~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/segment.c

Version: ~ [ linux-5.10-rc6 ] ~ [ linux-5.9.12 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.81 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.161 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.210 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.247 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.247 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * fs/f2fs/segment.c
  4  *
  5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6  *             http://www.samsung.com/
  7  */
  8 #include <linux/fs.h>
  9 #include <linux/f2fs_fs.h>
 10 #include <linux/bio.h>
 11 #include <linux/blkdev.h>
 12 #include <linux/prefetch.h>
 13 #include <linux/kthread.h>
 14 #include <linux/swap.h>
 15 #include <linux/timer.h>
 16 #include <linux/freezer.h>
 17 #include <linux/sched/signal.h>
 18 
 19 #include "f2fs.h"
 20 #include "segment.h"
 21 #include "node.h"
 22 #include "gc.h"
 23 #include "trace.h"
 24 #include <trace/events/f2fs.h>
 25 
 26 #define __reverse_ffz(x) __reverse_ffs(~(x))
 27 
 28 static struct kmem_cache *discard_entry_slab;
 29 static struct kmem_cache *discard_cmd_slab;
 30 static struct kmem_cache *sit_entry_set_slab;
 31 static struct kmem_cache *inmem_entry_slab;
 32 
 33 static unsigned long __reverse_ulong(unsigned char *str)
 34 {
 35         unsigned long tmp = 0;
 36         int shift = 24, idx = 0;
 37 
 38 #if BITS_PER_LONG == 64
 39         shift = 56;
 40 #endif
 41         while (shift >= 0) {
 42                 tmp |= (unsigned long)str[idx++] << shift;
 43                 shift -= BITS_PER_BYTE;
 44         }
 45         return tmp;
 46 }
 47 
 48 /*
 49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
 50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
 51  */
 52 static inline unsigned long __reverse_ffs(unsigned long word)
 53 {
 54         int num = 0;
 55 
 56 #if BITS_PER_LONG == 64
 57         if ((word & 0xffffffff00000000UL) == 0)
 58                 num += 32;
 59         else
 60                 word >>= 32;
 61 #endif
 62         if ((word & 0xffff0000) == 0)
 63                 num += 16;
 64         else
 65                 word >>= 16;
 66 
 67         if ((word & 0xff00) == 0)
 68                 num += 8;
 69         else
 70                 word >>= 8;
 71 
 72         if ((word & 0xf0) == 0)
 73                 num += 4;
 74         else
 75                 word >>= 4;
 76 
 77         if ((word & 0xc) == 0)
 78                 num += 2;
 79         else
 80                 word >>= 2;
 81 
 82         if ((word & 0x2) == 0)
 83                 num += 1;
 84         return num;
 85 }
 86 
 87 /*
 88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
 89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
 90  * @size must be integral times of unsigned long.
 91  * Example:
 92  *                             MSB <--> LSB
 93  *   f2fs_set_bit(0, bitmap) => 1000 0000
 94  *   f2fs_set_bit(7, bitmap) => 0000 0001
 95  */
 96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
 97                         unsigned long size, unsigned long offset)
 98 {
 99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102 
103         if (offset >= size)
104                 return size;
105 
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108 
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112 
113                 tmp = __reverse_ulong((unsigned char *)p);
114 
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138 
139         if (offset >= size)
140                 return size;
141 
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144 
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148 
149                 tmp = __reverse_ulong((unsigned char *)p);
150 
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168 
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174 
175         if (f2fs_lfs_mode(sbi))
176                 return false;
177         if (sbi->gc_mode == GC_URGENT_HIGH)
178                 return true;
179         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180                 return true;
181 
182         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185 
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188         struct inmem_pages *new;
189 
190         f2fs_trace_pid(page);
191 
192         f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
193 
194         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195 
196         /* add atomic page indices to the list */
197         new->page = page;
198         INIT_LIST_HEAD(&new->list);
199 
200         /* increase reference count with clean state */
201         get_page(page);
202         mutex_lock(&F2FS_I(inode)->inmem_lock);
203         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205         mutex_unlock(&F2FS_I(inode)->inmem_lock);
206 
207         trace_f2fs_register_inmem_page(page, INMEM);
208 }
209 
210 static int __revoke_inmem_pages(struct inode *inode,
211                                 struct list_head *head, bool drop, bool recover,
212                                 bool trylock)
213 {
214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215         struct inmem_pages *cur, *tmp;
216         int err = 0;
217 
218         list_for_each_entry_safe(cur, tmp, head, list) {
219                 struct page *page = cur->page;
220 
221                 if (drop)
222                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223 
224                 if (trylock) {
225                         /*
226                          * to avoid deadlock in between page lock and
227                          * inmem_lock.
228                          */
229                         if (!trylock_page(page))
230                                 continue;
231                 } else {
232                         lock_page(page);
233                 }
234 
235                 f2fs_wait_on_page_writeback(page, DATA, true, true);
236 
237                 if (recover) {
238                         struct dnode_of_data dn;
239                         struct node_info ni;
240 
241                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243                         set_new_dnode(&dn, inode, NULL, NULL, 0);
244                         err = f2fs_get_dnode_of_data(&dn, page->index,
245                                                                 LOOKUP_NODE);
246                         if (err) {
247                                 if (err == -ENOMEM) {
248                                         congestion_wait(BLK_RW_ASYNC,
249                                                         DEFAULT_IO_TIMEOUT);
250                                         cond_resched();
251                                         goto retry;
252                                 }
253                                 err = -EAGAIN;
254                                 goto next;
255                         }
256 
257                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
258                         if (err) {
259                                 f2fs_put_dnode(&dn);
260                                 return err;
261                         }
262 
263                         if (cur->old_addr == NEW_ADDR) {
264                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266                         } else
267                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268                                         cur->old_addr, ni.version, true, true);
269                         f2fs_put_dnode(&dn);
270                 }
271 next:
272                 /* we don't need to invalidate this in the sccessful status */
273                 if (drop || recover) {
274                         ClearPageUptodate(page);
275                         clear_cold_data(page);
276                 }
277                 f2fs_clear_page_private(page);
278                 f2fs_put_page(page, 1);
279 
280                 list_del(&cur->list);
281                 kmem_cache_free(inmem_entry_slab, cur);
282                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283         }
284         return err;
285 }
286 
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290         struct inode *inode;
291         struct f2fs_inode_info *fi;
292         unsigned int count = sbi->atomic_files;
293         unsigned int looped = 0;
294 next:
295         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296         if (list_empty(head)) {
297                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298                 return;
299         }
300         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301         inode = igrab(&fi->vfs_inode);
302         if (inode)
303                 list_move_tail(&fi->inmem_ilist, head);
304         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305 
306         if (inode) {
307                 if (gc_failure) {
308                         if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309                                 goto skip;
310                 }
311                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312                 f2fs_drop_inmem_pages(inode);
313 skip:
314                 iput(inode);
315         }
316         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317         cond_resched();
318         if (gc_failure) {
319                 if (++looped >= count)
320                         return;
321         }
322         goto next;
323 }
324 
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328         struct f2fs_inode_info *fi = F2FS_I(inode);
329 
330         while (!list_empty(&fi->inmem_pages)) {
331                 mutex_lock(&fi->inmem_lock);
332                 __revoke_inmem_pages(inode, &fi->inmem_pages,
333                                                 true, false, true);
334                 mutex_unlock(&fi->inmem_lock);
335         }
336 
337         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
338 
339         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340         if (!list_empty(&fi->inmem_ilist))
341                 list_del_init(&fi->inmem_ilist);
342         if (f2fs_is_atomic_file(inode)) {
343                 clear_inode_flag(inode, FI_ATOMIC_FILE);
344                 sbi->atomic_files--;
345         }
346         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348 
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351         struct f2fs_inode_info *fi = F2FS_I(inode);
352         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353         struct list_head *head = &fi->inmem_pages;
354         struct inmem_pages *cur = NULL;
355 
356         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357 
358         mutex_lock(&fi->inmem_lock);
359         list_for_each_entry(cur, head, list) {
360                 if (cur->page == page)
361                         break;
362         }
363 
364         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365         list_del(&cur->list);
366         mutex_unlock(&fi->inmem_lock);
367 
368         dec_page_count(sbi, F2FS_INMEM_PAGES);
369         kmem_cache_free(inmem_entry_slab, cur);
370 
371         ClearPageUptodate(page);
372         f2fs_clear_page_private(page);
373         f2fs_put_page(page, 0);
374 
375         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377 
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381         struct f2fs_inode_info *fi = F2FS_I(inode);
382         struct inmem_pages *cur, *tmp;
383         struct f2fs_io_info fio = {
384                 .sbi = sbi,
385                 .ino = inode->i_ino,
386                 .type = DATA,
387                 .op = REQ_OP_WRITE,
388                 .op_flags = REQ_SYNC | REQ_PRIO,
389                 .io_type = FS_DATA_IO,
390         };
391         struct list_head revoke_list;
392         bool submit_bio = false;
393         int err = 0;
394 
395         INIT_LIST_HEAD(&revoke_list);
396 
397         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398                 struct page *page = cur->page;
399 
400                 lock_page(page);
401                 if (page->mapping == inode->i_mapping) {
402                         trace_f2fs_commit_inmem_page(page, INMEM);
403 
404                         f2fs_wait_on_page_writeback(page, DATA, true, true);
405 
406                         set_page_dirty(page);
407                         if (clear_page_dirty_for_io(page)) {
408                                 inode_dec_dirty_pages(inode);
409                                 f2fs_remove_dirty_inode(inode);
410                         }
411 retry:
412                         fio.page = page;
413                         fio.old_blkaddr = NULL_ADDR;
414                         fio.encrypted_page = NULL;
415                         fio.need_lock = LOCK_DONE;
416                         err = f2fs_do_write_data_page(&fio);
417                         if (err) {
418                                 if (err == -ENOMEM) {
419                                         congestion_wait(BLK_RW_ASYNC,
420                                                         DEFAULT_IO_TIMEOUT);
421                                         cond_resched();
422                                         goto retry;
423                                 }
424                                 unlock_page(page);
425                                 break;
426                         }
427                         /* record old blkaddr for revoking */
428                         cur->old_addr = fio.old_blkaddr;
429                         submit_bio = true;
430                 }
431                 unlock_page(page);
432                 list_move_tail(&cur->list, &revoke_list);
433         }
434 
435         if (submit_bio)
436                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
437 
438         if (err) {
439                 /*
440                  * try to revoke all committed pages, but still we could fail
441                  * due to no memory or other reason, if that happened, EAGAIN
442                  * will be returned, which means in such case, transaction is
443                  * already not integrity, caller should use journal to do the
444                  * recovery or rewrite & commit last transaction. For other
445                  * error number, revoking was done by filesystem itself.
446                  */
447                 err = __revoke_inmem_pages(inode, &revoke_list,
448                                                 false, true, false);
449 
450                 /* drop all uncommitted pages */
451                 __revoke_inmem_pages(inode, &fi->inmem_pages,
452                                                 true, false, false);
453         } else {
454                 __revoke_inmem_pages(inode, &revoke_list,
455                                                 false, false, false);
456         }
457 
458         return err;
459 }
460 
461 int f2fs_commit_inmem_pages(struct inode *inode)
462 {
463         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464         struct f2fs_inode_info *fi = F2FS_I(inode);
465         int err;
466 
467         f2fs_balance_fs(sbi, true);
468 
469         down_write(&fi->i_gc_rwsem[WRITE]);
470 
471         f2fs_lock_op(sbi);
472         set_inode_flag(inode, FI_ATOMIC_COMMIT);
473 
474         mutex_lock(&fi->inmem_lock);
475         err = __f2fs_commit_inmem_pages(inode);
476         mutex_unlock(&fi->inmem_lock);
477 
478         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
479 
480         f2fs_unlock_op(sbi);
481         up_write(&fi->i_gc_rwsem[WRITE]);
482 
483         return err;
484 }
485 
486 /*
487  * This function balances dirty node and dentry pages.
488  * In addition, it controls garbage collection.
489  */
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
491 {
492         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493                 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494                 f2fs_stop_checkpoint(sbi, false);
495         }
496 
497         /* balance_fs_bg is able to be pending */
498         if (need && excess_cached_nats(sbi))
499                 f2fs_balance_fs_bg(sbi, false);
500 
501         if (!f2fs_is_checkpoint_ready(sbi))
502                 return;
503 
504         /*
505          * We should do GC or end up with checkpoint, if there are so many dirty
506          * dir/node pages without enough free segments.
507          */
508         if (has_not_enough_free_secs(sbi, 0, 0)) {
509                 down_write(&sbi->gc_lock);
510                 f2fs_gc(sbi, false, false, NULL_SEGNO);
511         }
512 }
513 
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
515 {
516         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517                 return;
518 
519         /* try to shrink extent cache when there is no enough memory */
520         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
522 
523         /* check the # of cached NAT entries */
524         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
526 
527         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529         else
530                 f2fs_build_free_nids(sbi, false, false);
531 
532         if (!is_idle(sbi, REQ_TIME) &&
533                 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
534                 return;
535 
536         /* checkpoint is the only way to shrink partial cached entries */
537         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
538                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
539                         excess_prefree_segs(sbi) ||
540                         excess_dirty_nats(sbi) ||
541                         excess_dirty_nodes(sbi) ||
542                         f2fs_time_over(sbi, CP_TIME)) {
543                 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
544                         struct blk_plug plug;
545 
546                         mutex_lock(&sbi->flush_lock);
547 
548                         blk_start_plug(&plug);
549                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
550                         blk_finish_plug(&plug);
551 
552                         mutex_unlock(&sbi->flush_lock);
553                 }
554                 f2fs_sync_fs(sbi->sb, true);
555                 stat_inc_bg_cp_count(sbi->stat_info);
556         }
557 }
558 
559 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
560                                 struct block_device *bdev)
561 {
562         struct bio *bio;
563         int ret;
564 
565         bio = f2fs_bio_alloc(sbi, 0, false);
566         if (!bio)
567                 return -ENOMEM;
568 
569         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
570         bio_set_dev(bio, bdev);
571         ret = submit_bio_wait(bio);
572         bio_put(bio);
573 
574         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
575                                 test_opt(sbi, FLUSH_MERGE), ret);
576         return ret;
577 }
578 
579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
580 {
581         int ret = 0;
582         int i;
583 
584         if (!f2fs_is_multi_device(sbi))
585                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
586 
587         for (i = 0; i < sbi->s_ndevs; i++) {
588                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
589                         continue;
590                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
591                 if (ret)
592                         break;
593         }
594         return ret;
595 }
596 
597 static int issue_flush_thread(void *data)
598 {
599         struct f2fs_sb_info *sbi = data;
600         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
601         wait_queue_head_t *q = &fcc->flush_wait_queue;
602 repeat:
603         if (kthread_should_stop())
604                 return 0;
605 
606         sb_start_intwrite(sbi->sb);
607 
608         if (!llist_empty(&fcc->issue_list)) {
609                 struct flush_cmd *cmd, *next;
610                 int ret;
611 
612                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
613                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
614 
615                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
616 
617                 ret = submit_flush_wait(sbi, cmd->ino);
618                 atomic_inc(&fcc->issued_flush);
619 
620                 llist_for_each_entry_safe(cmd, next,
621                                           fcc->dispatch_list, llnode) {
622                         cmd->ret = ret;
623                         complete(&cmd->wait);
624                 }
625                 fcc->dispatch_list = NULL;
626         }
627 
628         sb_end_intwrite(sbi->sb);
629 
630         wait_event_interruptible(*q,
631                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
632         goto repeat;
633 }
634 
635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
636 {
637         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
638         struct flush_cmd cmd;
639         int ret;
640 
641         if (test_opt(sbi, NOBARRIER))
642                 return 0;
643 
644         if (!test_opt(sbi, FLUSH_MERGE)) {
645                 atomic_inc(&fcc->queued_flush);
646                 ret = submit_flush_wait(sbi, ino);
647                 atomic_dec(&fcc->queued_flush);
648                 atomic_inc(&fcc->issued_flush);
649                 return ret;
650         }
651 
652         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
653             f2fs_is_multi_device(sbi)) {
654                 ret = submit_flush_wait(sbi, ino);
655                 atomic_dec(&fcc->queued_flush);
656 
657                 atomic_inc(&fcc->issued_flush);
658                 return ret;
659         }
660 
661         cmd.ino = ino;
662         init_completion(&cmd.wait);
663 
664         llist_add(&cmd.llnode, &fcc->issue_list);
665 
666         /* update issue_list before we wake up issue_flush thread */
667         smp_mb();
668 
669         if (waitqueue_active(&fcc->flush_wait_queue))
670                 wake_up(&fcc->flush_wait_queue);
671 
672         if (fcc->f2fs_issue_flush) {
673                 wait_for_completion(&cmd.wait);
674                 atomic_dec(&fcc->queued_flush);
675         } else {
676                 struct llist_node *list;
677 
678                 list = llist_del_all(&fcc->issue_list);
679                 if (!list) {
680                         wait_for_completion(&cmd.wait);
681                         atomic_dec(&fcc->queued_flush);
682                 } else {
683                         struct flush_cmd *tmp, *next;
684 
685                         ret = submit_flush_wait(sbi, ino);
686 
687                         llist_for_each_entry_safe(tmp, next, list, llnode) {
688                                 if (tmp == &cmd) {
689                                         cmd.ret = ret;
690                                         atomic_dec(&fcc->queued_flush);
691                                         continue;
692                                 }
693                                 tmp->ret = ret;
694                                 complete(&tmp->wait);
695                         }
696                 }
697         }
698 
699         return cmd.ret;
700 }
701 
702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
703 {
704         dev_t dev = sbi->sb->s_bdev->bd_dev;
705         struct flush_cmd_control *fcc;
706         int err = 0;
707 
708         if (SM_I(sbi)->fcc_info) {
709                 fcc = SM_I(sbi)->fcc_info;
710                 if (fcc->f2fs_issue_flush)
711                         return err;
712                 goto init_thread;
713         }
714 
715         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
716         if (!fcc)
717                 return -ENOMEM;
718         atomic_set(&fcc->issued_flush, 0);
719         atomic_set(&fcc->queued_flush, 0);
720         init_waitqueue_head(&fcc->flush_wait_queue);
721         init_llist_head(&fcc->issue_list);
722         SM_I(sbi)->fcc_info = fcc;
723         if (!test_opt(sbi, FLUSH_MERGE))
724                 return err;
725 
726 init_thread:
727         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
728                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
729         if (IS_ERR(fcc->f2fs_issue_flush)) {
730                 err = PTR_ERR(fcc->f2fs_issue_flush);
731                 kfree(fcc);
732                 SM_I(sbi)->fcc_info = NULL;
733                 return err;
734         }
735 
736         return err;
737 }
738 
739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
740 {
741         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
742 
743         if (fcc && fcc->f2fs_issue_flush) {
744                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
745 
746                 fcc->f2fs_issue_flush = NULL;
747                 kthread_stop(flush_thread);
748         }
749         if (free) {
750                 kfree(fcc);
751                 SM_I(sbi)->fcc_info = NULL;
752         }
753 }
754 
755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
756 {
757         int ret = 0, i;
758 
759         if (!f2fs_is_multi_device(sbi))
760                 return 0;
761 
762         if (test_opt(sbi, NOBARRIER))
763                 return 0;
764 
765         for (i = 1; i < sbi->s_ndevs; i++) {
766                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
767                         continue;
768                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
769                 if (ret)
770                         break;
771 
772                 spin_lock(&sbi->dev_lock);
773                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
774                 spin_unlock(&sbi->dev_lock);
775         }
776 
777         return ret;
778 }
779 
780 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781                 enum dirty_type dirty_type)
782 {
783         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784 
785         /* need not be added */
786         if (IS_CURSEG(sbi, segno))
787                 return;
788 
789         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
790                 dirty_i->nr_dirty[dirty_type]++;
791 
792         if (dirty_type == DIRTY) {
793                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
794                 enum dirty_type t = sentry->type;
795 
796                 if (unlikely(t >= DIRTY)) {
797                         f2fs_bug_on(sbi, 1);
798                         return;
799                 }
800                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
801                         dirty_i->nr_dirty[t]++;
802 
803                 if (__is_large_section(sbi)) {
804                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
805                         block_t valid_blocks =
806                                 get_valid_blocks(sbi, segno, true);
807 
808                         f2fs_bug_on(sbi, unlikely(!valid_blocks ||
809                                         valid_blocks == BLKS_PER_SEC(sbi)));
810 
811                         if (!IS_CURSEC(sbi, secno))
812                                 set_bit(secno, dirty_i->dirty_secmap);
813                 }
814         }
815 }
816 
817 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
818                 enum dirty_type dirty_type)
819 {
820         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
821         block_t valid_blocks;
822 
823         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
824                 dirty_i->nr_dirty[dirty_type]--;
825 
826         if (dirty_type == DIRTY) {
827                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
828                 enum dirty_type t = sentry->type;
829 
830                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
831                         dirty_i->nr_dirty[t]--;
832 
833                 valid_blocks = get_valid_blocks(sbi, segno, true);
834                 if (valid_blocks == 0) {
835                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
836                                                 dirty_i->victim_secmap);
837 #ifdef CONFIG_F2FS_CHECK_FS
838                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
839 #endif
840                 }
841                 if (__is_large_section(sbi)) {
842                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
843 
844                         if (!valid_blocks ||
845                                         valid_blocks == BLKS_PER_SEC(sbi)) {
846                                 clear_bit(secno, dirty_i->dirty_secmap);
847                                 return;
848                         }
849 
850                         if (!IS_CURSEC(sbi, secno))
851                                 set_bit(secno, dirty_i->dirty_secmap);
852                 }
853         }
854 }
855 
856 /*
857  * Should not occur error such as -ENOMEM.
858  * Adding dirty entry into seglist is not critical operation.
859  * If a given segment is one of current working segments, it won't be added.
860  */
861 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
862 {
863         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
864         unsigned short valid_blocks, ckpt_valid_blocks;
865         unsigned int usable_blocks;
866 
867         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
868                 return;
869 
870         usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
871         mutex_lock(&dirty_i->seglist_lock);
872 
873         valid_blocks = get_valid_blocks(sbi, segno, false);
874         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
875 
876         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
877                 ckpt_valid_blocks == usable_blocks)) {
878                 __locate_dirty_segment(sbi, segno, PRE);
879                 __remove_dirty_segment(sbi, segno, DIRTY);
880         } else if (valid_blocks < usable_blocks) {
881                 __locate_dirty_segment(sbi, segno, DIRTY);
882         } else {
883                 /* Recovery routine with SSR needs this */
884                 __remove_dirty_segment(sbi, segno, DIRTY);
885         }
886 
887         mutex_unlock(&dirty_i->seglist_lock);
888 }
889 
890 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
891 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
892 {
893         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
894         unsigned int segno;
895 
896         mutex_lock(&dirty_i->seglist_lock);
897         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
898                 if (get_valid_blocks(sbi, segno, false))
899                         continue;
900                 if (IS_CURSEG(sbi, segno))
901                         continue;
902                 __locate_dirty_segment(sbi, segno, PRE);
903                 __remove_dirty_segment(sbi, segno, DIRTY);
904         }
905         mutex_unlock(&dirty_i->seglist_lock);
906 }
907 
908 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
909 {
910         int ovp_hole_segs =
911                 (overprovision_segments(sbi) - reserved_segments(sbi));
912         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
913         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
914         block_t holes[2] = {0, 0};      /* DATA and NODE */
915         block_t unusable;
916         struct seg_entry *se;
917         unsigned int segno;
918 
919         mutex_lock(&dirty_i->seglist_lock);
920         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
921                 se = get_seg_entry(sbi, segno);
922                 if (IS_NODESEG(se->type))
923                         holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
924                                                         se->valid_blocks;
925                 else
926                         holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
927                                                         se->valid_blocks;
928         }
929         mutex_unlock(&dirty_i->seglist_lock);
930 
931         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
932         if (unusable > ovp_holes)
933                 return unusable - ovp_holes;
934         return 0;
935 }
936 
937 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
938 {
939         int ovp_hole_segs =
940                 (overprovision_segments(sbi) - reserved_segments(sbi));
941         if (unusable > F2FS_OPTION(sbi).unusable_cap)
942                 return -EAGAIN;
943         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
944                 dirty_segments(sbi) > ovp_hole_segs)
945                 return -EAGAIN;
946         return 0;
947 }
948 
949 /* This is only used by SBI_CP_DISABLED */
950 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
951 {
952         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
953         unsigned int segno = 0;
954 
955         mutex_lock(&dirty_i->seglist_lock);
956         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
957                 if (get_valid_blocks(sbi, segno, false))
958                         continue;
959                 if (get_ckpt_valid_blocks(sbi, segno))
960                         continue;
961                 mutex_unlock(&dirty_i->seglist_lock);
962                 return segno;
963         }
964         mutex_unlock(&dirty_i->seglist_lock);
965         return NULL_SEGNO;
966 }
967 
968 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
969                 struct block_device *bdev, block_t lstart,
970                 block_t start, block_t len)
971 {
972         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
973         struct list_head *pend_list;
974         struct discard_cmd *dc;
975 
976         f2fs_bug_on(sbi, !len);
977 
978         pend_list = &dcc->pend_list[plist_idx(len)];
979 
980         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
981         INIT_LIST_HEAD(&dc->list);
982         dc->bdev = bdev;
983         dc->lstart = lstart;
984         dc->start = start;
985         dc->len = len;
986         dc->ref = 0;
987         dc->state = D_PREP;
988         dc->queued = 0;
989         dc->error = 0;
990         init_completion(&dc->wait);
991         list_add_tail(&dc->list, pend_list);
992         spin_lock_init(&dc->lock);
993         dc->bio_ref = 0;
994         atomic_inc(&dcc->discard_cmd_cnt);
995         dcc->undiscard_blks += len;
996 
997         return dc;
998 }
999 
1000 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1001                                 struct block_device *bdev, block_t lstart,
1002                                 block_t start, block_t len,
1003                                 struct rb_node *parent, struct rb_node **p,
1004                                 bool leftmost)
1005 {
1006         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1007         struct discard_cmd *dc;
1008 
1009         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1010 
1011         rb_link_node(&dc->rb_node, parent, p);
1012         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1013 
1014         return dc;
1015 }
1016 
1017 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1018                                                         struct discard_cmd *dc)
1019 {
1020         if (dc->state == D_DONE)
1021                 atomic_sub(dc->queued, &dcc->queued_discard);
1022 
1023         list_del(&dc->list);
1024         rb_erase_cached(&dc->rb_node, &dcc->root);
1025         dcc->undiscard_blks -= dc->len;
1026 
1027         kmem_cache_free(discard_cmd_slab, dc);
1028 
1029         atomic_dec(&dcc->discard_cmd_cnt);
1030 }
1031 
1032 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1033                                                         struct discard_cmd *dc)
1034 {
1035         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1036         unsigned long flags;
1037 
1038         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1039 
1040         spin_lock_irqsave(&dc->lock, flags);
1041         if (dc->bio_ref) {
1042                 spin_unlock_irqrestore(&dc->lock, flags);
1043                 return;
1044         }
1045         spin_unlock_irqrestore(&dc->lock, flags);
1046 
1047         f2fs_bug_on(sbi, dc->ref);
1048 
1049         if (dc->error == -EOPNOTSUPP)
1050                 dc->error = 0;
1051 
1052         if (dc->error)
1053                 printk_ratelimited(
1054                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1055                         KERN_INFO, sbi->sb->s_id,
1056                         dc->lstart, dc->start, dc->len, dc->error);
1057         __detach_discard_cmd(dcc, dc);
1058 }
1059 
1060 static void f2fs_submit_discard_endio(struct bio *bio)
1061 {
1062         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1063         unsigned long flags;
1064 
1065         spin_lock_irqsave(&dc->lock, flags);
1066         if (!dc->error)
1067                 dc->error = blk_status_to_errno(bio->bi_status);
1068         dc->bio_ref--;
1069         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1070                 dc->state = D_DONE;
1071                 complete_all(&dc->wait);
1072         }
1073         spin_unlock_irqrestore(&dc->lock, flags);
1074         bio_put(bio);
1075 }
1076 
1077 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1078                                 block_t start, block_t end)
1079 {
1080 #ifdef CONFIG_F2FS_CHECK_FS
1081         struct seg_entry *sentry;
1082         unsigned int segno;
1083         block_t blk = start;
1084         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1085         unsigned long *map;
1086 
1087         while (blk < end) {
1088                 segno = GET_SEGNO(sbi, blk);
1089                 sentry = get_seg_entry(sbi, segno);
1090                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1091 
1092                 if (end < START_BLOCK(sbi, segno + 1))
1093                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1094                 else
1095                         size = max_blocks;
1096                 map = (unsigned long *)(sentry->cur_valid_map);
1097                 offset = __find_rev_next_bit(map, size, offset);
1098                 f2fs_bug_on(sbi, offset != size);
1099                 blk = START_BLOCK(sbi, segno + 1);
1100         }
1101 #endif
1102 }
1103 
1104 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1105                                 struct discard_policy *dpolicy,
1106                                 int discard_type, unsigned int granularity)
1107 {
1108         /* common policy */
1109         dpolicy->type = discard_type;
1110         dpolicy->sync = true;
1111         dpolicy->ordered = false;
1112         dpolicy->granularity = granularity;
1113 
1114         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1115         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1116         dpolicy->timeout = false;
1117 
1118         if (discard_type == DPOLICY_BG) {
1119                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1120                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1121                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1122                 dpolicy->io_aware = true;
1123                 dpolicy->sync = false;
1124                 dpolicy->ordered = true;
1125                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1126                         dpolicy->granularity = 1;
1127                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1128                 }
1129         } else if (discard_type == DPOLICY_FORCE) {
1130                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1131                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1132                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1133                 dpolicy->io_aware = false;
1134         } else if (discard_type == DPOLICY_FSTRIM) {
1135                 dpolicy->io_aware = false;
1136         } else if (discard_type == DPOLICY_UMOUNT) {
1137                 dpolicy->io_aware = false;
1138                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1139                 dpolicy->granularity = 1;
1140                 dpolicy->timeout = true;
1141         }
1142 }
1143 
1144 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1145                                 struct block_device *bdev, block_t lstart,
1146                                 block_t start, block_t len);
1147 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1148 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1149                                                 struct discard_policy *dpolicy,
1150                                                 struct discard_cmd *dc,
1151                                                 unsigned int *issued)
1152 {
1153         struct block_device *bdev = dc->bdev;
1154         struct request_queue *q = bdev_get_queue(bdev);
1155         unsigned int max_discard_blocks =
1156                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1157         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1158         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1159                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1160         int flag = dpolicy->sync ? REQ_SYNC : 0;
1161         block_t lstart, start, len, total_len;
1162         int err = 0;
1163 
1164         if (dc->state != D_PREP)
1165                 return 0;
1166 
1167         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1168                 return 0;
1169 
1170         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1171 
1172         lstart = dc->lstart;
1173         start = dc->start;
1174         len = dc->len;
1175         total_len = len;
1176 
1177         dc->len = 0;
1178 
1179         while (total_len && *issued < dpolicy->max_requests && !err) {
1180                 struct bio *bio = NULL;
1181                 unsigned long flags;
1182                 bool last = true;
1183 
1184                 if (len > max_discard_blocks) {
1185                         len = max_discard_blocks;
1186                         last = false;
1187                 }
1188 
1189                 (*issued)++;
1190                 if (*issued == dpolicy->max_requests)
1191                         last = true;
1192 
1193                 dc->len += len;
1194 
1195                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1196                         f2fs_show_injection_info(sbi, FAULT_DISCARD);
1197                         err = -EIO;
1198                         goto submit;
1199                 }
1200                 err = __blkdev_issue_discard(bdev,
1201                                         SECTOR_FROM_BLOCK(start),
1202                                         SECTOR_FROM_BLOCK(len),
1203                                         GFP_NOFS, 0, &bio);
1204 submit:
1205                 if (err) {
1206                         spin_lock_irqsave(&dc->lock, flags);
1207                         if (dc->state == D_PARTIAL)
1208                                 dc->state = D_SUBMIT;
1209                         spin_unlock_irqrestore(&dc->lock, flags);
1210 
1211                         break;
1212                 }
1213 
1214                 f2fs_bug_on(sbi, !bio);
1215 
1216                 /*
1217                  * should keep before submission to avoid D_DONE
1218                  * right away
1219                  */
1220                 spin_lock_irqsave(&dc->lock, flags);
1221                 if (last)
1222                         dc->state = D_SUBMIT;
1223                 else
1224                         dc->state = D_PARTIAL;
1225                 dc->bio_ref++;
1226                 spin_unlock_irqrestore(&dc->lock, flags);
1227 
1228                 atomic_inc(&dcc->queued_discard);
1229                 dc->queued++;
1230                 list_move_tail(&dc->list, wait_list);
1231 
1232                 /* sanity check on discard range */
1233                 __check_sit_bitmap(sbi, lstart, lstart + len);
1234 
1235                 bio->bi_private = dc;
1236                 bio->bi_end_io = f2fs_submit_discard_endio;
1237                 bio->bi_opf |= flag;
1238                 submit_bio(bio);
1239 
1240                 atomic_inc(&dcc->issued_discard);
1241 
1242                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1243 
1244                 lstart += len;
1245                 start += len;
1246                 total_len -= len;
1247                 len = total_len;
1248         }
1249 
1250         if (!err && len) {
1251                 dcc->undiscard_blks -= len;
1252                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1253         }
1254         return err;
1255 }
1256 
1257 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1258                                 struct block_device *bdev, block_t lstart,
1259                                 block_t start, block_t len,
1260                                 struct rb_node **insert_p,
1261                                 struct rb_node *insert_parent)
1262 {
1263         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1264         struct rb_node **p;
1265         struct rb_node *parent = NULL;
1266         bool leftmost = true;
1267 
1268         if (insert_p && insert_parent) {
1269                 parent = insert_parent;
1270                 p = insert_p;
1271                 goto do_insert;
1272         }
1273 
1274         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1275                                                         lstart, &leftmost);
1276 do_insert:
1277         __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1278                                                                 p, leftmost);
1279 }
1280 
1281 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1282                                                 struct discard_cmd *dc)
1283 {
1284         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1285 }
1286 
1287 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1288                                 struct discard_cmd *dc, block_t blkaddr)
1289 {
1290         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1291         struct discard_info di = dc->di;
1292         bool modified = false;
1293 
1294         if (dc->state == D_DONE || dc->len == 1) {
1295                 __remove_discard_cmd(sbi, dc);
1296                 return;
1297         }
1298 
1299         dcc->undiscard_blks -= di.len;
1300 
1301         if (blkaddr > di.lstart) {
1302                 dc->len = blkaddr - dc->lstart;
1303                 dcc->undiscard_blks += dc->len;
1304                 __relocate_discard_cmd(dcc, dc);
1305                 modified = true;
1306         }
1307 
1308         if (blkaddr < di.lstart + di.len - 1) {
1309                 if (modified) {
1310                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1311                                         di.start + blkaddr + 1 - di.lstart,
1312                                         di.lstart + di.len - 1 - blkaddr,
1313                                         NULL, NULL);
1314                 } else {
1315                         dc->lstart++;
1316                         dc->len--;
1317                         dc->start++;
1318                         dcc->undiscard_blks += dc->len;
1319                         __relocate_discard_cmd(dcc, dc);
1320                 }
1321         }
1322 }
1323 
1324 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1325                                 struct block_device *bdev, block_t lstart,
1326                                 block_t start, block_t len)
1327 {
1328         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1329         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1330         struct discard_cmd *dc;
1331         struct discard_info di = {0};
1332         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1333         struct request_queue *q = bdev_get_queue(bdev);
1334         unsigned int max_discard_blocks =
1335                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1336         block_t end = lstart + len;
1337 
1338         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1339                                         NULL, lstart,
1340                                         (struct rb_entry **)&prev_dc,
1341                                         (struct rb_entry **)&next_dc,
1342                                         &insert_p, &insert_parent, true, NULL);
1343         if (dc)
1344                 prev_dc = dc;
1345 
1346         if (!prev_dc) {
1347                 di.lstart = lstart;
1348                 di.len = next_dc ? next_dc->lstart - lstart : len;
1349                 di.len = min(di.len, len);
1350                 di.start = start;
1351         }
1352 
1353         while (1) {
1354                 struct rb_node *node;
1355                 bool merged = false;
1356                 struct discard_cmd *tdc = NULL;
1357 
1358                 if (prev_dc) {
1359                         di.lstart = prev_dc->lstart + prev_dc->len;
1360                         if (di.lstart < lstart)
1361                                 di.lstart = lstart;
1362                         if (di.lstart >= end)
1363                                 break;
1364 
1365                         if (!next_dc || next_dc->lstart > end)
1366                                 di.len = end - di.lstart;
1367                         else
1368                                 di.len = next_dc->lstart - di.lstart;
1369                         di.start = start + di.lstart - lstart;
1370                 }
1371 
1372                 if (!di.len)
1373                         goto next;
1374 
1375                 if (prev_dc && prev_dc->state == D_PREP &&
1376                         prev_dc->bdev == bdev &&
1377                         __is_discard_back_mergeable(&di, &prev_dc->di,
1378                                                         max_discard_blocks)) {
1379                         prev_dc->di.len += di.len;
1380                         dcc->undiscard_blks += di.len;
1381                         __relocate_discard_cmd(dcc, prev_dc);
1382                         di = prev_dc->di;
1383                         tdc = prev_dc;
1384                         merged = true;
1385                 }
1386 
1387                 if (next_dc && next_dc->state == D_PREP &&
1388                         next_dc->bdev == bdev &&
1389                         __is_discard_front_mergeable(&di, &next_dc->di,
1390                                                         max_discard_blocks)) {
1391                         next_dc->di.lstart = di.lstart;
1392                         next_dc->di.len += di.len;
1393                         next_dc->di.start = di.start;
1394                         dcc->undiscard_blks += di.len;
1395                         __relocate_discard_cmd(dcc, next_dc);
1396                         if (tdc)
1397                                 __remove_discard_cmd(sbi, tdc);
1398                         merged = true;
1399                 }
1400 
1401                 if (!merged) {
1402                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1403                                                         di.len, NULL, NULL);
1404                 }
1405  next:
1406                 prev_dc = next_dc;
1407                 if (!prev_dc)
1408                         break;
1409 
1410                 node = rb_next(&prev_dc->rb_node);
1411                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1412         }
1413 }
1414 
1415 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1416                 struct block_device *bdev, block_t blkstart, block_t blklen)
1417 {
1418         block_t lblkstart = blkstart;
1419 
1420         if (!f2fs_bdev_support_discard(bdev))
1421                 return 0;
1422 
1423         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1424 
1425         if (f2fs_is_multi_device(sbi)) {
1426                 int devi = f2fs_target_device_index(sbi, blkstart);
1427 
1428                 blkstart -= FDEV(devi).start_blk;
1429         }
1430         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1431         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1432         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1433         return 0;
1434 }
1435 
1436 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1437                                         struct discard_policy *dpolicy)
1438 {
1439         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1440         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1441         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1442         struct discard_cmd *dc;
1443         struct blk_plug plug;
1444         unsigned int pos = dcc->next_pos;
1445         unsigned int issued = 0;
1446         bool io_interrupted = false;
1447 
1448         mutex_lock(&dcc->cmd_lock);
1449         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1450                                         NULL, pos,
1451                                         (struct rb_entry **)&prev_dc,
1452                                         (struct rb_entry **)&next_dc,
1453                                         &insert_p, &insert_parent, true, NULL);
1454         if (!dc)
1455                 dc = next_dc;
1456 
1457         blk_start_plug(&plug);
1458 
1459         while (dc) {
1460                 struct rb_node *node;
1461                 int err = 0;
1462 
1463                 if (dc->state != D_PREP)
1464                         goto next;
1465 
1466                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1467                         io_interrupted = true;
1468                         break;
1469                 }
1470 
1471                 dcc->next_pos = dc->lstart + dc->len;
1472                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1473 
1474                 if (issued >= dpolicy->max_requests)
1475                         break;
1476 next:
1477                 node = rb_next(&dc->rb_node);
1478                 if (err)
1479                         __remove_discard_cmd(sbi, dc);
1480                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1481         }
1482 
1483         blk_finish_plug(&plug);
1484 
1485         if (!dc)
1486                 dcc->next_pos = 0;
1487 
1488         mutex_unlock(&dcc->cmd_lock);
1489 
1490         if (!issued && io_interrupted)
1491                 issued = -1;
1492 
1493         return issued;
1494 }
1495 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1496                                         struct discard_policy *dpolicy);
1497 
1498 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1499                                         struct discard_policy *dpolicy)
1500 {
1501         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1502         struct list_head *pend_list;
1503         struct discard_cmd *dc, *tmp;
1504         struct blk_plug plug;
1505         int i, issued;
1506         bool io_interrupted = false;
1507 
1508         if (dpolicy->timeout)
1509                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1510 
1511 retry:
1512         issued = 0;
1513         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1514                 if (dpolicy->timeout &&
1515                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1516                         break;
1517 
1518                 if (i + 1 < dpolicy->granularity)
1519                         break;
1520 
1521                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1522                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1523 
1524                 pend_list = &dcc->pend_list[i];
1525 
1526                 mutex_lock(&dcc->cmd_lock);
1527                 if (list_empty(pend_list))
1528                         goto next;
1529                 if (unlikely(dcc->rbtree_check))
1530                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1531                                                         &dcc->root, false));
1532                 blk_start_plug(&plug);
1533                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1534                         f2fs_bug_on(sbi, dc->state != D_PREP);
1535 
1536                         if (dpolicy->timeout &&
1537                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1538                                 break;
1539 
1540                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1541                                                 !is_idle(sbi, DISCARD_TIME)) {
1542                                 io_interrupted = true;
1543                                 break;
1544                         }
1545 
1546                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1547 
1548                         if (issued >= dpolicy->max_requests)
1549                                 break;
1550                 }
1551                 blk_finish_plug(&plug);
1552 next:
1553                 mutex_unlock(&dcc->cmd_lock);
1554 
1555                 if (issued >= dpolicy->max_requests || io_interrupted)
1556                         break;
1557         }
1558 
1559         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1560                 __wait_all_discard_cmd(sbi, dpolicy);
1561                 goto retry;
1562         }
1563 
1564         if (!issued && io_interrupted)
1565                 issued = -1;
1566 
1567         return issued;
1568 }
1569 
1570 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1571 {
1572         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1573         struct list_head *pend_list;
1574         struct discard_cmd *dc, *tmp;
1575         int i;
1576         bool dropped = false;
1577 
1578         mutex_lock(&dcc->cmd_lock);
1579         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1580                 pend_list = &dcc->pend_list[i];
1581                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1582                         f2fs_bug_on(sbi, dc->state != D_PREP);
1583                         __remove_discard_cmd(sbi, dc);
1584                         dropped = true;
1585                 }
1586         }
1587         mutex_unlock(&dcc->cmd_lock);
1588 
1589         return dropped;
1590 }
1591 
1592 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1593 {
1594         __drop_discard_cmd(sbi);
1595 }
1596 
1597 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1598                                                         struct discard_cmd *dc)
1599 {
1600         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1601         unsigned int len = 0;
1602 
1603         wait_for_completion_io(&dc->wait);
1604         mutex_lock(&dcc->cmd_lock);
1605         f2fs_bug_on(sbi, dc->state != D_DONE);
1606         dc->ref--;
1607         if (!dc->ref) {
1608                 if (!dc->error)
1609                         len = dc->len;
1610                 __remove_discard_cmd(sbi, dc);
1611         }
1612         mutex_unlock(&dcc->cmd_lock);
1613 
1614         return len;
1615 }
1616 
1617 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1618                                                 struct discard_policy *dpolicy,
1619                                                 block_t start, block_t end)
1620 {
1621         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1622         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1623                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1624         struct discard_cmd *dc, *tmp;
1625         bool need_wait;
1626         unsigned int trimmed = 0;
1627 
1628 next:
1629         need_wait = false;
1630 
1631         mutex_lock(&dcc->cmd_lock);
1632         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1633                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1634                         continue;
1635                 if (dc->len < dpolicy->granularity)
1636                         continue;
1637                 if (dc->state == D_DONE && !dc->ref) {
1638                         wait_for_completion_io(&dc->wait);
1639                         if (!dc->error)
1640                                 trimmed += dc->len;
1641                         __remove_discard_cmd(sbi, dc);
1642                 } else {
1643                         dc->ref++;
1644                         need_wait = true;
1645                         break;
1646                 }
1647         }
1648         mutex_unlock(&dcc->cmd_lock);
1649 
1650         if (need_wait) {
1651                 trimmed += __wait_one_discard_bio(sbi, dc);
1652                 goto next;
1653         }
1654 
1655         return trimmed;
1656 }
1657 
1658 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1659                                                 struct discard_policy *dpolicy)
1660 {
1661         struct discard_policy dp;
1662         unsigned int discard_blks;
1663 
1664         if (dpolicy)
1665                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1666 
1667         /* wait all */
1668         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1669         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1670         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1671         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1672 
1673         return discard_blks;
1674 }
1675 
1676 /* This should be covered by global mutex, &sit_i->sentry_lock */
1677 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1678 {
1679         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1680         struct discard_cmd *dc;
1681         bool need_wait = false;
1682 
1683         mutex_lock(&dcc->cmd_lock);
1684         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1685                                                         NULL, blkaddr);
1686         if (dc) {
1687                 if (dc->state == D_PREP) {
1688                         __punch_discard_cmd(sbi, dc, blkaddr);
1689                 } else {
1690                         dc->ref++;
1691                         need_wait = true;
1692                 }
1693         }
1694         mutex_unlock(&dcc->cmd_lock);
1695 
1696         if (need_wait)
1697                 __wait_one_discard_bio(sbi, dc);
1698 }
1699 
1700 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1701 {
1702         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1703 
1704         if (dcc && dcc->f2fs_issue_discard) {
1705                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1706 
1707                 dcc->f2fs_issue_discard = NULL;
1708                 kthread_stop(discard_thread);
1709         }
1710 }
1711 
1712 /* This comes from f2fs_put_super */
1713 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1714 {
1715         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1716         struct discard_policy dpolicy;
1717         bool dropped;
1718 
1719         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1720                                         dcc->discard_granularity);
1721         __issue_discard_cmd(sbi, &dpolicy);
1722         dropped = __drop_discard_cmd(sbi);
1723 
1724         /* just to make sure there is no pending discard commands */
1725         __wait_all_discard_cmd(sbi, NULL);
1726 
1727         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1728         return dropped;
1729 }
1730 
1731 static int issue_discard_thread(void *data)
1732 {
1733         struct f2fs_sb_info *sbi = data;
1734         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1735         wait_queue_head_t *q = &dcc->discard_wait_queue;
1736         struct discard_policy dpolicy;
1737         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1738         int issued;
1739 
1740         set_freezable();
1741 
1742         do {
1743                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1744                                         dcc->discard_granularity);
1745 
1746                 wait_event_interruptible_timeout(*q,
1747                                 kthread_should_stop() || freezing(current) ||
1748                                 dcc->discard_wake,
1749                                 msecs_to_jiffies(wait_ms));
1750 
1751                 if (dcc->discard_wake)
1752                         dcc->discard_wake = 0;
1753 
1754                 /* clean up pending candidates before going to sleep */
1755                 if (atomic_read(&dcc->queued_discard))
1756                         __wait_all_discard_cmd(sbi, NULL);
1757 
1758                 if (try_to_freeze())
1759                         continue;
1760                 if (f2fs_readonly(sbi->sb))
1761                         continue;
1762                 if (kthread_should_stop())
1763                         return 0;
1764                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1765                         wait_ms = dpolicy.max_interval;
1766                         continue;
1767                 }
1768 
1769                 if (sbi->gc_mode == GC_URGENT_HIGH)
1770                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1771 
1772                 sb_start_intwrite(sbi->sb);
1773 
1774                 issued = __issue_discard_cmd(sbi, &dpolicy);
1775                 if (issued > 0) {
1776                         __wait_all_discard_cmd(sbi, &dpolicy);
1777                         wait_ms = dpolicy.min_interval;
1778                 } else if (issued == -1){
1779                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1780                         if (!wait_ms)
1781                                 wait_ms = dpolicy.mid_interval;
1782                 } else {
1783                         wait_ms = dpolicy.max_interval;
1784                 }
1785 
1786                 sb_end_intwrite(sbi->sb);
1787 
1788         } while (!kthread_should_stop());
1789         return 0;
1790 }
1791 
1792 #ifdef CONFIG_BLK_DEV_ZONED
1793 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1794                 struct block_device *bdev, block_t blkstart, block_t blklen)
1795 {
1796         sector_t sector, nr_sects;
1797         block_t lblkstart = blkstart;
1798         int devi = 0;
1799 
1800         if (f2fs_is_multi_device(sbi)) {
1801                 devi = f2fs_target_device_index(sbi, blkstart);
1802                 if (blkstart < FDEV(devi).start_blk ||
1803                     blkstart > FDEV(devi).end_blk) {
1804                         f2fs_err(sbi, "Invalid block %x", blkstart);
1805                         return -EIO;
1806                 }
1807                 blkstart -= FDEV(devi).start_blk;
1808         }
1809 
1810         /* For sequential zones, reset the zone write pointer */
1811         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1812                 sector = SECTOR_FROM_BLOCK(blkstart);
1813                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1814 
1815                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1816                                 nr_sects != bdev_zone_sectors(bdev)) {
1817                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1818                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1819                                  blkstart, blklen);
1820                         return -EIO;
1821                 }
1822                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1823                 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1824                                         sector, nr_sects, GFP_NOFS);
1825         }
1826 
1827         /* For conventional zones, use regular discard if supported */
1828         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1829 }
1830 #endif
1831 
1832 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1833                 struct block_device *bdev, block_t blkstart, block_t blklen)
1834 {
1835 #ifdef CONFIG_BLK_DEV_ZONED
1836         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1837                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1838 #endif
1839         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1840 }
1841 
1842 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1843                                 block_t blkstart, block_t blklen)
1844 {
1845         sector_t start = blkstart, len = 0;
1846         struct block_device *bdev;
1847         struct seg_entry *se;
1848         unsigned int offset;
1849         block_t i;
1850         int err = 0;
1851 
1852         bdev = f2fs_target_device(sbi, blkstart, NULL);
1853 
1854         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1855                 if (i != start) {
1856                         struct block_device *bdev2 =
1857                                 f2fs_target_device(sbi, i, NULL);
1858 
1859                         if (bdev2 != bdev) {
1860                                 err = __issue_discard_async(sbi, bdev,
1861                                                 start, len);
1862                                 if (err)
1863                                         return err;
1864                                 bdev = bdev2;
1865                                 start = i;
1866                                 len = 0;
1867                         }
1868                 }
1869 
1870                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1871                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1872 
1873                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1874                         sbi->discard_blks--;
1875         }
1876 
1877         if (len)
1878                 err = __issue_discard_async(sbi, bdev, start, len);
1879         return err;
1880 }
1881 
1882 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1883                                                         bool check_only)
1884 {
1885         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1886         int max_blocks = sbi->blocks_per_seg;
1887         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1888         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1889         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1890         unsigned long *discard_map = (unsigned long *)se->discard_map;
1891         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1892         unsigned int start = 0, end = -1;
1893         bool force = (cpc->reason & CP_DISCARD);
1894         struct discard_entry *de = NULL;
1895         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1896         int i;
1897 
1898         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1899                 return false;
1900 
1901         if (!force) {
1902                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1903                         SM_I(sbi)->dcc_info->nr_discards >=
1904                                 SM_I(sbi)->dcc_info->max_discards)
1905                         return false;
1906         }
1907 
1908         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1909         for (i = 0; i < entries; i++)
1910                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1911                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1912 
1913         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1914                                 SM_I(sbi)->dcc_info->max_discards) {
1915                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1916                 if (start >= max_blocks)
1917                         break;
1918 
1919                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1920                 if (force && start && end != max_blocks
1921                                         && (end - start) < cpc->trim_minlen)
1922                         continue;
1923 
1924                 if (check_only)
1925                         return true;
1926 
1927                 if (!de) {
1928                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1929                                                                 GFP_F2FS_ZERO);
1930                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1931                         list_add_tail(&de->list, head);
1932                 }
1933 
1934                 for (i = start; i < end; i++)
1935                         __set_bit_le(i, (void *)de->discard_map);
1936 
1937                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1938         }
1939         return false;
1940 }
1941 
1942 static void release_discard_addr(struct discard_entry *entry)
1943 {
1944         list_del(&entry->list);
1945         kmem_cache_free(discard_entry_slab, entry);
1946 }
1947 
1948 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1949 {
1950         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1951         struct discard_entry *entry, *this;
1952 
1953         /* drop caches */
1954         list_for_each_entry_safe(entry, this, head, list)
1955                 release_discard_addr(entry);
1956 }
1957 
1958 /*
1959  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1960  */
1961 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1962 {
1963         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1964         unsigned int segno;
1965 
1966         mutex_lock(&dirty_i->seglist_lock);
1967         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1968                 __set_test_and_free(sbi, segno, false);
1969         mutex_unlock(&dirty_i->seglist_lock);
1970 }
1971 
1972 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1973                                                 struct cp_control *cpc)
1974 {
1975         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1976         struct list_head *head = &dcc->entry_list;
1977         struct discard_entry *entry, *this;
1978         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1979         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1980         unsigned int start = 0, end = -1;
1981         unsigned int secno, start_segno;
1982         bool force = (cpc->reason & CP_DISCARD);
1983         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1984 
1985         mutex_lock(&dirty_i->seglist_lock);
1986 
1987         while (1) {
1988                 int i;
1989 
1990                 if (need_align && end != -1)
1991                         end--;
1992                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1993                 if (start >= MAIN_SEGS(sbi))
1994                         break;
1995                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1996                                                                 start + 1);
1997 
1998                 if (need_align) {
1999                         start = rounddown(start, sbi->segs_per_sec);
2000                         end = roundup(end, sbi->segs_per_sec);
2001                 }
2002 
2003                 for (i = start; i < end; i++) {
2004                         if (test_and_clear_bit(i, prefree_map))
2005                                 dirty_i->nr_dirty[PRE]--;
2006                 }
2007 
2008                 if (!f2fs_realtime_discard_enable(sbi))
2009                         continue;
2010 
2011                 if (force && start >= cpc->trim_start &&
2012                                         (end - 1) <= cpc->trim_end)
2013                                 continue;
2014 
2015                 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2016                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2017                                 (end - start) << sbi->log_blocks_per_seg);
2018                         continue;
2019                 }
2020 next:
2021                 secno = GET_SEC_FROM_SEG(sbi, start);
2022                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2023                 if (!IS_CURSEC(sbi, secno) &&
2024                         !get_valid_blocks(sbi, start, true))
2025                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2026                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2027 
2028                 start = start_segno + sbi->segs_per_sec;
2029                 if (start < end)
2030                         goto next;
2031                 else
2032                         end = start - 1;
2033         }
2034         mutex_unlock(&dirty_i->seglist_lock);
2035 
2036         /* send small discards */
2037         list_for_each_entry_safe(entry, this, head, list) {
2038                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2039                 bool is_valid = test_bit_le(0, entry->discard_map);
2040 
2041 find_next:
2042                 if (is_valid) {
2043                         next_pos = find_next_zero_bit_le(entry->discard_map,
2044                                         sbi->blocks_per_seg, cur_pos);
2045                         len = next_pos - cur_pos;
2046 
2047                         if (f2fs_sb_has_blkzoned(sbi) ||
2048                             (force && len < cpc->trim_minlen))
2049                                 goto skip;
2050 
2051                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2052                                                                         len);
2053                         total_len += len;
2054                 } else {
2055                         next_pos = find_next_bit_le(entry->discard_map,
2056                                         sbi->blocks_per_seg, cur_pos);
2057                 }
2058 skip:
2059                 cur_pos = next_pos;
2060                 is_valid = !is_valid;
2061 
2062                 if (cur_pos < sbi->blocks_per_seg)
2063                         goto find_next;
2064 
2065                 release_discard_addr(entry);
2066                 dcc->nr_discards -= total_len;
2067         }
2068 
2069         wake_up_discard_thread(sbi, false);
2070 }
2071 
2072 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2073 {
2074         dev_t dev = sbi->sb->s_bdev->bd_dev;
2075         struct discard_cmd_control *dcc;
2076         int err = 0, i;
2077 
2078         if (SM_I(sbi)->dcc_info) {
2079                 dcc = SM_I(sbi)->dcc_info;
2080                 goto init_thread;
2081         }
2082 
2083         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2084         if (!dcc)
2085                 return -ENOMEM;
2086 
2087         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2088         INIT_LIST_HEAD(&dcc->entry_list);
2089         for (i = 0; i < MAX_PLIST_NUM; i++)
2090                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2091         INIT_LIST_HEAD(&dcc->wait_list);
2092         INIT_LIST_HEAD(&dcc->fstrim_list);
2093         mutex_init(&dcc->cmd_lock);
2094         atomic_set(&dcc->issued_discard, 0);
2095         atomic_set(&dcc->queued_discard, 0);
2096         atomic_set(&dcc->discard_cmd_cnt, 0);
2097         dcc->nr_discards = 0;
2098         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2099         dcc->undiscard_blks = 0;
2100         dcc->next_pos = 0;
2101         dcc->root = RB_ROOT_CACHED;
2102         dcc->rbtree_check = false;
2103 
2104         init_waitqueue_head(&dcc->discard_wait_queue);
2105         SM_I(sbi)->dcc_info = dcc;
2106 init_thread:
2107         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2108                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2109         if (IS_ERR(dcc->f2fs_issue_discard)) {
2110                 err = PTR_ERR(dcc->f2fs_issue_discard);
2111                 kfree(dcc);
2112                 SM_I(sbi)->dcc_info = NULL;
2113                 return err;
2114         }
2115 
2116         return err;
2117 }
2118 
2119 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2120 {
2121         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2122 
2123         if (!dcc)
2124                 return;
2125 
2126         f2fs_stop_discard_thread(sbi);
2127 
2128         /*
2129          * Recovery can cache discard commands, so in error path of
2130          * fill_super(), it needs to give a chance to handle them.
2131          */
2132         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2133                 f2fs_issue_discard_timeout(sbi);
2134 
2135         kfree(dcc);
2136         SM_I(sbi)->dcc_info = NULL;
2137 }
2138 
2139 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2140 {
2141         struct sit_info *sit_i = SIT_I(sbi);
2142 
2143         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2144                 sit_i->dirty_sentries++;
2145                 return false;
2146         }
2147 
2148         return true;
2149 }
2150 
2151 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2152                                         unsigned int segno, int modified)
2153 {
2154         struct seg_entry *se = get_seg_entry(sbi, segno);
2155         se->type = type;
2156         if (modified)
2157                 __mark_sit_entry_dirty(sbi, segno);
2158 }
2159 
2160 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2161                                                                 block_t blkaddr)
2162 {
2163         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2164 
2165         if (segno == NULL_SEGNO)
2166                 return 0;
2167         return get_seg_entry(sbi, segno)->mtime;
2168 }
2169 
2170 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2171                                                 unsigned long long old_mtime)
2172 {
2173         struct seg_entry *se;
2174         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2175         unsigned long long ctime = get_mtime(sbi, false);
2176         unsigned long long mtime = old_mtime ? old_mtime : ctime;
2177 
2178         if (segno == NULL_SEGNO)
2179                 return;
2180 
2181         se = get_seg_entry(sbi, segno);
2182 
2183         if (!se->mtime)
2184                 se->mtime = mtime;
2185         else
2186                 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2187                                                 se->valid_blocks + 1);
2188 
2189         if (ctime > SIT_I(sbi)->max_mtime)
2190                 SIT_I(sbi)->max_mtime = ctime;
2191 }
2192 
2193 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2194 {
2195         struct seg_entry *se;
2196         unsigned int segno, offset;
2197         long int new_vblocks;
2198         bool exist;
2199 #ifdef CONFIG_F2FS_CHECK_FS
2200         bool mir_exist;
2201 #endif
2202 
2203         segno = GET_SEGNO(sbi, blkaddr);
2204 
2205         se = get_seg_entry(sbi, segno);
2206         new_vblocks = se->valid_blocks + del;
2207         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2208 
2209         f2fs_bug_on(sbi, (new_vblocks < 0 ||
2210                         (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2211 
2212         se->valid_blocks = new_vblocks;
2213 
2214         /* Update valid block bitmap */
2215         if (del > 0) {
2216                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2217 #ifdef CONFIG_F2FS_CHECK_FS
2218                 mir_exist = f2fs_test_and_set_bit(offset,
2219                                                 se->cur_valid_map_mir);
2220                 if (unlikely(exist != mir_exist)) {
2221                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2222                                  blkaddr, exist);
2223                         f2fs_bug_on(sbi, 1);
2224                 }
2225 #endif
2226                 if (unlikely(exist)) {
2227                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2228                                  blkaddr);
2229                         f2fs_bug_on(sbi, 1);
2230                         se->valid_blocks--;
2231                         del = 0;
2232                 }
2233 
2234                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2235                         sbi->discard_blks--;
2236 
2237                 /*
2238                  * SSR should never reuse block which is checkpointed
2239                  * or newly invalidated.
2240                  */
2241                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2242                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2243                                 se->ckpt_valid_blocks++;
2244                 }
2245         } else {
2246                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2247 #ifdef CONFIG_F2FS_CHECK_FS
2248                 mir_exist = f2fs_test_and_clear_bit(offset,
2249                                                 se->cur_valid_map_mir);
2250                 if (unlikely(exist != mir_exist)) {
2251                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2252                                  blkaddr, exist);
2253                         f2fs_bug_on(sbi, 1);
2254                 }
2255 #endif
2256                 if (unlikely(!exist)) {
2257                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2258                                  blkaddr);
2259                         f2fs_bug_on(sbi, 1);
2260                         se->valid_blocks++;
2261                         del = 0;
2262                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2263                         /*
2264                          * If checkpoints are off, we must not reuse data that
2265                          * was used in the previous checkpoint. If it was used
2266                          * before, we must track that to know how much space we
2267                          * really have.
2268                          */
2269                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2270                                 spin_lock(&sbi->stat_lock);
2271                                 sbi->unusable_block_count++;
2272                                 spin_unlock(&sbi->stat_lock);
2273                         }
2274                 }
2275 
2276                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2277                         sbi->discard_blks++;
2278         }
2279         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2280                 se->ckpt_valid_blocks += del;
2281 
2282         __mark_sit_entry_dirty(sbi, segno);
2283 
2284         /* update total number of valid blocks to be written in ckpt area */
2285         SIT_I(sbi)->written_valid_blocks += del;
2286 
2287         if (__is_large_section(sbi))
2288                 get_sec_entry(sbi, segno)->valid_blocks += del;
2289 }
2290 
2291 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2292 {
2293         unsigned int segno = GET_SEGNO(sbi, addr);
2294         struct sit_info *sit_i = SIT_I(sbi);
2295 
2296         f2fs_bug_on(sbi, addr == NULL_ADDR);
2297         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2298                 return;
2299 
2300         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2301 
2302         /* add it into sit main buffer */
2303         down_write(&sit_i->sentry_lock);
2304 
2305         update_segment_mtime(sbi, addr, 0);
2306         update_sit_entry(sbi, addr, -1);
2307 
2308         /* add it into dirty seglist */
2309         locate_dirty_segment(sbi, segno);
2310 
2311         up_write(&sit_i->sentry_lock);
2312 }
2313 
2314 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2315 {
2316         struct sit_info *sit_i = SIT_I(sbi);
2317         unsigned int segno, offset;
2318         struct seg_entry *se;
2319         bool is_cp = false;
2320 
2321         if (!__is_valid_data_blkaddr(blkaddr))
2322                 return true;
2323 
2324         down_read(&sit_i->sentry_lock);
2325 
2326         segno = GET_SEGNO(sbi, blkaddr);
2327         se = get_seg_entry(sbi, segno);
2328         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2329 
2330         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2331                 is_cp = true;
2332 
2333         up_read(&sit_i->sentry_lock);
2334 
2335         return is_cp;
2336 }
2337 
2338 /*
2339  * This function should be resided under the curseg_mutex lock
2340  */
2341 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2342                                         struct f2fs_summary *sum)
2343 {
2344         struct curseg_info *curseg = CURSEG_I(sbi, type);
2345         void *addr = curseg->sum_blk;
2346         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2347         memcpy(addr, sum, sizeof(struct f2fs_summary));
2348 }
2349 
2350 /*
2351  * Calculate the number of current summary pages for writing
2352  */
2353 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2354 {
2355         int valid_sum_count = 0;
2356         int i, sum_in_page;
2357 
2358         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2359                 if (sbi->ckpt->alloc_type[i] == SSR)
2360                         valid_sum_count += sbi->blocks_per_seg;
2361                 else {
2362                         if (for_ra)
2363                                 valid_sum_count += le16_to_cpu(
2364                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2365                         else
2366                                 valid_sum_count += curseg_blkoff(sbi, i);
2367                 }
2368         }
2369 
2370         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2371                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2372         if (valid_sum_count <= sum_in_page)
2373                 return 1;
2374         else if ((valid_sum_count - sum_in_page) <=
2375                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2376                 return 2;
2377         return 3;
2378 }
2379 
2380 /*
2381  * Caller should put this summary page
2382  */
2383 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2384 {
2385         if (unlikely(f2fs_cp_error(sbi)))
2386                 return ERR_PTR(-EIO);
2387         return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2388 }
2389 
2390 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2391                                         void *src, block_t blk_addr)
2392 {
2393         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2394 
2395         memcpy(page_address(page), src, PAGE_SIZE);
2396         set_page_dirty(page);
2397         f2fs_put_page(page, 1);
2398 }
2399 
2400 static void write_sum_page(struct f2fs_sb_info *sbi,
2401                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2402 {
2403         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2404 }
2405 
2406 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2407                                                 int type, block_t blk_addr)
2408 {
2409         struct curseg_info *curseg = CURSEG_I(sbi, type);
2410         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2411         struct f2fs_summary_block *src = curseg->sum_blk;
2412         struct f2fs_summary_block *dst;
2413 
2414         dst = (struct f2fs_summary_block *)page_address(page);
2415         memset(dst, 0, PAGE_SIZE);
2416 
2417         mutex_lock(&curseg->curseg_mutex);
2418 
2419         down_read(&curseg->journal_rwsem);
2420         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2421         up_read(&curseg->journal_rwsem);
2422 
2423         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2424         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2425 
2426         mutex_unlock(&curseg->curseg_mutex);
2427 
2428         set_page_dirty(page);
2429         f2fs_put_page(page, 1);
2430 }
2431 
2432 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2433                                 struct curseg_info *curseg, int type)
2434 {
2435         unsigned int segno = curseg->segno + 1;
2436         struct free_segmap_info *free_i = FREE_I(sbi);
2437 
2438         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2439                 return !test_bit(segno, free_i->free_segmap);
2440         return 0;
2441 }
2442 
2443 /*
2444  * Find a new segment from the free segments bitmap to right order
2445  * This function should be returned with success, otherwise BUG
2446  */
2447 static void get_new_segment(struct f2fs_sb_info *sbi,
2448                         unsigned int *newseg, bool new_sec, int dir)
2449 {
2450         struct free_segmap_info *free_i = FREE_I(sbi);
2451         unsigned int segno, secno, zoneno;
2452         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2453         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2454         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2455         unsigned int left_start = hint;
2456         bool init = true;
2457         int go_left = 0;
2458         int i;
2459 
2460         spin_lock(&free_i->segmap_lock);
2461 
2462         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2463                 segno = find_next_zero_bit(free_i->free_segmap,
2464                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2465                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2466                         goto got_it;
2467         }
2468 find_other_zone:
2469         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2470         if (secno >= MAIN_SECS(sbi)) {
2471                 if (dir == ALLOC_RIGHT) {
2472                         secno = find_next_zero_bit(free_i->free_secmap,
2473                                                         MAIN_SECS(sbi), 0);
2474                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2475                 } else {
2476                         go_left = 1;
2477                         left_start = hint - 1;
2478                 }
2479         }
2480         if (go_left == 0)
2481                 goto skip_left;
2482 
2483         while (test_bit(left_start, free_i->free_secmap)) {
2484                 if (left_start > 0) {
2485                         left_start--;
2486                         continue;
2487                 }
2488                 left_start = find_next_zero_bit(free_i->free_secmap,
2489                                                         MAIN_SECS(sbi), 0);
2490                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2491                 break;
2492         }
2493         secno = left_start;
2494 skip_left:
2495         segno = GET_SEG_FROM_SEC(sbi, secno);
2496         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2497 
2498         /* give up on finding another zone */
2499         if (!init)
2500                 goto got_it;
2501         if (sbi->secs_per_zone == 1)
2502                 goto got_it;
2503         if (zoneno == old_zoneno)
2504                 goto got_it;
2505         if (dir == ALLOC_LEFT) {
2506                 if (!go_left && zoneno + 1 >= total_zones)
2507                         goto got_it;
2508                 if (go_left && zoneno == 0)
2509                         goto got_it;
2510         }
2511         for (i = 0; i < NR_CURSEG_TYPE; i++)
2512                 if (CURSEG_I(sbi, i)->zone == zoneno)
2513                         break;
2514 
2515         if (i < NR_CURSEG_TYPE) {
2516                 /* zone is in user, try another */
2517                 if (go_left)
2518                         hint = zoneno * sbi->secs_per_zone - 1;
2519                 else if (zoneno + 1 >= total_zones)
2520                         hint = 0;
2521                 else
2522                         hint = (zoneno + 1) * sbi->secs_per_zone;
2523                 init = false;
2524                 goto find_other_zone;
2525         }
2526 got_it:
2527         /* set it as dirty segment in free segmap */
2528         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2529         __set_inuse(sbi, segno);
2530         *newseg = segno;
2531         spin_unlock(&free_i->segmap_lock);
2532 }
2533 
2534 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2535 {
2536         struct curseg_info *curseg = CURSEG_I(sbi, type);
2537         struct summary_footer *sum_footer;
2538         unsigned short seg_type = curseg->seg_type;
2539 
2540         curseg->inited = true;
2541         curseg->segno = curseg->next_segno;
2542         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2543         curseg->next_blkoff = 0;
2544         curseg->next_segno = NULL_SEGNO;
2545 
2546         sum_footer = &(curseg->sum_blk->footer);
2547         memset(sum_footer, 0, sizeof(struct summary_footer));
2548 
2549         sanity_check_seg_type(sbi, seg_type);
2550 
2551         if (IS_DATASEG(seg_type))
2552                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2553         if (IS_NODESEG(seg_type))
2554                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2555         __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2556 }
2557 
2558 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2559 {
2560         struct curseg_info *curseg = CURSEG_I(sbi, type);
2561         unsigned short seg_type = curseg->seg_type;
2562 
2563         sanity_check_seg_type(sbi, seg_type);
2564 
2565         /* if segs_per_sec is large than 1, we need to keep original policy. */
2566         if (__is_large_section(sbi))
2567                 return curseg->segno;
2568 
2569         /* inmem log may not locate on any segment after mount */
2570         if (!curseg->inited)
2571                 return 0;
2572 
2573         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2574                 return 0;
2575 
2576         if (test_opt(sbi, NOHEAP) &&
2577                 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2578                 return 0;
2579 
2580         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2581                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2582 
2583         /* find segments from 0 to reuse freed segments */
2584         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2585                 return 0;
2586 
2587         return curseg->segno;
2588 }
2589 
2590 /*
2591  * Allocate a current working segment.
2592  * This function always allocates a free segment in LFS manner.
2593  */
2594 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2595 {
2596         struct curseg_info *curseg = CURSEG_I(sbi, type);
2597         unsigned short seg_type = curseg->seg_type;
2598         unsigned int segno = curseg->segno;
2599         int dir = ALLOC_LEFT;
2600 
2601         if (curseg->inited)
2602                 write_sum_page(sbi, curseg->sum_blk,
2603                                 GET_SUM_BLOCK(sbi, segno));
2604         if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2605                 dir = ALLOC_RIGHT;
2606 
2607         if (test_opt(sbi, NOHEAP))
2608                 dir = ALLOC_RIGHT;
2609 
2610         segno = __get_next_segno(sbi, type);
2611         get_new_segment(sbi, &segno, new_sec, dir);
2612         curseg->next_segno = segno;
2613         reset_curseg(sbi, type, 1);
2614         curseg->alloc_type = LFS;
2615 }
2616 
2617 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2618                         struct curseg_info *seg, block_t start)
2619 {
2620         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2621         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2622         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2623         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2624         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2625         int i, pos;
2626 
2627         for (i = 0; i < entries; i++)
2628                 target_map[i] = ckpt_map[i] | cur_map[i];
2629 
2630         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2631 
2632         seg->next_blkoff = pos;
2633 }
2634 
2635 /*
2636  * If a segment is written by LFS manner, next block offset is just obtained
2637  * by increasing the current block offset. However, if a segment is written by
2638  * SSR manner, next block offset obtained by calling __next_free_blkoff
2639  */
2640 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2641                                 struct curseg_info *seg)
2642 {
2643         if (seg->alloc_type == SSR)
2644                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2645         else
2646                 seg->next_blkoff++;
2647 }
2648 
2649 /*
2650  * This function always allocates a used segment(from dirty seglist) by SSR
2651  * manner, so it should recover the existing segment information of valid blocks
2652  */
2653 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2654 {
2655         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2656         struct curseg_info *curseg = CURSEG_I(sbi, type);
2657         unsigned int new_segno = curseg->next_segno;
2658         struct f2fs_summary_block *sum_node;
2659         struct page *sum_page;
2660 
2661         if (flush)
2662                 write_sum_page(sbi, curseg->sum_blk,
2663                                         GET_SUM_BLOCK(sbi, curseg->segno));
2664 
2665         __set_test_and_inuse(sbi, new_segno);
2666 
2667         mutex_lock(&dirty_i->seglist_lock);
2668         __remove_dirty_segment(sbi, new_segno, PRE);
2669         __remove_dirty_segment(sbi, new_segno, DIRTY);
2670         mutex_unlock(&dirty_i->seglist_lock);
2671 
2672         reset_curseg(sbi, type, 1);
2673         curseg->alloc_type = SSR;
2674         __next_free_blkoff(sbi, curseg, 0);
2675 
2676         sum_page = f2fs_get_sum_page(sbi, new_segno);
2677         if (IS_ERR(sum_page)) {
2678                 /* GC won't be able to use stale summary pages by cp_error */
2679                 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2680                 return;
2681         }
2682         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2683         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2684         f2fs_put_page(sum_page, 1);
2685 }
2686 
2687 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2688                                 int alloc_mode, unsigned long long age);
2689 
2690 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2691                                         int target_type, int alloc_mode,
2692                                         unsigned long long age)
2693 {
2694         struct curseg_info *curseg = CURSEG_I(sbi, type);
2695 
2696         curseg->seg_type = target_type;
2697 
2698         if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2699                 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2700 
2701                 curseg->seg_type = se->type;
2702                 change_curseg(sbi, type, true);
2703         } else {
2704                 /* allocate cold segment by default */
2705                 curseg->seg_type = CURSEG_COLD_DATA;
2706                 new_curseg(sbi, type, true);
2707         }
2708         stat_inc_seg_type(sbi, curseg);
2709 }
2710 
2711 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2712 {
2713         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2714 
2715         if (!sbi->am.atgc_enabled)
2716                 return;
2717 
2718         down_read(&SM_I(sbi)->curseg_lock);
2719 
2720         mutex_lock(&curseg->curseg_mutex);
2721         down_write(&SIT_I(sbi)->sentry_lock);
2722 
2723         get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2724 
2725         up_write(&SIT_I(sbi)->sentry_lock);
2726         mutex_unlock(&curseg->curseg_mutex);
2727 
2728         up_read(&SM_I(sbi)->curseg_lock);
2729 
2730 }
2731 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2732 {
2733         __f2fs_init_atgc_curseg(sbi);
2734 }
2735 
2736 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2737 {
2738         struct curseg_info *curseg = CURSEG_I(sbi, type);
2739 
2740         mutex_lock(&curseg->curseg_mutex);
2741         if (!curseg->inited)
2742                 goto out;
2743 
2744         if (get_valid_blocks(sbi, curseg->segno, false)) {
2745                 write_sum_page(sbi, curseg->sum_blk,
2746                                 GET_SUM_BLOCK(sbi, curseg->segno));
2747         } else {
2748                 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2749                 __set_test_and_free(sbi, curseg->segno, true);
2750                 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2751         }
2752 out:
2753         mutex_unlock(&curseg->curseg_mutex);
2754 }
2755 
2756 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2757 {
2758         __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2759 
2760         if (sbi->am.atgc_enabled)
2761                 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2762 }
2763 
2764 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2765 {
2766         struct curseg_info *curseg = CURSEG_I(sbi, type);
2767 
2768         mutex_lock(&curseg->curseg_mutex);
2769         if (!curseg->inited)
2770                 goto out;
2771         if (get_valid_blocks(sbi, curseg->segno, false))
2772                 goto out;
2773 
2774         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2775         __set_test_and_inuse(sbi, curseg->segno);
2776         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2777 out:
2778         mutex_unlock(&curseg->curseg_mutex);
2779 }
2780 
2781 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2782 {
2783         __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2784 
2785         if (sbi->am.atgc_enabled)
2786                 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2787 }
2788 
2789 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2790                                 int alloc_mode, unsigned long long age)
2791 {
2792         struct curseg_info *curseg = CURSEG_I(sbi, type);
2793         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2794         unsigned segno = NULL_SEGNO;
2795         unsigned short seg_type = curseg->seg_type;
2796         int i, cnt;
2797         bool reversed = false;
2798 
2799         sanity_check_seg_type(sbi, seg_type);
2800 
2801         /* f2fs_need_SSR() already forces to do this */
2802         if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2803                 curseg->next_segno = segno;
2804                 return 1;
2805         }
2806 
2807         /* For node segments, let's do SSR more intensively */
2808         if (IS_NODESEG(seg_type)) {
2809                 if (seg_type >= CURSEG_WARM_NODE) {
2810                         reversed = true;
2811                         i = CURSEG_COLD_NODE;
2812                 } else {
2813                         i = CURSEG_HOT_NODE;
2814                 }
2815                 cnt = NR_CURSEG_NODE_TYPE;
2816         } else {
2817                 if (seg_type >= CURSEG_WARM_DATA) {
2818                         reversed = true;
2819                         i = CURSEG_COLD_DATA;
2820                 } else {
2821                         i = CURSEG_HOT_DATA;
2822                 }
2823                 cnt = NR_CURSEG_DATA_TYPE;
2824         }
2825 
2826         for (; cnt-- > 0; reversed ? i-- : i++) {
2827                 if (i == seg_type)
2828                         continue;
2829                 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2830                         curseg->next_segno = segno;
2831                         return 1;
2832                 }
2833         }
2834 
2835         /* find valid_blocks=0 in dirty list */
2836         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2837                 segno = get_free_segment(sbi);
2838                 if (segno != NULL_SEGNO) {
2839                         curseg->next_segno = segno;
2840                         return 1;
2841                 }
2842         }
2843         return 0;
2844 }
2845 
2846 /*
2847  * flush out current segment and replace it with new segment
2848  * This function should be returned with success, otherwise BUG
2849  */
2850 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2851                                                 int type, bool force)
2852 {
2853         struct curseg_info *curseg = CURSEG_I(sbi, type);
2854 
2855         if (force)
2856                 new_curseg(sbi, type, true);
2857         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2858                                         curseg->seg_type == CURSEG_WARM_NODE)
2859                 new_curseg(sbi, type, false);
2860         else if (curseg->alloc_type == LFS &&
2861                         is_next_segment_free(sbi, curseg, type) &&
2862                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2863                 new_curseg(sbi, type, false);
2864         else if (f2fs_need_SSR(sbi) &&
2865                         get_ssr_segment(sbi, type, SSR, 0))
2866                 change_curseg(sbi, type, true);
2867         else
2868                 new_curseg(sbi, type, false);
2869 
2870         stat_inc_seg_type(sbi, curseg);
2871 }
2872 
2873 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2874                                         unsigned int start, unsigned int end)
2875 {
2876         struct curseg_info *curseg = CURSEG_I(sbi, type);
2877         unsigned int segno;
2878 
2879         down_read(&SM_I(sbi)->curseg_lock);
2880         mutex_lock(&curseg->curseg_mutex);
2881         down_write(&SIT_I(sbi)->sentry_lock);
2882 
2883         segno = CURSEG_I(sbi, type)->segno;
2884         if (segno < start || segno > end)
2885                 goto unlock;
2886 
2887         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2888                 change_curseg(sbi, type, true);
2889         else
2890                 new_curseg(sbi, type, true);
2891 
2892         stat_inc_seg_type(sbi, curseg);
2893 
2894         locate_dirty_segment(sbi, segno);
2895 unlock:
2896         up_write(&SIT_I(sbi)->sentry_lock);
2897 
2898         if (segno != curseg->segno)
2899                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2900                             type, segno, curseg->segno);
2901 
2902         mutex_unlock(&curseg->curseg_mutex);
2903         up_read(&SM_I(sbi)->curseg_lock);
2904 }
2905 
2906 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2907 {
2908         struct curseg_info *curseg = CURSEG_I(sbi, type);
2909         unsigned int old_segno;
2910 
2911         if (!curseg->inited)
2912                 goto alloc;
2913 
2914         if (!curseg->next_blkoff &&
2915                 !get_valid_blocks(sbi, curseg->segno, false) &&
2916                 !get_ckpt_valid_blocks(sbi, curseg->segno))
2917                 return;
2918 
2919 alloc:
2920         old_segno = curseg->segno;
2921         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2922         locate_dirty_segment(sbi, old_segno);
2923 }
2924 
2925 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2926 {
2927         down_write(&SIT_I(sbi)->sentry_lock);
2928         __allocate_new_segment(sbi, type);
2929         up_write(&SIT_I(sbi)->sentry_lock);
2930 }
2931 
2932 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2933 {
2934         int i;
2935 
2936         down_write(&SIT_I(sbi)->sentry_lock);
2937         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2938                 __allocate_new_segment(sbi, i);
2939         up_write(&SIT_I(sbi)->sentry_lock);
2940 }
2941 
2942 static const struct segment_allocation default_salloc_ops = {
2943         .allocate_segment = allocate_segment_by_default,
2944 };
2945 
2946 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2947                                                 struct cp_control *cpc)
2948 {
2949         __u64 trim_start = cpc->trim_start;
2950         bool has_candidate = false;
2951 
2952         down_write(&SIT_I(sbi)->sentry_lock);
2953         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2954                 if (add_discard_addrs(sbi, cpc, true)) {
2955                         has_candidate = true;
2956                         break;
2957                 }
2958         }
2959         up_write(&SIT_I(sbi)->sentry_lock);
2960 
2961         cpc->trim_start = trim_start;
2962         return has_candidate;
2963 }
2964 
2965 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2966                                         struct discard_policy *dpolicy,
2967                                         unsigned int start, unsigned int end)
2968 {
2969         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2970         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2971         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2972         struct discard_cmd *dc;
2973         struct blk_plug plug;
2974         int issued;
2975         unsigned int trimmed = 0;
2976 
2977 next:
2978         issued = 0;
2979 
2980         mutex_lock(&dcc->cmd_lock);
2981         if (unlikely(dcc->rbtree_check))
2982                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2983                                                         &dcc->root, false));
2984 
2985         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2986                                         NULL, start,
2987                                         (struct rb_entry **)&prev_dc,
2988                                         (struct rb_entry **)&next_dc,
2989                                         &insert_p, &insert_parent, true, NULL);
2990         if (!dc)
2991                 dc = next_dc;
2992 
2993         blk_start_plug(&plug);
2994 
2995         while (dc && dc->lstart <= end) {
2996                 struct rb_node *node;
2997                 int err = 0;
2998 
2999                 if (dc->len < dpolicy->granularity)
3000                         goto skip;
3001 
3002                 if (dc->state != D_PREP) {
3003                         list_move_tail(&dc->list, &dcc->fstrim_list);
3004                         goto skip;
3005                 }
3006 
3007                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3008 
3009                 if (issued >= dpolicy->max_requests) {
3010                         start = dc->lstart + dc->len;
3011 
3012                         if (err)
3013                                 __remove_discard_cmd(sbi, dc);
3014 
3015                         blk_finish_plug(&plug);
3016                         mutex_unlock(&dcc->cmd_lock);
3017                         trimmed += __wait_all_discard_cmd(sbi, NULL);
3018                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3019                         goto next;
3020                 }
3021 skip:
3022                 node = rb_next(&dc->rb_node);
3023                 if (err)
3024                         __remove_discard_cmd(sbi, dc);
3025                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3026 
3027                 if (fatal_signal_pending(current))
3028                         break;
3029         }
3030 
3031         blk_finish_plug(&plug);
3032         mutex_unlock(&dcc->cmd_lock);
3033 
3034         return trimmed;
3035 }
3036 
3037 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3038 {
3039         __u64 start = F2FS_BYTES_TO_BLK(range->start);
3040         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3041         unsigned int start_segno, end_segno;
3042         block_t start_block, end_block;
3043         struct cp_control cpc;
3044         struct discard_policy dpolicy;
3045         unsigned long long trimmed = 0;
3046         int err = 0;
3047         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3048 
3049         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3050                 return -EINVAL;
3051 
3052         if (end < MAIN_BLKADDR(sbi))
3053                 goto out;
3054 
3055         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3056                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3057                 return -EFSCORRUPTED;
3058         }
3059 
3060         /* start/end segment number in main_area */
3061         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3062         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3063                                                 GET_SEGNO(sbi, end);
3064         if (need_align) {
3065                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3066                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3067         }
3068 
3069         cpc.reason = CP_DISCARD;
3070         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3071         cpc.trim_start = start_segno;
3072         cpc.trim_end = end_segno;
3073 
3074         if (sbi->discard_blks == 0)
3075                 goto out;
3076 
3077         down_write(&sbi->gc_lock);
3078         err = f2fs_write_checkpoint(sbi, &cpc);
3079         up_write(&sbi->gc_lock);
3080         if (err)
3081                 goto out;
3082 
3083         /*
3084          * We filed discard candidates, but actually we don't need to wait for
3085          * all of them, since they'll be issued in idle time along with runtime
3086          * discard option. User configuration looks like using runtime discard
3087          * or periodic fstrim instead of it.
3088          */
3089         if (f2fs_realtime_discard_enable(sbi))
3090                 goto out;
3091 
3092         start_block = START_BLOCK(sbi, start_segno);
3093         end_block = START_BLOCK(sbi, end_segno + 1);
3094 
3095         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3096         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3097                                         start_block, end_block);
3098 
3099         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3100                                         start_block, end_block);
3101 out:
3102         if (!err)
3103                 range->len = F2FS_BLK_TO_BYTES(trimmed);
3104         return err;
3105 }
3106 
3107 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3108                                         struct curseg_info *curseg)
3109 {
3110         return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3111                                                         curseg->segno);
3112 }
3113 
3114 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3115 {
3116         switch (hint) {
3117         case WRITE_LIFE_SHORT:
3118                 return CURSEG_HOT_DATA;
3119         case WRITE_LIFE_EXTREME:
3120                 return CURSEG_COLD_DATA;
3121         default:
3122                 return CURSEG_WARM_DATA;
3123         }
3124 }
3125 
3126 /* This returns write hints for each segment type. This hints will be
3127  * passed down to block layer. There are mapping tables which depend on
3128  * the mount option 'whint_mode'.
3129  *
3130  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3131  *
3132  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3133  *
3134  * User                  F2FS                     Block
3135  * ----                  ----                     -----
3136  *                       META                     WRITE_LIFE_NOT_SET
3137  *                       HOT_NODE                 "
3138  *                       WARM_NODE                "
3139  *                       COLD_NODE                "
3140  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3141  * extension list        "                        "
3142  *
3143  * -- buffered io
3144  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3145  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3146  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3147  * WRITE_LIFE_NONE       "                        "
3148  * WRITE_LIFE_MEDIUM     "                        "
3149  * WRITE_LIFE_LONG       "                        "
3150  *
3151  * -- direct io
3152  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3153  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3154  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3155  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3156  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3157  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3158  *
3159  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3160  *
3161  * User                  F2FS                     Block
3162  * ----                  ----                     -----
3163  *                       META                     WRITE_LIFE_MEDIUM;
3164  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3165  *                       WARM_NODE                "
3166  *                       COLD_NODE                WRITE_LIFE_NONE
3167  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3168  * extension list        "                        "
3169  *
3170  * -- buffered io
3171  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3172  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3173  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3174  * WRITE_LIFE_NONE       "                        "
3175  * WRITE_LIFE_MEDIUM     "                        "
3176  * WRITE_LIFE_LONG       "                        "
3177  *
3178  * -- direct io
3179  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3180  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3181  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3182  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3183  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3184  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3185  */
3186 
3187 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3188                                 enum page_type type, enum temp_type temp)
3189 {
3190         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3191                 if (type == DATA) {
3192                         if (temp == WARM)
3193                                 return WRITE_LIFE_NOT_SET;
3194                         else if (temp == HOT)
3195                                 return WRITE_LIFE_SHORT;
3196                         else if (temp == COLD)
3197                                 return WRITE_LIFE_EXTREME;
3198                 } else {
3199                         return WRITE_LIFE_NOT_SET;
3200                 }
3201         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3202                 if (type == DATA) {
3203                         if (temp == WARM)
3204                                 return WRITE_LIFE_LONG;
3205                         else if (temp == HOT)
3206                                 return WRITE_LIFE_SHORT;
3207                         else if (temp == COLD)
3208                                 return WRITE_LIFE_EXTREME;
3209                 } else if (type == NODE) {
3210                         if (temp == WARM || temp == HOT)
3211                                 return WRITE_LIFE_NOT_SET;
3212                         else if (temp == COLD)
3213                                 return WRITE_LIFE_NONE;
3214                 } else if (type == META) {
3215                         return WRITE_LIFE_MEDIUM;
3216                 }
3217         }
3218         return WRITE_LIFE_NOT_SET;
3219 }
3220 
3221 static int __get_segment_type_2(struct f2fs_io_info *fio)
3222 {
3223         if (fio->type == DATA)
3224                 return CURSEG_HOT_DATA;
3225         else
3226                 return CURSEG_HOT_NODE;
3227 }
3228 
3229 static int __get_segment_type_4(struct f2fs_io_info *fio)
3230 {
3231         if (fio->type == DATA) {
3232                 struct inode *inode = fio->page->mapping->host;
3233 
3234                 if (S_ISDIR(inode->i_mode))
3235                         return CURSEG_HOT_DATA;
3236                 else
3237                         return CURSEG_COLD_DATA;
3238         } else {
3239                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3240                         return CURSEG_WARM_NODE;
3241                 else
3242                         return CURSEG_COLD_NODE;
3243         }
3244 }
3245 
3246 static int __get_segment_type_6(struct f2fs_io_info *fio)
3247 {
3248         if (fio->type == DATA) {
3249                 struct inode *inode = fio->page->mapping->host;
3250 
3251                 if (is_cold_data(fio->page)) {
3252                         if (fio->sbi->am.atgc_enabled)
3253                                 return CURSEG_ALL_DATA_ATGC;
3254                         else
3255                                 return CURSEG_COLD_DATA;
3256                 }
3257                 if (file_is_cold(inode) || f2fs_compressed_file(inode))
3258                         return CURSEG_COLD_DATA;
3259                 if (file_is_hot(inode) ||
3260                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3261                                 f2fs_is_atomic_file(inode) ||
3262                                 f2fs_is_volatile_file(inode))
3263                         return CURSEG_HOT_DATA;
3264                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3265         } else {
3266                 if (IS_DNODE(fio->page))
3267                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3268                                                 CURSEG_HOT_NODE;
3269                 return CURSEG_COLD_NODE;
3270         }
3271 }
3272 
3273 static int __get_segment_type(struct f2fs_io_info *fio)
3274 {
3275         int type = 0;
3276 
3277         switch (F2FS_OPTION(fio->sbi).active_logs) {
3278         case 2:
3279                 type = __get_segment_type_2(fio);
3280                 break;
3281         case 4:
3282                 type = __get_segment_type_4(fio);
3283                 break;
3284         case 6:
3285                 type = __get_segment_type_6(fio);
3286                 break;
3287         default:
3288                 f2fs_bug_on(fio->sbi, true);
3289         }
3290 
3291         if (IS_HOT(type))
3292                 fio->temp = HOT;
3293         else if (IS_WARM(type))
3294                 fio->temp = WARM;
3295         else
3296                 fio->temp = COLD;
3297         return type;
3298 }
3299 
3300 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3301                 block_t old_blkaddr, block_t *new_blkaddr,
3302                 struct f2fs_summary *sum, int type,
3303                 struct f2fs_io_info *fio)
3304 {
3305         struct sit_info *sit_i = SIT_I(sbi);
3306         struct curseg_info *curseg = CURSEG_I(sbi, type);
3307         unsigned long long old_mtime;
3308         bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3309         struct seg_entry *se = NULL;
3310 
3311         down_read(&SM_I(sbi)->curseg_lock);
3312 
3313         mutex_lock(&curseg->curseg_mutex);
3314         down_write(&sit_i->sentry_lock);
3315 
3316         if (from_gc) {
3317                 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3318                 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3319                 sanity_check_seg_type(sbi, se->type);
3320                 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3321         }
3322         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3323 
3324         f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3325 
3326         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3327 
3328         /*
3329          * __add_sum_entry should be resided under the curseg_mutex
3330          * because, this function updates a summary entry in the
3331          * current summary block.
3332          */
3333         __add_sum_entry(sbi, type, sum);
3334 
3335         __refresh_next_blkoff(sbi, curseg);
3336 
3337         stat_inc_block_count(sbi, curseg);
3338 
3339         if (from_gc) {
3340                 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3341         } else {
3342                 update_segment_mtime(sbi, old_blkaddr, 0);
3343                 old_mtime = 0;
3344         }
3345         update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3346 
3347         /*
3348          * SIT information should be updated before segment allocation,
3349          * since SSR needs latest valid block information.
3350          */
3351         update_sit_entry(sbi, *new_blkaddr, 1);
3352         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3353                 update_sit_entry(sbi, old_blkaddr, -1);
3354 
3355         if (!__has_curseg_space(sbi, curseg)) {
3356                 if (from_gc)
3357                         get_atssr_segment(sbi, type, se->type,
3358                                                 AT_SSR, se->mtime);
3359                 else
3360                         sit_i->s_ops->allocate_segment(sbi, type, false);
3361         }
3362         /*
3363          * segment dirty status should be updated after segment allocation,
3364          * so we just need to update status only one time after previous
3365          * segment being closed.
3366          */
3367         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3368         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3369 
3370         up_write(&sit_i->sentry_lock);
3371 
3372         if (page && IS_NODESEG(type)) {
3373                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3374 
3375                 f2fs_inode_chksum_set(sbi, page);
3376         }
3377 
3378         if (F2FS_IO_ALIGNED(sbi))
3379                 fio->retry = false;
3380 
3381         if (fio) {
3382                 struct f2fs_bio_info *io;
3383 
3384                 INIT_LIST_HEAD(&fio->list);
3385                 fio->in_list = true;
3386                 io = sbi->write_io[fio->type] + fio->temp;
3387                 spin_lock(&io->io_lock);
3388                 list_add_tail(&fio->list, &io->io_list);
3389                 spin_unlock(&io->io_lock);
3390         }
3391 
3392         mutex_unlock(&curseg->curseg_mutex);
3393 
3394         up_read(&SM_I(sbi)->curseg_lock);
3395 }
3396 
3397 static void update_device_state(struct f2fs_io_info *fio)
3398 {
3399         struct f2fs_sb_info *sbi = fio->sbi;
3400         unsigned int devidx;
3401 
3402         if (!f2fs_is_multi_device(sbi))
3403                 return;
3404 
3405         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3406 
3407         /* update device state for fsync */
3408         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3409 
3410         /* update device state for checkpoint */
3411         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3412                 spin_lock(&sbi->dev_lock);
3413                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3414                 spin_unlock(&sbi->dev_lock);
3415         }
3416 }
3417 
3418 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3419 {
3420         int type = __get_segment_type(fio);
3421         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3422 
3423         if (keep_order)
3424                 down_read(&fio->sbi->io_order_lock);
3425 reallocate:
3426         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3427                         &fio->new_blkaddr, sum, type, fio);
3428         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3429                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3430                                         fio->old_blkaddr, fio->old_blkaddr);
3431 
3432         /* writeout dirty page into bdev */
3433         f2fs_submit_page_write(fio);
3434         if (fio->retry) {
3435                 fio->old_blkaddr = fio->new_blkaddr;
3436                 goto reallocate;
3437         }
3438 
3439         update_device_state(fio);
3440 
3441         if (keep_order)
3442                 up_read(&fio->sbi->io_order_lock);
3443 }
3444 
3445 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3446                                         enum iostat_type io_type)
3447 {
3448         struct f2fs_io_info fio = {
3449                 .sbi = sbi,
3450                 .type = META,
3451                 .temp = HOT,
3452                 .op = REQ_OP_WRITE,
3453                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3454                 .old_blkaddr = page->index,
3455                 .new_blkaddr = page->index,
3456                 .page = page,
3457                 .encrypted_page = NULL,
3458                 .in_list = false,
3459         };
3460 
3461         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3462                 fio.op_flags &= ~REQ_META;
3463 
3464         set_page_writeback(page);
3465         ClearPageError(page);
3466         f2fs_submit_page_write(&fio);
3467 
3468         stat_inc_meta_count(sbi, page->index);
3469         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3470 }
3471 
3472 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3473 {
3474         struct f2fs_summary sum;
3475 
3476         set_summary(&sum, nid, 0, 0);
3477         do_write_page(&sum, fio);
3478 
3479         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3480 }
3481 
3482 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3483                                         struct f2fs_io_info *fio)
3484 {
3485         struct f2fs_sb_info *sbi = fio->sbi;
3486         struct f2fs_summary sum;
3487 
3488         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3489         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3490         do_write_page(&sum, fio);
3491         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3492 
3493         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3494 }
3495 
3496 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3497 {
3498         int err;
3499         struct f2fs_sb_info *sbi = fio->sbi;
3500         unsigned int segno;
3501 
3502         fio->new_blkaddr = fio->old_blkaddr;
3503         /* i/o temperature is needed for passing down write hints */
3504         __get_segment_type(fio);
3505 
3506         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3507 
3508         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3509                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3510                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3511                           __func__, segno);
3512                 return -EFSCORRUPTED;
3513         }
3514 
3515         stat_inc_inplace_blocks(fio->sbi);
3516 
3517         if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3518                 err = f2fs_merge_page_bio(fio);
3519         else
3520                 err = f2fs_submit_page_bio(fio);
3521         if (!err) {
3522                 update_device_state(fio);
3523                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3524         }
3525 
3526         return err;
3527 }
3528 
3529 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3530                                                 unsigned int segno)
3531 {
3532         int i;
3533 
3534         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3535                 if (CURSEG_I(sbi, i)->segno == segno)
3536                         break;
3537         }
3538         return i;
3539 }
3540 
3541 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3542                                 block_t old_blkaddr, block_t new_blkaddr,
3543                                 bool recover_curseg, bool recover_newaddr,
3544                                 bool from_gc)
3545 {
3546         struct sit_info *sit_i = SIT_I(sbi);
3547         struct curseg_info *curseg;
3548         unsigned int segno, old_cursegno;
3549         struct seg_entry *se;
3550         int type;
3551         unsigned short old_blkoff;
3552 
3553         segno = GET_SEGNO(sbi, new_blkaddr);
3554         se = get_seg_entry(sbi, segno);
3555         type = se->type;
3556 
3557         down_write(&SM_I(sbi)->curseg_lock);
3558 
3559         if (!recover_curseg) {
3560                 /* for recovery flow */
3561                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3562                         if (old_blkaddr == NULL_ADDR)
3563                                 type = CURSEG_COLD_DATA;
3564                         else
3565                                 type = CURSEG_WARM_DATA;
3566                 }
3567         } else {
3568                 if (IS_CURSEG(sbi, segno)) {
3569                         /* se->type is volatile as SSR allocation */
3570                         type = __f2fs_get_curseg(sbi, segno);
3571                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3572                 } else {
3573                         type = CURSEG_WARM_DATA;
3574                 }
3575         }
3576 
3577         f2fs_bug_on(sbi, !IS_DATASEG(type));
3578         curseg = CURSEG_I(sbi, type);
3579 
3580         mutex_lock(&curseg->curseg_mutex);
3581         down_write(&sit_i->sentry_lock);
3582 
3583         old_cursegno = curseg->segno;
3584         old_blkoff = curseg->next_blkoff;
3585 
3586         /* change the current segment */
3587         if (segno != curseg->segno) {
3588                 curseg->next_segno = segno;
3589                 change_curseg(sbi, type, true);
3590         }
3591 
3592         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3593         __add_sum_entry(sbi, type, sum);
3594 
3595         if (!recover_curseg || recover_newaddr) {
3596                 if (!from_gc)
3597                         update_segment_mtime(sbi, new_blkaddr, 0);
3598                 update_sit_entry(sbi, new_blkaddr, 1);
3599         }
3600         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3601                 invalidate_mapping_pages(META_MAPPING(sbi),
3602                                         old_blkaddr, old_blkaddr);
3603                 if (!from_gc)
3604                         update_segment_mtime(sbi, old_blkaddr, 0);
3605                 update_sit_entry(sbi, old_blkaddr, -1);
3606         }
3607 
3608         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3609         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3610 
3611         locate_dirty_segment(sbi, old_cursegno);
3612 
3613         if (recover_curseg) {
3614                 if (old_cursegno != curseg->segno) {
3615                         curseg->next_segno = old_cursegno;
3616                         change_curseg(sbi, type, true);
3617                 }
3618                 curseg->next_blkoff = old_blkoff;
3619         }
3620 
3621         up_write(&sit_i->sentry_lock);
3622         mutex_unlock(&curseg->curseg_mutex);
3623         up_write(&SM_I(sbi)->curseg_lock);
3624 }
3625 
3626 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3627                                 block_t old_addr, block_t new_addr,
3628                                 unsigned char version, bool recover_curseg,
3629                                 bool recover_newaddr)
3630 {
3631         struct f2fs_summary sum;
3632 
3633         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3634 
3635         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3636                                         recover_curseg, recover_newaddr, false);
3637 
3638         f2fs_update_data_blkaddr(dn, new_addr);
3639 }
3640 
3641 void f2fs_wait_on_page_writeback(struct page *page,
3642                                 enum page_type type, bool ordered, bool locked)
3643 {
3644         if (PageWriteback(page)) {
3645                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3646 
3647                 /* submit cached LFS IO */
3648                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3649                 /* sbumit cached IPU IO */
3650                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3651                 if (ordered) {
3652                         wait_on_page_writeback(page);
3653                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3654                 } else {
3655                         wait_for_stable_page(page);
3656                 }
3657         }
3658 }
3659 
3660 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3661 {
3662         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3663         struct page *cpage;
3664 
3665         if (!f2fs_post_read_required(inode))
3666                 return;
3667 
3668         if (!__is_valid_data_blkaddr(blkaddr))
3669                 return;
3670 
3671         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3672         if (cpage) {
3673                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3674                 f2fs_put_page(cpage, 1);
3675         }
3676 }
3677 
3678 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3679                                                                 block_t len)
3680 {
3681         block_t i;
3682 
3683         for (i = 0; i < len; i++)
3684                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3685 }
3686 
3687 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3688 {
3689         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3690         struct curseg_info *seg_i;
3691         unsigned char *kaddr;
3692         struct page *page;
3693         block_t start;
3694         int i, j, offset;
3695 
3696         start = start_sum_block(sbi);
3697 
3698         page = f2fs_get_meta_page(sbi, start++);
3699         if (IS_ERR(page))
3700                 return PTR_ERR(page);
3701         kaddr = (unsigned char *)page_address(page);
3702 
3703         /* Step 1: restore nat cache */
3704         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3705         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3706 
3707         /* Step 2: restore sit cache */
3708         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3709         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3710         offset = 2 * SUM_JOURNAL_SIZE;
3711 
3712         /* Step 3: restore summary entries */
3713         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3714                 unsigned short blk_off;
3715                 unsigned int segno;
3716 
3717                 seg_i = CURSEG_I(sbi, i);
3718                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3719                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3720                 seg_i->next_segno = segno;
3721                 reset_curseg(sbi, i, 0);
3722                 seg_i->alloc_type = ckpt->alloc_type[i];
3723                 seg_i->next_blkoff = blk_off;
3724 
3725                 if (seg_i->alloc_type == SSR)
3726                         blk_off = sbi->blocks_per_seg;
3727 
3728                 for (j = 0; j < blk_off; j++) {
3729                         struct f2fs_summary *s;
3730                         s = (struct f2fs_summary *)(kaddr + offset);
3731                         seg_i->sum_blk->entries[j] = *s;
3732                         offset += SUMMARY_SIZE;
3733                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3734                                                 SUM_FOOTER_SIZE)
3735                                 continue;
3736 
3737                         f2fs_put_page(page, 1);
3738                         page = NULL;
3739 
3740                         page = f2fs_get_meta_page(sbi, start++);
3741                         if (IS_ERR(page))
3742                                 return PTR_ERR(page);
3743                         kaddr = (unsigned char *)page_address(page);
3744                         offset = 0;
3745                 }
3746         }
3747         f2fs_put_page(page, 1);
3748         return 0;
3749 }
3750 
3751 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3752 {
3753         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3754         struct f2fs_summary_block *sum;
3755         struct curseg_info *curseg;
3756         struct page *new;
3757         unsigned short blk_off;
3758         unsigned int segno = 0;
3759         block_t blk_addr = 0;
3760         int err = 0;
3761 
3762         /* get segment number and block addr */
3763         if (IS_DATASEG(type)) {
3764                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3765                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3766                                                         CURSEG_HOT_DATA]);
3767                 if (__exist_node_summaries(sbi))
3768                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3769                 else
3770                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3771         } else {
3772                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3773                                                         CURSEG_HOT_NODE]);
3774                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3775                                                         CURSEG_HOT_NODE]);
3776                 if (__exist_node_summaries(sbi))
3777                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3778                                                         type - CURSEG_HOT_NODE);
3779                 else
3780                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3781         }
3782 
3783         new = f2fs_get_meta_page(sbi, blk_addr);
3784         if (IS_ERR(new))
3785                 return PTR_ERR(new);
3786         sum = (struct f2fs_summary_block *)page_address(new);
3787 
3788         if (IS_NODESEG(type)) {
3789                 if (__exist_node_summaries(sbi)) {
3790                         struct f2fs_summary *ns = &sum->entries[0];
3791                         int i;
3792                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3793                                 ns->version = 0;
3794                                 ns->ofs_in_node = 0;
3795                         }
3796                 } else {
3797                         err = f2fs_restore_node_summary(sbi, segno, sum);
3798                         if (err)
3799                                 goto out;
3800                 }
3801         }
3802 
3803         /* set uncompleted segment to curseg */
3804         curseg = CURSEG_I(sbi, type);
3805         mutex_lock(&curseg->curseg_mutex);
3806 
3807         /* update journal info */
3808         down_write(&curseg->journal_rwsem);
3809         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3810         up_write(&curseg->journal_rwsem);
3811 
3812         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3813         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3814         curseg->next_segno = segno;
3815         reset_curseg(sbi, type, 0);
3816         curseg->alloc_type = ckpt->alloc_type[type];
3817         curseg->next_blkoff = blk_off;
3818         mutex_unlock(&curseg->curseg_mutex);
3819 out:
3820         f2fs_put_page(new, 1);
3821         return err;
3822 }
3823 
3824 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3825 {
3826         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3827         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3828         int type = CURSEG_HOT_DATA;
3829         int err;
3830 
3831         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3832                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3833 
3834                 if (npages >= 2)
3835                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3836                                                         META_CP, true);
3837 
3838                 /* restore for compacted data summary */
3839                 err = read_compacted_summaries(sbi);
3840                 if (err)
3841                         return err;
3842                 type = CURSEG_HOT_NODE;
3843         }
3844 
3845         if (__exist_node_summaries(sbi))
3846                 f2fs_ra_meta_pages(sbi,
3847                                 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3848                                 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3849 
3850         for (; type <= CURSEG_COLD_NODE; type++) {
3851                 err = read_normal_summaries(sbi, type);
3852                 if (err)
3853                         return err;
3854         }
3855 
3856         /* sanity check for summary blocks */
3857         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3858                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3859                 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3860                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3861                 return -EINVAL;
3862         }
3863 
3864         return 0;
3865 }
3866 
3867 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3868 {
3869         struct page *page;
3870         unsigned char *kaddr;
3871         struct f2fs_summary *summary;
3872         struct curseg_info *seg_i;
3873         int written_size = 0;
3874         int i, j;
3875 
3876         page = f2fs_grab_meta_page(sbi, blkaddr++);
3877         kaddr = (unsigned char *)page_address(page);
3878         memset(kaddr, 0, PAGE_SIZE);
3879 
3880         /* Step 1: write nat cache */
3881         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3882         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3883         written_size += SUM_JOURNAL_SIZE;
3884 
3885         /* Step 2: write sit cache */
3886         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3887         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3888         written_size += SUM_JOURNAL_SIZE;
3889 
3890         /* Step 3: write summary entries */
3891         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3892                 unsigned short blkoff;
3893                 seg_i = CURSEG_I(sbi, i);
3894                 if (sbi->ckpt->alloc_type[i] == SSR)
3895                         blkoff = sbi->blocks_per_seg;
3896                 else
3897                         blkoff = curseg_blkoff(sbi, i);
3898 
3899                 for (j = 0; j < blkoff; j++) {
3900                         if (!page) {
3901                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3902                                 kaddr = (unsigned char *)page_address(page);
3903                                 memset(kaddr, 0, PAGE_SIZE);
3904                                 written_size = 0;
3905                         }
3906                         summary = (struct f2fs_summary *)(kaddr + written_size);
3907                         *summary = seg_i->sum_blk->entries[j];
3908                         written_size += SUMMARY_SIZE;
3909 
3910                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3911                                                         SUM_FOOTER_SIZE)
3912                                 continue;
3913 
3914                         set_page_dirty(page);
3915                         f2fs_put_page(page, 1);
3916                         page = NULL;
3917                 }
3918         }
3919         if (page) {
3920                 set_page_dirty(page);
3921                 f2fs_put_page(page, 1);
3922         }
3923 }
3924 
3925 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3926                                         block_t blkaddr, int type)
3927 {
3928         int i, end;
3929         if (IS_DATASEG(type))
3930                 end = type + NR_CURSEG_DATA_TYPE;
3931         else
3932                 end = type + NR_CURSEG_NODE_TYPE;
3933 
3934         for (i = type; i < end; i++)
3935                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3936 }
3937 
3938 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3939 {
3940         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3941                 write_compacted_summaries(sbi, start_blk);
3942         else
3943                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3944 }
3945 
3946 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3947 {
3948         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3949 }
3950 
3951 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3952                                         unsigned int val, int alloc)
3953 {
3954         int i;
3955 
3956         if (type == NAT_JOURNAL) {
3957                 for (i = 0; i < nats_in_cursum(journal); i++) {
3958                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3959                                 return i;
3960                 }
3961                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3962                         return update_nats_in_cursum(journal, 1);
3963         } else if (type == SIT_JOURNAL) {
3964                 for (i = 0; i < sits_in_cursum(journal); i++)
3965                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3966                                 return i;
3967                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3968                         return update_sits_in_cursum(journal, 1);
3969         }
3970         return -1;
3971 }
3972 
3973 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3974                                         unsigned int segno)
3975 {
3976         return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3977 }
3978 
3979 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3980                                         unsigned int start)
3981 {
3982         struct sit_info *sit_i = SIT_I(sbi);
3983         struct page *page;
3984         pgoff_t src_off, dst_off;
3985 
3986         src_off = current_sit_addr(sbi, start);
3987         dst_off = next_sit_addr(sbi, src_off);
3988 
3989         page = f2fs_grab_meta_page(sbi, dst_off);
3990         seg_info_to_sit_page(sbi, page, start);
3991 
3992         set_page_dirty(page);
3993         set_to_next_sit(sit_i, start);
3994 
3995         return page;
3996 }
3997 
3998 static struct sit_entry_set *grab_sit_entry_set(void)
3999 {
4000         struct sit_entry_set *ses =
4001                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4002 
4003         ses->entry_cnt = 0;
4004         INIT_LIST_HEAD(&ses->set_list);
4005         return ses;
4006 }
4007 
4008 static void release_sit_entry_set(struct sit_entry_set *ses)
4009 {
4010         list_del(&ses->set_list);
4011         kmem_cache_free(sit_entry_set_slab, ses);
4012 }
4013 
4014 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4015                                                 struct list_head *head)
4016 {
4017         struct sit_entry_set *next = ses;
4018 
4019         if (list_is_last(&ses->set_list, head))
4020                 return;
4021 
4022         list_for_each_entry_continue(next, head, set_list)
4023                 if (ses->entry_cnt <= next->entry_cnt)
4024                         break;
4025 
4026         list_move_tail(&ses->set_list, &next->set_list);
4027 }
4028 
4029 static void add_sit_entry(unsigned int segno, struct list_head *head)
4030 {
4031         struct sit_entry_set *ses;
4032         unsigned int start_segno = START_SEGNO(segno);
4033 
4034         list_for_each_entry(ses, head, set_list) {
4035                 if (ses->start_segno == start_segno) {
4036                         ses->entry_cnt++;
4037                         adjust_sit_entry_set(ses, head);
4038                         return;
4039                 }
4040         }
4041 
4042         ses = grab_sit_entry_set();
4043 
4044         ses->start_segno = start_segno;
4045         ses->entry_cnt++;
4046         list_add(&ses->set_list, head);
4047 }
4048 
4049 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4050 {
4051         struct f2fs_sm_info *sm_info = SM_I(sbi);
4052         struct list_head *set_list = &sm_info->sit_entry_set;
4053         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4054         unsigned int segno;
4055 
4056         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4057                 add_sit_entry(segno, set_list);
4058 }
4059 
4060 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4061 {
4062         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4063         struct f2fs_journal *journal = curseg->journal;
4064         int i;
4065 
4066         down_write(&curseg->journal_rwsem);
4067         for (i = 0; i < sits_in_cursum(journal); i++) {
4068                 unsigned int segno;
4069                 bool dirtied;
4070 
4071                 segno = le32_to_cpu(segno_in_journal(journal, i));
4072                 dirtied = __mark_sit_entry_dirty(sbi, segno);
4073 
4074                 if (!dirtied)
4075                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4076         }
4077         update_sits_in_cursum(journal, -i);
4078         up_write(&curseg->journal_rwsem);
4079 }
4080 
4081 /*
4082  * CP calls this function, which flushes SIT entries including sit_journal,
4083  * and moves prefree segs to free segs.
4084  */
4085 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4086 {
4087         struct sit_info *sit_i = SIT_I(sbi);
4088         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4089         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4090         struct f2fs_journal *journal = curseg->journal;
4091         struct sit_entry_set *ses, *tmp;
4092         struct list_head *head = &SM_I(sbi)->sit_entry_set;
4093         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4094         struct seg_entry *se;
4095 
4096         down_write(&sit_i->sentry_lock);
4097 
4098         if (!sit_i->dirty_sentries)
4099                 goto out;
4100 
4101         /*
4102          * add and account sit entries of dirty bitmap in sit entry
4103          * set temporarily
4104          */
4105         add_sits_in_set(sbi);
4106 
4107         /*
4108          * if there are no enough space in journal to store dirty sit
4109          * entries, remove all entries from journal and add and account
4110          * them in sit entry set.
4111          */
4112         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4113                                                                 !to_journal)
4114                 remove_sits_in_journal(sbi);
4115 
4116         /*
4117          * there are two steps to flush sit entries:
4118          * #1, flush sit entries to journal in current cold data summary block.
4119          * #2, flush sit entries to sit page.
4120          */
4121         list_for_each_entry_safe(ses, tmp, head, set_list) {
4122                 struct page *page = NULL;
4123                 struct f2fs_sit_block *raw_sit = NULL;
4124                 unsigned int start_segno = ses->start_segno;
4125                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4126                                                 (unsigned long)MAIN_SEGS(sbi));
4127                 unsigned int segno = start_segno;
4128 
4129                 if (to_journal &&
4130                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4131                         to_journal = false;
4132 
4133                 if (to_journal) {
4134                         down_write(&curseg->journal_rwsem);
4135                 } else {
4136                         page = get_next_sit_page(sbi, start_segno);
4137                         raw_sit = page_address(page);
4138                 }
4139 
4140                 /* flush dirty sit entries in region of current sit set */
4141                 for_each_set_bit_from(segno, bitmap, end) {
4142                         int offset, sit_offset;
4143 
4144                         se = get_seg_entry(sbi, segno);
4145 #ifdef CONFIG_F2FS_CHECK_FS
4146                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4147                                                 SIT_VBLOCK_MAP_SIZE))
4148                                 f2fs_bug_on(sbi, 1);
4149 #endif
4150 
4151                         /* add discard candidates */
4152                         if (!(cpc->reason & CP_DISCARD)) {
4153                                 cpc->trim_start = segno;
4154                                 add_discard_addrs(sbi, cpc, false);
4155                         }
4156 
4157                         if (to_journal) {
4158                                 offset = f2fs_lookup_journal_in_cursum(journal,
4159                                                         SIT_JOURNAL, segno, 1);
4160                                 f2fs_bug_on(sbi, offset < 0);
4161                                 segno_in_journal(journal, offset) =
4162                                                         cpu_to_le32(segno);
4163                                 seg_info_to_raw_sit(se,
4164                                         &sit_in_journal(journal, offset));
4165                                 check_block_count(sbi, segno,
4166                                         &sit_in_journal(journal, offset));
4167                         } else {
4168                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4169                                 seg_info_to_raw_sit(se,
4170                                                 &raw_sit->entries[sit_offset]);
4171                                 check_block_count(sbi, segno,
4172                                                 &raw_sit->entries[sit_offset]);
4173                         }
4174 
4175                         __clear_bit(segno, bitmap);
4176                         sit_i->dirty_sentries--;
4177                         ses->entry_cnt--;
4178                 }
4179 
4180                 if (to_journal)
4181                         up_write(&curseg->journal_rwsem);
4182                 else
4183                         f2fs_put_page(page, 1);
4184 
4185                 f2fs_bug_on(sbi, ses->entry_cnt);
4186                 release_sit_entry_set(ses);
4187         }
4188 
4189         f2fs_bug_on(sbi, !list_empty(head));
4190         f2fs_bug_on(sbi, sit_i->dirty_sentries);
4191 out:
4192         if (cpc->reason & CP_DISCARD) {
4193                 __u64 trim_start = cpc->trim_start;
4194 
4195                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4196                         add_discard_addrs(sbi, cpc, false);
4197 
4198                 cpc->trim_start = trim_start;
4199         }
4200         up_write(&sit_i->sentry_lock);
4201 
4202         set_prefree_as_free_segments(sbi);
4203 }
4204 
4205 static int build_sit_info(struct f2fs_sb_info *sbi)
4206 {
4207         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4208         struct sit_info *sit_i;
4209         unsigned int sit_segs, start;
4210         char *src_bitmap, *bitmap;
4211         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4212 
4213         /* allocate memory for SIT information */
4214         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4215         if (!sit_i)
4216                 return -ENOMEM;
4217 
4218         SM_I(sbi)->sit_info = sit_i;
4219 
4220         sit_i->sentries =
4221                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4222                                               MAIN_SEGS(sbi)),
4223                               GFP_KERNEL);
4224         if (!sit_i->sentries)
4225                 return -ENOMEM;
4226 
4227         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4228         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4229                                                                 GFP_KERNEL);
4230         if (!sit_i->dirty_sentries_bitmap)
4231                 return -ENOMEM;
4232 
4233 #ifdef CONFIG_F2FS_CHECK_FS
4234         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4235 #else
4236         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4237 #endif
4238         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4239         if (!sit_i->bitmap)
4240                 return -ENOMEM;
4241 
4242         bitmap = sit_i->bitmap;
4243 
4244         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4245                 sit_i->sentries[start].cur_valid_map = bitmap;
4246                 bitmap += SIT_VBLOCK_MAP_SIZE;
4247 
4248                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4249                 bitmap += SIT_VBLOCK_MAP_SIZE;
4250 
4251 #ifdef CONFIG_F2FS_CHECK_FS
4252                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4253                 bitmap += SIT_VBLOCK_MAP_SIZE;
4254 #endif
4255 
4256                 sit_i->sentries[start].discard_map = bitmap;
4257                 bitmap += SIT_VBLOCK_MAP_SIZE;
4258         }
4259 
4260         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4261         if (!sit_i->tmp_map)
4262                 return -ENOMEM;
4263 
4264         if (__is_large_section(sbi)) {
4265                 sit_i->sec_entries =
4266                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4267                                                       MAIN_SECS(sbi)),
4268                                       GFP_KERNEL);
4269                 if (!sit_i->sec_entries)
4270                         return -ENOMEM;
4271         }
4272 
4273         /* get information related with SIT */
4274         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4275 
4276         /* setup SIT bitmap from ckeckpoint pack */
4277         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4278         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4279 
4280         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4281         if (!sit_i->sit_bitmap)
4282                 return -ENOMEM;
4283 
4284 #ifdef CONFIG_F2FS_CHECK_FS
4285         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4286                                         sit_bitmap_size, GFP_KERNEL);
4287         if (!sit_i->sit_bitmap_mir)
4288                 return -ENOMEM;
4289 
4290         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4291                                         main_bitmap_size, GFP_KERNEL);
4292         if (!sit_i->invalid_segmap)
4293                 return -ENOMEM;
4294 #endif
4295 
4296         /* init SIT information */
4297         sit_i->s_ops = &default_salloc_ops;
4298 
4299         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4300         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4301         sit_i->written_valid_blocks = 0;
4302         sit_i->bitmap_size = sit_bitmap_size;
4303         sit_i->dirty_sentries = 0;
4304         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4305         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4306         sit_i->mounted_time = ktime_get_boottime_seconds();
4307         init_rwsem(&sit_i->sentry_lock);
4308         return 0;
4309 }
4310 
4311 static int build_free_segmap(struct f2fs_sb_info *sbi)
4312 {
4313         struct free_segmap_info *free_i;
4314         unsigned int bitmap_size, sec_bitmap_size;
4315 
4316         /* allocate memory for free segmap information */
4317         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4318         if (!free_i)
4319                 return -ENOMEM;
4320 
4321         SM_I(sbi)->free_info = free_i;
4322 
4323         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4324         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4325         if (!free_i->free_segmap)
4326                 return -ENOMEM;
4327 
4328         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4329         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4330         if (!free_i->free_secmap)
4331                 return -ENOMEM;
4332 
4333         /* set all segments as dirty temporarily */
4334         memset(free_i->free_segmap, 0xff, bitmap_size);
4335         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4336 
4337         /* init free segmap information */
4338         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4339         free_i->free_segments = 0;
4340         free_i->free_sections = 0;
4341         spin_lock_init(&free_i->segmap_lock);
4342         return 0;
4343 }
4344 
4345 static int build_curseg(struct f2fs_sb_info *sbi)
4346 {
4347         struct curseg_info *array;
4348         int i;
4349 
4350         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4351                                         sizeof(*array)), GFP_KERNEL);
4352         if (!array)
4353                 return -ENOMEM;
4354 
4355         SM_I(sbi)->curseg_array = array;
4356 
4357         for (i = 0; i < NO_CHECK_TYPE; i++) {
4358                 mutex_init(&array[i].curseg_mutex);
4359                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4360                 if (!array[i].sum_blk)
4361                         return -ENOMEM;
4362                 init_rwsem(&array[i].journal_rwsem);
4363                 array[i].journal = f2fs_kzalloc(sbi,
4364                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4365                 if (!array[i].journal)
4366                         return -ENOMEM;
4367                 if (i < NR_PERSISTENT_LOG)
4368                         array[i].seg_type = CURSEG_HOT_DATA + i;
4369                 else if (i == CURSEG_COLD_DATA_PINNED)
4370                         array[i].seg_type = CURSEG_COLD_DATA;
4371                 else if (i == CURSEG_ALL_DATA_ATGC)
4372                         array[i].seg_type = CURSEG_COLD_DATA;
4373                 array[i].segno = NULL_SEGNO;
4374                 array[i].next_blkoff = 0;
4375                 array[i].inited = false;
4376         }
4377         return restore_curseg_summaries(sbi);
4378 }
4379 
4380 static int build_sit_entries(struct f2fs_sb_info *sbi)
4381 {
4382         struct sit_info *sit_i = SIT_I(sbi);
4383         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4384         struct f2fs_journal *journal = curseg->journal;
4385         struct seg_entry *se;
4386         struct f2fs_sit_entry sit;
4387         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4388         unsigned int i, start, end;
4389         unsigned int readed, start_blk = 0;
4390         int err = 0;
4391         block_t total_node_blocks = 0;
4392 
4393         do {
4394                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4395                                                         META_SIT, true);
4396 
4397                 start = start_blk * sit_i->sents_per_block;
4398                 end = (start_blk + readed) * sit_i->sents_per_block;
4399 
4400                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4401                         struct f2fs_sit_block *sit_blk;
4402                         struct page *page;
4403 
4404                         se = &sit_i->sentries[start];
4405                         page = get_current_sit_page(sbi, start);
4406                         if (IS_ERR(page))
4407                                 return PTR_ERR(page);
4408                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4409                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4410                         f2fs_put_page(page, 1);
4411 
4412                         err = check_block_count(sbi, start, &sit);
4413                         if (err)
4414                                 return err;
4415                         seg_info_from_raw_sit(se, &sit);
4416                         if (IS_NODESEG(se->type))
4417                                 total_node_blocks += se->valid_blocks;
4418 
4419                         /* build discard map only one time */
4420                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4421                                 memset(se->discard_map, 0xff,
4422                                         SIT_VBLOCK_MAP_SIZE);
4423                         } else {
4424                                 memcpy(se->discard_map,
4425                                         se->cur_valid_map,
4426                                         SIT_VBLOCK_MAP_SIZE);
4427                                 sbi->discard_blks +=
4428                                         sbi->blocks_per_seg -
4429                                         se->valid_blocks;
4430                         }
4431 
4432                         if (__is_large_section(sbi))
4433                                 get_sec_entry(sbi, start)->valid_blocks +=
4434                                                         se->valid_blocks;
4435                 }
4436                 start_blk += readed;
4437         } while (start_blk < sit_blk_cnt);
4438 
4439         down_read(&curseg->journal_rwsem);
4440         for (i = 0; i < sits_in_cursum(journal); i++) {
4441                 unsigned int old_valid_blocks;
4442 
4443                 start = le32_to_cpu(segno_in_journal(journal, i));
4444                 if (start >= MAIN_SEGS(sbi)) {
4445                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4446                                  start);
4447                         err = -EFSCORRUPTED;
4448                         break;
4449                 }
4450 
4451                 se = &sit_i->sentries[start];
4452                 sit = sit_in_journal(journal, i);
4453 
4454                 old_valid_blocks = se->valid_blocks;
4455                 if (IS_NODESEG(se->type))
4456                         total_node_blocks -= old_valid_blocks;
4457 
4458                 err = check_block_count(sbi, start, &sit);
4459                 if (err)
4460                         break;
4461                 seg_info_from_raw_sit(se, &sit);
4462                 if (IS_NODESEG(se->type))
4463                         total_node_blocks += se->valid_blocks;
4464 
4465                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4466                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4467                 } else {
4468                         memcpy(se->discard_map, se->cur_valid_map,
4469                                                 SIT_VBLOCK_MAP_SIZE);
4470                         sbi->discard_blks += old_valid_blocks;
4471                         sbi->discard_blks -= se->valid_blocks;
4472                 }
4473 
4474                 if (__is_large_section(sbi)) {
4475                         get_sec_entry(sbi, start)->valid_blocks +=
4476                                                         se->valid_blocks;
4477                         get_sec_entry(sbi, start)->valid_blocks -=
4478                                                         old_valid_blocks;
4479                 }
4480         }
4481         up_read(&curseg->journal_rwsem);
4482 
4483         if (!err && total_node_blocks != valid_node_count(sbi)) {
4484                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4485                          total_node_blocks, valid_node_count(sbi));
4486                 err = -EFSCORRUPTED;
4487         }
4488 
4489         return err;
4490 }
4491 
4492 static void init_free_segmap(struct f2fs_sb_info *sbi)
4493 {
4494         unsigned int start;
4495         int type;
4496         struct seg_entry *sentry;
4497 
4498         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4499                 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4500                         continue;
4501                 sentry = get_seg_entry(sbi, start);
4502                 if (!sentry->valid_blocks)
4503                         __set_free(sbi, start);
4504                 else
4505                         SIT_I(sbi)->written_valid_blocks +=
4506                                                 sentry->valid_blocks;
4507         }
4508 
4509         /* set use the current segments */
4510         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4511                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4512                 __set_test_and_inuse(sbi, curseg_t->segno);
4513         }
4514 }
4515 
4516 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4517 {
4518         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4519         struct free_segmap_info *free_i = FREE_I(sbi);
4520         unsigned int segno = 0, offset = 0, secno;
4521         block_t valid_blocks, usable_blks_in_seg;
4522         block_t blks_per_sec = BLKS_PER_SEC(sbi);
4523 
4524         while (1) {
4525                 /* find dirty segment based on free segmap */
4526                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4527                 if (segno >= MAIN_SEGS(sbi))
4528                         break;
4529                 offset = segno + 1;
4530                 valid_blocks = get_valid_blocks(sbi, segno, false);
4531                 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4532                 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4533                         continue;
4534                 if (valid_blocks > usable_blks_in_seg) {
4535                         f2fs_bug_on(sbi, 1);
4536                         continue;
4537                 }
4538                 mutex_lock(&dirty_i->seglist_lock);
4539                 __locate_dirty_segment(sbi, segno, DIRTY);
4540                 mutex_unlock(&dirty_i->seglist_lock);
4541         }
4542 
4543         if (!__is_large_section(sbi))
4544                 return;
4545 
4546         mutex_lock(&dirty_i->seglist_lock);
4547         for (segno = 0; segno < MAIN_SECS(sbi); segno += blks_per_sec) {
4548                 valid_blocks = get_valid_blocks(sbi, segno, true);
4549                 secno = GET_SEC_FROM_SEG(sbi, segno);
4550 
4551                 if (!valid_blocks || valid_blocks == blks_per_sec)
4552                         continue;
4553                 if (IS_CURSEC(sbi, secno))
4554                         continue;
4555                 set_bit(secno, dirty_i->dirty_secmap);
4556         }
4557         mutex_unlock(&dirty_i->seglist_lock);
4558 }
4559 
4560 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4561 {
4562         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4563         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4564 
4565         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4566         if (!dirty_i->victim_secmap)
4567                 return -ENOMEM;
4568         return 0;
4569 }
4570 
4571 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4572 {
4573         struct dirty_seglist_info *dirty_i;
4574         unsigned int bitmap_size, i;
4575 
4576         /* allocate memory for dirty segments list information */
4577         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4578                                                                 GFP_KERNEL);
4579         if (!dirty_i)
4580                 return -ENOMEM;
4581 
4582         SM_I(sbi)->dirty_info = dirty_i;
4583         mutex_init(&dirty_i->seglist_lock);
4584 
4585         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4586 
4587         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4588                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4589                                                                 GFP_KERNEL);
4590                 if (!dirty_i->dirty_segmap[i])
4591                         return -ENOMEM;
4592         }
4593 
4594         if (__is_large_section(sbi)) {
4595                 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4596                 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4597                                                 bitmap_size, GFP_KERNEL);
4598                 if (!dirty_i->dirty_secmap)
4599                         return -ENOMEM;
4600         }
4601 
4602         init_dirty_segmap(sbi);
4603         return init_victim_secmap(sbi);
4604 }
4605 
4606 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4607 {
4608         int i;
4609 
4610         /*
4611          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4612          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4613          */
4614         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4615                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4616                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4617                 unsigned int blkofs = curseg->next_blkoff;
4618 
4619                 sanity_check_seg_type(sbi, curseg->seg_type);
4620 
4621                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4622                         goto out;
4623 
4624                 if (curseg->alloc_type == SSR)
4625                         continue;
4626 
4627                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4628                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4629                                 continue;
4630 out:
4631                         f2fs_err(sbi,
4632                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4633                                  i, curseg->segno, curseg->alloc_type,
4634                                  curseg->next_blkoff, blkofs);
4635                         return -EFSCORRUPTED;
4636                 }
4637         }
4638         return 0;
4639 }
4640 
4641 #ifdef CONFIG_BLK_DEV_ZONED
4642 
4643 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4644                                     struct f2fs_dev_info *fdev,
4645                                     struct blk_zone *zone)
4646 {
4647         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4648         block_t zone_block, wp_block, last_valid_block;
4649         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4650         int i, s, b, ret;
4651         struct seg_entry *se;
4652 
4653         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4654                 return 0;
4655 
4656         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4657         wp_segno = GET_SEGNO(sbi, wp_block);
4658         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4659         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4660         zone_segno = GET_SEGNO(sbi, zone_block);
4661         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4662 
4663         if (zone_segno >= MAIN_SEGS(sbi))
4664                 return 0;
4665 
4666         /*
4667          * Skip check of zones cursegs point to, since
4668          * fix_curseg_write_pointer() checks them.
4669          */
4670         for (i = 0; i < NO_CHECK_TYPE; i++)
4671                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4672                                                    CURSEG_I(sbi, i)->segno))
4673                         return 0;
4674 
4675         /*
4676          * Get last valid block of the zone.
4677          */
4678         last_valid_block = zone_block - 1;
4679         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4680                 segno = zone_segno + s;
4681                 se = get_seg_entry(sbi, segno);
4682                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4683                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4684                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4685                                 break;
4686                         }
4687                 if (last_valid_block >= zone_block)
4688                         break;
4689         }
4690 
4691         /*
4692          * If last valid block is beyond the write pointer, report the
4693          * inconsistency. This inconsistency does not cause write error
4694          * because the zone will not be selected for write operation until
4695          * it get discarded. Just report it.
4696          */
4697         if (last_valid_block >= wp_block) {
4698                 f2fs_notice(sbi, "Valid block beyond write pointer: "
4699                             "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4700                             GET_SEGNO(sbi, last_valid_block),
4701                             GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4702                             wp_segno, wp_blkoff);
4703                 return 0;
4704         }
4705 
4706         /*
4707          * If there is no valid block in the zone and if write pointer is
4708          * not at zone start, reset the write pointer.
4709          */
4710         if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4711                 f2fs_notice(sbi,
4712                             "Zone without valid block has non-zero write "
4713                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4714                             wp_segno, wp_blkoff);
4715                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4716                                         zone->len >> log_sectors_per_block);
4717                 if (ret) {
4718                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4719                                  fdev->path, ret);
4720                         return ret;
4721                 }
4722         }
4723 
4724         return 0;
4725 }
4726 
4727 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4728                                                   block_t zone_blkaddr)
4729 {
4730         int i;
4731 
4732         for (i = 0; i < sbi->s_ndevs; i++) {
4733                 if (!bdev_is_zoned(FDEV(i).bdev))
4734                         continue;
4735                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4736                                 zone_blkaddr <= FDEV(i).end_blk))
4737                         return &FDEV(i);
4738         }
4739 
4740         return NULL;
4741 }
4742 
4743 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4744                               void *data) {
4745         memcpy(data, zone, sizeof(struct blk_zone));
4746         return 0;
4747 }
4748 
4749 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4750 {
4751         struct curseg_info *cs = CURSEG_I(sbi, type);
4752         struct f2fs_dev_info *zbd;
4753         struct blk_zone zone;
4754         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4755         block_t cs_zone_block, wp_block;
4756         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4757         sector_t zone_sector;
4758         int err;
4759 
4760         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4761         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4762 
4763         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4764         if (!zbd)
4765                 return 0;
4766 
4767         /* report zone for the sector the curseg points to */
4768         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4769                 << log_sectors_per_block;
4770         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4771                                   report_one_zone_cb, &zone);
4772         if (err != 1) {
4773                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4774                          zbd->path, err);
4775                 return err;
4776         }
4777 
4778         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4779                 return 0;
4780 
4781         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4782         wp_segno = GET_SEGNO(sbi, wp_block);
4783         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4784         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4785 
4786         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4787                 wp_sector_off == 0)
4788                 return 0;
4789 
4790         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4791                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4792                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4793 
4794         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4795                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4796         allocate_segment_by_default(sbi, type, true);
4797 
4798         /* check consistency of the zone curseg pointed to */
4799         if (check_zone_write_pointer(sbi, zbd, &zone))
4800                 return -EIO;
4801 
4802         /* check newly assigned zone */
4803         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4804         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4805 
4806         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4807         if (!zbd)
4808                 return 0;
4809 
4810         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4811                 << log_sectors_per_block;
4812         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4813                                   report_one_zone_cb, &zone);
4814         if (err != 1) {
4815                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4816                          zbd->path, err);
4817                 return err;
4818         }
4819 
4820         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4821                 return 0;
4822 
4823         if (zone.wp != zone.start) {
4824                 f2fs_notice(sbi,
4825                             "New zone for curseg[%d] is not yet discarded. "
4826                             "Reset the zone: curseg[0x%x,0x%x]",
4827                             type, cs->segno, cs->next_blkoff);
4828                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4829                                 zone_sector >> log_sectors_per_block,
4830                                 zone.len >> log_sectors_per_block);
4831                 if (err) {
4832                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4833                                  zbd->path, err);
4834                         return err;
4835                 }
4836         }
4837 
4838         return 0;
4839 }
4840 
4841 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4842 {
4843         int i, ret;
4844 
4845         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4846                 ret = fix_curseg_write_pointer(sbi, i);
4847                 if (ret)
4848                         return ret;
4849         }
4850 
4851         return 0;
4852 }
4853 
4854 struct check_zone_write_pointer_args {
4855         struct f2fs_sb_info *sbi;
4856         struct f2fs_dev_info *fdev;
4857 };
4858 
4859 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4860                                       void *data) {
4861         struct check_zone_write_pointer_args *args;
4862         args = (struct check_zone_write_pointer_args *)data;
4863 
4864         return check_zone_write_pointer(args->sbi, args->fdev, zone);
4865 }
4866 
4867 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4868 {
4869         int i, ret;
4870         struct check_zone_write_pointer_args args;
4871 
4872         for (i = 0; i < sbi->s_ndevs; i++) {
4873                 if (!bdev_is_zoned(FDEV(i).bdev))
4874                         continue;
4875 
4876                 args.sbi = sbi;
4877                 args.fdev = &FDEV(i);
4878                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4879                                           check_zone_write_pointer_cb, &args);
4880                 if (ret < 0)
4881                         return ret;
4882         }
4883 
4884         return 0;
4885 }
4886 
4887 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4888                                                 unsigned int dev_idx)
4889 {
4890         if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4891                 return true;
4892         return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4893 }
4894 
4895 /* Return the zone index in the given device */
4896 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4897                                         int dev_idx)
4898 {
4899         block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4900 
4901         return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4902                                                 sbi->log_blocks_per_blkz;
4903 }
4904 
4905 /*
4906  * Return the usable segments in a section based on the zone's
4907  * corresponding zone capacity. Zone is equal to a section.
4908  */
4909 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4910                 struct f2fs_sb_info *sbi, unsigned int segno)
4911 {
4912         unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4913 
4914         dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4915         zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4916 
4917         /* Conventional zone's capacity is always equal to zone size */
4918         if (is_conv_zone(sbi, zone_idx, dev_idx))
4919                 return sbi->segs_per_sec;
4920 
4921         /*
4922          * If the zone_capacity_blocks array is NULL, then zone capacity
4923          * is equal to the zone size for all zones
4924          */
4925         if (!FDEV(dev_idx).zone_capacity_blocks)
4926                 return sbi->segs_per_sec;
4927 
4928         /* Get the segment count beyond zone capacity block */
4929         unusable_segs_in_sec = (sbi->blocks_per_blkz -
4930                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
4931                                 sbi->log_blocks_per_seg;
4932         return sbi->segs_per_sec - unusable_segs_in_sec;
4933 }
4934 
4935 /*
4936  * Return the number of usable blocks in a segment. The number of blocks
4937  * returned is always equal to the number of blocks in a segment for
4938  * segments fully contained within a sequential zone capacity or a
4939  * conventional zone. For segments partially contained in a sequential
4940  * zone capacity, the number of usable blocks up to the zone capacity
4941  * is returned. 0 is returned in all other cases.
4942  */
4943 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4944                         struct f2fs_sb_info *sbi, unsigned int segno)
4945 {
4946         block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4947         unsigned int zone_idx, dev_idx, secno;
4948 
4949         secno = GET_SEC_FROM_SEG(sbi, segno);
4950         seg_start = START_BLOCK(sbi, segno);
4951         dev_idx = f2fs_target_device_index(sbi, seg_start);
4952         zone_idx = get_zone_idx(sbi, secno, dev_idx);
4953 
4954         /*
4955          * Conventional zone's capacity is always equal to zone size,
4956          * so, blocks per segment is unchanged.
4957          */
4958         if (is_conv_zone(sbi, zone_idx, dev_idx))
4959                 return sbi->blocks_per_seg;
4960 
4961         if (!FDEV(dev_idx).zone_capacity_blocks)
4962                 return sbi->blocks_per_seg;
4963 
4964         sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4965         sec_cap_blkaddr = sec_start_blkaddr +
4966                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
4967 
4968         /*
4969          * If segment starts before zone capacity and spans beyond
4970          * zone capacity, then usable blocks are from seg start to
4971          * zone capacity. If the segment starts after the zone capacity,
4972          * then there are no usable blocks.
4973          */
4974         if (seg_start >= sec_cap_blkaddr)
4975                 return 0;
4976         if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4977                 return sec_cap_blkaddr - seg_start;
4978 
4979         return sbi->blocks_per_seg;
4980 }
4981 #else
4982 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4983 {
4984         return 0;
4985 }
4986 
4987 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4988 {
4989         return 0;
4990 }
4991 
4992 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
4993                                                         unsigned int segno)
4994 {
4995         return 0;
4996 }
4997 
4998 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
4999                                                         unsigned int segno)
5000 {
5001         return 0;
5002 }
5003 #endif
5004 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5005                                         unsigned int segno)
5006 {
5007         if (f2fs_sb_has_blkzoned(sbi))
5008                 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5009 
5010         return sbi->blocks_per_seg;
5011 }
5012 
5013 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5014                                         unsigned int segno)
5015 {
5016         if (f2fs_sb_has_blkzoned(sbi))
5017                 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5018 
5019         return sbi->segs_per_sec;
5020 }
5021 
5022 /*
5023  * Update min, max modified time for cost-benefit GC algorithm
5024  */
5025 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5026 {
5027         struct sit_info *sit_i = SIT_I(sbi);
5028         unsigned int segno;
5029 
5030         down_write(&sit_i->sentry_lock);
5031 
5032         sit_i->min_mtime = ULLONG_MAX;
5033 
5034         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5035                 unsigned int i;
5036                 unsigned long long mtime = 0;
5037 
5038                 for (i = 0; i < sbi->segs_per_sec; i++)
5039                         mtime += get_seg_entry(sbi, segno + i)->mtime;
5040 
5041                 mtime = div_u64(mtime, sbi->segs_per_sec);
5042 
5043                 if (sit_i->min_mtime > mtime)
5044                         sit_i->min_mtime = mtime;
5045         }
5046         sit_i->max_mtime = get_mtime(sbi, false);
5047         sit_i->dirty_max_mtime = 0;
5048         up_write(&sit_i->sentry_lock);
5049 }
5050 
5051 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5052 {
5053         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5054         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5055         struct f2fs_sm_info *sm_info;
5056         int err;
5057 
5058         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5059         if (!sm_info)
5060                 return -ENOMEM;
5061 
5062         /* init sm info */
5063         sbi->sm_info = sm_info;
5064         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5065         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5066         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5067         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5068         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5069         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5070         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5071         sm_info->rec_prefree_segments = sm_info->main_segments *
5072                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5073         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5074                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5075 
5076         if (!f2fs_lfs_mode(sbi))
5077                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5078         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5079         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5080         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5081         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5082         sm_info->min_ssr_sections = reserved_sections(sbi);
5083 
5084         INIT_LIST_HEAD(&sm_info->sit_entry_set);
5085 
5086         init_rwsem(&sm_info->curseg_lock);
5087 
5088         if (!f2fs_readonly(sbi->sb)) {
5089                 err = f2fs_create_flush_cmd_control(sbi);
5090                 if (err)
5091                         return err;
5092         }
5093 
5094         err = create_discard_cmd_control(sbi);
5095         if (err)
5096                 return err;
5097 
5098         err = build_sit_info(sbi);
5099         if (err)
5100                 return err;
5101         err = build_free_segmap(sbi);
5102         if (err)
5103                 return err;
5104         err = build_curseg(sbi);
5105         if (err)
5106                 return err;
5107 
5108         /* reinit free segmap based on SIT */
5109         err = build_sit_entries(sbi);
5110         if (err)
5111                 return err;
5112 
5113         init_free_segmap(sbi);
5114         err = build_dirty_segmap(sbi);
5115         if (err)
5116                 return err;
5117 
5118         err = sanity_check_curseg(sbi);
5119         if (err)
5120                 return err;
5121 
5122         init_min_max_mtime(sbi);
5123         return 0;
5124 }
5125 
5126 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5127                 enum dirty_type dirty_type)
5128 {
5129         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5130 
5131         mutex_lock(&dirty_i->seglist_lock);
5132         kvfree(dirty_i->dirty_segmap[dirty_type]);
5133         dirty_i->nr_dirty[dirty_type] = 0;
5134         mutex_unlock(&dirty_i->seglist_lock);
5135 }
5136 
5137 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5138 {
5139         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5140         kvfree(dirty_i->victim_secmap);
5141 }
5142 
5143 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5144 {
5145         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5146         int i;
5147 
5148         if (!dirty_i)
5149                 return;
5150 
5151         /* discard pre-free/dirty segments list */
5152         for (i = 0; i < NR_DIRTY_TYPE; i++)
5153                 discard_dirty_segmap(sbi, i);
5154 
5155         if (__is_large_section(sbi)) {
5156                 mutex_lock(&dirty_i->seglist_lock);
5157                 kvfree(dirty_i->dirty_secmap);
5158                 mutex_unlock(&dirty_i->seglist_lock);
5159         }
5160 
5161         destroy_victim_secmap(sbi);
5162         SM_I(sbi)->dirty_info = NULL;
5163         kfree(dirty_i);
5164 }
5165 
5166 static void destroy_curseg(struct f2fs_sb_info *sbi)
5167 {
5168         struct curseg_info *array = SM_I(sbi)->curseg_array;
5169         int i;
5170 
5171         if (!array)
5172                 return;
5173         SM_I(sbi)->curseg_array = NULL;
5174         for (i = 0; i < NR_CURSEG_TYPE; i++) {
5175                 kfree(array[i].sum_blk);
5176                 kfree(array[i].journal);
5177         }
5178         kfree(array);
5179 }
5180 
5181 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5182 {
5183         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5184         if (!free_i)
5185                 return;
5186         SM_I(sbi)->free_info = NULL;
5187         kvfree(free_i->free_segmap);
5188         kvfree(free_i->free_secmap);
5189         kfree(free_i);
5190 }
5191 
5192 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5193 {
5194         struct sit_info *sit_i = SIT_I(sbi);
5195 
5196         if (!sit_i)
5197                 return;
5198 
5199         if (sit_i->sentries)
5200                 kvfree(sit_i->bitmap);
5201         kfree(sit_i->tmp_map);
5202 
5203         kvfree(sit_i->sentries);
5204         kvfree(sit_i->sec_entries);
5205         kvfree(sit_i->dirty_sentries_bitmap);
5206 
5207         SM_I(sbi)->sit_info = NULL;
5208         kvfree(sit_i->sit_bitmap);
5209 #ifdef CONFIG_F2FS_CHECK_FS
5210         kvfree(sit_i->sit_bitmap_mir);
5211         kvfree(sit_i->invalid_segmap);
5212 #endif
5213         kfree(sit_i);
5214 }
5215 
5216 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5217 {
5218         struct f2fs_sm_info *sm_info = SM_I(sbi);
5219 
5220         if (!sm_info)
5221                 return;
5222         f2fs_destroy_flush_cmd_control(sbi, true);
5223         destroy_discard_cmd_control(sbi);
5224         destroy_dirty_segmap(sbi);
5225         destroy_curseg(sbi);
5226         destroy_free_segmap(sbi);
5227         destroy_sit_info(sbi);
5228         sbi->sm_info = NULL;
5229         kfree(sm_info);
5230 }
5231 
5232 int __init f2fs_create_segment_manager_caches(void)
5233 {
5234         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5235                         sizeof(struct discard_entry));
5236         if (!discard_entry_slab)
5237                 goto fail;
5238 
5239         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5240                         sizeof(struct discard_cmd));
5241         if (!discard_cmd_slab)
5242                 goto destroy_discard_entry;
5243 
5244         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5245                         sizeof(struct sit_entry_set));
5246         if (!sit_entry_set_slab)
5247                 goto destroy_discard_cmd;
5248 
5249         inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5250                         sizeof(struct inmem_pages));
5251         if (!inmem_entry_slab)
5252                 goto destroy_sit_entry_set;
5253         return 0;
5254 
5255 destroy_sit_entry_set:
5256         kmem_cache_destroy(sit_entry_set_slab);
5257 destroy_discard_cmd:
5258         kmem_cache_destroy(discard_cmd_slab);
5259 destroy_discard_entry:
5260         kmem_cache_destroy(discard_entry_slab);
5261 fail:
5262         return -ENOMEM;
5263 }
5264 
5265 void f2fs_destroy_segment_manager_caches(void)
5266 {
5267         kmem_cache_destroy(sit_entry_set_slab);
5268         kmem_cache_destroy(discard_cmd_slab);
5269         kmem_cache_destroy(discard_entry_slab);
5270         kmem_cache_destroy(inmem_entry_slab);
5271 }
5272 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp