~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/recovery.c

Version: ~ [ linux-5.15-rc7 ] ~ [ linux-5.14.14 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.75 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.155 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.213 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.252 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.287 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.289 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * fs/f2fs/recovery.c
  3  *
  4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5  *             http://www.samsung.com/
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  */
 11 #include <linux/fs.h>
 12 #include <linux/f2fs_fs.h>
 13 #include "f2fs.h"
 14 #include "node.h"
 15 #include "segment.h"
 16 
 17 /*
 18  * Roll forward recovery scenarios.
 19  *
 20  * [Term] F: fsync_mark, D: dentry_mark
 21  *
 22  * 1. inode(x) | CP | inode(x) | dnode(F)
 23  * -> Update the latest inode(x).
 24  *
 25  * 2. inode(x) | CP | inode(F) | dnode(F)
 26  * -> No problem.
 27  *
 28  * 3. inode(x) | CP | dnode(F) | inode(x)
 29  * -> Recover to the latest dnode(F), and drop the last inode(x)
 30  *
 31  * 4. inode(x) | CP | dnode(F) | inode(F)
 32  * -> No problem.
 33  *
 34  * 5. CP | inode(x) | dnode(F)
 35  * -> The inode(DF) was missing. Should drop this dnode(F).
 36  *
 37  * 6. CP | inode(DF) | dnode(F)
 38  * -> No problem.
 39  *
 40  * 7. CP | dnode(F) | inode(DF)
 41  * -> If f2fs_iget fails, then goto next to find inode(DF).
 42  *
 43  * 8. CP | dnode(F) | inode(x)
 44  * -> If f2fs_iget fails, then goto next to find inode(DF).
 45  *    But it will fail due to no inode(DF).
 46  */
 47 
 48 static struct kmem_cache *fsync_entry_slab;
 49 
 50 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
 51 {
 52         if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
 53                         > sbi->user_block_count)
 54                 return false;
 55         return true;
 56 }
 57 
 58 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
 59                                                                 nid_t ino)
 60 {
 61         struct fsync_inode_entry *entry;
 62 
 63         list_for_each_entry(entry, head, list)
 64                 if (entry->inode->i_ino == ino)
 65                         return entry;
 66 
 67         return NULL;
 68 }
 69 
 70 static int recover_dentry(struct inode *inode, struct page *ipage)
 71 {
 72         struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
 73         nid_t pino = le32_to_cpu(raw_inode->i_pino);
 74         struct f2fs_dir_entry *de;
 75         struct qstr name;
 76         struct page *page;
 77         struct inode *dir, *einode;
 78         int err = 0;
 79 
 80         dir = f2fs_iget(inode->i_sb, pino);
 81         if (IS_ERR(dir)) {
 82                 err = PTR_ERR(dir);
 83                 goto out;
 84         }
 85 
 86         name.len = le32_to_cpu(raw_inode->i_namelen);
 87         name.name = raw_inode->i_name;
 88 
 89         if (unlikely(name.len > F2FS_NAME_LEN)) {
 90                 WARN_ON(1);
 91                 err = -ENAMETOOLONG;
 92                 goto out_err;
 93         }
 94 retry:
 95         de = f2fs_find_entry(dir, &name, &page);
 96         if (de && inode->i_ino == le32_to_cpu(de->ino)) {
 97                 clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
 98                 goto out_unmap_put;
 99         }
100         if (de) {
101                 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
102                 if (IS_ERR(einode)) {
103                         WARN_ON(1);
104                         err = PTR_ERR(einode);
105                         if (err == -ENOENT)
106                                 err = -EEXIST;
107                         goto out_unmap_put;
108                 }
109                 err = acquire_orphan_inode(F2FS_I_SB(inode));
110                 if (err) {
111                         iput(einode);
112                         goto out_unmap_put;
113                 }
114                 f2fs_delete_entry(de, page, einode);
115                 iput(einode);
116                 goto retry;
117         }
118         err = __f2fs_add_link(dir, &name, inode);
119         if (err)
120                 goto out_err;
121 
122         if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
123                 iput(dir);
124         } else {
125                 add_dirty_dir_inode(dir);
126                 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
127         }
128 
129         goto out;
130 
131 out_unmap_put:
132         kunmap(page);
133         f2fs_put_page(page, 0);
134 out_err:
135         iput(dir);
136 out:
137         f2fs_msg(inode->i_sb, KERN_NOTICE,
138                         "%s: ino = %x, name = %s, dir = %lx, err = %d",
139                         __func__, ino_of_node(ipage), raw_inode->i_name,
140                         IS_ERR(dir) ? 0 : dir->i_ino, err);
141         return err;
142 }
143 
144 static void recover_inode(struct inode *inode, struct page *page)
145 {
146         struct f2fs_inode *raw = F2FS_INODE(page);
147 
148         inode->i_mode = le16_to_cpu(raw->i_mode);
149         i_size_write(inode, le64_to_cpu(raw->i_size));
150         inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
151         inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
152         inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
153         inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
154         inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
155         inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
156 
157         f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
158                         ino_of_node(page), F2FS_INODE(page)->i_name);
159 }
160 
161 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
162 {
163         unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
164         struct curseg_info *curseg;
165         struct page *page = NULL;
166         block_t blkaddr;
167         int err = 0;
168 
169         /* get node pages in the current segment */
170         curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
171         blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
172 
173         while (1) {
174                 struct fsync_inode_entry *entry;
175 
176                 if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi))
177                         return 0;
178 
179                 page = get_meta_page_ra(sbi, blkaddr);
180 
181                 if (cp_ver != cpver_of_node(page))
182                         break;
183 
184                 if (!is_fsync_dnode(page))
185                         goto next;
186 
187                 entry = get_fsync_inode(head, ino_of_node(page));
188                 if (entry) {
189                         if (IS_INODE(page) && is_dent_dnode(page))
190                                 set_inode_flag(F2FS_I(entry->inode),
191                                                         FI_INC_LINK);
192                 } else {
193                         if (IS_INODE(page) && is_dent_dnode(page)) {
194                                 err = recover_inode_page(sbi, page);
195                                 if (err)
196                                         break;
197                         }
198 
199                         /* add this fsync inode to the list */
200                         entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
201                         if (!entry) {
202                                 err = -ENOMEM;
203                                 break;
204                         }
205                         /*
206                          * CP | dnode(F) | inode(DF)
207                          * For this case, we should not give up now.
208                          */
209                         entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
210                         if (IS_ERR(entry->inode)) {
211                                 err = PTR_ERR(entry->inode);
212                                 kmem_cache_free(fsync_entry_slab, entry);
213                                 if (err == -ENOENT)
214                                         goto next;
215                                 break;
216                         }
217                         list_add_tail(&entry->list, head);
218                 }
219                 entry->blkaddr = blkaddr;
220 
221                 if (IS_INODE(page)) {
222                         entry->last_inode = blkaddr;
223                         if (is_dent_dnode(page))
224                                 entry->last_dentry = blkaddr;
225                 }
226 next:
227                 /* check next segment */
228                 blkaddr = next_blkaddr_of_node(page);
229                 f2fs_put_page(page, 1);
230         }
231         f2fs_put_page(page, 1);
232         return err;
233 }
234 
235 static void destroy_fsync_dnodes(struct list_head *head)
236 {
237         struct fsync_inode_entry *entry, *tmp;
238 
239         list_for_each_entry_safe(entry, tmp, head, list) {
240                 iput(entry->inode);
241                 list_del(&entry->list);
242                 kmem_cache_free(fsync_entry_slab, entry);
243         }
244 }
245 
246 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
247                         block_t blkaddr, struct dnode_of_data *dn)
248 {
249         struct seg_entry *sentry;
250         unsigned int segno = GET_SEGNO(sbi, blkaddr);
251         unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
252         struct f2fs_summary_block *sum_node;
253         struct f2fs_summary sum;
254         struct page *sum_page, *node_page;
255         nid_t ino, nid;
256         struct inode *inode;
257         unsigned int offset;
258         block_t bidx;
259         int i;
260 
261         sentry = get_seg_entry(sbi, segno);
262         if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
263                 return 0;
264 
265         /* Get the previous summary */
266         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
267                 struct curseg_info *curseg = CURSEG_I(sbi, i);
268                 if (curseg->segno == segno) {
269                         sum = curseg->sum_blk->entries[blkoff];
270                         goto got_it;
271                 }
272         }
273 
274         sum_page = get_sum_page(sbi, segno);
275         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
276         sum = sum_node->entries[blkoff];
277         f2fs_put_page(sum_page, 1);
278 got_it:
279         /* Use the locked dnode page and inode */
280         nid = le32_to_cpu(sum.nid);
281         if (dn->inode->i_ino == nid) {
282                 struct dnode_of_data tdn = *dn;
283                 tdn.nid = nid;
284                 tdn.node_page = dn->inode_page;
285                 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
286                 truncate_data_blocks_range(&tdn, 1);
287                 return 0;
288         } else if (dn->nid == nid) {
289                 struct dnode_of_data tdn = *dn;
290                 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
291                 truncate_data_blocks_range(&tdn, 1);
292                 return 0;
293         }
294 
295         /* Get the node page */
296         node_page = get_node_page(sbi, nid);
297         if (IS_ERR(node_page))
298                 return PTR_ERR(node_page);
299 
300         offset = ofs_of_node(node_page);
301         ino = ino_of_node(node_page);
302         f2fs_put_page(node_page, 1);
303 
304         if (ino != dn->inode->i_ino) {
305                 /* Deallocate previous index in the node page */
306                 inode = f2fs_iget(sbi->sb, ino);
307                 if (IS_ERR(inode))
308                         return PTR_ERR(inode);
309         } else {
310                 inode = dn->inode;
311         }
312 
313         bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
314                         le16_to_cpu(sum.ofs_in_node);
315 
316         if (ino != dn->inode->i_ino) {
317                 truncate_hole(inode, bidx, bidx + 1);
318                 iput(inode);
319         } else {
320                 struct dnode_of_data tdn;
321                 set_new_dnode(&tdn, inode, dn->inode_page, NULL, 0);
322                 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
323                         return 0;
324                 if (tdn.data_blkaddr != NULL_ADDR)
325                         truncate_data_blocks_range(&tdn, 1);
326                 f2fs_put_page(tdn.node_page, 1);
327         }
328         return 0;
329 }
330 
331 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
332                                         struct page *page, block_t blkaddr)
333 {
334         struct f2fs_inode_info *fi = F2FS_I(inode);
335         unsigned int start, end;
336         struct dnode_of_data dn;
337         struct f2fs_summary sum;
338         struct node_info ni;
339         int err = 0, recovered = 0;
340 
341         /* step 1: recover xattr */
342         if (IS_INODE(page)) {
343                 recover_inline_xattr(inode, page);
344         } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
345                 recover_xattr_data(inode, page, blkaddr);
346                 goto out;
347         }
348 
349         /* step 2: recover inline data */
350         if (recover_inline_data(inode, page))
351                 goto out;
352 
353         /* step 3: recover data indices */
354         start = start_bidx_of_node(ofs_of_node(page), fi);
355         end = start + ADDRS_PER_PAGE(page, fi);
356 
357         f2fs_lock_op(sbi);
358 
359         set_new_dnode(&dn, inode, NULL, NULL, 0);
360 
361         err = get_dnode_of_data(&dn, start, ALLOC_NODE);
362         if (err) {
363                 f2fs_unlock_op(sbi);
364                 goto out;
365         }
366 
367         f2fs_wait_on_page_writeback(dn.node_page, NODE);
368 
369         get_node_info(sbi, dn.nid, &ni);
370         f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
371         f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
372 
373         for (; start < end; start++) {
374                 block_t src, dest;
375 
376                 src = datablock_addr(dn.node_page, dn.ofs_in_node);
377                 dest = datablock_addr(page, dn.ofs_in_node);
378 
379                 if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
380                         if (src == NULL_ADDR) {
381                                 err = reserve_new_block(&dn);
382                                 /* We should not get -ENOSPC */
383                                 f2fs_bug_on(sbi, err);
384                         }
385 
386                         /* Check the previous node page having this index */
387                         err = check_index_in_prev_nodes(sbi, dest, &dn);
388                         if (err)
389                                 goto err;
390 
391                         set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
392 
393                         /* write dummy data page */
394                         recover_data_page(sbi, NULL, &sum, src, dest);
395                         update_extent_cache(dest, &dn);
396                         recovered++;
397                 }
398                 dn.ofs_in_node++;
399         }
400 
401         /* write node page in place */
402         set_summary(&sum, dn.nid, 0, 0);
403         if (IS_INODE(dn.node_page))
404                 sync_inode_page(&dn);
405 
406         copy_node_footer(dn.node_page, page);
407         fill_node_footer(dn.node_page, dn.nid, ni.ino,
408                                         ofs_of_node(page), false);
409         set_page_dirty(dn.node_page);
410 err:
411         f2fs_put_dnode(&dn);
412         f2fs_unlock_op(sbi);
413 out:
414         f2fs_msg(sbi->sb, KERN_NOTICE,
415                 "recover_data: ino = %lx, recovered = %d blocks, err = %d",
416                 inode->i_ino, recovered, err);
417         return err;
418 }
419 
420 static int recover_data(struct f2fs_sb_info *sbi,
421                                 struct list_head *head, int type)
422 {
423         unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
424         struct curseg_info *curseg;
425         struct page *page = NULL;
426         int err = 0;
427         block_t blkaddr;
428 
429         /* get node pages in the current segment */
430         curseg = CURSEG_I(sbi, type);
431         blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
432 
433         while (1) {
434                 struct fsync_inode_entry *entry;
435 
436                 if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi))
437                         break;
438 
439                 page = get_meta_page_ra(sbi, blkaddr);
440 
441                 if (cp_ver != cpver_of_node(page)) {
442                         f2fs_put_page(page, 1);
443                         break;
444                 }
445 
446                 entry = get_fsync_inode(head, ino_of_node(page));
447                 if (!entry)
448                         goto next;
449                 /*
450                  * inode(x) | CP | inode(x) | dnode(F)
451                  * In this case, we can lose the latest inode(x).
452                  * So, call recover_inode for the inode update.
453                  */
454                 if (entry->last_inode == blkaddr)
455                         recover_inode(entry->inode, page);
456                 if (entry->last_dentry == blkaddr) {
457                         err = recover_dentry(entry->inode, page);
458                         if (err) {
459                                 f2fs_put_page(page, 1);
460                                 break;
461                         }
462                 }
463                 err = do_recover_data(sbi, entry->inode, page, blkaddr);
464                 if (err) {
465                         f2fs_put_page(page, 1);
466                         break;
467                 }
468 
469                 if (entry->blkaddr == blkaddr) {
470                         iput(entry->inode);
471                         list_del(&entry->list);
472                         kmem_cache_free(fsync_entry_slab, entry);
473                 }
474 next:
475                 /* check next segment */
476                 blkaddr = next_blkaddr_of_node(page);
477                 f2fs_put_page(page, 1);
478         }
479         if (!err)
480                 allocate_new_segments(sbi);
481         return err;
482 }
483 
484 int recover_fsync_data(struct f2fs_sb_info *sbi)
485 {
486         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
487         struct list_head inode_list;
488         block_t blkaddr;
489         int err;
490         bool need_writecp = false;
491 
492         fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
493                         sizeof(struct fsync_inode_entry));
494         if (!fsync_entry_slab)
495                 return -ENOMEM;
496 
497         INIT_LIST_HEAD(&inode_list);
498 
499         /* step #1: find fsynced inode numbers */
500         sbi->por_doing = true;
501 
502         /* prevent checkpoint */
503         mutex_lock(&sbi->cp_mutex);
504 
505         blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
506 
507         err = find_fsync_dnodes(sbi, &inode_list);
508         if (err)
509                 goto out;
510 
511         if (list_empty(&inode_list))
512                 goto out;
513 
514         need_writecp = true;
515 
516         /* step #2: recover data */
517         err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
518         if (!err)
519                 f2fs_bug_on(sbi, !list_empty(&inode_list));
520 out:
521         destroy_fsync_dnodes(&inode_list);
522         kmem_cache_destroy(fsync_entry_slab);
523 
524         /* truncate meta pages to be used by the recovery */
525         truncate_inode_pages_range(META_MAPPING(sbi),
526                         MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1);
527 
528         if (err) {
529                 truncate_inode_pages_final(NODE_MAPPING(sbi));
530                 truncate_inode_pages_final(META_MAPPING(sbi));
531         }
532 
533         sbi->por_doing = false;
534         if (err) {
535                 discard_next_dnode(sbi, blkaddr);
536 
537                 /* Flush all the NAT/SIT pages */
538                 while (get_pages(sbi, F2FS_DIRTY_META))
539                         sync_meta_pages(sbi, META, LONG_MAX);
540                 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
541                 mutex_unlock(&sbi->cp_mutex);
542         } else if (need_writecp) {
543                 struct cp_control cpc = {
544                         .reason = CP_SYNC,
545                 };
546                 mutex_unlock(&sbi->cp_mutex);
547                 write_checkpoint(sbi, &cpc);
548         } else {
549                 mutex_unlock(&sbi->cp_mutex);
550         }
551         return err;
552 }
553 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp