = f2fs_grab_meta_page(sbi, dst_off);
131         f2fs_bug_on(sbi, PageDirty(src_page));
132 
133         src_addr = page_address(src_page);
134         dst_addr = page_address(dst_page);
135         memcpy(dst_addr, src_addr, PAGE_SIZE);
136         set_page_dirty(dst_page);
137         f2fs_put_page(src_page, 1);
138 
139         set_to_next_nat(nm_i, nid);
140 
141         return dst_page;
142 }
143 
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146         struct nat_entry *new;
147 
148         if (no_fail)
149                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150         else
151                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152         if (new) {
153                 nat_set_nid(new, nid);
154                 nat_reset_flag(new);
155         }
156         return new;
157 }
158 
159 static void __free_nat_entry(struct nat_entry *e)
160 {
161         kmem_cache_free(nat_entry_slab, e);
162 }
163 
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168         if (no_fail)
169                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171                 return NULL;
172 
173         if (raw_ne)
174                 node_info_from_raw_nat(&ne->ni, raw_ne);
175 
176         spin_lock(&nm_i->nat_list_lock);
177         list_add_tail(&ne->list, &nm_i->nat_entries);
178         spin_unlock(&nm_i->nat_list_lock);
179 
180         nm_i->nat_cnt++;
181         return ne;
182 }
183 
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185 {
186         struct nat_entry *ne;
187 
188         ne = radix_tree_lookup(&nm_i->nat_root, n);
189 
190         /* for recent accessed nat entry, move it to tail of lru list */
191         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192                 spin_lock(&nm_i->nat_list_lock);
193                 if (!list_empty(&ne->list))
194                         list_move_tail(&ne->list, &nm_i->nat_entries);
195                 spin_unlock(&nm_i->nat_list_lock);
196         }
197 
198         return ne;
199 }
200 
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202                 nid_t start, unsigned int nr, struct nat_entry **ep)
203 {
204         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205 }
206 
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208 {
209         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210         nm_i->nat_cnt--;
211         __free_nat_entry(e);
212 }
213 
214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215                                                         struct nat_entry *ne)
216 {
217         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218         struct nat_entry_set *head;
219 
220         head = radix_tree_lookup(&nm_i->nat_set_root, set);
221         if (!head) {
222                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223 
224                 INIT_LIST_HEAD(&head->entry_list);
225                 INIT_LIST_HEAD(&head->set_list);
226                 head->set = set;
227                 head->entry_cnt = 0;
228                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229         }
230         return head;
231 }
232 
233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234                                                 struct nat_entry *ne)
235 {
236         struct nat_entry_set *head;
237         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238 
239         if (!new_ne)
240                 head = __grab_nat_entry_set(nm_i, ne);
241 
242         /*
243          * update entry_cnt in below condition:
244          * 1. update NEW_ADDR to valid block address;
245          * 2. update old block address to new one;
246          */
247         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248                                 !get_nat_flag(ne, IS_DIRTY)))
249                 head->entry_cnt++;
250 
251         set_nat_flag(ne, IS_PREALLOC, new_ne);
252 
253         if (get_nat_flag(ne, IS_DIRTY))
254                 goto refresh_list;
255 
256         nm_i->dirty_nat_cnt++;
257         set_nat_flag(ne, IS_DIRTY, true);
258 refresh_list:
259         spin_lock(&nm_i->nat_list_lock);
260         if (new_ne)
261                 list_del_init(&ne->list);
262         else
263                 list_move_tail(&ne->list, &head->entry_list);
264         spin_unlock(&nm_i->nat_list_lock);
265 }
266 
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268                 struct nat_entry_set *set, struct nat_entry *ne)
269 {
270         spin_lock(&nm_i->nat_list_lock);
271         list_move_tail(&ne->list, &nm_i->nat_entries);
272         spin_unlock(&nm_i->nat_list_lock);
273 
274         set_nat_flag(ne, IS_DIRTY, false);
275         set->entry_cnt--;
276         nm_i->dirty_nat_cnt--;
277 }
278 
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
281 {
282         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283                                                         start, nr);
284 }
285 
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287 {
288         return NODE_MAPPING(sbi) == page->mapping &&
289                         IS_DNODE(page) && is_cold_node(page);
290 }
291 
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293 {
294         spin_lock_init(&sbi->fsync_node_lock);
295         INIT_LIST_HEAD(&sbi->fsync_node_list);
296         sbi->fsync_seg_id = 0;
297         sbi->fsync_node_num = 0;
298 }
299 
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301                                                         struct page *page)
302 {
303         struct fsync_node_entry *fn;
304         unsigned long flags;
305         unsigned int seq_id;
306 
307         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308 
309         get_page(page);
310         fn->page = page;
311         INIT_LIST_HEAD(&fn->list);
312 
313         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314         list_add_tail(&fn->list, &sbi->fsync_node_list);
315         fn->seq_id = sbi->fsync_seg_id++;
316         seq_id = fn->seq_id;
317         sbi->fsync_node_num++;
318         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319 
320         return seq_id;
321 }
322 
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324 {
325         struct fsync_node_entry *fn;
326         unsigned long flags;
327 
328         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330                 if (fn->page == page) {
331                         list_del(&fn->list);
332                         sbi->fsync_node_num--;
333                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334                         kmem_cache_free(fsync_node_entry_slab, fn);
335                         put_page(page);
336                         return;
337                 }
338         }
339         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340         f2fs_bug_on(sbi, 1);
341 }
342 
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344 {
345         unsigned long flags;
346 
347         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348         sbi->fsync_seg_id = 0;
349         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350 }
351 
352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353 {
354         struct f2fs_nm_info *nm_i = NM_I(sbi);
355         struct nat_entry *e;
356         bool need = false;
357 
358         down_read(&nm_i->nat_tree_lock);
359         e = __lookup_nat_cache(nm_i, nid);
360         if (e) {
361                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
363                         need = true;
364         }
365         up_read(&nm_i->nat_tree_lock);
366         return need;
367 }
368 
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370 {
371         struct f2fs_nm_info *nm_i = NM_I(sbi);
372         struct nat_entry *e;
373         bool is_cp = true;
374 
375         down_read(&nm_i->nat_tree_lock);
376         e = __lookup_nat_cache(nm_i, nid);
377         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378                 is_cp = false;
379         up_read(&nm_i->nat_tree_lock);
380         return is_cp;
381 }
382 
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384 {
385         struct f2fs_nm_info *nm_i = NM_I(sbi);
386         struct nat_entry *e;
387         bool need_update = true;
388 
389         down_read(&nm_i->nat_tree_lock);
390         e = __lookup_nat_cache(nm_i, ino);
391         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392                         (get_nat_flag(e, IS_CHECKPOINTED) ||
393                          get_nat_flag(e, HAS_FSYNCED_INODE)))
394                 need_update = false;
395         up_read(&nm_i->nat_tree_lock);
396         return need_update;
397 }
398 
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401                                                 struct f2fs_nat_entry *ne)
402 {
403         struct f2fs_nm_info *nm_i = NM_I(sbi);
404         struct nat_entry *new, *e;
405 
406         new = __alloc_nat_entry(nid, false);
407         if (!new)
408                 return;
409 
410         down_write(&nm_i->nat_tree_lock);
411         e = __lookup_nat_cache(nm_i, nid);
412         if (!e)
413                 e = __init_nat_entry(nm_i, new, ne, false);
414         else
415                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416                                 nat_get_blkaddr(e) !=
417                                         le32_to_cpu(ne->block_addr) ||
418                                 nat_get_version(e) != ne->version);
419         up_write(&nm_i->nat_tree_lock);
420         if (e != new)
421                 __free_nat_entry(new);
422 }
423 
424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425                         block_t new_blkaddr, bool fsync_done)
426 {
427         struct f2fs_nm_info *nm_i = NM_I(sbi);
428         struct nat_entry *e;
429         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430 
431         down_write(&nm_i->nat_tree_lock);
432         e = __lookup_nat_cache(nm_i, ni->nid);
433         if (!e) {
434                 e = __init_nat_entry(nm_i, new, NULL, true);
435                 copy_node_info(&e->ni, ni);
436                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437         } else if (new_blkaddr == NEW_ADDR) {
438                 /*
439                  * when nid is reallocated,
440                  * previous nat entry can be remained in nat cache.
441                  * So, reinitialize it with new information.
442                  */
443                 copy_node_info(&e->ni, ni);
444                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445         }
446         /* let's free early to reduce memory consumption */
447         if (e != new)
448                 __free_nat_entry(new);
449 
450         /* sanity check */
451         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453                         new_blkaddr == NULL_ADDR);
454         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455                         new_blkaddr == NEW_ADDR);
456         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457                         new_blkaddr == NEW_ADDR);
458 
459         /* increment version no as node is removed */
460         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461                 unsigned char version = nat_get_version(e);
462                 nat_set_version(e, inc_node_version(version));
463         }
464 
465         /* change address */
466         nat_set_blkaddr(e, new_blkaddr);
467         if (!__is_valid_data_blkaddr(new_blkaddr))
468                 set_nat_flag(e, IS_CHECKPOINTED, false);
469         __set_nat_cache_dirty(nm_i, e);
470 
471         /* update fsync_mark if its inode nat entry is still alive */
472         if (ni->nid != ni->ino)
473                 e = __lookup_nat_cache(nm_i, ni->ino);
474         if (e) {
475                 if (fsync_done && ni->nid == ni->ino)
476                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
477                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478         }
479         up_write(&nm_i->nat_tree_lock);
480 }
481 
482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483 {
484         struct f2fs_nm_info *nm_i = NM_I(sbi);
485         int nr = nr_shrink;
486 
487         if (!down_write_trylock(&nm_i->nat_tree_lock))
488                 return 0;
489 
490         spin_lock(&nm_i->nat_list_lock);
491         while (nr_shrink) {
492                 struct nat_entry *ne;
493 
494                 if (list_empty(&nm_i->nat_entries))
495                         break;
496 
497                 ne = list_first_entry(&nm_i->nat_entries,
498                                         struct nat_entry, list);
499                 list_del(&ne->list);
500                 spin_unlock(&nm_i->nat_list_lock);
501 
502                 __del_from_nat_cache(nm_i, ne);
503                 nr_shrink--;
504 
505                 spin_lock(&nm_i->nat_list_lock);
506         }
507         spin_unlock(&nm_i->nat_list_lock);
508 
509         up_write(&nm_i->nat_tree_lock);
510         return nr - nr_shrink;
511 }
512 
513 /*
514  * This function always returns success
515  */
516 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
517                                                 struct node_info *ni)
518 {
519         struct f2fs_nm_info *nm_i = NM_I(sbi);
520         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
521         struct f2fs_journal *journal = curseg->journal;
522         nid_t start_nid = START_NID(nid);
523         struct f2fs_nat_block *nat_blk;
524         struct page *page = NULL;
525         struct f2fs_nat_entry ne;
526         struct nat_entry *e;
527         pgoff_t index;
528         block_t blkaddr;
529         int i;
530 
531         ni->nid = nid;
532 
533         /* Check nat cache */
534         down_read(&nm_i->nat_tree_lock);
535         e = __lookup_nat_cache(nm_i, nid);
536         if (e) {
537                 ni->ino = nat_get_ino(e);
538                 ni->blk_addr = nat_get_blkaddr(e);
539                 ni->version = nat_get_version(e);
540                 up_read(&nm_i->nat_tree_lock);
541                 return 0;
542         }
543 
544         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545 
546         /* Check current segment summary */
547         down_read(&curseg->journal_rwsem);
548         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549         if (i >= 0) {
550                 ne = nat_in_journal(journal, i);
551                 node_info_from_raw_nat(ni, &ne);
552         }
553         up_read(&curseg->journal_rwsem);
554         if (i >= 0) {
555                 up_read(&nm_i->nat_tree_lock);
556                 goto cache;
557         }
558 
559         /* Fill node_info from nat page */
560         index = current_nat_addr(sbi, nid);
561         up_read(&nm_i->nat_tree_lock);
562 
563         page = f2fs_get_meta_page(sbi, index);
564         if (IS_ERR(page))
565                 return PTR_ERR(page);
566 
567         nat_blk = (struct f2fs_nat_block *)page_address(page);
568         ne = nat_blk->entries[nid - start_nid];
569         node_info_from_raw_nat(ni, &ne);
570         f2fs_put_page(page, 1);
571 cache:
572         blkaddr = le32_to_cpu(ne.block_addr);
573         if (__is_valid_data_blkaddr(blkaddr) &&
574                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
575                 return -EFAULT;
576 
577         /* cache nat entry */
578         cache_nat_entry(sbi, nid, &ne);
579         return 0;
580 }
581 
582 /*
583  * readahead MAX_RA_NODE number of node pages.
584  */
585 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
586 {
587         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
588         struct blk_plug plug;
589         int i, end;
590         nid_t nid;
591 
592         blk_start_plug(&plug);
593 
594         /* Then, try readahead for siblings of the desired node */
595         end = start + n;
596         end = min(end, NIDS_PER_BLOCK);
597         for (i = start; i < end; i++) {
598                 nid = get_nid(parent, i, false);
599                 f2fs_ra_node_page(sbi, nid);
600         }
601 
602         blk_finish_plug(&plug);
603 }
604 
605 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
606 {
607         const long direct_index = ADDRS_PER_INODE(dn->inode);
608         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
609         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
610         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
611         int cur_level = dn->cur_level;
612         int max_level = dn->max_level;
613         pgoff_t base = 0;
614 
615         if (!dn->max_level)
616                 return pgofs + 1;
617 
618         while (max_level-- > cur_level)
619                 skipped_unit *= NIDS_PER_BLOCK;
620 
621         switch (dn->max_level) {
622         case 3:
623                 base += 2 * indirect_blks;
624                 /* fall through */
625         case 2:
626                 base += 2 * direct_blks;
627                 /* fall through */
628         case 1:
629                 base += direct_index;
630                 break;
631         default:
632                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
633         }
634 
635         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
636 }
637 
638 /*
639  * The maximum depth is four.
640  * Offset[0] will have raw inode offset.
641  */
642 static int get_node_path(struct inode *inode, long block,
643                                 int offset[4], unsigned int noffset[4])
644 {
645         const long direct_index = ADDRS_PER_INODE(inode);
646         const long direct_blks = ADDRS_PER_BLOCK(inode);
647         const long dptrs_per_blk = NIDS_PER_BLOCK;
648         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
649         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
650         int n = 0;
651         int level = 0;
652 
653         noffset[0] = 0;
654 
655         if (block < direct_index) {
656                 offset[n] = block;
657                 goto got;
658         }
659         block -= direct_index;
660         if (block < direct_blks) {
661                 offset[n++] = NODE_DIR1_BLOCK;
662                 noffset[n] = 1;
663                 offset[n] = block;
664                 level = 1;
665                 goto got;
666         }
667         block -= direct_blks;
668         if (block < direct_blks) {
669                 offset[n++] = NODE_DIR2_BLOCK;
670                 noffset[n] = 2;
671                 offset[n] = block;
672                 level = 1;
673                 goto got;
674         }
675         block -= direct_blks;
676         if (block < indirect_blks) {
677                 offset[n++] = NODE_IND1_BLOCK;
678                 noffset[n] = 3;
679                 offset[n++] = block / direct_blks;
680                 noffset[n] = 4 + offset[n - 1];
681                 offset[n] = block % direct_blks;
682                 level = 2;
683                 goto got;
684         }
685         block -= indirect_blks;
686         if (block < indirect_blks) {
687                 offset[n++] = NODE_IND2_BLOCK;
688                 noffset[n] = 4 + dptrs_per_blk;
689                 offset[n++] = block / direct_blks;
690                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
691                 offset[n] = block % direct_blks;
692                 level = 2;
693                 goto got;
694         }
695         block -= indirect_blks;
696         if (block < dindirect_blks) {
697                 offset[n++] = NODE_DIND_BLOCK;
698                 noffset[n] = 5 + (dptrs_per_blk * 2);
699                 offset[n++] = block / indirect_blks;
700                 noffset[n] = 6 + (dptrs_per_blk * 2) +
701                               offset[n - 1] * (dptrs_per_blk + 1);
702                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
703                 noffset[n] = 7 + (dptrs_per_blk * 2) +
704                               offset[n - 2] * (dptrs_per_blk + 1) +
705                               offset[n - 1];
706                 offset[n] = block % direct_blks;
707                 level = 3;
708                 goto got;
709         } else {
710                 return -E2BIG;
711         }
712 got:
713         return level;
714 }
715 
716 /*
717  * Caller should call f2fs_put_dnode(dn).
718  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
719  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
720  * In the case of RDONLY_NODE, we don't need to care about mutex.
721  */
722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725         struct page *npage[4];
726         struct page *parent = NULL;
727         int offset[4];
728         unsigned int noffset[4];
729         nid_t nids[4];
730         int level, i = 0;
731         int err = 0;
732 
733         level = get_node_path(dn->inode, index, offset, noffset);
734         if (level < 0)
735                 return level;
736 
737         nids[0] = dn->inode->i_ino;
738         npage[0] = dn->inode_page;
739 
740         if (!npage[0]) {
741                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742                 if (IS_ERR(npage[0]))
743                         return PTR_ERR(npage[0]);
744         }
745 
746         /* if inline_data is set, should not report any block indices */
747         if (f2fs_has_inline_data(dn->inode) && index) {
748                 err = -ENOENT;
749                 f2fs_put_page(npage[0], 1);
750                 goto release_out;
751         }
752 
753         parent = npage[0];
754         if (level != 0)
755                 nids[1] = get_nid(parent, offset[0], true);
756         dn->inode_page = npage[0];
757         dn->inode_page_locked = true;
758 
759         /* get indirect or direct nodes */
760         for (i = 1; i <= level; i++) {
761                 bool done = false;
762 
763                 if (!nids[i] && mode == ALLOC_NODE) {
764                         /* alloc new node */
765                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766                                 err = -ENOSPC;
767                                 goto release_pages;
768                         }
769 
770                         dn->nid = nids[i];
771                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
772                         if (IS_ERR(npage[i])) {
773                                 f2fs_alloc_nid_failed(sbi, nids[i]);
774                                 err = PTR_ERR(npage[i]);
775                                 goto release_pages;
776                         }
777 
778                         set_nid(parent, offset[i - 1], nids[i], i == 1);
779                         f2fs_alloc_nid_done(sbi, nids[i]);
780                         done = true;
781                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783                         if (IS_ERR(npage[i])) {
784                                 err = PTR_ERR(npage[i]);
785                                 goto release_pages;
786                         }
787                         done = true;
788                 }
789                 if (i == 1) {
790                         dn->inode_page_locked = false;
791                         unlock_page(parent);
792                 } else {
793                         f2fs_put_page(parent, 1);
794                 }
795 
796                 if (!done) {
797                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
798                         if (IS_ERR(npage[i])) {
799                                 err = PTR_ERR(npage[i]);
800                                 f2fs_put_page(npage[0], 0);
801                                 goto release_out;
802                         }
803                 }
804                 if (i < level) {
805                         parent = npage[i];
806                         nids[i + 1] = get_nid(parent, offset[i], false);
807                 }
808         }
809         dn->nid = nids[level];
810         dn->ofs_in_node = offset[level];
811         dn->node_page = npage[level];
812         dn->data_blkaddr = datablock_addr(dn->inode,
813                                 dn->node_page, dn->ofs_in_node);
814         return 0;
815 
816 release_pages:
817         f2fs_put_page(parent, 1);
818         if (i > 1)
819                 f2fs_put_page(npage[0], 0);
820 release_out:
821         dn->inode_page = NULL;
822         dn->node_page = NULL;
823         if (err == -ENOENT) {
824                 dn->cur_level = i;
825                 dn->max_level = level;
826                 dn->ofs_in_node = offset[level];
827         }
828         return err;
829 }
830 
831 static int truncate_node(struct dnode_of_data *dn)
832 {
833         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
834         struct node_info ni;
835         int err;
836         pgoff_t index;
837 
838         err = f2fs_get_node_info(sbi, dn->nid, &ni);
839         if (err)
840                 return err;
841 
842         /* Deallocate node address */
843         f2fs_invalidate_blocks(sbi, ni.blk_addr);
844         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
845         set_node_addr(sbi, &ni, NULL_ADDR, false);
846 
847         if (dn->nid == dn->inode->i_ino) {
848                 f2fs_remove_orphan_inode(sbi, dn->nid);
849                 dec_valid_inode_count(sbi);
850                 f2fs_inode_synced(dn->inode);
851         }
852 
853         clear_node_page_dirty(dn->node_page);
854         set_sbi_flag(sbi, SBI_IS_DIRTY);
855 
856         index = dn->node_page->index;
857         f2fs_put_page(dn->node_page, 1);
858 
859         invalidate_mapping_pages(NODE_MAPPING(sbi),
860                         index, index);
861 
862         dn->node_page = NULL;
863         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
864 
865         return 0;
866 }
867 
868 static int truncate_dnode(struct dnode_of_data *dn)
869 {
870         struct page *page;
871         int err;
872 
873         if (dn->nid == 0)
874                 return 1;
875 
876         /* get direct node */
877         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
878         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
879                 return 1;
880         else if (IS_ERR(page))
881                 return PTR_ERR(page);
882 
883         /* Make dnode_of_data for parameter */
884         dn->node_page = page;
885         dn->ofs_in_node = 0;
886         f2fs_truncate_data_blocks(dn);
887         err = truncate_node(dn);
888         if (err)
889                 return err;
890 
891         return 1;
892 }
893 
894 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
895                                                 int ofs, int depth)
896 {
897         struct dnode_of_data rdn = *dn;
898         struct page *page;
899         struct f2fs_node *rn;
900         nid_t child_nid;
901         unsigned int child_nofs;
902         int freed = 0;
903         int i, ret;
904 
905         if (dn->nid == 0)
906                 return NIDS_PER_BLOCK + 1;
907 
908         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
909 
910         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
911         if (IS_ERR(page)) {
912                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
913                 return PTR_ERR(page);
914         }
915 
916         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
917 
918         rn = F2FS_NODE(page);
919         if (depth < 3) {
920                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
921                         child_nid = le32_to_cpu(rn->in.nid[i]);
922                         if (child_nid == 0)
923                                 continue;
924                         rdn.nid = child_nid;
925                         ret = truncate_dnode(&rdn);
926                         if (ret < 0)
927                                 goto out_err;
928                         if (set_nid(page, i, 0, false))
929                                 dn->node_changed = true;
930                 }
931         } else {
932                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
933                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
934                         child_nid = le32_to_cpu(rn->in.nid[i]);
935                         if (child_nid == 0) {
936                                 child_nofs += NIDS_PER_BLOCK + 1;
937                                 continue;
938                         }
939                         rdn.nid = child_nid;
940                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
941                         if (ret == (NIDS_PER_BLOCK + 1)) {
942                                 if (set_nid(page, i, 0, false))
943                                         dn->node_changed = true;
944                                 child_nofs += ret;
945                         } else if (ret < 0 && ret != -ENOENT) {
946                                 goto out_err;
947                         }
948                 }
949                 freed = child_nofs;
950         }
951 
952         if (!ofs) {
953                 /* remove current indirect node */
954                 dn->node_page = page;
955                 ret = truncate_node(dn);
956                 if (ret)
957                         goto out_err;
958                 freed++;
959         } else {
960                 f2fs_put_page(page, 1);
961         }
962         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
963         return freed;
964 
965 out_err:
966         f2fs_put_page(page, 1);
967         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
968         return ret;
969 }
970 
971 static int truncate_partial_nodes(struct dnode_of_data *dn,
972                         struct f2fs_inode *ri, int *offset, int depth)
973 {
974         struct page *pages[2];
975         nid_t nid[3];
976         nid_t child_nid;
977         int err = 0;
978         int i;
979         int idx = depth - 2;
980 
981         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
982         if (!nid[0])
983                 return 0;
984 
985         /* get indirect nodes in the path */
986         for (i = 0; i < idx + 1; i++) {
987                 /* reference count'll be increased */
988                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
989                 if (IS_ERR(pages[i])) {
990                         err = PTR_ERR(pages[i]);
991                         idx = i - 1;
992                         goto fail;
993                 }
994                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
995         }
996 
997         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
998 
999         /* free direct nodes linked to a partial indirect node */
1000         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001                 child_nid = get_nid(pages[idx], i, false);
1002                 if (!child_nid)
1003                         continue;
1004                 dn->nid = child_nid;
1005                 err = truncate_dnode(dn);
1006                 if (err < 0)
1007                         goto fail;
1008                 if (set_nid(pages[idx], i, 0, false))
1009                         dn->node_changed = true;
1010         }
1011 
1012         if (offset[idx + 1] == 0) {
1013                 dn->node_page = pages[idx];
1014                 dn->nid = nid[idx];
1015                 err = truncate_node(dn);
1016                 if (err)
1017                         goto fail;
1018         } else {
1019                 f2fs_put_page(pages[idx], 1);
1020         }
1021         offset[idx]++;
1022         offset[idx + 1] = 0;
1023         idx--;
1024 fail:
1025         for (i = idx; i >= 0; i--)
1026                 f2fs_put_page(pages[i], 1);
1027 
1028         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029 
1030         return err;
1031 }
1032 
1033 /*
1034  * All the block addresses of data and nodes should be nullified.
1035  */
1036 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037 {
1038         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039         int err = 0, cont = 1;
1040         int level, offset[4], noffset[4];
1041         unsigned int nofs = 0;
1042         struct f2fs_inode *ri;
1043         struct dnode_of_data dn;
1044         struct page *page;
1045 
1046         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047 
1048         level = get_node_path(inode, from, offset, noffset);
1049         if (level < 0)
1050                 return level;
1051 
1052         page = f2fs_get_node_page(sbi, inode->i_ino);
1053         if (IS_ERR(page)) {
1054                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055                 return PTR_ERR(page);
1056         }
1057 
1058         set_new_dnode(&dn, inode, page, NULL, 0);
1059         unlock_page(page);
1060 
1061         ri = F2FS_INODE(page);
1062         switch (level) {
1063         case 0:
1064         case 1:
1065                 nofs = noffset[1];
1066                 break;
1067         case 2:
1068                 nofs = noffset[1];
1069                 if (!offset[level - 1])
1070                         goto skip_partial;
1071                 err = truncate_partial_nodes(&dn, ri, offset, level);
1072                 if (err < 0 && err != -ENOENT)
1073                         goto fail;
1074                 nofs += 1 + NIDS_PER_BLOCK;
1075                 break;
1076         case 3:
1077                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1078                 if (!offset[level - 1])
1079                         goto skip_partial;
1080                 err = truncate_partial_nodes(&dn, ri, offset, level);
1081                 if (err < 0 && err != -ENOENT)
1082                         goto fail;
1083                 break;
1084         default:
1085                 BUG();
1086         }
1087 
1088 skip_partial:
1089         while (cont) {
1090                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091                 switch (offset[0]) {
1092                 case NODE_DIR1_BLOCK:
1093                 case NODE_DIR2_BLOCK:
1094                         err = truncate_dnode(&dn);
1095                         break;
1096 
1097                 case NODE_IND1_BLOCK:
1098                 case NODE_IND2_BLOCK:
1099                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1100                         break;
1101 
1102                 case NODE_DIND_BLOCK:
1103                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1104                         cont = 0;
1105                         break;
1106 
1107                 default:
1108                         BUG();
1109                 }
1110                 if (err < 0 && err != -ENOENT)
1111                         goto fail;
1112                 if (offset[1] == 0 &&
1113                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114                         lock_page(page);
1115                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1117                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118                         set_page_dirty(page);
1119                         unlock_page(page);
1120                 }
1121                 offset[1] = 0;
1122                 offset[0]++;
1123                 nofs += err;
1124         }
1125 fail:
1126         f2fs_put_page(page, 0);
1127         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128         return err > 0 ? 0 : err;
1129 }
1130 
1131 /* caller must lock inode page */
1132 int f2fs_truncate_xattr_node(struct inode *inode)
1133 {
1134         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136         struct dnode_of_data dn;
1137         struct page *npage;
1138         int err;
1139 
1140         if (!nid)
1141                 return 0;
1142 
1143         npage = f2fs_get_node_page(sbi, nid);
1144         if (IS_ERR(npage))
1145                 return PTR_ERR(npage);
1146 
1147         set_new_dnode(&dn, inode, NULL, npage, nid);
1148         err = truncate_node(&dn);
1149         if (err) {
1150                 f2fs_put_page(npage, 1);
1151                 return err;
1152         }
1153 
1154         f2fs_i_xnid_write(inode, 0);
1155 
1156         return 0;
1157 }
1158 
1159 /*
1160  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161  * f2fs_unlock_op().
1162  */
1163 int f2fs_remove_inode_page(struct inode *inode)
1164 {
1165         struct dnode_of_data dn;
1166         int err;
1167 
1168         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170         if (err)
1171                 return err;
1172 
1173         err = f2fs_truncate_xattr_node(inode);
1174         if (err) {
1175                 f2fs_put_dnode(&dn);
1176                 return err;
1177         }
1178 
1179         /* remove potential inline_data blocks */
1180         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181                                 S_ISLNK(inode->i_mode))
1182                 f2fs_truncate_data_blocks_range(&dn, 1);
1183 
1184         /* 0 is possible, after f2fs_new_inode() has failed */
1185         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186                 f2fs_put_dnode(&dn);
1187                 return -EIO;
1188         }
1189 
1190         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191                 f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192                           inode->i_ino, (unsigned long long)inode->i_blocks);
1193                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194         }
1195 
1196         /* will put inode & node pages */
1197         err = truncate_node(&dn);
1198         if (err) {
1199                 f2fs_put_dnode(&dn);
1200                 return err;
1201         }
1202         return 0;
1203 }
1204 
1205 struct page *f2fs_new_inode_page(struct inode *inode)
1206 {
1207         struct dnode_of_data dn;
1208 
1209         /* allocate inode page for new inode */
1210         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1211 
1212         /* caller should f2fs_put_page(page, 1); */
1213         return f2fs_new_node_page(&dn, 0);
1214 }
1215 
1216 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1217 {
1218         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219         struct node_info new_ni;
1220         struct page *page;
1221         int err;
1222 
1223         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224                 return ERR_PTR(-EPERM);
1225 
1226         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227         if (!page)
1228                 return ERR_PTR(-ENOMEM);
1229 
1230         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231                 goto fail;
1232 
1233 #ifdef CONFIG_F2FS_CHECK_FS
1234         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235         if (err) {
1236                 dec_valid_node_count(sbi, dn->inode, !ofs);
1237                 goto fail;
1238         }
1239         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240 #endif
1241         new_ni.nid = dn->nid;
1242         new_ni.ino = dn->inode->i_ino;
1243         new_ni.blk_addr = NULL_ADDR;
1244         new_ni.flag = 0;
1245         new_ni.version = 0;
1246         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1247 
1248         f2fs_wait_on_page_writeback(page, NODE, true, true);
1249         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251         if (!PageUptodate(page))
1252                 SetPageUptodate(page);
1253         if (set_page_dirty(page))
1254                 dn->node_changed = true;
1255 
1256         if (f2fs_has_xattr_block(ofs))
1257                 f2fs_i_xnid_write(dn->inode, dn->nid);
1258 
1259         if (ofs == 0)
1260                 inc_valid_inode_count(sbi);
1261         return page;
1262 
1263 fail:
1264         clear_node_page_dirty(page);
1265         f2fs_put_page(page, 1);
1266         return ERR_PTR(err);
1267 }
1268 
1269 /*
1270  * Caller should do after getting the following values.
1271  * 0: f2fs_put_page(page, 0)
1272  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1273  */
1274 static int read_node_page(struct page *page, int op_flags)
1275 {
1276         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277         struct node_info ni;
1278         struct f2fs_io_info fio = {
1279                 .sbi = sbi,
1280                 .type = NODE,
1281                 .op = REQ_OP_READ,
1282                 .op_flags = op_flags,
1283                 .page = page,
1284                 .encrypted_page = NULL,
1285         };
1286         int err;
1287 
1288         if (PageUptodate(page)) {
1289                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1290                         ClearPageUptodate(page);
1291                         return -EFSBADCRC;
1292                 }
1293                 return LOCKED_PAGE;
1294         }
1295 
1296         err = f2fs_get_node_info(sbi, page->index, &ni);
1297         if (err)
1298                 return err;
1299 
1300         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302                 ClearPageUptodate(page);
1303                 return -ENOENT;
1304         }
1305 
1306         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307         return f2fs_submit_page_bio(&fio);
1308 }
1309 
1310 /*
1311  * Readahead a node page
1312  */
1313 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1314 {
1315         struct page *apage;
1316         int err;
1317 
1318         if (!nid)
1319                 return;
1320         if (f2fs_check_nid_range(sbi, nid))
1321                 return;
1322 
1323         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1324         if (apage)
1325                 return;
1326 
1327         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328         if (!apage)
1329                 return;
1330 
1331         err = read_node_page(apage, REQ_RAHEAD);
1332         f2fs_put_page(apage, err ? 1 : 0);
1333 }
1334 
1335 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336                                         struct page *parent, int start)
1337 {
1338         struct page *page;
1339         int err;
1340 
1341         if (!nid)
1342                 return ERR_PTR(-ENOENT);
1343         if (f2fs_check_nid_range(sbi, nid))
1344                 return ERR_PTR(-EINVAL);
1345 repeat:
1346         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347         if (!page)
1348                 return ERR_PTR(-ENOMEM);
1349 
1350         err = read_node_page(page, 0);
1351         if (err < 0) {
1352                 f2fs_put_page(page, 1);
1353                 return ERR_PTR(err);
1354         } else if (err == LOCKED_PAGE) {
1355                 err = 0;
1356                 goto page_hit;
1357         }
1358 
1359         if (parent)
1360                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361 
1362         lock_page(page);
1363 
1364         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365                 f2fs_put_page(page, 1);
1366                 goto repeat;
1367         }
1368 
1369         if (unlikely(!PageUptodate(page))) {
1370                 err = -EIO;
1371                 goto out_err;
1372         }
1373 
1374         if (!f2fs_inode_chksum_verify(sbi, page)) {
1375                 err = -EFSBADCRC;
1376                 goto out_err;
1377         }
1378 page_hit:
1379         if(unlikely(nid != nid_of_node(page))) {
1380                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381                           nid, nid_of_node(page), ino_of_node(page),
1382                           ofs_of_node(page), cpver_of_node(page),
1383                           next_blkaddr_of_node(page));
1384                 err = -EINVAL;
1385 out_err:
1386                 ClearPageUptodate(page);
1387                 f2fs_put_page(page, 1);
1388                 return ERR_PTR(err);
1389         }
1390         return page;
1391 }
1392 
1393 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394 {
1395         return __get_node_page(sbi, nid, NULL, 0);
1396 }
1397 
1398 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399 {
1400         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401         nid_t nid = get_nid(parent, start, false);
1402 
1403         return __get_node_page(sbi, nid, parent, start);
1404 }
1405 
1406 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407 {
1408         struct inode *inode;
1409         struct page *page;
1410         int ret;
1411 
1412         /* should flush inline_data before evict_inode */
1413         inode = ilookup(sbi->sb, ino);
1414         if (!inode)
1415                 return;
1416 
1417         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418                                         FGP_LOCK|FGP_NOWAIT, 0);
1419         if (!page)
1420                 goto iput_out;
1421 
1422         if (!PageUptodate(page))
1423                 goto page_out;
1424 
1425         if (!PageDirty(page))
1426                 goto page_out;
1427 
1428         if (!clear_page_dirty_for_io(page))
1429                 goto page_out;
1430 
1431         ret = f2fs_write_inline_data(inode, page);
1432         inode_dec_dirty_pages(inode);
1433         f2fs_remove_dirty_inode(inode);
1434         if (ret)
1435                 set_page_dirty(page);
1436 page_out:
1437         f2fs_put_page(page, 1);
1438 iput_out:
1439         iput(inode);
1440 }
1441 
1442 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1443 {
1444         pgoff_t index;
1445         struct pagevec pvec;
1446         struct page *last_page = NULL;
1447         int nr_pages;
1448 
1449         pagevec_init(&pvec);
1450         index = 0;
1451 
1452         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453                                 PAGECACHE_TAG_DIRTY))) {
1454                 int i;
1455 
1456                 for (i = 0; i < nr_pages; i++) {
1457                         struct page *page = pvec.pages[i];
1458 
1459                         if (unlikely(f2fs_cp_error(sbi))) {
1460                                 f2fs_put_page(last_page, 0);
1461                                 pagevec_release(&pvec);
1462                                 return ERR_PTR(-EIO);
1463                         }
1464 
1465                         if (!IS_DNODE(page) || !is_cold_node(page))
1466                                 continue;
1467                         if (ino_of_node(page) != ino)
1468                                 continue;
1469 
1470                         lock_page(page);
1471 
1472                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473 continue_unlock:
1474                                 unlock_page(page);
1475                                 continue;
1476                         }
1477                         if (ino_of_node(page) != ino)
1478                                 goto continue_unlock;
1479 
1480                         if (!PageDirty(page)) {
1481                                 /* someone wrote it for us */
1482                                 goto continue_unlock;
1483                         }
1484 
1485                         if (last_page)
1486                                 f2fs_put_page(last_page, 0);
1487 
1488                         get_page(page);
1489                         last_page = page;
1490                         unlock_page(page);
1491                 }
1492                 pagevec_release(&pvec);
1493                 cond_resched();
1494         }
1495         return last_page;
1496 }
1497 
1498 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499                                 struct writeback_control *wbc, bool do_balance,
1500                                 enum iostat_type io_type, unsigned int *seq_id)
1501 {
1502         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503         nid_t nid;
1504         struct node_info ni;
1505         struct f2fs_io_info fio = {
1506                 .sbi = sbi,
1507                 .ino = ino_of_node(page),
1508                 .type = NODE,
1509                 .op = REQ_OP_WRITE,
1510                 .op_flags = wbc_to_write_flags(wbc),
1511                 .page = page,
1512                 .encrypted_page = NULL,
1513                 .submitted = false,
1514                 .io_type = io_type,
1515                 .io_wbc = wbc,
1516         };
1517         unsigned int seq;
1518 
1519         trace_f2fs_writepage(page, NODE);
1520 
1521         if (unlikely(f2fs_cp_error(sbi)))
1522                 goto redirty_out;
1523 
1524         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525                 goto redirty_out;
1526 
1527         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528                         wbc->sync_mode == WB_SYNC_NONE &&
1529                         IS_DNODE(page) && is_cold_node(page))
1530                 goto redirty_out;
1531 
1532         /* get old block addr of this node page */
1533         nid = nid_of_node(page);
1534         f2fs_bug_on(sbi, page->index != nid);
1535 
1536         if (f2fs_get_node_info(sbi, nid, &ni))
1537                 goto redirty_out;
1538 
1539         if (wbc->for_reclaim) {
1540                 if (!down_read_trylock(&sbi->node_write))
1541                         goto redirty_out;
1542         } else {
1543                 down_read(&sbi->node_write);
1544         }
1545 
1546         /* This page is already truncated */
1547         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548                 ClearPageUptodate(page);
1549                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1550                 up_read(&sbi->node_write);
1551                 unlock_page(page);
1552                 return 0;
1553         }
1554 
1555         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557                                         DATA_GENERIC_ENHANCE)) {
1558                 up_read(&sbi->node_write);
1559                 goto redirty_out;
1560         }
1561 
1562         if (atomic && !test_opt(sbi, NOBARRIER))
1563                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1564 
1565         set_page_writeback(page);
1566         ClearPageError(page);
1567 
1568         if (f2fs_in_warm_node_list(sbi, page)) {
1569                 seq = f2fs_add_fsync_node_entry(sbi, page);
1570                 if (seq_id)
1571                         *seq_id = seq;
1572         }
1573 
1574         fio.old_blkaddr = ni.blk_addr;
1575         f2fs_do_write_node_page(nid, &fio);
1576         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1577         dec_page_count(sbi, F2FS_DIRTY_NODES);
1578         up_read(&sbi->node_write);
1579 
1580         if (wbc->for_reclaim) {
1581                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1582                 submitted = NULL;
1583         }
1584 
1585         unlock_page(page);
1586 
1587         if (unlikely(f2fs_cp_error(sbi))) {
1588                 f2fs_submit_merged_write(sbi, NODE);
1589                 submitted = NULL;
1590         }
1591         if (submitted)
1592                 *submitted = fio.submitted;
1593 
1594         if (do_balance)
1595                 f2fs_balance_fs(sbi, false);
1596         return 0;
1597 
1598 redirty_out:
1599         redirty_page_for_writepage(wbc, page);
1600         return AOP_WRITEPAGE_ACTIVATE;
1601 }
1602 
1603 int f2fs_move_node_page(struct page *node_page, int gc_type)
1604 {
1605         int err = 0;
1606 
1607         if (gc_type == FG_GC) {
1608                 struct writeback_control wbc = {
1609                         .sync_mode = WB_SYNC_ALL,
1610                         .nr_to_write = 1,
1611                         .for_reclaim = 0,
1612                 };
1613 
1614                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1615 
1616                 set_page_dirty(node_page);
1617 
1618                 if (!clear_page_dirty_for_io(node_page)) {
1619                         err = -EAGAIN;
1620                         goto out_page;
1621                 }
1622 
1623                 if (__write_node_page(node_page, false, NULL,
1624                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1625                         err = -EAGAIN;
1626                         unlock_page(node_page);
1627                 }
1628                 goto release_page;
1629         } else {
1630                 /* set page dirty and write it */
1631                 if (!PageWriteback(node_page))
1632                         set_page_dirty(node_page);
1633         }
1634 out_page:
1635         unlock_page(node_page);
1636 release_page:
1637         f2fs_put_page(node_page, 0);
1638         return err;
1639 }
1640 
1641 static int f2fs_write_node_page(struct page *page,
1642                                 struct writeback_control *wbc)
1643 {
1644         return __write_node_page(page, false, NULL, wbc, false,
1645                                                 FS_NODE_IO, NULL);
1646 }
1647 
1648 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1649                         struct writeback_control *wbc, bool atomic,
1650                         unsigned int *seq_id)
1651 {
1652         pgoff_t index;
1653         struct pagevec pvec;
1654         int ret = 0;
1655         struct page *last_page = NULL;
1656         bool marked = false;
1657         nid_t ino = inode->i_ino;
1658         int nr_pages;
1659         int nwritten = 0;
1660 
1661         if (atomic) {
1662                 last_page = last_fsync_dnode(sbi, ino);
1663                 if (IS_ERR_OR_NULL(last_page))
1664                         return PTR_ERR_OR_ZERO(last_page);
1665         }
1666 retry:
1667         pagevec_init(&pvec);
1668         index = 0;
1669 
1670         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1671                                 PAGECACHE_TAG_DIRTY))) {
1672                 int i;
1673 
1674                 for (i = 0; i < nr_pages; i++) {
1675                         struct page *page = pvec.pages[i];
1676                         bool submitted = false;
1677 
1678                         if (unlikely(f2fs_cp_error(sbi))) {
1679                                 f2fs_put_page(last_page, 0);
1680                                 pagevec_release(&pvec);
1681                                 ret = -EIO;
1682                                 goto out;
1683                         }
1684 
1685                         if (!IS_DNODE(page) || !is_cold_node(page))
1686                                 continue;
1687                         if (ino_of_node(page) != ino)
1688                                 continue;
1689 
1690                         lock_page(page);
1691 
1692                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1693 continue_unlock:
1694                                 unlock_page(page);
1695                                 continue;
1696                         }
1697                         if (ino_of_node(page) != ino)
1698                                 goto continue_unlock;
1699 
1700                         if (!PageDirty(page) && page != last_page) {
1701                                 /* someone wrote it for us */
1702                                 goto continue_unlock;
1703                         }
1704 
1705                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1706 
1707                         set_fsync_mark(page, 0);
1708                         set_dentry_mark(page, 0);
1709 
1710                         if (!atomic || page == last_page) {
1711                                 set_fsync_mark(page, 1);
1712                                 if (IS_INODE(page)) {
1713                                         if (is_inode_flag_set(inode,
1714                                                                 FI_DIRTY_INODE))
1715                                                 f2fs_update_inode(inode, page);
1716                                         set_dentry_mark(page,
1717                                                 f2fs_need_dentry_mark(sbi, ino));
1718                                 }
1719                                 /*  may be written by other thread */
1720                                 if (!PageDirty(page))
1721                                         set_page_dirty(page);
1722                         }
1723 
1724                         if (!clear_page_dirty_for_io(page))
1725                                 goto continue_unlock;
1726 
1727                         ret = __write_node_page(page, atomic &&
1728                                                 page == last_page,
1729                                                 &submitted, wbc, true,
1730                                                 FS_NODE_IO, seq_id);
1731                         if (ret) {
1732                                 unlock_page(page);
1733                                 f2fs_put_page(last_page, 0);
1734                                 break;
1735                         } else if (submitted) {
1736                                 nwritten++;
1737                         }
1738 
1739                         if (page == last_page) {
1740                                 f2fs_put_page(page, 0);
1741                                 marked = true;
1742                                 break;
1743                         }
1744                 }
1745                 pagevec_release(&pvec);
1746                 cond_resched();
1747 
1748                 if (ret || marked)
1749                         break;
1750         }
1751         if (!ret && atomic && !marked) {
1752                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1753                            ino, last_page->index);
1754                 lock_page(last_page);
1755                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1756                 set_page_dirty(last_page);
1757                 unlock_page(last_page);
1758                 goto retry;
1759         }
1760 out:
1761         if (nwritten)
1762                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1763         return ret ? -EIO: 0;
1764 }
1765 
1766 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1767 {
1768         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769         bool clean;
1770 
1771         if (inode->i_ino != ino)
1772                 return 0;
1773 
1774         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1775                 return 0;
1776 
1777         spin_lock(&sbi->inode_lock[DIRTY_META]);
1778         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1779         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1780 
1781         if (clean)
1782                 return 0;
1783 
1784         inode = igrab(inode);
1785         if (!inode)
1786                 return 0;
1787         return 1;
1788 }
1789 
1790 static bool flush_dirty_inode(struct page *page)
1791 {
1792         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1793         struct inode *inode;
1794         nid_t ino = ino_of_node(page);
1795 
1796         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1797         if (!inode)
1798                 return false;
1799 
1800         f2fs_update_inode(inode, page);
1801         unlock_page(page);
1802 
1803         iput(inode);
1804         return true;
1805 }
1806 
1807 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1808                                 struct writeback_control *wbc,
1809                                 bool do_balance, enum iostat_type io_type)
1810 {
1811         pgoff_t index;
1812         struct pagevec pvec;
1813         int step = 0;
1814         int nwritten = 0;
1815         int ret = 0;
1816         int nr_pages, done = 0;
1817 
1818         pagevec_init(&pvec);
1819 
1820 next_step:
1821         index = 0;
1822 
1823         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1824                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1825                 int i;
1826 
1827                 for (i = 0; i < nr_pages; i++) {
1828                         struct page *page = pvec.pages[i];
1829                         bool submitted = false;
1830                         bool may_dirty = true;
1831 
1832                         /* give a priority to WB_SYNC threads */
1833                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1834                                         wbc->sync_mode == WB_SYNC_NONE) {
1835                                 done = 1;
1836                                 break;
1837                         }
1838 
1839                         /*
1840                          * flushing sequence with step:
1841                          * 0. indirect nodes
1842                          * 1. dentry dnodes
1843                          * 2. file dnodes
1844                          */
1845                         if (step == 0 && IS_DNODE(page))
1846                                 continue;
1847                         if (step == 1 && (!IS_DNODE(page) ||
1848                                                 is_cold_node(page)))
1849                                 continue;
1850                         if (step == 2 && (!IS_DNODE(page) ||
1851                                                 !is_cold_node(page)))
1852                                 continue;
1853 lock_node:
1854                         if (wbc->sync_mode == WB_SYNC_ALL)
1855                                 lock_page(page);
1856                         else if (!trylock_page(page))
1857                                 continue;
1858 
1859                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860 continue_unlock:
1861                                 unlock_page(page);
1862                                 continue;
1863                         }
1864 
1865                         if (!PageDirty(page)) {
1866                                 /* someone wrote it for us */
1867                                 goto continue_unlock;
1868                         }
1869 
1870                         /* flush inline_data */
1871                         if (is_inline_node(page)) {
1872                                 clear_inline_node(page);
1873                                 unlock_page(page);
1874                                 flush_inline_data(sbi, ino_of_node(page));
1875                                 goto lock_node;
1876                         }
1877 
1878                         /* flush dirty inode */
1879                         if (IS_INODE(page) && may_dirty) {
1880                                 may_dirty = false;
1881                                 if (flush_dirty_inode(page))
1882                                         goto lock_node;
1883                         }
1884 
1885                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1886 
1887                         if (!clear_page_dirty_for_io(page))
1888                                 goto continue_unlock;
1889 
1890                         set_fsync_mark(page, 0);
1891                         set_dentry_mark(page, 0);
1892 
1893                         ret = __write_node_page(page, false, &submitted,
1894                                                 wbc, do_balance, io_type, NULL);
1895                         if (ret)
1896                                 unlock_page(page);
1897                         else if (submitted)
1898                                 nwritten++;
1899 
1900                         if (--wbc->nr_to_write == 0)
1901                                 break;
1902                 }
1903                 pagevec_release(&pvec);
1904                 cond_resched();
1905 
1906                 if (wbc->nr_to_write == 0) {
1907                         step = 2;
1908                         break;
1909                 }
1910         }
1911 
1912         if (step < 2) {
1913                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1914                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1915                         goto out;
1916                 step++;
1917                 goto next_step;
1918         }
1919 out:
1920         if (nwritten)
1921                 f2fs_submit_merged_write(sbi, NODE);
1922 
1923         if (unlikely(f2fs_cp_error(sbi)))
1924                 return -EIO;
1925         return ret;
1926 }
1927 
1928 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1929                                                 unsigned int seq_id)
1930 {
1931         struct fsync_node_entry *fn;
1932         struct page *page;
1933         struct list_head *head = &sbi->fsync_node_list;
1934         unsigned long flags;
1935         unsigned int cur_seq_id = 0;
1936         int ret2, ret = 0;
1937 
1938         while (seq_id && cur_seq_id < seq_id) {
1939                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1940                 if (list_empty(head)) {
1941                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1942                         break;
1943                 }
1944                 fn = list_first_entry(head, struct fsync_node_entry, list);
1945                 if (fn->seq_id > seq_id) {
1946                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1947                         break;
1948                 }
1949                 cur_seq_id = fn->seq_id;
1950                 page = fn->page;
1951                 get_page(page);
1952                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1953 
1954                 f2fs_wait_on_page_writeback(page, NODE, true, false);
1955                 if (TestClearPageError(page))
1956                         ret = -EIO;
1957 
1958                 put_page(page);
1959 
1960                 if (ret)
1961                         break;
1962         }
1963 
1964         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1965         if (!ret)
1966                 ret = ret2;
1967 
1968         return ret;
1969 }
1970 
1971 static int f2fs_write_node_pages(struct address_space *mapping,
1972                             struct writeback_control *wbc)
1973 {
1974         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1975         struct blk_plug plug;
1976         long diff;
1977 
1978         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1979                 goto skip_write;
1980 
1981         /* balancing f2fs's metadata in background */
1982         f2fs_balance_fs_bg(sbi);
1983 
1984         /* collect a number of dirty node pages and write together */
1985         if (wbc->sync_mode != WB_SYNC_ALL &&
1986                         get_pages(sbi, F2FS_DIRTY_NODES) <
1987                                         nr_pages_to_skip(sbi, NODE))
1988                 goto skip_write;
1989 
1990         if (wbc->sync_mode == WB_SYNC_ALL)
1991                 atomic_inc(&sbi->wb_sync_req[NODE]);
1992         else if (atomic_read(&sbi->wb_sync_req[NODE]))
1993                 goto skip_write;
1994 
1995         trace_f2fs_writepages(mapping->host, wbc, NODE);
1996 
1997         diff = nr_pages_to_write(sbi, NODE, wbc);
1998         blk_start_plug(&plug);
1999         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2000         blk_finish_plug(&plug);
2001         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2002 
2003         if (wbc->sync_mode == WB_SYNC_ALL)
2004                 atomic_dec(&sbi->wb_sync_req[NODE]);
2005         return 0;
2006 
2007 skip_write:
2008         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2009         trace_f2fs_writepages(mapping->host, wbc, NODE);
2010         return 0;
2011 }
2012 
2013 static int f2fs_set_node_page_dirty(struct page *page)
2014 {
2015         trace_f2fs_set_page_dirty(page, NODE);
2016 
2017         if (!PageUptodate(page))
2018                 SetPageUptodate(page);
2019 #ifdef CONFIG_F2FS_CHECK_FS
2020         if (IS_INODE(page))
2021                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2022 #endif
2023         if (!PageDirty(page)) {
2024                 __set_page_dirty_nobuffers(page);
2025                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2026                 f2fs_set_page_private(page, 0);
2027                 f2fs_trace_pid(page);
2028                 return 1;
2029         }
2030         return 0;
2031 }
2032 
2033 /*
2034  * Structure of the f2fs node operations
2035  */
2036 const struct address_space_operations f2fs_node_aops = {
2037         .writepage      = f2fs_write_node_page,
2038         .writepages     = f2fs_write_node_pages,
2039         .set_page_dirty = f2fs_set_node_page_dirty,
2040         .invalidatepage = f2fs_invalidate_page,
2041         .releasepage    = f2fs_release_page,
2042 #ifdef CONFIG_MIGRATION
2043         .migratepage    = f2fs_migrate_page,
2044 #endif
2045 };
2046 
2047 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2048                                                 nid_t n)
2049 {
2050         return radix_tree_lookup(&nm_i->free_nid_root, n);
2051 }
2052 
2053 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2054                         struct free_nid *i, enum nid_state state)
2055 {
2056         struct f2fs_nm_info *nm_i = NM_I(sbi);
2057 
2058         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2059         if (err)
2060                 return err;
2061 
2062         f2fs_bug_on(sbi, state != i->state);
2063         nm_i->nid_cnt[state]++;
2064         if (state == FREE_NID)
2065                 list_add_tail(&i->list, &nm_i->free_nid_list);
2066         return 0;
2067 }
2068 
2069 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2070                         struct free_nid *i, enum nid_state state)
2071 {
2072         struct f2fs_nm_info *nm_i = NM_I(sbi);
2073 
2074         f2fs_bug_on(sbi, state != i->state);
2075         nm_i->nid_cnt[state]--;
2076         if (state == FREE_NID)
2077                 list_del(&i->list);
2078         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2079 }
2080 
2081 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2082                         enum nid_state org_state, enum nid_state dst_state)
2083 {
2084         struct f2fs_nm_info *nm_i = NM_I(sbi);
2085 
2086         f2fs_bug_on(sbi, org_state != i->state);
2087         i->state = dst_state;
2088         nm_i->nid_cnt[org_state]--;
2089         nm_i->nid_cnt[dst_state]++;
2090 
2091         switch (dst_state) {
2092         case PREALLOC_NID:
2093                 list_del(&i->list);
2094                 break;
2095         case FREE_NID:
2096                 list_add_tail(&i->list, &nm_i->free_nid_list);
2097                 break;
2098         default:
2099                 BUG_ON(1);
2100         }
2101 }
2102 
2103 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2104                                                         bool set, bool build)
2105 {
2106         struct f2fs_nm_info *nm_i = NM_I(sbi);
2107         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2108         unsigned int nid_ofs = nid - START_NID(nid);
2109 
2110         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2111                 return;
2112 
2113         if (set) {
2114                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2115                         return;
2116                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2117                 nm_i->free_nid_count[nat_ofs]++;
2118         } else {
2119                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2120                         return;
2121                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2122                 if (!build)
2123                         nm_i->free_nid_count[nat_ofs]--;
2124         }
2125 }
2126 
2127 /* return if the nid is recognized as free */
2128 static bool add_free_nid(struct f2fs_sb_info *sbi,
2129                                 nid_t nid, bool build, bool update)
2130 {
2131         struct f2fs_nm_info *nm_i = NM_I(sbi);
2132         struct free_nid *i, *e;
2133         struct nat_entry *ne;
2134         int err = -EINVAL;
2135         bool ret = false;
2136 
2137         /* 0 nid should not be used */
2138         if (unlikely(nid == 0))
2139                 return false;
2140 
2141         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2142                 return false;
2143 
2144         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2145         i->nid = nid;
2146         i->state = FREE_NID;
2147 
2148         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2149 
2150         spin_lock(&nm_i->nid_list_lock);
2151 
2152         if (build) {
2153                 /*
2154                  *   Thread A             Thread B
2155                  *  - f2fs_create
2156                  *   - f2fs_new_inode
2157                  *    - f2fs_alloc_nid
2158                  *     - __insert_nid_to_list(PREALLOC_NID)
2159                  *                     - f2fs_balance_fs_bg
2160                  *                      - f2fs_build_free_nids
2161                  *                       - __f2fs_build_free_nids
2162                  *                        - scan_nat_page
2163                  *                         - add_free_nid
2164                  *                          - __lookup_nat_cache
2165                  *  - f2fs_add_link
2166                  *   - f2fs_init_inode_metadata
2167                  *    - f2fs_new_inode_page
2168                  *     - f2fs_new_node_page
2169                  *      - set_node_addr
2170                  *  - f2fs_alloc_nid_done
2171                  *   - __remove_nid_from_list(PREALLOC_NID)
2172                  *                         - __insert_nid_to_list(FREE_NID)
2173                  */
2174                 ne = __lookup_nat_cache(nm_i, nid);
2175                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2176                                 nat_get_blkaddr(ne) != NULL_ADDR))
2177                         goto err_out;
2178 
2179                 e = __lookup_free_nid_list(nm_i, nid);
2180                 if (e) {
2181                         if (e->state == FREE_NID)
2182                                 ret = true;
2183                         goto err_out;
2184                 }
2185         }
2186         ret = true;
2187         err = __insert_free_nid(sbi, i, FREE_NID);
2188 err_out:
2189         if (update) {
2190                 update_free_nid_bitmap(sbi, nid, ret, build);
2191                 if (!build)
2192                         nm_i->available_nids++;
2193         }
2194         spin_unlock(&nm_i->nid_list_lock);
2195         radix_tree_preload_end();
2196 
2197         if (err)
2198                 kmem_cache_free(free_nid_slab, i);
2199         return ret;
2200 }
2201 
2202 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2203 {
2204         struct f2fs_nm_info *nm_i = NM_I(sbi);
2205         struct free_nid *i;
2206         bool need_free = false;
2207 
2208         spin_lock(&nm_i->nid_list_lock);
2209         i = __lookup_free_nid_list(nm_i, nid);
2210         if (i && i->state == FREE_NID) {
2211                 __remove_free_nid(sbi, i, FREE_NID);
2212                 need_free = true;
2213         }
2214         spin_unlock(&nm_i->nid_list_lock);
2215 
2216         if (need_free)
2217                 kmem_cache_free(free_nid_slab, i);
2218 }
2219 
2220 static int scan_nat_page(struct f2fs_sb_info *sbi,
2221                         struct page *nat_page, nid_t start_nid)
2222 {
2223         struct f2fs_nm_info *nm_i = NM_I(sbi);
2224         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2225         block_t blk_addr;
2226         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2227         int i;
2228 
2229         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2230 
2231         i = start_nid % NAT_ENTRY_PER_BLOCK;
2232 
2233         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2234                 if (unlikely(start_nid >= nm_i->max_nid))
2235                         break;
2236 
2237                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2238 
2239                 if (blk_addr == NEW_ADDR)
2240                         return -EINVAL;
2241 
2242                 if (blk_addr == NULL_ADDR) {
2243                         add_free_nid(sbi, start_nid, true, true);
2244                 } else {
2245                         spin_lock(&NM_I(sbi)->nid_list_lock);
2246                         update_free_nid_bitmap(sbi, start_nid, false, true);
2247                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2248                 }
2249         }
2250 
2251         return 0;
2252 }
2253 
2254 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2255 {
2256         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2257         struct f2fs_journal *journal = curseg->journal;
2258         int i;
2259 
2260         down_read(&curseg->journal_rwsem);
2261         for (i = 0; i < nats_in_cursum(journal); i++) {
2262                 block_t addr;
2263                 nid_t nid;
2264 
2265                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2266                 nid = le32_to_cpu(nid_in_journal(journal, i));
2267                 if (addr == NULL_ADDR)
2268                         add_free_nid(sbi, nid, true, false);
2269                 else
2270                         remove_free_nid(sbi, nid);
2271         }
2272         up_read(&curseg->journal_rwsem);
2273 }
2274 
2275 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2276 {
2277         struct f2fs_nm_info *nm_i = NM_I(sbi);
2278         unsigned int i, idx;
2279         nid_t nid;
2280 
2281         down_read(&nm_i->nat_tree_lock);
2282 
2283         for (i = 0; i < nm_i->nat_blocks; i++) {
2284                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2285                         continue;
2286                 if (!nm_i->free_nid_count[i])
2287                         continue;
2288                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2289                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2290                                                 NAT_ENTRY_PER_BLOCK, idx);
2291                         if (idx >= NAT_ENTRY_PER_BLOCK)
2292                                 break;
2293 
2294                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2295                         add_free_nid(sbi, nid, true, false);
2296 
2297                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2298                                 goto out;
2299                 }
2300         }
2301 out:
2302         scan_curseg_cache(sbi);
2303 
2304         up_read(&nm_i->nat_tree_lock);
2305 }
2306 
2307 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2308                                                 bool sync, bool mount)
2309 {
2310         struct f2fs_nm_info *nm_i = NM_I(sbi);
2311         int i = 0, ret;
2312         nid_t nid = nm_i->next_scan_nid;
2313 
2314         if (unlikely(nid >= nm_i->max_nid))
2315                 nid = 0;
2316 
2317         /* Enough entries */
2318         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2319                 return 0;
2320 
2321         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2322                 return 0;
2323 
2324         if (!mount) {
2325                 /* try to find free nids in free_nid_bitmap */
2326                 scan_free_nid_bits(sbi);
2327 
2328                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2329                         return 0;
2330         }
2331 
2332         /* readahead nat pages to be scanned */
2333         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2334                                                         META_NAT, true);
2335 
2336         down_read(&nm_i->nat_tree_lock);
2337 
2338         while (1) {
2339                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2340                                                 nm_i->nat_block_bitmap)) {
2341                         struct page *page = get_current_nat_page(sbi, nid);
2342 
2343                         if (IS_ERR(page)) {
2344                                 ret = PTR_ERR(page);
2345                         } else {
2346                                 ret = scan_nat_page(sbi, page, nid);
2347                                 f2fs_put_page(page, 1);
2348                         }
2349 
2350                         if (ret) {
2351                                 up_read(&nm_i->nat_tree_lock);
2352                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2353                                 return ret;
2354                         }
2355                 }
2356 
2357                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2358                 if (unlikely(nid >= nm_i->max_nid))
2359                         nid = 0;
2360 
2361                 if (++i >= FREE_NID_PAGES)
2362                         break;
2363         }
2364 
2365         /* go to the next free nat pages to find free nids abundantly */
2366         nm_i->next_scan_nid = nid;
2367 
2368         /* find free nids from current sum_pages */
2369         scan_curseg_cache(sbi);
2370 
2371         up_read(&nm_i->nat_tree_lock);
2372 
2373         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2374                                         nm_i->ra_nid_pages, META_NAT, false);
2375 
2376         return 0;
2377 }
2378 
2379 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2380 {
2381         int ret;
2382 
2383         mutex_lock(&NM_I(sbi)->build_lock);
2384         ret = __f2fs_build_free_nids(sbi, sync, mount);
2385         mutex_unlock(&NM_I(sbi)->build_lock);
2386 
2387         return ret;
2388 }
2389 
2390 /*
2391  * If this function returns success, caller can obtain a new nid
2392  * from second parameter of this function.
2393  * The returned nid could be used ino as well as nid when inode is created.
2394  */
2395 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2396 {
2397         struct f2fs_nm_info *nm_i = NM_I(sbi);
2398         struct free_nid *i = NULL;
2399 retry:
2400         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2401                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2402                 return false;
2403         }
2404 
2405         spin_lock(&nm_i->nid_list_lock);
2406 
2407         if (unlikely(nm_i->available_nids == 0)) {
2408                 spin_unlock(&nm_i->nid_list_lock);
2409                 return false;
2410         }
2411 
2412         /* We should not use stale free nids created by f2fs_build_free_nids */
2413         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2414                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2415                 i = list_first_entry(&nm_i->free_nid_list,
2416                                         struct free_nid, list);
2417                 *nid = i->nid;
2418 
2419                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2420                 nm_i->available_nids--;
2421 
2422                 update_free_nid_bitmap(sbi, *nid, false, false);
2423 
2424                 spin_unlock(&nm_i->nid_list_lock);
2425                 return true;
2426         }
2427         spin_unlock(&nm_i->nid_list_lock);
2428 
2429         /* Let's scan nat pages and its caches to get free nids */
2430         if (!f2fs_build_free_nids(sbi, true, false))
2431                 goto retry;
2432         return false;
2433 }
2434 
2435 /*
2436  * f2fs_alloc_nid() should be called prior to this function.
2437  */
2438 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2439 {
2440         struct f2fs_nm_info *nm_i = NM_I(sbi);
2441         struct free_nid *i;
2442 
2443         spin_lock(&nm_i->nid_list_lock);
2444         i = __lookup_free_nid_list(nm_i, nid);
2445         f2fs_bug_on(sbi, !i);
2446         __remove_free_nid(sbi, i, PREALLOC_NID);
2447         spin_unlock(&nm_i->nid_list_lock);
2448 
2449         kmem_cache_free(free_nid_slab, i);
2450 }
2451 
2452 /*
2453  * f2fs_alloc_nid() should be called prior to this function.
2454  */
2455 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2456 {
2457         struct f2fs_nm_info *nm_i = NM_I(sbi);
2458         struct free_nid *i;
2459         bool need_free = false;
2460 
2461         if (!nid)
2462                 return;
2463 
2464         spin_lock(&nm_i->nid_list_lock);
2465         i = __lookup_free_nid_list(nm_i, nid);
2466         f2fs_bug_on(sbi, !i);
2467 
2468         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2469                 __remove_free_nid(sbi, i, PREALLOC_NID);
2470                 need_free = true;
2471         } else {
2472                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2473         }
2474 
2475         nm_i->available_nids++;
2476 
2477         update_free_nid_bitmap(sbi, nid, true, false);
2478 
2479         spin_unlock(&nm_i->nid_list_lock);
2480 
2481         if (need_free)
2482                 kmem_cache_free(free_nid_slab, i);
2483 }
2484 
2485 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2486 {
2487         struct f2fs_nm_info *nm_i = NM_I(sbi);
2488         struct free_nid *i, *next;
2489         int nr = nr_shrink;
2490 
2491         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2492                 return 0;
2493 
2494         if (!mutex_trylock(&nm_i->build_lock))
2495                 return 0;
2496 
2497         spin_lock(&nm_i->nid_list_lock);
2498         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2499                 if (nr_shrink <= 0 ||
2500                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2501                         break;
2502 
2503                 __remove_free_nid(sbi, i, FREE_NID);
2504                 kmem_cache_free(free_nid_slab, i);
2505                 nr_shrink--;
2506         }
2507         spin_unlock(&nm_i->nid_list_lock);
2508         mutex_unlock(&nm_i->build_lock);
2509 
2510         return nr - nr_shrink;
2511 }
2512 
2513 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2514 {
2515         void *src_addr, *dst_addr;
2516         size_t inline_size;
2517         struct page *ipage;
2518         struct f2fs_inode *ri;
2519 
2520         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2521         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2522 
2523         ri = F2FS_INODE(page);
2524         if (ri->i_inline & F2FS_INLINE_XATTR) {
2525                 set_inode_flag(inode, FI_INLINE_XATTR);
2526         } else {
2527                 clear_inode_flag(inode, FI_INLINE_XATTR);
2528                 goto update_inode;
2529         }
2530 
2531         dst_addr = inline_xattr_addr(inode, ipage);
2532         src_addr = inline_xattr_addr(inode, page);
2533         inline_size = inline_xattr_size(inode);
2534 
2535         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2536         memcpy(dst_addr, src_addr, inline_size);
2537 update_inode:
2538         f2fs_update_inode(inode, ipage);
2539         f2fs_put_page(ipage, 1);
2540 }
2541 
2542 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2543 {
2544         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2545         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2546         nid_t new_xnid;
2547         struct dnode_of_data dn;
2548         struct node_info ni;
2549         struct page *xpage;
2550         int err;
2551 
2552         if (!prev_xnid)
2553                 goto recover_xnid;
2554 
2555         /* 1: invalidate the previous xattr nid */
2556         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2557         if (err)
2558                 return err;
2559 
2560         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2561         dec_valid_node_count(sbi, inode, false);
2562         set_node_addr(sbi, &ni, NULL_ADDR, false);
2563 
2564 recover_xnid:
2565         /* 2: update xattr nid in inode */
2566         if (!f2fs_alloc_nid(sbi, &new_xnid))
2567                 return -ENOSPC;
2568 
2569         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2570         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2571         if (IS_ERR(xpage)) {
2572                 f2fs_alloc_nid_failed(sbi, new_xnid);
2573                 return PTR_ERR(xpage);
2574         }
2575 
2576         f2fs_alloc_nid_done(sbi, new_xnid);
2577         f2fs_update_inode_page(inode);
2578 
2579         /* 3: update and set xattr node page dirty */
2580         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2581 
2582         set_page_dirty(xpage);
2583         f2fs_put_page(xpage, 1);
2584 
2585         return 0;
2586 }
2587 
2588 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2589 {
2590         struct f2fs_inode *src, *dst;
2591         nid_t ino = ino_of_node(page);
2592         struct node_info old_ni, new_ni;
2593         struct page *ipage;
2594         int err;
2595 
2596         err = f2fs_get_node_info(sbi, ino, &old_ni);
2597         if (err)
2598                 return err;
2599 
2600         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2601                 return -EINVAL;
2602 retry:
2603         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2604         if (!ipage) {
2605                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2606                 goto retry;
2607         }
2608 
2609         /* Should not use this inode from free nid list */
2610         remove_free_nid(sbi, ino);
2611 
2612         if (!PageUptodate(ipage))
2613                 SetPageUptodate(ipage);
2614         fill_node_footer(ipage, ino, ino, 0, true);
2615         set_cold_node(ipage, false);
2616 
2617         src = F2FS_INODE(page);
2618         dst = F2FS_INODE(ipage);
2619 
2620         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2621         dst->i_size = 0;
2622         dst->i_blocks = cpu_to_le64(1);
2623         dst->i_links = cpu_to_le32(1);
2624         dst->i_xattr_nid = 0;
2625         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2626         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2627                 dst->i_extra_isize = src->i_extra_isize;
2628 
2629                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2630                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2631                                                         i_inline_xattr_size))
2632                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2633 
2634                 if (f2fs_sb_has_project_quota(sbi) &&
2635                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2636                                                                 i_projid))
2637                         dst->i_projid = src->i_projid;
2638 
2639                 if (f2fs_sb_has_inode_crtime(sbi) &&
2640                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2641                                                         i_crtime_nsec)) {
2642                         dst->i_crtime = src->i_crtime;
2643                         dst->i_crtime_nsec = src->i_crtime_nsec;
2644                 }
2645         }
2646 
2647         new_ni = old_ni;
2648         new_ni.ino = ino;
2649 
2650         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2651                 WARN_ON(1);
2652         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2653         inc_valid_inode_count(sbi);
2654         set_page_dirty(ipage);
2655         f2fs_put_page(ipage, 1);
2656         return 0;
2657 }
2658 
2659 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2660                         unsigned int segno, struct f2fs_summary_block *sum)
2661 {
2662         struct f2fs_node *rn;
2663         struct f2fs_summary *sum_entry;
2664         block_t addr;
2665         int i, idx, last_offset, nrpages;
2666 
2667         /* scan the node segment */
2668         last_offset = sbi->blocks_per_seg;
2669         addr = START_BLOCK(sbi, segno);
2670         sum_entry = &sum->entries[0];
2671 
2672         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2673                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2674 
2675                 /* readahead node pages */
2676                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2677 
2678                 for (idx = addr; idx < addr + nrpages; idx++) {
2679                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2680 
2681                         if (IS_ERR(page))
2682                                 return PTR_ERR(page);
2683 
2684                         rn = F2FS_NODE(page);
2685                         sum_entry->nid = rn->footer.nid;
2686                         sum_entry->version = 0;
2687                         sum_entry->ofs_in_node = 0;
2688                         sum_entry++;
2689                         f2fs_put_page(page, 1);
2690                 }
2691 
2692                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2693                                                         addr + nrpages);
2694         }
2695         return 0;
2696 }
2697 
2698 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2699 {
2700         struct f2fs_nm_info *nm_i = NM_I(sbi);
2701         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2702         struct f2fs_journal *journal = curseg->journal;
2703         int i;
2704 
2705         down_write(&curseg->journal_rwsem);
2706         for (i = 0; i < nats_in_cursum(journal); i++) {
2707                 struct nat_entry *ne;
2708                 struct f2fs_nat_entry raw_ne;
2709                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2710 
2711                 raw_ne = nat_in_journal(journal, i);
2712 
2713                 ne = __lookup_nat_cache(nm_i, nid);
2714                 if (!ne) {
2715                         ne = __alloc_nat_entry(nid, true);
2716                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2717                 }
2718 
2719                 /*
2720                  * if a free nat in journal has not been used after last
2721                  * checkpoint, we should remove it from available nids,
2722                  * since later we will add it again.
2723                  */
2724                 if (!get_nat_flag(ne, IS_DIRTY) &&
2725                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2726                         spin_lock(&nm_i->nid_list_lock);
2727                         nm_i->available_nids--;
2728                         spin_unlock(&nm_i->nid_list_lock);
2729                 }
2730 
2731                 __set_nat_cache_dirty(nm_i, ne);
2732         }
2733         update_nats_in_cursum(journal, -i);
2734         up_write(&curseg->journal_rwsem);
2735 }
2736 
2737 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2738                                                 struct list_head *head, int max)
2739 {
2740         struct nat_entry_set *cur;
2741 
2742         if (nes->entry_cnt >= max)
2743                 goto add_out;
2744 
2745         list_for_each_entry(cur, head, set_list) {
2746                 if (cur->entry_cnt >= nes->entry_cnt) {
2747                         list_add(&nes->set_list, cur->set_list.prev);
2748                         return;
2749                 }
2750         }
2751 add_out:
2752         list_add_tail(&nes->set_list, head);
2753 }
2754 
2755 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2756                                                 struct page *page)
2757 {
2758         struct f2fs_nm_info *nm_i = NM_I(sbi);
2759         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2760         struct f2fs_nat_block *nat_blk = page_address(page);
2761         int valid = 0;
2762         int i = 0;
2763 
2764         if (!enabled_nat_bits(sbi, NULL))
2765                 return;
2766 
2767         if (nat_index == 0) {
2768                 valid = 1;
2769                 i = 1;
2770         }
2771         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2772                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2773                         valid++;
2774         }
2775         if (valid == 0) {
2776                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2777                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2778                 return;
2779         }
2780 
2781         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2782         if (valid == NAT_ENTRY_PER_BLOCK)
2783                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2784         else
2785                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2786 }
2787 
2788 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2789                 struct nat_entry_set *set, struct cp_control *cpc)
2790 {
2791         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2792         struct f2fs_journal *journal = curseg->journal;
2793         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2794         bool to_journal = true;
2795         struct f2fs_nat_block *nat_blk;
2796         struct nat_entry *ne, *cur;
2797         struct page *page = NULL;
2798 
2799         /*
2800          * there are two steps to flush nat entries:
2801          * #1, flush nat entries to journal in current hot data summary block.
2802          * #2, flush nat entries to nat page.
2803          */
2804         if (enabled_nat_bits(sbi, cpc) ||
2805                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2806                 to_journal = false;
2807 
2808         if (to_journal) {
2809                 down_write(&curseg->journal_rwsem);
2810         } else {
2811                 page = get_next_nat_page(sbi, start_nid);
2812                 if (IS_ERR(page))
2813                         return PTR_ERR(page);
2814 
2815                 nat_blk = page_address(page);
2816                 f2fs_bug_on(sbi, !nat_blk);
2817         }
2818 
2819         /* flush dirty nats in nat entry set */
2820         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2821                 struct f2fs_nat_entry *raw_ne;
2822                 nid_t nid = nat_get_nid(ne);
2823                 int offset;
2824 
2825                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2826 
2827                 if (to_journal) {
2828                         offset = f2fs_lookup_journal_in_cursum(journal,
2829                                                         NAT_JOURNAL, nid, 1);
2830                         f2fs_bug_on(sbi, offset < 0);
2831                         raw_ne = &nat_in_journal(journal, offset);
2832                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2833                 } else {
2834                         raw_ne = &nat_blk->entries[nid - start_nid];
2835                 }
2836                 raw_nat_from_node_info(raw_ne, &ne->ni);
2837                 nat_reset_flag(ne);
2838                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2839                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2840                         add_free_nid(sbi, nid, false, true);
2841                 } else {
2842                         spin_lock(&NM_I(sbi)->nid_list_lock);
2843                         update_free_nid_bitmap(sbi, nid, false, false);
2844                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2845                 }
2846         }
2847 
2848         if (to_journal) {
2849                 up_write(&curseg->journal_rwsem);
2850         } else {
2851                 __update_nat_bits(sbi, start_nid, page);
2852                 f2fs_put_page(page, 1);
2853         }
2854 
2855         /* Allow dirty nats by node block allocation in write_begin */
2856         if (!set->entry_cnt) {
2857                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2858                 kmem_cache_free(nat_entry_set_slab, set);
2859         }
2860         return 0;
2861 }
2862 
2863 /*
2864  * This function is called during the checkpointing process.
2865  */
2866 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2867 {
2868         struct f2fs_nm_info *nm_i = NM_I(sbi);
2869         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2870         struct f2fs_journal *journal = curseg->journal;
2871         struct nat_entry_set *setvec[SETVEC_SIZE];
2872         struct nat_entry_set *set, *tmp;
2873         unsigned int found;
2874         nid_t set_idx = 0;
2875         LIST_HEAD(sets);
2876         int err = 0;
2877 
2878         /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2879         if (enabled_nat_bits(sbi, cpc)) {
2880                 down_write(&nm_i->nat_tree_lock);
2881                 remove_nats_in_journal(sbi);
2882                 up_write(&nm_i->nat_tree_lock);
2883         }
2884 
2885         if (!nm_i->dirty_nat_cnt)
2886                 return 0;
2887 
2888         down_write(&nm_i->nat_tree_lock);
2889 
2890         /*
2891          * if there are no enough space in journal to store dirty nat
2892          * entries, remove all entries from journal and merge them
2893          * into nat entry set.
2894          */
2895         if (enabled_nat_bits(sbi, cpc) ||
2896                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2897                 remove_nats_in_journal(sbi);
2898 
2899         while ((found = __gang_lookup_nat_set(nm_i,
2900                                         set_idx, SETVEC_SIZE, setvec))) {
2901                 unsigned idx;
2902                 set_idx = setvec[found - 1]->set + 1;
2903                 for (idx = 0; idx < found; idx++)
2904                         __adjust_nat_entry_set(setvec[idx], &sets,
2905                                                 MAX_NAT_JENTRIES(journal));
2906         }
2907 
2908         /* flush dirty nats in nat entry set */
2909         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2910                 err = __flush_nat_entry_set(sbi, set, cpc);
2911                 if (err)
2912                         break;
2913         }
2914 
2915         up_write(&nm_i->nat_tree_lock);
2916         /* Allow dirty nats by node block allocation in write_begin */
2917 
2918         return err;
2919 }
2920 
2921 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2922 {
2923         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2924         struct f2fs_nm_info *nm_i = NM_I(sbi);
2925         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2926         unsigned int i;
2927         __u64 cp_ver = cur_cp_version(ckpt);
2928         block_t nat_bits_addr;
2929 
2930         if (!enabled_nat_bits(sbi, NULL))
2931                 return 0;
2932 
2933         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2934         nm_i->nat_bits = f2fs_kzalloc(sbi,
2935                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2936         if (!nm_i->nat_bits)
2937                 return -ENOMEM;
2938 
2939         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2940                                                 nm_i->nat_bits_blocks;
2941         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2942                 struct page *page;
2943 
2944                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2945                 if (IS_ERR(page))
2946                         return PTR_ERR(page);
2947 
2948                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2949                                         page_address(page), F2FS_BLKSIZE);
2950                 f2fs_put_page(page, 1);
2951         }
2952 
2953         cp_ver |= (cur_cp_crc(ckpt) << 32);
2954         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2955                 disable_nat_bits(sbi, true);
2956                 return 0;
2957         }
2958 
2959         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2960         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2961 
2962         f2fs_notice(sbi, "Found nat_bits in checkpoint");
2963         return 0;
2964 }
2965 
2966 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2967 {
2968         struct f2fs_nm_info *nm_i = NM_I(sbi);
2969         unsigned int i = 0;
2970         nid_t nid, last_nid;
2971 
2972         if (!enabled_nat_bits(sbi, NULL))
2973                 return;
2974 
2975         for (i = 0; i < nm_i->nat_blocks; i++) {
2976                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2977                 if (i >= nm_i->nat_blocks)
2978                         break;
2979 
2980                 __set_bit_le(i, nm_i->nat_block_bitmap);
2981 
2982                 nid = i * NAT_ENTRY_PER_BLOCK;
2983                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2984 
2985                 spin_lock(&NM_I(sbi)->nid_list_lock);
2986                 for (; nid < last_nid; nid++)
2987                         update_free_nid_bitmap(sbi, nid, true, true);
2988                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2989         }
2990 
2991         for (i = 0; i < nm_i->nat_blocks; i++) {
2992                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2993                 if (i >= nm_i->nat_blocks)
2994                         break;
2995 
2996                 __set_bit_le(i, nm_i->nat_block_bitmap);
2997         }
2998 }
2999 
3000 static int init_node_manager(struct f2fs_sb_info *sbi)
3001 {
3002         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3003         struct f2fs_nm_info *nm_i = NM_I(sbi);
3004         unsigned char *version_bitmap;
3005         unsigned int nat_segs;
3006         int err;
3007 
3008         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3009 
3010         /* segment_count_nat includes pair segment so divide to 2. */
3011         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3012         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3013         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3014 
3015         /* not used nids: 0, node, meta, (and root counted as valid node) */
3016         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3017                                                 F2FS_RESERVED_NODE_NUM;
3018         nm_i->nid_cnt[FREE_NID] = 0;
3019         nm_i->nid_cnt[PREALLOC_NID] = 0;
3020         nm_i->nat_cnt = 0;
3021         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3022         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3023         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3024 
3025         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3026         INIT_LIST_HEAD(&nm_i->free_nid_list);
3027         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3028         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3029         INIT_LIST_HEAD(&nm_i->nat_entries);
3030         spin_lock_init(&nm_i->nat_list_lock);
3031 
3032         mutex_init(&nm_i->build_lock);
3033         spin_lock_init(&nm_i->nid_list_lock);
3034         init_rwsem(&nm_i->nat_tree_lock);
3035 
3036         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3037         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3038         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3039         if (!version_bitmap)
3040                 return -EFAULT;
3041 
3042         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3043                                         GFP_KERNEL);
3044         if (!nm_i->nat_bitmap)
3045                 return -ENOMEM;
3046 
3047         err = __get_nat_bitmaps(sbi);
3048         if (err)
3049                 return err;
3050 
3051 #ifdef CONFIG_F2FS_CHECK_FS
3052         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3053                                         GFP_KERNEL);
3054         if (!nm_i->nat_bitmap_mir)
3055                 return -ENOMEM;
3056 #endif
3057 
3058         return 0;
3059 }
3060 
3061 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3062 {
3063         struct f2fs_nm_info *nm_i = NM_I(sbi);
3064         int i;
3065 
3066         nm_i->free_nid_bitmap =
3067                 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3068                                              nm_i->nat_blocks),
3069                              GFP_KERNEL);
3070         if (!nm_i->free_nid_bitmap)
3071                 return -ENOMEM;
3072 
3073         for (i = 0; i < nm_i->nat_blocks; i++) {
3074                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3075                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3076                 if (!nm_i->free_nid_bitmap[i])
3077                         return -ENOMEM;
3078         }
3079 
3080         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3081                                                                 GFP_KERNEL);
3082         if (!nm_i->nat_block_bitmap)
3083                 return -ENOMEM;
3084 
3085         nm_i->free_nid_count =
3086                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3087                                               nm_i->nat_blocks),
3088                               GFP_KERNEL);
3089         if (!nm_i->free_nid_count)
3090                 return -ENOMEM;
3091         return 0;
3092 }
3093 
3094 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3095 {
3096         int err;
3097 
3098         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3099                                                         GFP_KERNEL);
3100         if (!sbi->nm_info)
3101                 return -ENOMEM;
3102 
3103         err = init_node_manager(sbi);
3104         if (err)
3105                 return err;
3106 
3107         err = init_free_nid_cache(sbi);
3108         if (err)
3109                 return err;
3110 
3111         /* load free nid status from nat_bits table */
3112         load_free_nid_bitmap(sbi);
3113 
3114         return f2fs_build_free_nids(sbi, true, true);
3115 }
3116 
3117 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3118 {
3119         struct f2fs_nm_info *nm_i = NM_I(sbi);
3120         struct free_nid *i, *next_i;
3121         struct nat_entry *natvec[NATVEC_SIZE];
3122         struct nat_entry_set *setvec[SETVEC_SIZE];
3123         nid_t nid = 0;
3124         unsigned int found;
3125 
3126         if (!nm_i)
3127                 return;
3128 
3129         /* destroy free nid list */
3130         spin_lock(&nm_i->nid_list_lock);
3131         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3132                 __remove_free_nid(sbi, i, FREE_NID);
3133                 spin_unlock(&nm_i->nid_list_lock);
3134                 kmem_cache_free(free_nid_slab, i);
3135                 spin_lock(&nm_i->nid_list_lock);
3136         }
3137         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3138         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3139         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3140         spin_unlock(&nm_i->nid_list_lock);
3141 
3142         /* destroy nat cache */
3143         down_write(&nm_i->nat_tree_lock);
3144         while ((found = __gang_lookup_nat_cache(nm_i,
3145                                         nid, NATVEC_SIZE, natvec))) {
3146                 unsigned idx;
3147 
3148                 nid = nat_get_nid(natvec[found - 1]) + 1;
3149                 for (idx = 0; idx < found; idx++) {
3150                         spin_lock(&nm_i->nat_list_lock);
3151                         list_del(&natvec[idx]->list);
3152                         spin_unlock(&nm_i->nat_list_lock);
3153 
3154                         __del_from_nat_cache(nm_i, natvec[idx]);
3155                 }
3156         }
3157         f2fs_bug_on(sbi, nm_i->nat_cnt);
3158 
3159         /* destroy nat set cache */
3160         nid = 0;
3161         while ((found = __gang_lookup_nat_set(nm_i,
3162                                         nid, SETVEC_SIZE, setvec))) {
3163                 unsigned idx;
3164 
3165                 nid = setvec[found - 1]->set + 1;
3166                 for (idx = 0; idx < found; idx++) {
3167                         /* entry_cnt is not zero, when cp_error was occurred */
3168                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3169                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3170                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3171                 }
3172         }
3173         up_write(&nm_i->nat_tree_lock);
3174 
3175         kvfree(nm_i->nat_block_bitmap);
3176         if (nm_i->free_nid_bitmap) {
3177                 int i;
3178 
3179                 for (i = 0; i < nm_i->nat_blocks; i++)
3180                         kvfree(nm_i->free_nid_bitmap[i]);
3181                 kvfree(nm_i->free_nid_bitmap);
3182         }
3183         kvfree(nm_i->free_nid_count);
3184 
3185         kvfree(nm_i->nat_bitmap);
3186         kvfree(nm_i->nat_bits);
3187 #ifdef CONFIG_F2FS_CHECK_FS
3188         kvfree(nm_i->nat_bitmap_mir);
3189 #endif
3190         sbi->nm_info = NULL;
3191         kvfree(nm_i);
3192 }
3193 
3194 int __init f2fs_create_node_manager_caches(void)
3195 {
3196         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3197                         sizeof(struct nat_entry));
3198         if (!nat_entry_slab)
3199                 goto fail;
3200 
3201         free_nid_slab = f2fs_kmem_cache_create("free_nid",
3202                         sizeof(struct free_nid));
3203         if (!free_nid_slab)
3204                 goto destroy_nat_entry;
3205 
3206         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3207                         sizeof(struct nat_entry_set));
3208         if (!nat_entry_set_slab)
3209                 goto destroy_free_nid;
3210 
3211         fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3212                         sizeof(struct fsync_node_entry));
3213         if (!fsync_node_entry_slab)
3214                 goto destroy_nat_entry_set;
3215         return 0;
3216 
3217 destroy_nat_entry_set:
3218         kmem_cache_destroy(nat_entry_set_slab);
3219 destroy_free_nid:
3220         kmem_cache_destroy(free_nid_slab);
3221 destroy_nat_entry:
3222         kmem_cache_destroy(nat_entry_slab);
3223 fail:
3224         return -ENOMEM;
3225 }
3226 
3227 void f2fs_destroy_node_manager_caches(void)
3228 {
3229         kmem_cache_destroy(fsync_node_entry_slab);
3230         kmem_cache_destroy(nat_entry_set_slab);
3231         kmem_cache_destroy(free_nid_slab);
3232         kmem_cache_destroy(nat_entry_slab);
3233 }
3234 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp