~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/node.c

Version: ~ [ linux-5.10-rc1 ] ~ [ linux-5.9.1 ] ~ [ linux-5.8.16 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.72 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.152 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.202 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.240 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.240 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * fs/f2fs/node.c
  3  *
  4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5  *             http://www.samsung.com/
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  */
 11 #include <linux/fs.h>
 12 #include <linux/f2fs_fs.h>
 13 #include <linux/mpage.h>
 14 #include <linux/backing-dev.h>
 15 #include <linux/blkdev.h>
 16 #include <linux/pagevec.h>
 17 #include <linux/swap.h>
 18 
 19 #include "f2fs.h"
 20 #include "node.h"
 21 #include "segment.h"
 22 #include "trace.h"
 23 #include <trace/events/f2fs.h>
 24 
 25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
 26 
 27 static struct kmem_cache *nat_entry_slab;
 28 static struct kmem_cache *free_nid_slab;
 29 static struct kmem_cache *nat_entry_set_slab;
 30 
 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
 32 {
 33         struct f2fs_nm_info *nm_i = NM_I(sbi);
 34         struct sysinfo val;
 35         unsigned long avail_ram;
 36         unsigned long mem_size = 0;
 37         bool res = false;
 38 
 39         si_meminfo(&val);
 40 
 41         /* only uses low memory */
 42         avail_ram = val.totalram - val.totalhigh;
 43 
 44         /*
 45          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
 46          */
 47         if (type == FREE_NIDS) {
 48                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
 49                                                         PAGE_SHIFT;
 50                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 51         } else if (type == NAT_ENTRIES) {
 52                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
 53                                                         PAGE_SHIFT;
 54                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 55         } else if (type == DIRTY_DENTS) {
 56                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
 57                         return false;
 58                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
 59                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 60         } else if (type == INO_ENTRIES) {
 61                 int i;
 62 
 63                 for (i = 0; i <= UPDATE_INO; i++)
 64                         mem_size += (sbi->im[i].ino_num *
 65                                 sizeof(struct ino_entry)) >> PAGE_SHIFT;
 66                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 67         } else if (type == EXTENT_CACHE) {
 68                 mem_size = (atomic_read(&sbi->total_ext_tree) *
 69                                 sizeof(struct extent_tree) +
 70                                 atomic_read(&sbi->total_ext_node) *
 71                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
 72                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 73         } else {
 74                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
 75                         return true;
 76         }
 77         return res;
 78 }
 79 
 80 static void clear_node_page_dirty(struct page *page)
 81 {
 82         struct address_space *mapping = page->mapping;
 83         unsigned int long flags;
 84 
 85         if (PageDirty(page)) {
 86                 spin_lock_irqsave(&mapping->tree_lock, flags);
 87                 radix_tree_tag_clear(&mapping->page_tree,
 88                                 page_index(page),
 89                                 PAGECACHE_TAG_DIRTY);
 90                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
 91 
 92                 clear_page_dirty_for_io(page);
 93                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
 94         }
 95         ClearPageUptodate(page);
 96 }
 97 
 98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 99 {
100         pgoff_t index = current_nat_addr(sbi, nid);
101         return get_meta_page(sbi, index);
102 }
103 
104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
105 {
106         struct page *src_page;
107         struct page *dst_page;
108         pgoff_t src_off;
109         pgoff_t dst_off;
110         void *src_addr;
111         void *dst_addr;
112         struct f2fs_nm_info *nm_i = NM_I(sbi);
113 
114         src_off = current_nat_addr(sbi, nid);
115         dst_off = next_nat_addr(sbi, src_off);
116 
117         /* get current nat block page with lock */
118         src_page = get_meta_page(sbi, src_off);
119         dst_page = grab_meta_page(sbi, dst_off);
120         f2fs_bug_on(sbi, PageDirty(src_page));
121 
122         src_addr = page_address(src_page);
123         dst_addr = page_address(dst_page);
124         memcpy(dst_addr, src_addr, PAGE_SIZE);
125         set_page_dirty(dst_page);
126         f2fs_put_page(src_page, 1);
127 
128         set_to_next_nat(nm_i, nid);
129 
130         return dst_page;
131 }
132 
133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
134 {
135         return radix_tree_lookup(&nm_i->nat_root, n);
136 }
137 
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
139                 nid_t start, unsigned int nr, struct nat_entry **ep)
140 {
141         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
142 }
143 
144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
145 {
146         list_del(&e->list);
147         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
148         nm_i->nat_cnt--;
149         kmem_cache_free(nat_entry_slab, e);
150 }
151 
152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
153                                                 struct nat_entry *ne)
154 {
155         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
156         struct nat_entry_set *head;
157 
158         if (get_nat_flag(ne, IS_DIRTY))
159                 return;
160 
161         head = radix_tree_lookup(&nm_i->nat_set_root, set);
162         if (!head) {
163                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164 
165                 INIT_LIST_HEAD(&head->entry_list);
166                 INIT_LIST_HEAD(&head->set_list);
167                 head->set = set;
168                 head->entry_cnt = 0;
169                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170         }
171         list_move_tail(&ne->list, &head->entry_list);
172         nm_i->dirty_nat_cnt++;
173         head->entry_cnt++;
174         set_nat_flag(ne, IS_DIRTY, true);
175 }
176 
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
178                                                 struct nat_entry *ne)
179 {
180         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
181         struct nat_entry_set *head;
182 
183         head = radix_tree_lookup(&nm_i->nat_set_root, set);
184         if (head) {
185                 list_move_tail(&ne->list, &nm_i->nat_entries);
186                 set_nat_flag(ne, IS_DIRTY, false);
187                 head->entry_cnt--;
188                 nm_i->dirty_nat_cnt--;
189         }
190 }
191 
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
193                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
194 {
195         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
196                                                         start, nr);
197 }
198 
199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
200 {
201         struct f2fs_nm_info *nm_i = NM_I(sbi);
202         struct nat_entry *e;
203         bool need = false;
204 
205         down_read(&nm_i->nat_tree_lock);
206         e = __lookup_nat_cache(nm_i, nid);
207         if (e) {
208                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
209                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
210                         need = true;
211         }
212         up_read(&nm_i->nat_tree_lock);
213         return need;
214 }
215 
216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
217 {
218         struct f2fs_nm_info *nm_i = NM_I(sbi);
219         struct nat_entry *e;
220         bool is_cp = true;
221 
222         down_read(&nm_i->nat_tree_lock);
223         e = __lookup_nat_cache(nm_i, nid);
224         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
225                 is_cp = false;
226         up_read(&nm_i->nat_tree_lock);
227         return is_cp;
228 }
229 
230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
231 {
232         struct f2fs_nm_info *nm_i = NM_I(sbi);
233         struct nat_entry *e;
234         bool need_update = true;
235 
236         down_read(&nm_i->nat_tree_lock);
237         e = __lookup_nat_cache(nm_i, ino);
238         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
239                         (get_nat_flag(e, IS_CHECKPOINTED) ||
240                          get_nat_flag(e, HAS_FSYNCED_INODE)))
241                 need_update = false;
242         up_read(&nm_i->nat_tree_lock);
243         return need_update;
244 }
245 
246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
247 {
248         struct nat_entry *new;
249 
250         new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
251         f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
252         memset(new, 0, sizeof(struct nat_entry));
253         nat_set_nid(new, nid);
254         nat_reset_flag(new);
255         list_add_tail(&new->list, &nm_i->nat_entries);
256         nm_i->nat_cnt++;
257         return new;
258 }
259 
260 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
261                                                 struct f2fs_nat_entry *ne)
262 {
263         struct f2fs_nm_info *nm_i = NM_I(sbi);
264         struct nat_entry *e;
265 
266         e = __lookup_nat_cache(nm_i, nid);
267         if (!e) {
268                 e = grab_nat_entry(nm_i, nid);
269                 node_info_from_raw_nat(&e->ni, ne);
270         } else {
271                 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
272                                 nat_get_blkaddr(e) != ne->block_addr ||
273                                 nat_get_version(e) != ne->version);
274         }
275 }
276 
277 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
278                         block_t new_blkaddr, bool fsync_done)
279 {
280         struct f2fs_nm_info *nm_i = NM_I(sbi);
281         struct nat_entry *e;
282 
283         down_write(&nm_i->nat_tree_lock);
284         e = __lookup_nat_cache(nm_i, ni->nid);
285         if (!e) {
286                 e = grab_nat_entry(nm_i, ni->nid);
287                 copy_node_info(&e->ni, ni);
288                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
289         } else if (new_blkaddr == NEW_ADDR) {
290                 /*
291                  * when nid is reallocated,
292                  * previous nat entry can be remained in nat cache.
293                  * So, reinitialize it with new information.
294                  */
295                 copy_node_info(&e->ni, ni);
296                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
297         }
298 
299         /* sanity check */
300         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
301         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
302                         new_blkaddr == NULL_ADDR);
303         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
304                         new_blkaddr == NEW_ADDR);
305         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
306                         nat_get_blkaddr(e) != NULL_ADDR &&
307                         new_blkaddr == NEW_ADDR);
308 
309         /* increment version no as node is removed */
310         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
311                 unsigned char version = nat_get_version(e);
312                 nat_set_version(e, inc_node_version(version));
313 
314                 /* in order to reuse the nid */
315                 if (nm_i->next_scan_nid > ni->nid)
316                         nm_i->next_scan_nid = ni->nid;
317         }
318 
319         /* change address */
320         nat_set_blkaddr(e, new_blkaddr);
321         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
322                 set_nat_flag(e, IS_CHECKPOINTED, false);
323         __set_nat_cache_dirty(nm_i, e);
324 
325         /* update fsync_mark if its inode nat entry is still alive */
326         if (ni->nid != ni->ino)
327                 e = __lookup_nat_cache(nm_i, ni->ino);
328         if (e) {
329                 if (fsync_done && ni->nid == ni->ino)
330                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
331                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
332         }
333         up_write(&nm_i->nat_tree_lock);
334 }
335 
336 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
337 {
338         struct f2fs_nm_info *nm_i = NM_I(sbi);
339         int nr = nr_shrink;
340 
341         if (!down_write_trylock(&nm_i->nat_tree_lock))
342                 return 0;
343 
344         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
345                 struct nat_entry *ne;
346                 ne = list_first_entry(&nm_i->nat_entries,
347                                         struct nat_entry, list);
348                 __del_from_nat_cache(nm_i, ne);
349                 nr_shrink--;
350         }
351         up_write(&nm_i->nat_tree_lock);
352         return nr - nr_shrink;
353 }
354 
355 /*
356  * This function always returns success
357  */
358 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
359 {
360         struct f2fs_nm_info *nm_i = NM_I(sbi);
361         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
362         struct f2fs_journal *journal = curseg->journal;
363         nid_t start_nid = START_NID(nid);
364         struct f2fs_nat_block *nat_blk;
365         struct page *page = NULL;
366         struct f2fs_nat_entry ne;
367         struct nat_entry *e;
368         int i;
369 
370         ni->nid = nid;
371 
372         /* Check nat cache */
373         down_read(&nm_i->nat_tree_lock);
374         e = __lookup_nat_cache(nm_i, nid);
375         if (e) {
376                 ni->ino = nat_get_ino(e);
377                 ni->blk_addr = nat_get_blkaddr(e);
378                 ni->version = nat_get_version(e);
379                 up_read(&nm_i->nat_tree_lock);
380                 return;
381         }
382 
383         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
384 
385         /* Check current segment summary */
386         down_read(&curseg->journal_rwsem);
387         i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
388         if (i >= 0) {
389                 ne = nat_in_journal(journal, i);
390                 node_info_from_raw_nat(ni, &ne);
391         }
392         up_read(&curseg->journal_rwsem);
393         if (i >= 0)
394                 goto cache;
395 
396         /* Fill node_info from nat page */
397         page = get_current_nat_page(sbi, start_nid);
398         nat_blk = (struct f2fs_nat_block *)page_address(page);
399         ne = nat_blk->entries[nid - start_nid];
400         node_info_from_raw_nat(ni, &ne);
401         f2fs_put_page(page, 1);
402 cache:
403         up_read(&nm_i->nat_tree_lock);
404         /* cache nat entry */
405         down_write(&nm_i->nat_tree_lock);
406         cache_nat_entry(sbi, nid, &ne);
407         up_write(&nm_i->nat_tree_lock);
408 }
409 
410 /*
411  * readahead MAX_RA_NODE number of node pages.
412  */
413 static void ra_node_pages(struct page *parent, int start, int n)
414 {
415         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
416         struct blk_plug plug;
417         int i, end;
418         nid_t nid;
419 
420         blk_start_plug(&plug);
421 
422         /* Then, try readahead for siblings of the desired node */
423         end = start + n;
424         end = min(end, NIDS_PER_BLOCK);
425         for (i = start; i < end; i++) {
426                 nid = get_nid(parent, i, false);
427                 ra_node_page(sbi, nid);
428         }
429 
430         blk_finish_plug(&plug);
431 }
432 
433 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
434 {
435         const long direct_index = ADDRS_PER_INODE(dn->inode);
436         const long direct_blks = ADDRS_PER_BLOCK;
437         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
438         unsigned int skipped_unit = ADDRS_PER_BLOCK;
439         int cur_level = dn->cur_level;
440         int max_level = dn->max_level;
441         pgoff_t base = 0;
442 
443         if (!dn->max_level)
444                 return pgofs + 1;
445 
446         while (max_level-- > cur_level)
447                 skipped_unit *= NIDS_PER_BLOCK;
448 
449         switch (dn->max_level) {
450         case 3:
451                 base += 2 * indirect_blks;
452         case 2:
453                 base += 2 * direct_blks;
454         case 1:
455                 base += direct_index;
456                 break;
457         default:
458                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
459         }
460 
461         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
462 }
463 
464 /*
465  * The maximum depth is four.
466  * Offset[0] will have raw inode offset.
467  */
468 static int get_node_path(struct inode *inode, long block,
469                                 int offset[4], unsigned int noffset[4])
470 {
471         const long direct_index = ADDRS_PER_INODE(inode);
472         const long direct_blks = ADDRS_PER_BLOCK;
473         const long dptrs_per_blk = NIDS_PER_BLOCK;
474         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
475         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
476         int n = 0;
477         int level = 0;
478 
479         noffset[0] = 0;
480 
481         if (block < direct_index) {
482                 offset[n] = block;
483                 goto got;
484         }
485         block -= direct_index;
486         if (block < direct_blks) {
487                 offset[n++] = NODE_DIR1_BLOCK;
488                 noffset[n] = 1;
489                 offset[n] = block;
490                 level = 1;
491                 goto got;
492         }
493         block -= direct_blks;
494         if (block < direct_blks) {
495                 offset[n++] = NODE_DIR2_BLOCK;
496                 noffset[n] = 2;
497                 offset[n] = block;
498                 level = 1;
499                 goto got;
500         }
501         block -= direct_blks;
502         if (block < indirect_blks) {
503                 offset[n++] = NODE_IND1_BLOCK;
504                 noffset[n] = 3;
505                 offset[n++] = block / direct_blks;
506                 noffset[n] = 4 + offset[n - 1];
507                 offset[n] = block % direct_blks;
508                 level = 2;
509                 goto got;
510         }
511         block -= indirect_blks;
512         if (block < indirect_blks) {
513                 offset[n++] = NODE_IND2_BLOCK;
514                 noffset[n] = 4 + dptrs_per_blk;
515                 offset[n++] = block / direct_blks;
516                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
517                 offset[n] = block % direct_blks;
518                 level = 2;
519                 goto got;
520         }
521         block -= indirect_blks;
522         if (block < dindirect_blks) {
523                 offset[n++] = NODE_DIND_BLOCK;
524                 noffset[n] = 5 + (dptrs_per_blk * 2);
525                 offset[n++] = block / indirect_blks;
526                 noffset[n] = 6 + (dptrs_per_blk * 2) +
527                               offset[n - 1] * (dptrs_per_blk + 1);
528                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
529                 noffset[n] = 7 + (dptrs_per_blk * 2) +
530                               offset[n - 2] * (dptrs_per_blk + 1) +
531                               offset[n - 1];
532                 offset[n] = block % direct_blks;
533                 level = 3;
534                 goto got;
535         } else {
536                 BUG();
537         }
538 got:
539         return level;
540 }
541 
542 /*
543  * Caller should call f2fs_put_dnode(dn).
544  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
545  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
546  * In the case of RDONLY_NODE, we don't need to care about mutex.
547  */
548 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
549 {
550         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
551         struct page *npage[4];
552         struct page *parent = NULL;
553         int offset[4];
554         unsigned int noffset[4];
555         nid_t nids[4];
556         int level, i = 0;
557         int err = 0;
558 
559         level = get_node_path(dn->inode, index, offset, noffset);
560 
561         nids[0] = dn->inode->i_ino;
562         npage[0] = dn->inode_page;
563 
564         if (!npage[0]) {
565                 npage[0] = get_node_page(sbi, nids[0]);
566                 if (IS_ERR(npage[0]))
567                         return PTR_ERR(npage[0]);
568         }
569 
570         /* if inline_data is set, should not report any block indices */
571         if (f2fs_has_inline_data(dn->inode) && index) {
572                 err = -ENOENT;
573                 f2fs_put_page(npage[0], 1);
574                 goto release_out;
575         }
576 
577         parent = npage[0];
578         if (level != 0)
579                 nids[1] = get_nid(parent, offset[0], true);
580         dn->inode_page = npage[0];
581         dn->inode_page_locked = true;
582 
583         /* get indirect or direct nodes */
584         for (i = 1; i <= level; i++) {
585                 bool done = false;
586 
587                 if (!nids[i] && mode == ALLOC_NODE) {
588                         /* alloc new node */
589                         if (!alloc_nid(sbi, &(nids[i]))) {
590                                 err = -ENOSPC;
591                                 goto release_pages;
592                         }
593 
594                         dn->nid = nids[i];
595                         npage[i] = new_node_page(dn, noffset[i], NULL);
596                         if (IS_ERR(npage[i])) {
597                                 alloc_nid_failed(sbi, nids[i]);
598                                 err = PTR_ERR(npage[i]);
599                                 goto release_pages;
600                         }
601 
602                         set_nid(parent, offset[i - 1], nids[i], i == 1);
603                         alloc_nid_done(sbi, nids[i]);
604                         done = true;
605                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
606                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
607                         if (IS_ERR(npage[i])) {
608                                 err = PTR_ERR(npage[i]);
609                                 goto release_pages;
610                         }
611                         done = true;
612                 }
613                 if (i == 1) {
614                         dn->inode_page_locked = false;
615                         unlock_page(parent);
616                 } else {
617                         f2fs_put_page(parent, 1);
618                 }
619 
620                 if (!done) {
621                         npage[i] = get_node_page(sbi, nids[i]);
622                         if (IS_ERR(npage[i])) {
623                                 err = PTR_ERR(npage[i]);
624                                 f2fs_put_page(npage[0], 0);
625                                 goto release_out;
626                         }
627                 }
628                 if (i < level) {
629                         parent = npage[i];
630                         nids[i + 1] = get_nid(parent, offset[i], false);
631                 }
632         }
633         dn->nid = nids[level];
634         dn->ofs_in_node = offset[level];
635         dn->node_page = npage[level];
636         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
637         return 0;
638 
639 release_pages:
640         f2fs_put_page(parent, 1);
641         if (i > 1)
642                 f2fs_put_page(npage[0], 0);
643 release_out:
644         dn->inode_page = NULL;
645         dn->node_page = NULL;
646         if (err == -ENOENT) {
647                 dn->cur_level = i;
648                 dn->max_level = level;
649         }
650         return err;
651 }
652 
653 static void truncate_node(struct dnode_of_data *dn)
654 {
655         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
656         struct node_info ni;
657 
658         get_node_info(sbi, dn->nid, &ni);
659         if (dn->inode->i_blocks == 0) {
660                 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
661                 goto invalidate;
662         }
663         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
664 
665         /* Deallocate node address */
666         invalidate_blocks(sbi, ni.blk_addr);
667         dec_valid_node_count(sbi, dn->inode);
668         set_node_addr(sbi, &ni, NULL_ADDR, false);
669 
670         if (dn->nid == dn->inode->i_ino) {
671                 remove_orphan_inode(sbi, dn->nid);
672                 dec_valid_inode_count(sbi);
673         } else {
674                 sync_inode_page(dn);
675         }
676 invalidate:
677         clear_node_page_dirty(dn->node_page);
678         set_sbi_flag(sbi, SBI_IS_DIRTY);
679 
680         f2fs_put_page(dn->node_page, 1);
681 
682         invalidate_mapping_pages(NODE_MAPPING(sbi),
683                         dn->node_page->index, dn->node_page->index);
684 
685         dn->node_page = NULL;
686         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
687 }
688 
689 static int truncate_dnode(struct dnode_of_data *dn)
690 {
691         struct page *page;
692 
693         if (dn->nid == 0)
694                 return 1;
695 
696         /* get direct node */
697         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
698         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
699                 return 1;
700         else if (IS_ERR(page))
701                 return PTR_ERR(page);
702 
703         /* Make dnode_of_data for parameter */
704         dn->node_page = page;
705         dn->ofs_in_node = 0;
706         truncate_data_blocks(dn);
707         truncate_node(dn);
708         return 1;
709 }
710 
711 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
712                                                 int ofs, int depth)
713 {
714         struct dnode_of_data rdn = *dn;
715         struct page *page;
716         struct f2fs_node *rn;
717         nid_t child_nid;
718         unsigned int child_nofs;
719         int freed = 0;
720         int i, ret;
721 
722         if (dn->nid == 0)
723                 return NIDS_PER_BLOCK + 1;
724 
725         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
726 
727         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
728         if (IS_ERR(page)) {
729                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
730                 return PTR_ERR(page);
731         }
732 
733         ra_node_pages(page, ofs, NIDS_PER_BLOCK);
734 
735         rn = F2FS_NODE(page);
736         if (depth < 3) {
737                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
738                         child_nid = le32_to_cpu(rn->in.nid[i]);
739                         if (child_nid == 0)
740                                 continue;
741                         rdn.nid = child_nid;
742                         ret = truncate_dnode(&rdn);
743                         if (ret < 0)
744                                 goto out_err;
745                         if (set_nid(page, i, 0, false))
746                                 dn->node_changed = true;
747                 }
748         } else {
749                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
750                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
751                         child_nid = le32_to_cpu(rn->in.nid[i]);
752                         if (child_nid == 0) {
753                                 child_nofs += NIDS_PER_BLOCK + 1;
754                                 continue;
755                         }
756                         rdn.nid = child_nid;
757                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
758                         if (ret == (NIDS_PER_BLOCK + 1)) {
759                                 if (set_nid(page, i, 0, false))
760                                         dn->node_changed = true;
761                                 child_nofs += ret;
762                         } else if (ret < 0 && ret != -ENOENT) {
763                                 goto out_err;
764                         }
765                 }
766                 freed = child_nofs;
767         }
768 
769         if (!ofs) {
770                 /* remove current indirect node */
771                 dn->node_page = page;
772                 truncate_node(dn);
773                 freed++;
774         } else {
775                 f2fs_put_page(page, 1);
776         }
777         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
778         return freed;
779 
780 out_err:
781         f2fs_put_page(page, 1);
782         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
783         return ret;
784 }
785 
786 static int truncate_partial_nodes(struct dnode_of_data *dn,
787                         struct f2fs_inode *ri, int *offset, int depth)
788 {
789         struct page *pages[2];
790         nid_t nid[3];
791         nid_t child_nid;
792         int err = 0;
793         int i;
794         int idx = depth - 2;
795 
796         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
797         if (!nid[0])
798                 return 0;
799 
800         /* get indirect nodes in the path */
801         for (i = 0; i < idx + 1; i++) {
802                 /* reference count'll be increased */
803                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
804                 if (IS_ERR(pages[i])) {
805                         err = PTR_ERR(pages[i]);
806                         idx = i - 1;
807                         goto fail;
808                 }
809                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
810         }
811 
812         ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
813 
814         /* free direct nodes linked to a partial indirect node */
815         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
816                 child_nid = get_nid(pages[idx], i, false);
817                 if (!child_nid)
818                         continue;
819                 dn->nid = child_nid;
820                 err = truncate_dnode(dn);
821                 if (err < 0)
822                         goto fail;
823                 if (set_nid(pages[idx], i, 0, false))
824                         dn->node_changed = true;
825         }
826 
827         if (offset[idx + 1] == 0) {
828                 dn->node_page = pages[idx];
829                 dn->nid = nid[idx];
830                 truncate_node(dn);
831         } else {
832                 f2fs_put_page(pages[idx], 1);
833         }
834         offset[idx]++;
835         offset[idx + 1] = 0;
836         idx--;
837 fail:
838         for (i = idx; i >= 0; i--)
839                 f2fs_put_page(pages[i], 1);
840 
841         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
842 
843         return err;
844 }
845 
846 /*
847  * All the block addresses of data and nodes should be nullified.
848  */
849 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
850 {
851         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
852         int err = 0, cont = 1;
853         int level, offset[4], noffset[4];
854         unsigned int nofs = 0;
855         struct f2fs_inode *ri;
856         struct dnode_of_data dn;
857         struct page *page;
858 
859         trace_f2fs_truncate_inode_blocks_enter(inode, from);
860 
861         level = get_node_path(inode, from, offset, noffset);
862 
863         page = get_node_page(sbi, inode->i_ino);
864         if (IS_ERR(page)) {
865                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
866                 return PTR_ERR(page);
867         }
868 
869         set_new_dnode(&dn, inode, page, NULL, 0);
870         unlock_page(page);
871 
872         ri = F2FS_INODE(page);
873         switch (level) {
874         case 0:
875         case 1:
876                 nofs = noffset[1];
877                 break;
878         case 2:
879                 nofs = noffset[1];
880                 if (!offset[level - 1])
881                         goto skip_partial;
882                 err = truncate_partial_nodes(&dn, ri, offset, level);
883                 if (err < 0 && err != -ENOENT)
884                         goto fail;
885                 nofs += 1 + NIDS_PER_BLOCK;
886                 break;
887         case 3:
888                 nofs = 5 + 2 * NIDS_PER_BLOCK;
889                 if (!offset[level - 1])
890                         goto skip_partial;
891                 err = truncate_partial_nodes(&dn, ri, offset, level);
892                 if (err < 0 && err != -ENOENT)
893                         goto fail;
894                 break;
895         default:
896                 BUG();
897         }
898 
899 skip_partial:
900         while (cont) {
901                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
902                 switch (offset[0]) {
903                 case NODE_DIR1_BLOCK:
904                 case NODE_DIR2_BLOCK:
905                         err = truncate_dnode(&dn);
906                         break;
907 
908                 case NODE_IND1_BLOCK:
909                 case NODE_IND2_BLOCK:
910                         err = truncate_nodes(&dn, nofs, offset[1], 2);
911                         break;
912 
913                 case NODE_DIND_BLOCK:
914                         err = truncate_nodes(&dn, nofs, offset[1], 3);
915                         cont = 0;
916                         break;
917 
918                 default:
919                         BUG();
920                 }
921                 if (err < 0 && err != -ENOENT)
922                         goto fail;
923                 if (offset[1] == 0 &&
924                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
925                         lock_page(page);
926                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
927                         f2fs_wait_on_page_writeback(page, NODE, true);
928                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
929                         set_page_dirty(page);
930                         unlock_page(page);
931                 }
932                 offset[1] = 0;
933                 offset[0]++;
934                 nofs += err;
935         }
936 fail:
937         f2fs_put_page(page, 0);
938         trace_f2fs_truncate_inode_blocks_exit(inode, err);
939         return err > 0 ? 0 : err;
940 }
941 
942 int truncate_xattr_node(struct inode *inode, struct page *page)
943 {
944         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
945         nid_t nid = F2FS_I(inode)->i_xattr_nid;
946         struct dnode_of_data dn;
947         struct page *npage;
948 
949         if (!nid)
950                 return 0;
951 
952         npage = get_node_page(sbi, nid);
953         if (IS_ERR(npage))
954                 return PTR_ERR(npage);
955 
956         F2FS_I(inode)->i_xattr_nid = 0;
957 
958         /* need to do checkpoint during fsync */
959         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
960 
961         set_new_dnode(&dn, inode, page, npage, nid);
962 
963         if (page)
964                 dn.inode_page_locked = true;
965         truncate_node(&dn);
966         return 0;
967 }
968 
969 /*
970  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
971  * f2fs_unlock_op().
972  */
973 int remove_inode_page(struct inode *inode)
974 {
975         struct dnode_of_data dn;
976         int err;
977 
978         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
979         err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
980         if (err)
981                 return err;
982 
983         err = truncate_xattr_node(inode, dn.inode_page);
984         if (err) {
985                 f2fs_put_dnode(&dn);
986                 return err;
987         }
988 
989         /* remove potential inline_data blocks */
990         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
991                                 S_ISLNK(inode->i_mode))
992                 truncate_data_blocks_range(&dn, 1);
993 
994         /* 0 is possible, after f2fs_new_inode() has failed */
995         f2fs_bug_on(F2FS_I_SB(inode),
996                         inode->i_blocks != 0 && inode->i_blocks != 1);
997 
998         /* will put inode & node pages */
999         truncate_node(&dn);
1000         return 0;
1001 }
1002 
1003 struct page *new_inode_page(struct inode *inode)
1004 {
1005         struct dnode_of_data dn;
1006 
1007         /* allocate inode page for new inode */
1008         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1009 
1010         /* caller should f2fs_put_page(page, 1); */
1011         return new_node_page(&dn, 0, NULL);
1012 }
1013 
1014 struct page *new_node_page(struct dnode_of_data *dn,
1015                                 unsigned int ofs, struct page *ipage)
1016 {
1017         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1018         struct node_info old_ni, new_ni;
1019         struct page *page;
1020         int err;
1021 
1022         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1023                 return ERR_PTR(-EPERM);
1024 
1025         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1026         if (!page)
1027                 return ERR_PTR(-ENOMEM);
1028 
1029         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1030                 err = -ENOSPC;
1031                 goto fail;
1032         }
1033 
1034         get_node_info(sbi, dn->nid, &old_ni);
1035 
1036         /* Reinitialize old_ni with new node page */
1037         f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1038         new_ni = old_ni;
1039         new_ni.ino = dn->inode->i_ino;
1040         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1041 
1042         f2fs_wait_on_page_writeback(page, NODE, true);
1043         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1044         set_cold_node(dn->inode, page);
1045         SetPageUptodate(page);
1046         if (set_page_dirty(page))
1047                 dn->node_changed = true;
1048 
1049         if (f2fs_has_xattr_block(ofs))
1050                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1051 
1052         dn->node_page = page;
1053         if (ipage)
1054                 update_inode(dn->inode, ipage);
1055         else
1056                 sync_inode_page(dn);
1057         if (ofs == 0)
1058                 inc_valid_inode_count(sbi);
1059 
1060         return page;
1061 
1062 fail:
1063         clear_node_page_dirty(page);
1064         f2fs_put_page(page, 1);
1065         return ERR_PTR(err);
1066 }
1067 
1068 /*
1069  * Caller should do after getting the following values.
1070  * 0: f2fs_put_page(page, 0)
1071  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1072  */
1073 static int read_node_page(struct page *page, int rw)
1074 {
1075         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1076         struct node_info ni;
1077         struct f2fs_io_info fio = {
1078                 .sbi = sbi,
1079                 .type = NODE,
1080                 .rw = rw,
1081                 .page = page,
1082                 .encrypted_page = NULL,
1083         };
1084 
1085         get_node_info(sbi, page->index, &ni);
1086 
1087         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1088                 ClearPageUptodate(page);
1089                 return -ENOENT;
1090         }
1091 
1092         if (PageUptodate(page))
1093                 return LOCKED_PAGE;
1094 
1095         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1096         return f2fs_submit_page_bio(&fio);
1097 }
1098 
1099 /*
1100  * Readahead a node page
1101  */
1102 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1103 {
1104         struct page *apage;
1105         int err;
1106 
1107         if (!nid)
1108                 return;
1109         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1110 
1111         rcu_read_lock();
1112         apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1113         rcu_read_unlock();
1114         if (apage)
1115                 return;
1116 
1117         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1118         if (!apage)
1119                 return;
1120 
1121         err = read_node_page(apage, READA);
1122         f2fs_put_page(apage, err ? 1 : 0);
1123 }
1124 
1125 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1126                                         struct page *parent, int start)
1127 {
1128         struct page *page;
1129         int err;
1130 
1131         if (!nid)
1132                 return ERR_PTR(-ENOENT);
1133         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1134 repeat:
1135         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1136         if (!page)
1137                 return ERR_PTR(-ENOMEM);
1138 
1139         err = read_node_page(page, READ_SYNC);
1140         if (err < 0) {
1141                 f2fs_put_page(page, 1);
1142                 return ERR_PTR(err);
1143         } else if (err == LOCKED_PAGE) {
1144                 goto page_hit;
1145         }
1146 
1147         if (parent)
1148                 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1149 
1150         lock_page(page);
1151 
1152         if (unlikely(!PageUptodate(page))) {
1153                 f2fs_put_page(page, 1);
1154                 return ERR_PTR(-EIO);
1155         }
1156         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1157                 f2fs_put_page(page, 1);
1158                 goto repeat;
1159         }
1160 page_hit:
1161         f2fs_bug_on(sbi, nid != nid_of_node(page));
1162         return page;
1163 }
1164 
1165 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1166 {
1167         return __get_node_page(sbi, nid, NULL, 0);
1168 }
1169 
1170 struct page *get_node_page_ra(struct page *parent, int start)
1171 {
1172         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1173         nid_t nid = get_nid(parent, start, false);
1174 
1175         return __get_node_page(sbi, nid, parent, start);
1176 }
1177 
1178 void sync_inode_page(struct dnode_of_data *dn)
1179 {
1180         int ret = 0;
1181 
1182         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1183                 ret = update_inode(dn->inode, dn->node_page);
1184         } else if (dn->inode_page) {
1185                 if (!dn->inode_page_locked)
1186                         lock_page(dn->inode_page);
1187                 ret = update_inode(dn->inode, dn->inode_page);
1188                 if (!dn->inode_page_locked)
1189                         unlock_page(dn->inode_page);
1190         } else {
1191                 ret = update_inode_page(dn->inode);
1192         }
1193         dn->node_changed = ret ? true: false;
1194 }
1195 
1196 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1197 {
1198         struct inode *inode;
1199         struct page *page;
1200         int ret;
1201 
1202         /* should flush inline_data before evict_inode */
1203         inode = ilookup(sbi->sb, ino);
1204         if (!inode)
1205                 return;
1206 
1207         page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1208         if (!page)
1209                 goto iput_out;
1210 
1211         if (!PageUptodate(page))
1212                 goto page_out;
1213 
1214         if (!PageDirty(page))
1215                 goto page_out;
1216 
1217         if (!clear_page_dirty_for_io(page))
1218                 goto page_out;
1219 
1220         ret = f2fs_write_inline_data(inode, page);
1221         inode_dec_dirty_pages(inode);
1222         if (ret)
1223                 set_page_dirty(page);
1224 page_out:
1225         f2fs_put_page(page, 1);
1226 iput_out:
1227         iput(inode);
1228 }
1229 
1230 void move_node_page(struct page *node_page, int gc_type)
1231 {
1232         if (gc_type == FG_GC) {
1233                 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1234                 struct writeback_control wbc = {
1235                         .sync_mode = WB_SYNC_ALL,
1236                         .nr_to_write = 1,
1237                         .for_reclaim = 0,
1238                 };
1239 
1240                 set_page_dirty(node_page);
1241                 f2fs_wait_on_page_writeback(node_page, NODE, true);
1242 
1243                 f2fs_bug_on(sbi, PageWriteback(node_page));
1244                 if (!clear_page_dirty_for_io(node_page))
1245                         goto out_page;
1246 
1247                 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1248                         unlock_page(node_page);
1249                 goto release_page;
1250         } else {
1251                 /* set page dirty and write it */
1252                 if (!PageWriteback(node_page))
1253                         set_page_dirty(node_page);
1254         }
1255 out_page:
1256         unlock_page(node_page);
1257 release_page:
1258         f2fs_put_page(node_page, 0);
1259 }
1260 
1261 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1262 {
1263         pgoff_t index, end;
1264         struct pagevec pvec;
1265         struct page *last_page = NULL;
1266 
1267         pagevec_init(&pvec, 0);
1268         index = 0;
1269         end = ULONG_MAX;
1270 
1271         while (index <= end) {
1272                 int i, nr_pages;
1273                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1274                                 PAGECACHE_TAG_DIRTY,
1275                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1276                 if (nr_pages == 0)
1277                         break;
1278 
1279                 for (i = 0; i < nr_pages; i++) {
1280                         struct page *page = pvec.pages[i];
1281 
1282                         if (unlikely(f2fs_cp_error(sbi))) {
1283                                 f2fs_put_page(last_page, 0);
1284                                 pagevec_release(&pvec);
1285                                 return ERR_PTR(-EIO);
1286                         }
1287 
1288                         if (!IS_DNODE(page) || !is_cold_node(page))
1289                                 continue;
1290                         if (ino_of_node(page) != ino)
1291                                 continue;
1292 
1293                         lock_page(page);
1294 
1295                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1296 continue_unlock:
1297                                 unlock_page(page);
1298                                 continue;
1299                         }
1300                         if (ino_of_node(page) != ino)
1301                                 goto continue_unlock;
1302 
1303                         if (!PageDirty(page)) {
1304                                 /* someone wrote it for us */
1305                                 goto continue_unlock;
1306                         }
1307 
1308                         if (last_page)
1309                                 f2fs_put_page(last_page, 0);
1310 
1311                         get_page(page);
1312                         last_page = page;
1313                         unlock_page(page);
1314                 }
1315                 pagevec_release(&pvec);
1316                 cond_resched();
1317         }
1318         return last_page;
1319 }
1320 
1321 int fsync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1322                         struct writeback_control *wbc, bool atomic)
1323 {
1324         pgoff_t index, end;
1325         struct pagevec pvec;
1326         int ret = 0;
1327         struct page *last_page = NULL;
1328         bool marked = false;
1329 
1330         if (atomic) {
1331                 last_page = last_fsync_dnode(sbi, ino);
1332                 if (IS_ERR_OR_NULL(last_page))
1333                         return PTR_ERR_OR_ZERO(last_page);
1334         }
1335 retry:
1336         pagevec_init(&pvec, 0);
1337         index = 0;
1338         end = ULONG_MAX;
1339 
1340         while (index <= end) {
1341                 int i, nr_pages;
1342                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1343                                 PAGECACHE_TAG_DIRTY,
1344                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1345                 if (nr_pages == 0)
1346                         break;
1347 
1348                 for (i = 0; i < nr_pages; i++) {
1349                         struct page *page = pvec.pages[i];
1350 
1351                         if (unlikely(f2fs_cp_error(sbi))) {
1352                                 f2fs_put_page(last_page, 0);
1353                                 pagevec_release(&pvec);
1354                                 return -EIO;
1355                         }
1356 
1357                         if (!IS_DNODE(page) || !is_cold_node(page))
1358                                 continue;
1359                         if (ino_of_node(page) != ino)
1360                                 continue;
1361 
1362                         lock_page(page);
1363 
1364                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365 continue_unlock:
1366                                 unlock_page(page);
1367                                 continue;
1368                         }
1369                         if (ino_of_node(page) != ino)
1370                                 goto continue_unlock;
1371 
1372                         if (!PageDirty(page) && page != last_page) {
1373                                 /* someone wrote it for us */
1374                                 goto continue_unlock;
1375                         }
1376 
1377                         f2fs_wait_on_page_writeback(page, NODE, true);
1378                         BUG_ON(PageWriteback(page));
1379 
1380                         if (!atomic || page == last_page) {
1381                                 set_fsync_mark(page, 1);
1382                                 if (IS_INODE(page))
1383                                         set_dentry_mark(page,
1384                                                 need_dentry_mark(sbi, ino));
1385                                 /*  may be written by other thread */
1386                                 if (!PageDirty(page))
1387                                         set_page_dirty(page);
1388                         }
1389 
1390                         if (!clear_page_dirty_for_io(page))
1391                                 goto continue_unlock;
1392 
1393                         ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1394                         if (ret) {
1395                                 unlock_page(page);
1396                                 f2fs_put_page(last_page, 0);
1397                                 break;
1398                         }
1399                         if (page == last_page) {
1400                                 f2fs_put_page(page, 0);
1401                                 marked = true;
1402                                 break;
1403                         }
1404                 }
1405                 pagevec_release(&pvec);
1406                 cond_resched();
1407 
1408                 if (ret || marked)
1409                         break;
1410         }
1411         if (!ret && atomic && !marked) {
1412                 f2fs_msg(sbi->sb, KERN_DEBUG,
1413                         "Retry to write fsync mark: ino=%u, idx=%lx",
1414                                         ino, last_page->index);
1415                 lock_page(last_page);
1416                 set_page_dirty(last_page);
1417                 unlock_page(last_page);
1418                 goto retry;
1419         }
1420         return ret ? -EIO: 0;
1421 }
1422 
1423 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1424 {
1425         pgoff_t index, end;
1426         struct pagevec pvec;
1427         int step = 0;
1428         int nwritten = 0;
1429 
1430         pagevec_init(&pvec, 0);
1431 
1432 next_step:
1433         index = 0;
1434         end = ULONG_MAX;
1435 
1436         while (index <= end) {
1437                 int i, nr_pages;
1438                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1439                                 PAGECACHE_TAG_DIRTY,
1440                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1441                 if (nr_pages == 0)
1442                         break;
1443 
1444                 for (i = 0; i < nr_pages; i++) {
1445                         struct page *page = pvec.pages[i];
1446 
1447                         if (unlikely(f2fs_cp_error(sbi))) {
1448                                 pagevec_release(&pvec);
1449                                 return -EIO;
1450                         }
1451 
1452                         /*
1453                          * flushing sequence with step:
1454                          * 0. indirect nodes
1455                          * 1. dentry dnodes
1456                          * 2. file dnodes
1457                          */
1458                         if (step == 0 && IS_DNODE(page))
1459                                 continue;
1460                         if (step == 1 && (!IS_DNODE(page) ||
1461                                                 is_cold_node(page)))
1462                                 continue;
1463                         if (step == 2 && (!IS_DNODE(page) ||
1464                                                 !is_cold_node(page)))
1465                                 continue;
1466 lock_node:
1467                         if (!trylock_page(page))
1468                                 continue;
1469 
1470                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1471 continue_unlock:
1472                                 unlock_page(page);
1473                                 continue;
1474                         }
1475 
1476                         if (!PageDirty(page)) {
1477                                 /* someone wrote it for us */
1478                                 goto continue_unlock;
1479                         }
1480 
1481                         /* flush inline_data */
1482                         if (is_inline_node(page)) {
1483                                 clear_inline_node(page);
1484                                 unlock_page(page);
1485                                 flush_inline_data(sbi, ino_of_node(page));
1486                                 goto lock_node;
1487                         }
1488 
1489                         f2fs_wait_on_page_writeback(page, NODE, true);
1490 
1491                         BUG_ON(PageWriteback(page));
1492                         if (!clear_page_dirty_for_io(page))
1493                                 goto continue_unlock;
1494 
1495                         set_fsync_mark(page, 0);
1496                         set_dentry_mark(page, 0);
1497 
1498                         if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1499                                 unlock_page(page);
1500 
1501                         if (--wbc->nr_to_write == 0)
1502                                 break;
1503                 }
1504                 pagevec_release(&pvec);
1505                 cond_resched();
1506 
1507                 if (wbc->nr_to_write == 0) {
1508                         step = 2;
1509                         break;
1510                 }
1511         }
1512 
1513         if (step < 2) {
1514                 step++;
1515                 goto next_step;
1516         }
1517         return nwritten;
1518 }
1519 
1520 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1521 {
1522         pgoff_t index = 0, end = ULONG_MAX;
1523         struct pagevec pvec;
1524         int ret2 = 0, ret = 0;
1525 
1526         pagevec_init(&pvec, 0);
1527 
1528         while (index <= end) {
1529                 int i, nr_pages;
1530                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1531                                 PAGECACHE_TAG_WRITEBACK,
1532                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1533                 if (nr_pages == 0)
1534                         break;
1535 
1536                 for (i = 0; i < nr_pages; i++) {
1537                         struct page *page = pvec.pages[i];
1538 
1539                         /* until radix tree lookup accepts end_index */
1540                         if (unlikely(page->index > end))
1541                                 continue;
1542 
1543                         if (ino && ino_of_node(page) == ino) {
1544                                 f2fs_wait_on_page_writeback(page, NODE, true);
1545                                 if (TestClearPageError(page))
1546                                         ret = -EIO;
1547                         }
1548                 }
1549                 pagevec_release(&pvec);
1550                 cond_resched();
1551         }
1552 
1553         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1554                 ret2 = -ENOSPC;
1555         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1556                 ret2 = -EIO;
1557         if (!ret)
1558                 ret = ret2;
1559         return ret;
1560 }
1561 
1562 static int f2fs_write_node_page(struct page *page,
1563                                 struct writeback_control *wbc)
1564 {
1565         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1566         nid_t nid;
1567         struct node_info ni;
1568         struct f2fs_io_info fio = {
1569                 .sbi = sbi,
1570                 .type = NODE,
1571                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1572                 .page = page,
1573                 .encrypted_page = NULL,
1574         };
1575 
1576         trace_f2fs_writepage(page, NODE);
1577 
1578         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1579                 goto redirty_out;
1580         if (unlikely(f2fs_cp_error(sbi)))
1581                 goto redirty_out;
1582 
1583         /* get old block addr of this node page */
1584         nid = nid_of_node(page);
1585         f2fs_bug_on(sbi, page->index != nid);
1586 
1587         if (wbc->for_reclaim) {
1588                 if (!down_read_trylock(&sbi->node_write))
1589                         goto redirty_out;
1590         } else {
1591                 down_read(&sbi->node_write);
1592         }
1593 
1594         get_node_info(sbi, nid, &ni);
1595 
1596         /* This page is already truncated */
1597         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1598                 ClearPageUptodate(page);
1599                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1600                 up_read(&sbi->node_write);
1601                 unlock_page(page);
1602                 return 0;
1603         }
1604 
1605         set_page_writeback(page);
1606         fio.old_blkaddr = ni.blk_addr;
1607         write_node_page(nid, &fio);
1608         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1609         dec_page_count(sbi, F2FS_DIRTY_NODES);
1610         up_read(&sbi->node_write);
1611 
1612         if (wbc->for_reclaim)
1613                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1614 
1615         unlock_page(page);
1616 
1617         if (unlikely(f2fs_cp_error(sbi)))
1618                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1619 
1620         return 0;
1621 
1622 redirty_out:
1623         redirty_page_for_writepage(wbc, page);
1624         return AOP_WRITEPAGE_ACTIVATE;
1625 }
1626 
1627 static int f2fs_write_node_pages(struct address_space *mapping,
1628                             struct writeback_control *wbc)
1629 {
1630         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1631         long diff;
1632 
1633         /* balancing f2fs's metadata in background */
1634         f2fs_balance_fs_bg(sbi);
1635 
1636         /* collect a number of dirty node pages and write together */
1637         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1638                 goto skip_write;
1639 
1640         trace_f2fs_writepages(mapping->host, wbc, NODE);
1641 
1642         diff = nr_pages_to_write(sbi, NODE, wbc);
1643         wbc->sync_mode = WB_SYNC_NONE;
1644         sync_node_pages(sbi, wbc);
1645         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1646         return 0;
1647 
1648 skip_write:
1649         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1650         trace_f2fs_writepages(mapping->host, wbc, NODE);
1651         return 0;
1652 }
1653 
1654 static int f2fs_set_node_page_dirty(struct page *page)
1655 {
1656         trace_f2fs_set_page_dirty(page, NODE);
1657 
1658         SetPageUptodate(page);
1659         if (!PageDirty(page)) {
1660                 __set_page_dirty_nobuffers(page);
1661                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1662                 SetPagePrivate(page);
1663                 f2fs_trace_pid(page);
1664                 return 1;
1665         }
1666         return 0;
1667 }
1668 
1669 /*
1670  * Structure of the f2fs node operations
1671  */
1672 const struct address_space_operations f2fs_node_aops = {
1673         .writepage      = f2fs_write_node_page,
1674         .writepages     = f2fs_write_node_pages,
1675         .set_page_dirty = f2fs_set_node_page_dirty,
1676         .invalidatepage = f2fs_invalidate_page,
1677         .releasepage    = f2fs_release_page,
1678 };
1679 
1680 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1681                                                 nid_t n)
1682 {
1683         return radix_tree_lookup(&nm_i->free_nid_root, n);
1684 }
1685 
1686 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1687                                                 struct free_nid *i)
1688 {
1689         list_del(&i->list);
1690         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1691 }
1692 
1693 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1694 {
1695         struct f2fs_nm_info *nm_i = NM_I(sbi);
1696         struct free_nid *i;
1697         struct nat_entry *ne;
1698 
1699         if (!available_free_memory(sbi, FREE_NIDS))
1700                 return -1;
1701 
1702         /* 0 nid should not be used */
1703         if (unlikely(nid == 0))
1704                 return 0;
1705 
1706         if (build) {
1707                 /* do not add allocated nids */
1708                 ne = __lookup_nat_cache(nm_i, nid);
1709                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1710                                 nat_get_blkaddr(ne) != NULL_ADDR))
1711                         return 0;
1712         }
1713 
1714         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1715         i->nid = nid;
1716         i->state = NID_NEW;
1717 
1718         if (radix_tree_preload(GFP_NOFS)) {
1719                 kmem_cache_free(free_nid_slab, i);
1720                 return 0;
1721         }
1722 
1723         spin_lock(&nm_i->free_nid_list_lock);
1724         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1725                 spin_unlock(&nm_i->free_nid_list_lock);
1726                 radix_tree_preload_end();
1727                 kmem_cache_free(free_nid_slab, i);
1728                 return 0;
1729         }
1730         list_add_tail(&i->list, &nm_i->free_nid_list);
1731         nm_i->fcnt++;
1732         spin_unlock(&nm_i->free_nid_list_lock);
1733         radix_tree_preload_end();
1734         return 1;
1735 }
1736 
1737 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1738 {
1739         struct free_nid *i;
1740         bool need_free = false;
1741 
1742         spin_lock(&nm_i->free_nid_list_lock);
1743         i = __lookup_free_nid_list(nm_i, nid);
1744         if (i && i->state == NID_NEW) {
1745                 __del_from_free_nid_list(nm_i, i);
1746                 nm_i->fcnt--;
1747                 need_free = true;
1748         }
1749         spin_unlock(&nm_i->free_nid_list_lock);
1750 
1751         if (need_free)
1752                 kmem_cache_free(free_nid_slab, i);
1753 }
1754 
1755 static void scan_nat_page(struct f2fs_sb_info *sbi,
1756                         struct page *nat_page, nid_t start_nid)
1757 {
1758         struct f2fs_nm_info *nm_i = NM_I(sbi);
1759         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1760         block_t blk_addr;
1761         int i;
1762 
1763         i = start_nid % NAT_ENTRY_PER_BLOCK;
1764 
1765         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1766 
1767                 if (unlikely(start_nid >= nm_i->max_nid))
1768                         break;
1769 
1770                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1771                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1772                 if (blk_addr == NULL_ADDR) {
1773                         if (add_free_nid(sbi, start_nid, true) < 0)
1774                                 break;
1775                 }
1776         }
1777 }
1778 
1779 static void build_free_nids(struct f2fs_sb_info *sbi)
1780 {
1781         struct f2fs_nm_info *nm_i = NM_I(sbi);
1782         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1783         struct f2fs_journal *journal = curseg->journal;
1784         int i = 0;
1785         nid_t nid = nm_i->next_scan_nid;
1786 
1787         /* Enough entries */
1788         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1789                 return;
1790 
1791         /* readahead nat pages to be scanned */
1792         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1793                                                         META_NAT, true);
1794 
1795         down_read(&nm_i->nat_tree_lock);
1796 
1797         while (1) {
1798                 struct page *page = get_current_nat_page(sbi, nid);
1799 
1800                 scan_nat_page(sbi, page, nid);
1801                 f2fs_put_page(page, 1);
1802 
1803                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1804                 if (unlikely(nid >= nm_i->max_nid))
1805                         nid = 0;
1806 
1807                 if (++i >= FREE_NID_PAGES)
1808                         break;
1809         }
1810 
1811         /* go to the next free nat pages to find free nids abundantly */
1812         nm_i->next_scan_nid = nid;
1813 
1814         /* find free nids from current sum_pages */
1815         down_read(&curseg->journal_rwsem);
1816         for (i = 0; i < nats_in_cursum(journal); i++) {
1817                 block_t addr;
1818 
1819                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1820                 nid = le32_to_cpu(nid_in_journal(journal, i));
1821                 if (addr == NULL_ADDR)
1822                         add_free_nid(sbi, nid, true);
1823                 else
1824                         remove_free_nid(nm_i, nid);
1825         }
1826         up_read(&curseg->journal_rwsem);
1827         up_read(&nm_i->nat_tree_lock);
1828 
1829         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1830                                         nm_i->ra_nid_pages, META_NAT, false);
1831 }
1832 
1833 /*
1834  * If this function returns success, caller can obtain a new nid
1835  * from second parameter of this function.
1836  * The returned nid could be used ino as well as nid when inode is created.
1837  */
1838 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1839 {
1840         struct f2fs_nm_info *nm_i = NM_I(sbi);
1841         struct free_nid *i = NULL;
1842 retry:
1843 #ifdef CONFIG_F2FS_FAULT_INJECTION
1844         if (time_to_inject(FAULT_ALLOC_NID))
1845                 return false;
1846 #endif
1847         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1848                 return false;
1849 
1850         spin_lock(&nm_i->free_nid_list_lock);
1851 
1852         /* We should not use stale free nids created by build_free_nids */
1853         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1854                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1855                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1856                         if (i->state == NID_NEW)
1857                                 break;
1858 
1859                 f2fs_bug_on(sbi, i->state != NID_NEW);
1860                 *nid = i->nid;
1861                 i->state = NID_ALLOC;
1862                 nm_i->fcnt--;
1863                 spin_unlock(&nm_i->free_nid_list_lock);
1864                 return true;
1865         }
1866         spin_unlock(&nm_i->free_nid_list_lock);
1867 
1868         /* Let's scan nat pages and its caches to get free nids */
1869         mutex_lock(&nm_i->build_lock);
1870         build_free_nids(sbi);
1871         mutex_unlock(&nm_i->build_lock);
1872         goto retry;
1873 }
1874 
1875 /*
1876  * alloc_nid() should be called prior to this function.
1877  */
1878 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1879 {
1880         struct f2fs_nm_info *nm_i = NM_I(sbi);
1881         struct free_nid *i;
1882 
1883         spin_lock(&nm_i->free_nid_list_lock);
1884         i = __lookup_free_nid_list(nm_i, nid);
1885         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1886         __del_from_free_nid_list(nm_i, i);
1887         spin_unlock(&nm_i->free_nid_list_lock);
1888 
1889         kmem_cache_free(free_nid_slab, i);
1890 }
1891 
1892 /*
1893  * alloc_nid() should be called prior to this function.
1894  */
1895 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1896 {
1897         struct f2fs_nm_info *nm_i = NM_I(sbi);
1898         struct free_nid *i;
1899         bool need_free = false;
1900 
1901         if (!nid)
1902                 return;
1903 
1904         spin_lock(&nm_i->free_nid_list_lock);
1905         i = __lookup_free_nid_list(nm_i, nid);
1906         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1907         if (!available_free_memory(sbi, FREE_NIDS)) {
1908                 __del_from_free_nid_list(nm_i, i);
1909                 need_free = true;
1910         } else {
1911                 i->state = NID_NEW;
1912                 nm_i->fcnt++;
1913         }
1914         spin_unlock(&nm_i->free_nid_list_lock);
1915 
1916         if (need_free)
1917                 kmem_cache_free(free_nid_slab, i);
1918 }
1919 
1920 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1921 {
1922         struct f2fs_nm_info *nm_i = NM_I(sbi);
1923         struct free_nid *i, *next;
1924         int nr = nr_shrink;
1925 
1926         if (!mutex_trylock(&nm_i->build_lock))
1927                 return 0;
1928 
1929         spin_lock(&nm_i->free_nid_list_lock);
1930         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1931                 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1932                         break;
1933                 if (i->state == NID_ALLOC)
1934                         continue;
1935                 __del_from_free_nid_list(nm_i, i);
1936                 kmem_cache_free(free_nid_slab, i);
1937                 nm_i->fcnt--;
1938                 nr_shrink--;
1939         }
1940         spin_unlock(&nm_i->free_nid_list_lock);
1941         mutex_unlock(&nm_i->build_lock);
1942 
1943         return nr - nr_shrink;
1944 }
1945 
1946 void recover_inline_xattr(struct inode *inode, struct page *page)
1947 {
1948         void *src_addr, *dst_addr;
1949         size_t inline_size;
1950         struct page *ipage;
1951         struct f2fs_inode *ri;
1952 
1953         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1954         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1955 
1956         ri = F2FS_INODE(page);
1957         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1958                 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1959                 goto update_inode;
1960         }
1961 
1962         dst_addr = inline_xattr_addr(ipage);
1963         src_addr = inline_xattr_addr(page);
1964         inline_size = inline_xattr_size(inode);
1965 
1966         f2fs_wait_on_page_writeback(ipage, NODE, true);
1967         memcpy(dst_addr, src_addr, inline_size);
1968 update_inode:
1969         update_inode(inode, ipage);
1970         f2fs_put_page(ipage, 1);
1971 }
1972 
1973 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1974 {
1975         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1976         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1977         nid_t new_xnid = nid_of_node(page);
1978         struct node_info ni;
1979 
1980         /* 1: invalidate the previous xattr nid */
1981         if (!prev_xnid)
1982                 goto recover_xnid;
1983 
1984         /* Deallocate node address */
1985         get_node_info(sbi, prev_xnid, &ni);
1986         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1987         invalidate_blocks(sbi, ni.blk_addr);
1988         dec_valid_node_count(sbi, inode);
1989         set_node_addr(sbi, &ni, NULL_ADDR, false);
1990 
1991 recover_xnid:
1992         /* 2: allocate new xattr nid */
1993         if (unlikely(!inc_valid_node_count(sbi, inode)))
1994                 f2fs_bug_on(sbi, 1);
1995 
1996         remove_free_nid(NM_I(sbi), new_xnid);
1997         get_node_info(sbi, new_xnid, &ni);
1998         ni.ino = inode->i_ino;
1999         set_node_addr(sbi, &ni, NEW_ADDR, false);
2000         F2FS_I(inode)->i_xattr_nid = new_xnid;
2001 
2002         /* 3: update xattr blkaddr */
2003         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2004         set_node_addr(sbi, &ni, blkaddr, false);
2005 
2006         update_inode_page(inode);
2007 }
2008 
2009 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2010 {
2011         struct f2fs_inode *src, *dst;
2012         nid_t ino = ino_of_node(page);
2013         struct node_info old_ni, new_ni;
2014         struct page *ipage;
2015 
2016         get_node_info(sbi, ino, &old_ni);
2017 
2018         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2019                 return -EINVAL;
2020 
2021         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2022         if (!ipage)
2023                 return -ENOMEM;
2024 
2025         /* Should not use this inode from free nid list */
2026         remove_free_nid(NM_I(sbi), ino);
2027 
2028         SetPageUptodate(ipage);
2029         fill_node_footer(ipage, ino, ino, 0, true);
2030 
2031         src = F2FS_INODE(page);
2032         dst = F2FS_INODE(ipage);
2033 
2034         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2035         dst->i_size = 0;
2036         dst->i_blocks = cpu_to_le64(1);
2037         dst->i_links = cpu_to_le32(1);
2038         dst->i_xattr_nid = 0;
2039         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2040 
2041         new_ni = old_ni;
2042         new_ni.ino = ino;
2043 
2044         if (unlikely(!inc_valid_node_count(sbi, NULL)))
2045                 WARN_ON(1);
2046         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2047         inc_valid_inode_count(sbi);
2048         set_page_dirty(ipage);
2049         f2fs_put_page(ipage, 1);
2050         return 0;
2051 }
2052 
2053 int restore_node_summary(struct f2fs_sb_info *sbi,
2054                         unsigned int segno, struct f2fs_summary_block *sum)
2055 {
2056         struct f2fs_node *rn;
2057         struct f2fs_summary *sum_entry;
2058         block_t addr;
2059         int bio_blocks = MAX_BIO_BLOCKS(sbi);
2060         int i, idx, last_offset, nrpages;
2061 
2062         /* scan the node segment */
2063         last_offset = sbi->blocks_per_seg;
2064         addr = START_BLOCK(sbi, segno);
2065         sum_entry = &sum->entries[0];
2066 
2067         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2068                 nrpages = min(last_offset - i, bio_blocks);
2069 
2070                 /* readahead node pages */
2071                 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2072 
2073                 for (idx = addr; idx < addr + nrpages; idx++) {
2074                         struct page *page = get_tmp_page(sbi, idx);
2075 
2076                         rn = F2FS_NODE(page);
2077                         sum_entry->nid = rn->footer.nid;
2078                         sum_entry->version = 0;
2079                         sum_entry->ofs_in_node = 0;
2080                         sum_entry++;
2081                         f2fs_put_page(page, 1);
2082                 }
2083 
2084                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2085                                                         addr + nrpages);
2086         }
2087         return 0;
2088 }
2089 
2090 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2091 {
2092         struct f2fs_nm_info *nm_i = NM_I(sbi);
2093         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2094         struct f2fs_journal *journal = curseg->journal;
2095         int i;
2096 
2097         down_write(&curseg->journal_rwsem);
2098         for (i = 0; i < nats_in_cursum(journal); i++) {
2099                 struct nat_entry *ne;
2100                 struct f2fs_nat_entry raw_ne;
2101                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2102 
2103                 raw_ne = nat_in_journal(journal, i);
2104 
2105                 ne = __lookup_nat_cache(nm_i, nid);
2106                 if (!ne) {
2107                         ne = grab_nat_entry(nm_i, nid);
2108                         node_info_from_raw_nat(&ne->ni, &raw_ne);
2109                 }
2110                 __set_nat_cache_dirty(nm_i, ne);
2111         }
2112         update_nats_in_cursum(journal, -i);
2113         up_write(&curseg->journal_rwsem);
2114 }
2115 
2116 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2117                                                 struct list_head *head, int max)
2118 {
2119         struct nat_entry_set *cur;
2120 
2121         if (nes->entry_cnt >= max)
2122                 goto add_out;
2123 
2124         list_for_each_entry(cur, head, set_list) {
2125                 if (cur->entry_cnt >= nes->entry_cnt) {
2126                         list_add(&nes->set_list, cur->set_list.prev);
2127                         return;
2128                 }
2129         }
2130 add_out:
2131         list_add_tail(&nes->set_list, head);
2132 }
2133 
2134 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2135                                         struct nat_entry_set *set)
2136 {
2137         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2138         struct f2fs_journal *journal = curseg->journal;
2139         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2140         bool to_journal = true;
2141         struct f2fs_nat_block *nat_blk;
2142         struct nat_entry *ne, *cur;
2143         struct page *page = NULL;
2144 
2145         /*
2146          * there are two steps to flush nat entries:
2147          * #1, flush nat entries to journal in current hot data summary block.
2148          * #2, flush nat entries to nat page.
2149          */
2150         if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2151                 to_journal = false;
2152 
2153         if (to_journal) {
2154                 down_write(&curseg->journal_rwsem);
2155         } else {
2156                 page = get_next_nat_page(sbi, start_nid);
2157                 nat_blk = page_address(page);
2158                 f2fs_bug_on(sbi, !nat_blk);
2159         }
2160 
2161         /* flush dirty nats in nat entry set */
2162         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2163                 struct f2fs_nat_entry *raw_ne;
2164                 nid_t nid = nat_get_nid(ne);
2165                 int offset;
2166 
2167                 if (nat_get_blkaddr(ne) == NEW_ADDR)
2168                         continue;
2169 
2170                 if (to_journal) {
2171                         offset = lookup_journal_in_cursum(journal,
2172                                                         NAT_JOURNAL, nid, 1);
2173                         f2fs_bug_on(sbi, offset < 0);
2174                         raw_ne = &nat_in_journal(journal, offset);
2175                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2176                 } else {
2177                         raw_ne = &nat_blk->entries[nid - start_nid];
2178                 }
2179                 raw_nat_from_node_info(raw_ne, &ne->ni);
2180                 nat_reset_flag(ne);
2181                 __clear_nat_cache_dirty(NM_I(sbi), ne);
2182                 if (nat_get_blkaddr(ne) == NULL_ADDR)
2183                         add_free_nid(sbi, nid, false);
2184         }
2185 
2186         if (to_journal)
2187                 up_write(&curseg->journal_rwsem);
2188         else
2189                 f2fs_put_page(page, 1);
2190 
2191         f2fs_bug_on(sbi, set->entry_cnt);
2192 
2193         radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2194         kmem_cache_free(nat_entry_set_slab, set);
2195 }
2196 
2197 /*
2198  * This function is called during the checkpointing process.
2199  */
2200 void flush_nat_entries(struct f2fs_sb_info *sbi)
2201 {
2202         struct f2fs_nm_info *nm_i = NM_I(sbi);
2203         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2204         struct f2fs_journal *journal = curseg->journal;
2205         struct nat_entry_set *setvec[SETVEC_SIZE];
2206         struct nat_entry_set *set, *tmp;
2207         unsigned int found;
2208         nid_t set_idx = 0;
2209         LIST_HEAD(sets);
2210 
2211         if (!nm_i->dirty_nat_cnt)
2212                 return;
2213 
2214         down_write(&nm_i->nat_tree_lock);
2215 
2216         /*
2217          * if there are no enough space in journal to store dirty nat
2218          * entries, remove all entries from journal and merge them
2219          * into nat entry set.
2220          */
2221         if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2222                 remove_nats_in_journal(sbi);
2223 
2224         while ((found = __gang_lookup_nat_set(nm_i,
2225                                         set_idx, SETVEC_SIZE, setvec))) {
2226                 unsigned idx;
2227                 set_idx = setvec[found - 1]->set + 1;
2228                 for (idx = 0; idx < found; idx++)
2229                         __adjust_nat_entry_set(setvec[idx], &sets,
2230                                                 MAX_NAT_JENTRIES(journal));
2231         }
2232 
2233         /* flush dirty nats in nat entry set */
2234         list_for_each_entry_safe(set, tmp, &sets, set_list)
2235                 __flush_nat_entry_set(sbi, set);
2236 
2237         up_write(&nm_i->nat_tree_lock);
2238 
2239         f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2240 }
2241 
2242 static int init_node_manager(struct f2fs_sb_info *sbi)
2243 {
2244         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2245         struct f2fs_nm_info *nm_i = NM_I(sbi);
2246         unsigned char *version_bitmap;
2247         unsigned int nat_segs, nat_blocks;
2248 
2249         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2250 
2251         /* segment_count_nat includes pair segment so divide to 2. */
2252         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2253         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2254 
2255         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2256 
2257         /* not used nids: 0, node, meta, (and root counted as valid node) */
2258         nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2259         nm_i->fcnt = 0;
2260         nm_i->nat_cnt = 0;
2261         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2262         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2263         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2264 
2265         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2266         INIT_LIST_HEAD(&nm_i->free_nid_list);
2267         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2268         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2269         INIT_LIST_HEAD(&nm_i->nat_entries);
2270 
2271         mutex_init(&nm_i->build_lock);
2272         spin_lock_init(&nm_i->free_nid_list_lock);
2273         init_rwsem(&nm_i->nat_tree_lock);
2274 
2275         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2276         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2277         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2278         if (!version_bitmap)
2279                 return -EFAULT;
2280 
2281         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2282                                         GFP_KERNEL);
2283         if (!nm_i->nat_bitmap)
2284                 return -ENOMEM;
2285         return 0;
2286 }
2287 
2288 int build_node_manager(struct f2fs_sb_info *sbi)
2289 {
2290         int err;
2291 
2292         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2293         if (!sbi->nm_info)
2294                 return -ENOMEM;
2295 
2296         err = init_node_manager(sbi);
2297         if (err)
2298                 return err;
2299 
2300         build_free_nids(sbi);
2301         return 0;
2302 }
2303 
2304 void destroy_node_manager(struct f2fs_sb_info *sbi)
2305 {
2306         struct f2fs_nm_info *nm_i = NM_I(sbi);
2307         struct free_nid *i, *next_i;
2308         struct nat_entry *natvec[NATVEC_SIZE];
2309         struct nat_entry_set *setvec[SETVEC_SIZE];
2310         nid_t nid = 0;
2311         unsigned int found;
2312 
2313         if (!nm_i)
2314                 return;
2315 
2316         /* destroy free nid list */
2317         spin_lock(&nm_i->free_nid_list_lock);
2318         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2319                 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2320                 __del_from_free_nid_list(nm_i, i);
2321                 nm_i->fcnt--;
2322                 spin_unlock(&nm_i->free_nid_list_lock);
2323                 kmem_cache_free(free_nid_slab, i);
2324                 spin_lock(&nm_i->free_nid_list_lock);
2325         }
2326         f2fs_bug_on(sbi, nm_i->fcnt);
2327         spin_unlock(&nm_i->free_nid_list_lock);
2328 
2329         /* destroy nat cache */
2330         down_write(&nm_i->nat_tree_lock);
2331         while ((found = __gang_lookup_nat_cache(nm_i,
2332                                         nid, NATVEC_SIZE, natvec))) {
2333                 unsigned idx;
2334 
2335                 nid = nat_get_nid(natvec[found - 1]) + 1;
2336                 for (idx = 0; idx < found; idx++)
2337                         __del_from_nat_cache(nm_i, natvec[idx]);
2338         }
2339         f2fs_bug_on(sbi, nm_i->nat_cnt);
2340 
2341         /* destroy nat set cache */
2342         nid = 0;
2343         while ((found = __gang_lookup_nat_set(nm_i,
2344                                         nid, SETVEC_SIZE, setvec))) {
2345                 unsigned idx;
2346 
2347                 nid = setvec[found - 1]->set + 1;
2348                 for (idx = 0; idx < found; idx++) {
2349                         /* entry_cnt is not zero, when cp_error was occurred */
2350                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2351                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2352                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2353                 }
2354         }
2355         up_write(&nm_i->nat_tree_lock);
2356 
2357         kfree(nm_i->nat_bitmap);
2358         sbi->nm_info = NULL;
2359         kfree(nm_i);
2360 }
2361 
2362 int __init create_node_manager_caches(void)
2363 {
2364         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2365                         sizeof(struct nat_entry));
2366         if (!nat_entry_slab)
2367                 goto fail;
2368 
2369         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2370                         sizeof(struct free_nid));
2371         if (!free_nid_slab)
2372                 goto destroy_nat_entry;
2373 
2374         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2375                         sizeof(struct nat_entry_set));
2376         if (!nat_entry_set_slab)
2377                 goto destroy_free_nid;
2378         return 0;
2379 
2380 destroy_free_nid:
2381         kmem_cache_destroy(free_nid_slab);
2382 destroy_nat_entry:
2383         kmem_cache_destroy(nat_entry_slab);
2384 fail:
2385         return -ENOMEM;
2386 }
2387 
2388 void destroy_node_manager_caches(void)
2389 {
2390         kmem_cache_destroy(nat_entry_set_slab);
2391         kmem_cache_destroy(free_nid_slab);
2392         kmem_cache_destroy(nat_entry_slab);
2393 }
2394 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp