~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/segment.c

Version: ~ [ linux-5.9-rc6 ] ~ [ linux-5.8.10 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.66 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.146 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.198 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.236 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.236 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * fs/f2fs/segment.c
  3  *
  4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5  *             http://www.samsung.com/
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  */
 11 #include <linux/fs.h>
 12 #include <linux/f2fs_fs.h>
 13 #include <linux/bio.h>
 14 #include <linux/blkdev.h>
 15 #include <linux/prefetch.h>
 16 #include <linux/vmalloc.h>
 17 #include <linux/swap.h>
 18 
 19 #include "f2fs.h"
 20 #include "segment.h"
 21 #include "node.h"
 22 #include <trace/events/f2fs.h>
 23 
 24 #define __reverse_ffz(x) __reverse_ffs(~(x))
 25 
 26 static struct kmem_cache *discard_entry_slab;
 27 
 28 /*
 29  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
 30  * MSB and LSB are reversed in a byte by f2fs_set_bit.
 31  */
 32 static inline unsigned long __reverse_ffs(unsigned long word)
 33 {
 34         int num = 0;
 35 
 36 #if BITS_PER_LONG == 64
 37         if ((word & 0xffffffff) == 0) {
 38                 num += 32;
 39                 word >>= 32;
 40         }
 41 #endif
 42         if ((word & 0xffff) == 0) {
 43                 num += 16;
 44                 word >>= 16;
 45         }
 46         if ((word & 0xff) == 0) {
 47                 num += 8;
 48                 word >>= 8;
 49         }
 50         if ((word & 0xf0) == 0)
 51                 num += 4;
 52         else
 53                 word >>= 4;
 54         if ((word & 0xc) == 0)
 55                 num += 2;
 56         else
 57                 word >>= 2;
 58         if ((word & 0x2) == 0)
 59                 num += 1;
 60         return num;
 61 }
 62 
 63 /*
 64  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
 65  * f2fs_set_bit makes MSB and LSB reversed in a byte.
 66  * Example:
 67  *                             LSB <--> MSB
 68  *   f2fs_set_bit(0, bitmap) => 0000 0001
 69  *   f2fs_set_bit(7, bitmap) => 1000 0000
 70  */
 71 static unsigned long __find_rev_next_bit(const unsigned long *addr,
 72                         unsigned long size, unsigned long offset)
 73 {
 74         const unsigned long *p = addr + BIT_WORD(offset);
 75         unsigned long result = offset & ~(BITS_PER_LONG - 1);
 76         unsigned long tmp;
 77         unsigned long mask, submask;
 78         unsigned long quot, rest;
 79 
 80         if (offset >= size)
 81                 return size;
 82 
 83         size -= result;
 84         offset %= BITS_PER_LONG;
 85         if (!offset)
 86                 goto aligned;
 87 
 88         tmp = *(p++);
 89         quot = (offset >> 3) << 3;
 90         rest = offset & 0x7;
 91         mask = ~0UL << quot;
 92         submask = (unsigned char)(0xff << rest) >> rest;
 93         submask <<= quot;
 94         mask &= submask;
 95         tmp &= mask;
 96         if (size < BITS_PER_LONG)
 97                 goto found_first;
 98         if (tmp)
 99                 goto found_middle;
100 
101         size -= BITS_PER_LONG;
102         result += BITS_PER_LONG;
103 aligned:
104         while (size & ~(BITS_PER_LONG-1)) {
105                 tmp = *(p++);
106                 if (tmp)
107                         goto found_middle;
108                 result += BITS_PER_LONG;
109                 size -= BITS_PER_LONG;
110         }
111         if (!size)
112                 return result;
113         tmp = *p;
114 found_first:
115         tmp &= (~0UL >> (BITS_PER_LONG - size));
116         if (tmp == 0UL)         /* Are any bits set? */
117                 return result + size;   /* Nope. */
118 found_middle:
119         return result + __reverse_ffs(tmp);
120 }
121 
122 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
123                         unsigned long size, unsigned long offset)
124 {
125         const unsigned long *p = addr + BIT_WORD(offset);
126         unsigned long result = offset & ~(BITS_PER_LONG - 1);
127         unsigned long tmp;
128         unsigned long mask, submask;
129         unsigned long quot, rest;
130 
131         if (offset >= size)
132                 return size;
133 
134         size -= result;
135         offset %= BITS_PER_LONG;
136         if (!offset)
137                 goto aligned;
138 
139         tmp = *(p++);
140         quot = (offset >> 3) << 3;
141         rest = offset & 0x7;
142         mask = ~(~0UL << quot);
143         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
144         submask <<= quot;
145         mask += submask;
146         tmp |= mask;
147         if (size < BITS_PER_LONG)
148                 goto found_first;
149         if (~tmp)
150                 goto found_middle;
151 
152         size -= BITS_PER_LONG;
153         result += BITS_PER_LONG;
154 aligned:
155         while (size & ~(BITS_PER_LONG - 1)) {
156                 tmp = *(p++);
157                 if (~tmp)
158                         goto found_middle;
159                 result += BITS_PER_LONG;
160                 size -= BITS_PER_LONG;
161         }
162         if (!size)
163                 return result;
164         tmp = *p;
165 
166 found_first:
167         tmp |= ~0UL << size;
168         if (tmp == ~0UL)        /* Are any bits zero? */
169                 return result + size;   /* Nope. */
170 found_middle:
171         return result + __reverse_ffz(tmp);
172 }
173 
174 /*
175  * This function balances dirty node and dentry pages.
176  * In addition, it controls garbage collection.
177  */
178 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
179 {
180         /*
181          * We should do GC or end up with checkpoint, if there are so many dirty
182          * dir/node pages without enough free segments.
183          */
184         if (has_not_enough_free_secs(sbi, 0)) {
185                 mutex_lock(&sbi->gc_mutex);
186                 f2fs_gc(sbi);
187         }
188 }
189 
190 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
191 {
192         /* check the # of cached NAT entries and prefree segments */
193         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
194                                 excess_prefree_segs(sbi))
195                 f2fs_sync_fs(sbi->sb, true);
196 }
197 
198 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
199                 enum dirty_type dirty_type)
200 {
201         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
202 
203         /* need not be added */
204         if (IS_CURSEG(sbi, segno))
205                 return;
206 
207         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
208                 dirty_i->nr_dirty[dirty_type]++;
209 
210         if (dirty_type == DIRTY) {
211                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
212                 enum dirty_type t = sentry->type;
213 
214                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
215                         dirty_i->nr_dirty[t]++;
216         }
217 }
218 
219 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
220                 enum dirty_type dirty_type)
221 {
222         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
223 
224         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
225                 dirty_i->nr_dirty[dirty_type]--;
226 
227         if (dirty_type == DIRTY) {
228                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
229                 enum dirty_type t = sentry->type;
230 
231                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
232                         dirty_i->nr_dirty[t]--;
233 
234                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
235                         clear_bit(GET_SECNO(sbi, segno),
236                                                 dirty_i->victim_secmap);
237         }
238 }
239 
240 /*
241  * Should not occur error such as -ENOMEM.
242  * Adding dirty entry into seglist is not critical operation.
243  * If a given segment is one of current working segments, it won't be added.
244  */
245 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
246 {
247         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
248         unsigned short valid_blocks;
249 
250         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
251                 return;
252 
253         mutex_lock(&dirty_i->seglist_lock);
254 
255         valid_blocks = get_valid_blocks(sbi, segno, 0);
256 
257         if (valid_blocks == 0) {
258                 __locate_dirty_segment(sbi, segno, PRE);
259                 __remove_dirty_segment(sbi, segno, DIRTY);
260         } else if (valid_blocks < sbi->blocks_per_seg) {
261                 __locate_dirty_segment(sbi, segno, DIRTY);
262         } else {
263                 /* Recovery routine with SSR needs this */
264                 __remove_dirty_segment(sbi, segno, DIRTY);
265         }
266 
267         mutex_unlock(&dirty_i->seglist_lock);
268 }
269 
270 static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
271                                 block_t blkstart, block_t blklen)
272 {
273         sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
274         sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
275         blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
276         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
277 }
278 
279 static void add_discard_addrs(struct f2fs_sb_info *sbi,
280                         unsigned int segno, struct seg_entry *se)
281 {
282         struct list_head *head = &SM_I(sbi)->discard_list;
283         struct discard_entry *new;
284         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
285         int max_blocks = sbi->blocks_per_seg;
286         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
287         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
288         unsigned long dmap[entries];
289         unsigned int start = 0, end = -1;
290         int i;
291 
292         if (!test_opt(sbi, DISCARD))
293                 return;
294 
295         /* zero block will be discarded through the prefree list */
296         if (!se->valid_blocks || se->valid_blocks == max_blocks)
297                 return;
298 
299         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
300         for (i = 0; i < entries; i++)
301                 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
302 
303         while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
304                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
305                 if (start >= max_blocks)
306                         break;
307 
308                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
309 
310                 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
311                 INIT_LIST_HEAD(&new->list);
312                 new->blkaddr = START_BLOCK(sbi, segno) + start;
313                 new->len = end - start;
314 
315                 list_add_tail(&new->list, head);
316                 SM_I(sbi)->nr_discards += end - start;
317         }
318 }
319 
320 /*
321  * Should call clear_prefree_segments after checkpoint is done.
322  */
323 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
324 {
325         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
326         unsigned int segno = -1;
327         unsigned int total_segs = TOTAL_SEGS(sbi);
328 
329         mutex_lock(&dirty_i->seglist_lock);
330         while (1) {
331                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
332                                 segno + 1);
333                 if (segno >= total_segs)
334                         break;
335                 __set_test_and_free(sbi, segno);
336         }
337         mutex_unlock(&dirty_i->seglist_lock);
338 }
339 
340 void clear_prefree_segments(struct f2fs_sb_info *sbi)
341 {
342         struct list_head *head = &(SM_I(sbi)->discard_list);
343         struct list_head *this, *next;
344         struct discard_entry *entry;
345         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
346         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
347         unsigned int total_segs = TOTAL_SEGS(sbi);
348         unsigned int start = 0, end = -1;
349 
350         mutex_lock(&dirty_i->seglist_lock);
351 
352         while (1) {
353                 int i;
354                 start = find_next_bit(prefree_map, total_segs, end + 1);
355                 if (start >= total_segs)
356                         break;
357                 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
358 
359                 for (i = start; i < end; i++)
360                         clear_bit(i, prefree_map);
361 
362                 dirty_i->nr_dirty[PRE] -= end - start;
363 
364                 if (!test_opt(sbi, DISCARD))
365                         continue;
366 
367                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
368                                 (end - start) << sbi->log_blocks_per_seg);
369         }
370         mutex_unlock(&dirty_i->seglist_lock);
371 
372         /* send small discards */
373         list_for_each_safe(this, next, head) {
374                 entry = list_entry(this, struct discard_entry, list);
375                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
376                 list_del(&entry->list);
377                 SM_I(sbi)->nr_discards -= entry->len;
378                 kmem_cache_free(discard_entry_slab, entry);
379         }
380 }
381 
382 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
383 {
384         struct sit_info *sit_i = SIT_I(sbi);
385         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
386                 sit_i->dirty_sentries++;
387 }
388 
389 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
390                                         unsigned int segno, int modified)
391 {
392         struct seg_entry *se = get_seg_entry(sbi, segno);
393         se->type = type;
394         if (modified)
395                 __mark_sit_entry_dirty(sbi, segno);
396 }
397 
398 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
399 {
400         struct seg_entry *se;
401         unsigned int segno, offset;
402         long int new_vblocks;
403 
404         segno = GET_SEGNO(sbi, blkaddr);
405 
406         se = get_seg_entry(sbi, segno);
407         new_vblocks = se->valid_blocks + del;
408         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
409 
410         f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
411                                 (new_vblocks > sbi->blocks_per_seg)));
412 
413         se->valid_blocks = new_vblocks;
414         se->mtime = get_mtime(sbi);
415         SIT_I(sbi)->max_mtime = se->mtime;
416 
417         /* Update valid block bitmap */
418         if (del > 0) {
419                 if (f2fs_set_bit(offset, se->cur_valid_map))
420                         BUG();
421         } else {
422                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
423                         BUG();
424         }
425         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
426                 se->ckpt_valid_blocks += del;
427 
428         __mark_sit_entry_dirty(sbi, segno);
429 
430         /* update total number of valid blocks to be written in ckpt area */
431         SIT_I(sbi)->written_valid_blocks += del;
432 
433         if (sbi->segs_per_sec > 1)
434                 get_sec_entry(sbi, segno)->valid_blocks += del;
435 }
436 
437 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
438                         block_t old_blkaddr, block_t new_blkaddr)
439 {
440         update_sit_entry(sbi, new_blkaddr, 1);
441         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
442                 update_sit_entry(sbi, old_blkaddr, -1);
443 }
444 
445 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
446 {
447         unsigned int segno = GET_SEGNO(sbi, addr);
448         struct sit_info *sit_i = SIT_I(sbi);
449 
450         f2fs_bug_on(addr == NULL_ADDR);
451         if (addr == NEW_ADDR)
452                 return;
453 
454         /* add it into sit main buffer */
455         mutex_lock(&sit_i->sentry_lock);
456 
457         update_sit_entry(sbi, addr, -1);
458 
459         /* add it into dirty seglist */
460         locate_dirty_segment(sbi, segno);
461 
462         mutex_unlock(&sit_i->sentry_lock);
463 }
464 
465 /*
466  * This function should be resided under the curseg_mutex lock
467  */
468 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
469                                         struct f2fs_summary *sum)
470 {
471         struct curseg_info *curseg = CURSEG_I(sbi, type);
472         void *addr = curseg->sum_blk;
473         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
474         memcpy(addr, sum, sizeof(struct f2fs_summary));
475 }
476 
477 /*
478  * Calculate the number of current summary pages for writing
479  */
480 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
481 {
482         int valid_sum_count = 0;
483         int i, sum_in_page;
484 
485         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
486                 if (sbi->ckpt->alloc_type[i] == SSR)
487                         valid_sum_count += sbi->blocks_per_seg;
488                 else
489                         valid_sum_count += curseg_blkoff(sbi, i);
490         }
491 
492         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
493                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
494         if (valid_sum_count <= sum_in_page)
495                 return 1;
496         else if ((valid_sum_count - sum_in_page) <=
497                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
498                 return 2;
499         return 3;
500 }
501 
502 /*
503  * Caller should put this summary page
504  */
505 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
506 {
507         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
508 }
509 
510 static void write_sum_page(struct f2fs_sb_info *sbi,
511                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
512 {
513         struct page *page = grab_meta_page(sbi, blk_addr);
514         void *kaddr = page_address(page);
515         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
516         set_page_dirty(page);
517         f2fs_put_page(page, 1);
518 }
519 
520 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
521 {
522         struct curseg_info *curseg = CURSEG_I(sbi, type);
523         unsigned int segno = curseg->segno + 1;
524         struct free_segmap_info *free_i = FREE_I(sbi);
525 
526         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
527                 return !test_bit(segno, free_i->free_segmap);
528         return 0;
529 }
530 
531 /*
532  * Find a new segment from the free segments bitmap to right order
533  * This function should be returned with success, otherwise BUG
534  */
535 static void get_new_segment(struct f2fs_sb_info *sbi,
536                         unsigned int *newseg, bool new_sec, int dir)
537 {
538         struct free_segmap_info *free_i = FREE_I(sbi);
539         unsigned int segno, secno, zoneno;
540         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
541         unsigned int hint = *newseg / sbi->segs_per_sec;
542         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
543         unsigned int left_start = hint;
544         bool init = true;
545         int go_left = 0;
546         int i;
547 
548         write_lock(&free_i->segmap_lock);
549 
550         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
551                 segno = find_next_zero_bit(free_i->free_segmap,
552                                         TOTAL_SEGS(sbi), *newseg + 1);
553                 if (segno - *newseg < sbi->segs_per_sec -
554                                         (*newseg % sbi->segs_per_sec))
555                         goto got_it;
556         }
557 find_other_zone:
558         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
559         if (secno >= TOTAL_SECS(sbi)) {
560                 if (dir == ALLOC_RIGHT) {
561                         secno = find_next_zero_bit(free_i->free_secmap,
562                                                         TOTAL_SECS(sbi), 0);
563                         f2fs_bug_on(secno >= TOTAL_SECS(sbi));
564                 } else {
565                         go_left = 1;
566                         left_start = hint - 1;
567                 }
568         }
569         if (go_left == 0)
570                 goto skip_left;
571 
572         while (test_bit(left_start, free_i->free_secmap)) {
573                 if (left_start > 0) {
574                         left_start--;
575                         continue;
576                 }
577                 left_start = find_next_zero_bit(free_i->free_secmap,
578                                                         TOTAL_SECS(sbi), 0);
579                 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
580                 break;
581         }
582         secno = left_start;
583 skip_left:
584         hint = secno;
585         segno = secno * sbi->segs_per_sec;
586         zoneno = secno / sbi->secs_per_zone;
587 
588         /* give up on finding another zone */
589         if (!init)
590                 goto got_it;
591         if (sbi->secs_per_zone == 1)
592                 goto got_it;
593         if (zoneno == old_zoneno)
594                 goto got_it;
595         if (dir == ALLOC_LEFT) {
596                 if (!go_left && zoneno + 1 >= total_zones)
597                         goto got_it;
598                 if (go_left && zoneno == 0)
599                         goto got_it;
600         }
601         for (i = 0; i < NR_CURSEG_TYPE; i++)
602                 if (CURSEG_I(sbi, i)->zone == zoneno)
603                         break;
604 
605         if (i < NR_CURSEG_TYPE) {
606                 /* zone is in user, try another */
607                 if (go_left)
608                         hint = zoneno * sbi->secs_per_zone - 1;
609                 else if (zoneno + 1 >= total_zones)
610                         hint = 0;
611                 else
612                         hint = (zoneno + 1) * sbi->secs_per_zone;
613                 init = false;
614                 goto find_other_zone;
615         }
616 got_it:
617         /* set it as dirty segment in free segmap */
618         f2fs_bug_on(test_bit(segno, free_i->free_segmap));
619         __set_inuse(sbi, segno);
620         *newseg = segno;
621         write_unlock(&free_i->segmap_lock);
622 }
623 
624 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
625 {
626         struct curseg_info *curseg = CURSEG_I(sbi, type);
627         struct summary_footer *sum_footer;
628 
629         curseg->segno = curseg->next_segno;
630         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
631         curseg->next_blkoff = 0;
632         curseg->next_segno = NULL_SEGNO;
633 
634         sum_footer = &(curseg->sum_blk->footer);
635         memset(sum_footer, 0, sizeof(struct summary_footer));
636         if (IS_DATASEG(type))
637                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
638         if (IS_NODESEG(type))
639                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
640         __set_sit_entry_type(sbi, type, curseg->segno, modified);
641 }
642 
643 /*
644  * Allocate a current working segment.
645  * This function always allocates a free segment in LFS manner.
646  */
647 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
648 {
649         struct curseg_info *curseg = CURSEG_I(sbi, type);
650         unsigned int segno = curseg->segno;
651         int dir = ALLOC_LEFT;
652 
653         write_sum_page(sbi, curseg->sum_blk,
654                                 GET_SUM_BLOCK(sbi, segno));
655         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
656                 dir = ALLOC_RIGHT;
657 
658         if (test_opt(sbi, NOHEAP))
659                 dir = ALLOC_RIGHT;
660 
661         get_new_segment(sbi, &segno, new_sec, dir);
662         curseg->next_segno = segno;
663         reset_curseg(sbi, type, 1);
664         curseg->alloc_type = LFS;
665 }
666 
667 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
668                         struct curseg_info *seg, block_t start)
669 {
670         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
671         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
672         unsigned long target_map[entries];
673         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
674         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
675         int i, pos;
676 
677         for (i = 0; i < entries; i++)
678                 target_map[i] = ckpt_map[i] | cur_map[i];
679 
680         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
681 
682         seg->next_blkoff = pos;
683 }
684 
685 /*
686  * If a segment is written by LFS manner, next block offset is just obtained
687  * by increasing the current block offset. However, if a segment is written by
688  * SSR manner, next block offset obtained by calling __next_free_blkoff
689  */
690 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
691                                 struct curseg_info *seg)
692 {
693         if (seg->alloc_type == SSR)
694                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
695         else
696                 seg->next_blkoff++;
697 }
698 
699 /*
700  * This function always allocates a used segment (from dirty seglist) by SSR
701  * manner, so it should recover the existing segment information of valid blocks
702  */
703 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
704 {
705         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
706         struct curseg_info *curseg = CURSEG_I(sbi, type);
707         unsigned int new_segno = curseg->next_segno;
708         struct f2fs_summary_block *sum_node;
709         struct page *sum_page;
710 
711         write_sum_page(sbi, curseg->sum_blk,
712                                 GET_SUM_BLOCK(sbi, curseg->segno));
713         __set_test_and_inuse(sbi, new_segno);
714 
715         mutex_lock(&dirty_i->seglist_lock);
716         __remove_dirty_segment(sbi, new_segno, PRE);
717         __remove_dirty_segment(sbi, new_segno, DIRTY);
718         mutex_unlock(&dirty_i->seglist_lock);
719 
720         reset_curseg(sbi, type, 1);
721         curseg->alloc_type = SSR;
722         __next_free_blkoff(sbi, curseg, 0);
723 
724         if (reuse) {
725                 sum_page = get_sum_page(sbi, new_segno);
726                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
727                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
728                 f2fs_put_page(sum_page, 1);
729         }
730 }
731 
732 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
733 {
734         struct curseg_info *curseg = CURSEG_I(sbi, type);
735         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
736 
737         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
738                 return v_ops->get_victim(sbi,
739                                 &(curseg)->next_segno, BG_GC, type, SSR);
740 
741         /* For data segments, let's do SSR more intensively */
742         for (; type >= CURSEG_HOT_DATA; type--)
743                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
744                                                 BG_GC, type, SSR))
745                         return 1;
746         return 0;
747 }
748 
749 /*
750  * flush out current segment and replace it with new segment
751  * This function should be returned with success, otherwise BUG
752  */
753 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
754                                                 int type, bool force)
755 {
756         struct curseg_info *curseg = CURSEG_I(sbi, type);
757 
758         if (force)
759                 new_curseg(sbi, type, true);
760         else if (type == CURSEG_WARM_NODE)
761                 new_curseg(sbi, type, false);
762         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
763                 new_curseg(sbi, type, false);
764         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
765                 change_curseg(sbi, type, true);
766         else
767                 new_curseg(sbi, type, false);
768 
769         stat_inc_seg_type(sbi, curseg);
770 }
771 
772 void allocate_new_segments(struct f2fs_sb_info *sbi)
773 {
774         struct curseg_info *curseg;
775         unsigned int old_curseg;
776         int i;
777 
778         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
779                 curseg = CURSEG_I(sbi, i);
780                 old_curseg = curseg->segno;
781                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
782                 locate_dirty_segment(sbi, old_curseg);
783         }
784 }
785 
786 static const struct segment_allocation default_salloc_ops = {
787         .allocate_segment = allocate_segment_by_default,
788 };
789 
790 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
791 {
792         struct curseg_info *curseg = CURSEG_I(sbi, type);
793         if (curseg->next_blkoff < sbi->blocks_per_seg)
794                 return true;
795         return false;
796 }
797 
798 static int __get_segment_type_2(struct page *page, enum page_type p_type)
799 {
800         if (p_type == DATA)
801                 return CURSEG_HOT_DATA;
802         else
803                 return CURSEG_HOT_NODE;
804 }
805 
806 static int __get_segment_type_4(struct page *page, enum page_type p_type)
807 {
808         if (p_type == DATA) {
809                 struct inode *inode = page->mapping->host;
810 
811                 if (S_ISDIR(inode->i_mode))
812                         return CURSEG_HOT_DATA;
813                 else
814                         return CURSEG_COLD_DATA;
815         } else {
816                 if (IS_DNODE(page) && !is_cold_node(page))
817                         return CURSEG_HOT_NODE;
818                 else
819                         return CURSEG_COLD_NODE;
820         }
821 }
822 
823 static int __get_segment_type_6(struct page *page, enum page_type p_type)
824 {
825         if (p_type == DATA) {
826                 struct inode *inode = page->mapping->host;
827 
828                 if (S_ISDIR(inode->i_mode))
829                         return CURSEG_HOT_DATA;
830                 else if (is_cold_data(page) || file_is_cold(inode))
831                         return CURSEG_COLD_DATA;
832                 else
833                         return CURSEG_WARM_DATA;
834         } else {
835                 if (IS_DNODE(page))
836                         return is_cold_node(page) ? CURSEG_WARM_NODE :
837                                                 CURSEG_HOT_NODE;
838                 else
839                         return CURSEG_COLD_NODE;
840         }
841 }
842 
843 static int __get_segment_type(struct page *page, enum page_type p_type)
844 {
845         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
846         switch (sbi->active_logs) {
847         case 2:
848                 return __get_segment_type_2(page, p_type);
849         case 4:
850                 return __get_segment_type_4(page, p_type);
851         }
852         /* NR_CURSEG_TYPE(6) logs by default */
853         f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
854         return __get_segment_type_6(page, p_type);
855 }
856 
857 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
858                 block_t old_blkaddr, block_t *new_blkaddr,
859                 struct f2fs_summary *sum, int type)
860 {
861         struct sit_info *sit_i = SIT_I(sbi);
862         struct curseg_info *curseg;
863         unsigned int old_cursegno;
864 
865         curseg = CURSEG_I(sbi, type);
866 
867         mutex_lock(&curseg->curseg_mutex);
868 
869         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
870         old_cursegno = curseg->segno;
871 
872         /*
873          * __add_sum_entry should be resided under the curseg_mutex
874          * because, this function updates a summary entry in the
875          * current summary block.
876          */
877         __add_sum_entry(sbi, type, sum);
878 
879         mutex_lock(&sit_i->sentry_lock);
880         __refresh_next_blkoff(sbi, curseg);
881 
882         stat_inc_block_count(sbi, curseg);
883 
884         /*
885          * SIT information should be updated before segment allocation,
886          * since SSR needs latest valid block information.
887          */
888         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
889 
890         if (!__has_curseg_space(sbi, type))
891                 sit_i->s_ops->allocate_segment(sbi, type, false);
892 
893         locate_dirty_segment(sbi, old_cursegno);
894         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
895         mutex_unlock(&sit_i->sentry_lock);
896 
897         if (page && IS_NODESEG(type))
898                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
899 
900         mutex_unlock(&curseg->curseg_mutex);
901 }
902 
903 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
904                         block_t old_blkaddr, block_t *new_blkaddr,
905                         struct f2fs_summary *sum, struct f2fs_io_info *fio)
906 {
907         int type = __get_segment_type(page, fio->type);
908 
909         allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
910 
911         /* writeout dirty page into bdev */
912         f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
913 }
914 
915 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
916 {
917         struct f2fs_io_info fio = {
918                 .type = META,
919                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
920         };
921 
922         set_page_writeback(page);
923         f2fs_submit_page_mbio(sbi, page, page->index, &fio);
924 }
925 
926 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
927                 struct f2fs_io_info *fio,
928                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
929 {
930         struct f2fs_summary sum;
931         set_summary(&sum, nid, 0, 0);
932         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
933 }
934 
935 void write_data_page(struct page *page, struct dnode_of_data *dn,
936                 block_t *new_blkaddr, struct f2fs_io_info *fio)
937 {
938         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
939         struct f2fs_summary sum;
940         struct node_info ni;
941 
942         f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
943         get_node_info(sbi, dn->nid, &ni);
944         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
945 
946         do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
947 }
948 
949 void rewrite_data_page(struct page *page, block_t old_blkaddr,
950                                         struct f2fs_io_info *fio)
951 {
952         struct inode *inode = page->mapping->host;
953         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
954         f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
955 }
956 
957 void recover_data_page(struct f2fs_sb_info *sbi,
958                         struct page *page, struct f2fs_summary *sum,
959                         block_t old_blkaddr, block_t new_blkaddr)
960 {
961         struct sit_info *sit_i = SIT_I(sbi);
962         struct curseg_info *curseg;
963         unsigned int segno, old_cursegno;
964         struct seg_entry *se;
965         int type;
966 
967         segno = GET_SEGNO(sbi, new_blkaddr);
968         se = get_seg_entry(sbi, segno);
969         type = se->type;
970 
971         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
972                 if (old_blkaddr == NULL_ADDR)
973                         type = CURSEG_COLD_DATA;
974                 else
975                         type = CURSEG_WARM_DATA;
976         }
977         curseg = CURSEG_I(sbi, type);
978 
979         mutex_lock(&curseg->curseg_mutex);
980         mutex_lock(&sit_i->sentry_lock);
981 
982         old_cursegno = curseg->segno;
983 
984         /* change the current segment */
985         if (segno != curseg->segno) {
986                 curseg->next_segno = segno;
987                 change_curseg(sbi, type, true);
988         }
989 
990         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
991                                         (sbi->blocks_per_seg - 1);
992         __add_sum_entry(sbi, type, sum);
993 
994         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
995 
996         locate_dirty_segment(sbi, old_cursegno);
997         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
998 
999         mutex_unlock(&sit_i->sentry_lock);
1000         mutex_unlock(&curseg->curseg_mutex);
1001 }
1002 
1003 void rewrite_node_page(struct f2fs_sb_info *sbi,
1004                         struct page *page, struct f2fs_summary *sum,
1005                         block_t old_blkaddr, block_t new_blkaddr)
1006 {
1007         struct sit_info *sit_i = SIT_I(sbi);
1008         int type = CURSEG_WARM_NODE;
1009         struct curseg_info *curseg;
1010         unsigned int segno, old_cursegno;
1011         block_t next_blkaddr = next_blkaddr_of_node(page);
1012         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1013         struct f2fs_io_info fio = {
1014                 .type = NODE,
1015                 .rw = WRITE_SYNC,
1016         };
1017 
1018         curseg = CURSEG_I(sbi, type);
1019 
1020         mutex_lock(&curseg->curseg_mutex);
1021         mutex_lock(&sit_i->sentry_lock);
1022 
1023         segno = GET_SEGNO(sbi, new_blkaddr);
1024         old_cursegno = curseg->segno;
1025 
1026         /* change the current segment */
1027         if (segno != curseg->segno) {
1028                 curseg->next_segno = segno;
1029                 change_curseg(sbi, type, true);
1030         }
1031         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
1032                                         (sbi->blocks_per_seg - 1);
1033         __add_sum_entry(sbi, type, sum);
1034 
1035         /* change the current log to the next block addr in advance */
1036         if (next_segno != segno) {
1037                 curseg->next_segno = next_segno;
1038                 change_curseg(sbi, type, true);
1039         }
1040         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
1041                                         (sbi->blocks_per_seg - 1);
1042 
1043         /* rewrite node page */
1044         set_page_writeback(page);
1045         f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1046         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1047         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1048 
1049         locate_dirty_segment(sbi, old_cursegno);
1050         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1051 
1052         mutex_unlock(&sit_i->sentry_lock);
1053         mutex_unlock(&curseg->curseg_mutex);
1054 }
1055 
1056 void f2fs_wait_on_page_writeback(struct page *page,
1057                                 enum page_type type)
1058 {
1059         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1060         if (PageWriteback(page)) {
1061                 f2fs_submit_merged_bio(sbi, type, WRITE);
1062                 wait_on_page_writeback(page);
1063         }
1064 }
1065 
1066 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1067 {
1068         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1069         struct curseg_info *seg_i;
1070         unsigned char *kaddr;
1071         struct page *page;
1072         block_t start;
1073         int i, j, offset;
1074 
1075         start = start_sum_block(sbi);
1076 
1077         page = get_meta_page(sbi, start++);
1078         kaddr = (unsigned char *)page_address(page);
1079 
1080         /* Step 1: restore nat cache */
1081         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1082         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1083 
1084         /* Step 2: restore sit cache */
1085         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1086         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1087                                                 SUM_JOURNAL_SIZE);
1088         offset = 2 * SUM_JOURNAL_SIZE;
1089 
1090         /* Step 3: restore summary entries */
1091         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1092                 unsigned short blk_off;
1093                 unsigned int segno;
1094 
1095                 seg_i = CURSEG_I(sbi, i);
1096                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1097                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1098                 seg_i->next_segno = segno;
1099                 reset_curseg(sbi, i, 0);
1100                 seg_i->alloc_type = ckpt->alloc_type[i];
1101                 seg_i->next_blkoff = blk_off;
1102 
1103                 if (seg_i->alloc_type == SSR)
1104                         blk_off = sbi->blocks_per_seg;
1105 
1106                 for (j = 0; j < blk_off; j++) {
1107                         struct f2fs_summary *s;
1108                         s = (struct f2fs_summary *)(kaddr + offset);
1109                         seg_i->sum_blk->entries[j] = *s;
1110                         offset += SUMMARY_SIZE;
1111                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1112                                                 SUM_FOOTER_SIZE)
1113                                 continue;
1114 
1115                         f2fs_put_page(page, 1);
1116                         page = NULL;
1117 
1118                         page = get_meta_page(sbi, start++);
1119                         kaddr = (unsigned char *)page_address(page);
1120                         offset = 0;
1121                 }
1122         }
1123         f2fs_put_page(page, 1);
1124         return 0;
1125 }
1126 
1127 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1128 {
1129         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1130         struct f2fs_summary_block *sum;
1131         struct curseg_info *curseg;
1132         struct page *new;
1133         unsigned short blk_off;
1134         unsigned int segno = 0;
1135         block_t blk_addr = 0;
1136 
1137         /* get segment number and block addr */
1138         if (IS_DATASEG(type)) {
1139                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1140                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1141                                                         CURSEG_HOT_DATA]);
1142                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1143                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1144                 else
1145                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1146         } else {
1147                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1148                                                         CURSEG_HOT_NODE]);
1149                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1150                                                         CURSEG_HOT_NODE]);
1151                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1152                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1153                                                         type - CURSEG_HOT_NODE);
1154                 else
1155                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1156         }
1157 
1158         new = get_meta_page(sbi, blk_addr);
1159         sum = (struct f2fs_summary_block *)page_address(new);
1160 
1161         if (IS_NODESEG(type)) {
1162                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1163                         struct f2fs_summary *ns = &sum->entries[0];
1164                         int i;
1165                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1166                                 ns->version = 0;
1167                                 ns->ofs_in_node = 0;
1168                         }
1169                 } else {
1170                         if (restore_node_summary(sbi, segno, sum)) {
1171                                 f2fs_put_page(new, 1);
1172                                 return -EINVAL;
1173                         }
1174                 }
1175         }
1176 
1177         /* set uncompleted segment to curseg */
1178         curseg = CURSEG_I(sbi, type);
1179         mutex_lock(&curseg->curseg_mutex);
1180         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1181         curseg->next_segno = segno;
1182         reset_curseg(sbi, type, 0);
1183         curseg->alloc_type = ckpt->alloc_type[type];
1184         curseg->next_blkoff = blk_off;
1185         mutex_unlock(&curseg->curseg_mutex);
1186         f2fs_put_page(new, 1);
1187         return 0;
1188 }
1189 
1190 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1191 {
1192         int type = CURSEG_HOT_DATA;
1193 
1194         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1195                 /* restore for compacted data summary */
1196                 if (read_compacted_summaries(sbi))
1197                         return -EINVAL;
1198                 type = CURSEG_HOT_NODE;
1199         }
1200 
1201         for (; type <= CURSEG_COLD_NODE; type++)
1202                 if (read_normal_summaries(sbi, type))
1203                         return -EINVAL;
1204         return 0;
1205 }
1206 
1207 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1208 {
1209         struct page *page;
1210         unsigned char *kaddr;
1211         struct f2fs_summary *summary;
1212         struct curseg_info *seg_i;
1213         int written_size = 0;
1214         int i, j;
1215 
1216         page = grab_meta_page(sbi, blkaddr++);
1217         kaddr = (unsigned char *)page_address(page);
1218 
1219         /* Step 1: write nat cache */
1220         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1221         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1222         written_size += SUM_JOURNAL_SIZE;
1223 
1224         /* Step 2: write sit cache */
1225         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1226         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1227                                                 SUM_JOURNAL_SIZE);
1228         written_size += SUM_JOURNAL_SIZE;
1229 
1230         /* Step 3: write summary entries */
1231         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1232                 unsigned short blkoff;
1233                 seg_i = CURSEG_I(sbi, i);
1234                 if (sbi->ckpt->alloc_type[i] == SSR)
1235                         blkoff = sbi->blocks_per_seg;
1236                 else
1237                         blkoff = curseg_blkoff(sbi, i);
1238 
1239                 for (j = 0; j < blkoff; j++) {
1240                         if (!page) {
1241                                 page = grab_meta_page(sbi, blkaddr++);
1242                                 kaddr = (unsigned char *)page_address(page);
1243                                 written_size = 0;
1244                         }
1245                         summary = (struct f2fs_summary *)(kaddr + written_size);
1246                         *summary = seg_i->sum_blk->entries[j];
1247                         written_size += SUMMARY_SIZE;
1248 
1249                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1250                                                         SUM_FOOTER_SIZE)
1251                                 continue;
1252 
1253                         set_page_dirty(page);
1254                         f2fs_put_page(page, 1);
1255                         page = NULL;
1256                 }
1257         }
1258         if (page) {
1259                 set_page_dirty(page);
1260                 f2fs_put_page(page, 1);
1261         }
1262 }
1263 
1264 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1265                                         block_t blkaddr, int type)
1266 {
1267         int i, end;
1268         if (IS_DATASEG(type))
1269                 end = type + NR_CURSEG_DATA_TYPE;
1270         else
1271                 end = type + NR_CURSEG_NODE_TYPE;
1272 
1273         for (i = type; i < end; i++) {
1274                 struct curseg_info *sum = CURSEG_I(sbi, i);
1275                 mutex_lock(&sum->curseg_mutex);
1276                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1277                 mutex_unlock(&sum->curseg_mutex);
1278         }
1279 }
1280 
1281 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1282 {
1283         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1284                 write_compacted_summaries(sbi, start_blk);
1285         else
1286                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1287 }
1288 
1289 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1290 {
1291         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1292                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1293 }
1294 
1295 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1296                                         unsigned int val, int alloc)
1297 {
1298         int i;
1299 
1300         if (type == NAT_JOURNAL) {
1301                 for (i = 0; i < nats_in_cursum(sum); i++) {
1302                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1303                                 return i;
1304                 }
1305                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1306                         return update_nats_in_cursum(sum, 1);
1307         } else if (type == SIT_JOURNAL) {
1308                 for (i = 0; i < sits_in_cursum(sum); i++)
1309                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1310                                 return i;
1311                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1312                         return update_sits_in_cursum(sum, 1);
1313         }
1314         return -1;
1315 }
1316 
1317 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1318                                         unsigned int segno)
1319 {
1320         struct sit_info *sit_i = SIT_I(sbi);
1321         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1322         block_t blk_addr = sit_i->sit_base_addr + offset;
1323 
1324         check_seg_range(sbi, segno);
1325 
1326         /* calculate sit block address */
1327         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1328                 blk_addr += sit_i->sit_blocks;
1329 
1330         return get_meta_page(sbi, blk_addr);
1331 }
1332 
1333 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1334                                         unsigned int start)
1335 {
1336         struct sit_info *sit_i = SIT_I(sbi);
1337         struct page *src_page, *dst_page;
1338         pgoff_t src_off, dst_off;
1339         void *src_addr, *dst_addr;
1340 
1341         src_off = current_sit_addr(sbi, start);
1342         dst_off = next_sit_addr(sbi, src_off);
1343 
1344         /* get current sit block page without lock */
1345         src_page = get_meta_page(sbi, src_off);
1346         dst_page = grab_meta_page(sbi, dst_off);
1347         f2fs_bug_on(PageDirty(src_page));
1348 
1349         src_addr = page_address(src_page);
1350         dst_addr = page_address(dst_page);
1351         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1352 
1353         set_page_dirty(dst_page);
1354         f2fs_put_page(src_page, 1);
1355 
1356         set_to_next_sit(sit_i, start);
1357 
1358         return dst_page;
1359 }
1360 
1361 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1362 {
1363         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1364         struct f2fs_summary_block *sum = curseg->sum_blk;
1365         int i;
1366 
1367         /*
1368          * If the journal area in the current summary is full of sit entries,
1369          * all the sit entries will be flushed. Otherwise the sit entries
1370          * are not able to replace with newly hot sit entries.
1371          */
1372         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1373                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1374                         unsigned int segno;
1375                         segno = le32_to_cpu(segno_in_journal(sum, i));
1376                         __mark_sit_entry_dirty(sbi, segno);
1377                 }
1378                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1379                 return true;
1380         }
1381         return false;
1382 }
1383 
1384 /*
1385  * CP calls this function, which flushes SIT entries including sit_journal,
1386  * and moves prefree segs to free segs.
1387  */
1388 void flush_sit_entries(struct f2fs_sb_info *sbi)
1389 {
1390         struct sit_info *sit_i = SIT_I(sbi);
1391         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1392         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1393         struct f2fs_summary_block *sum = curseg->sum_blk;
1394         unsigned long nsegs = TOTAL_SEGS(sbi);
1395         struct page *page = NULL;
1396         struct f2fs_sit_block *raw_sit = NULL;
1397         unsigned int start = 0, end = 0;
1398         unsigned int segno = -1;
1399         bool flushed;
1400 
1401         mutex_lock(&curseg->curseg_mutex);
1402         mutex_lock(&sit_i->sentry_lock);
1403 
1404         /*
1405          * "flushed" indicates whether sit entries in journal are flushed
1406          * to the SIT area or not.
1407          */
1408         flushed = flush_sits_in_journal(sbi);
1409 
1410         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1411                 struct seg_entry *se = get_seg_entry(sbi, segno);
1412                 int sit_offset, offset;
1413 
1414                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1415 
1416                 /* add discard candidates */
1417                 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1418                         add_discard_addrs(sbi, segno, se);
1419 
1420                 if (flushed)
1421                         goto to_sit_page;
1422 
1423                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1424                 if (offset >= 0) {
1425                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1426                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1427                         goto flush_done;
1428                 }
1429 to_sit_page:
1430                 if (!page || (start > segno) || (segno > end)) {
1431                         if (page) {
1432                                 f2fs_put_page(page, 1);
1433                                 page = NULL;
1434                         }
1435 
1436                         start = START_SEGNO(sit_i, segno);
1437                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1438 
1439                         /* read sit block that will be updated */
1440                         page = get_next_sit_page(sbi, start);
1441                         raw_sit = page_address(page);
1442                 }
1443 
1444                 /* udpate entry in SIT block */
1445                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1446 flush_done:
1447                 __clear_bit(segno, bitmap);
1448                 sit_i->dirty_sentries--;
1449         }
1450         mutex_unlock(&sit_i->sentry_lock);
1451         mutex_unlock(&curseg->curseg_mutex);
1452 
1453         /* writeout last modified SIT block */
1454         f2fs_put_page(page, 1);
1455 
1456         set_prefree_as_free_segments(sbi);
1457 }
1458 
1459 static int build_sit_info(struct f2fs_sb_info *sbi)
1460 {
1461         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1462         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1463         struct sit_info *sit_i;
1464         unsigned int sit_segs, start;
1465         char *src_bitmap, *dst_bitmap;
1466         unsigned int bitmap_size;
1467 
1468         /* allocate memory for SIT information */
1469         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1470         if (!sit_i)
1471                 return -ENOMEM;
1472 
1473         SM_I(sbi)->sit_info = sit_i;
1474 
1475         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1476         if (!sit_i->sentries)
1477                 return -ENOMEM;
1478 
1479         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1480         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1481         if (!sit_i->dirty_sentries_bitmap)
1482                 return -ENOMEM;
1483 
1484         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1485                 sit_i->sentries[start].cur_valid_map
1486                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1487                 sit_i->sentries[start].ckpt_valid_map
1488                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1489                 if (!sit_i->sentries[start].cur_valid_map
1490                                 || !sit_i->sentries[start].ckpt_valid_map)
1491                         return -ENOMEM;
1492         }
1493 
1494         if (sbi->segs_per_sec > 1) {
1495                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1496                                         sizeof(struct sec_entry));
1497                 if (!sit_i->sec_entries)
1498                         return -ENOMEM;
1499         }
1500 
1501         /* get information related with SIT */
1502         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1503 
1504         /* setup SIT bitmap from ckeckpoint pack */
1505         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1506         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1507 
1508         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1509         if (!dst_bitmap)
1510                 return -ENOMEM;
1511 
1512         /* init SIT information */
1513         sit_i->s_ops = &default_salloc_ops;
1514 
1515         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1516         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1517         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1518         sit_i->sit_bitmap = dst_bitmap;
1519         sit_i->bitmap_size = bitmap_size;
1520         sit_i->dirty_sentries = 0;
1521         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1522         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1523         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1524         mutex_init(&sit_i->sentry_lock);
1525         return 0;
1526 }
1527 
1528 static int build_free_segmap(struct f2fs_sb_info *sbi)
1529 {
1530         struct f2fs_sm_info *sm_info = SM_I(sbi);
1531         struct free_segmap_info *free_i;
1532         unsigned int bitmap_size, sec_bitmap_size;
1533 
1534         /* allocate memory for free segmap information */
1535         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1536         if (!free_i)
1537                 return -ENOMEM;
1538 
1539         SM_I(sbi)->free_info = free_i;
1540 
1541         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1542         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1543         if (!free_i->free_segmap)
1544                 return -ENOMEM;
1545 
1546         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1547         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1548         if (!free_i->free_secmap)
1549                 return -ENOMEM;
1550 
1551         /* set all segments as dirty temporarily */
1552         memset(free_i->free_segmap, 0xff, bitmap_size);
1553         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1554 
1555         /* init free segmap information */
1556         free_i->start_segno =
1557                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1558         free_i->free_segments = 0;
1559         free_i->free_sections = 0;
1560         rwlock_init(&free_i->segmap_lock);
1561         return 0;
1562 }
1563 
1564 static int build_curseg(struct f2fs_sb_info *sbi)
1565 {
1566         struct curseg_info *array;
1567         int i;
1568 
1569         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1570         if (!array)
1571                 return -ENOMEM;
1572 
1573         SM_I(sbi)->curseg_array = array;
1574 
1575         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1576                 mutex_init(&array[i].curseg_mutex);
1577                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1578                 if (!array[i].sum_blk)
1579                         return -ENOMEM;
1580                 array[i].segno = NULL_SEGNO;
1581                 array[i].next_blkoff = 0;
1582         }
1583         return restore_curseg_summaries(sbi);
1584 }
1585 
1586 static int ra_sit_pages(struct f2fs_sb_info *sbi, int start, int nrpages)
1587 {
1588         struct address_space *mapping = META_MAPPING(sbi);
1589         struct page *page;
1590         block_t blk_addr, prev_blk_addr = 0;
1591         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1592         int blkno = start;
1593         struct f2fs_io_info fio = {
1594                 .type = META,
1595                 .rw = READ_SYNC | REQ_META | REQ_PRIO
1596         };
1597 
1598         for (; blkno < start + nrpages && blkno < sit_blk_cnt; blkno++) {
1599 
1600                 blk_addr = current_sit_addr(sbi, blkno * SIT_ENTRY_PER_BLOCK);
1601 
1602                 if (blkno != start && prev_blk_addr + 1 != blk_addr)
1603                         break;
1604                 prev_blk_addr = blk_addr;
1605 repeat:
1606                 page = grab_cache_page(mapping, blk_addr);
1607                 if (!page) {
1608                         cond_resched();
1609                         goto repeat;
1610                 }
1611                 if (PageUptodate(page)) {
1612                         mark_page_accessed(page);
1613                         f2fs_put_page(page, 1);
1614                         continue;
1615                 }
1616 
1617                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
1618 
1619                 mark_page_accessed(page);
1620                 f2fs_put_page(page, 0);
1621         }
1622 
1623         f2fs_submit_merged_bio(sbi, META, READ);
1624         return blkno - start;
1625 }
1626 
1627 static void build_sit_entries(struct f2fs_sb_info *sbi)
1628 {
1629         struct sit_info *sit_i = SIT_I(sbi);
1630         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1631         struct f2fs_summary_block *sum = curseg->sum_blk;
1632         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1633         unsigned int i, start, end;
1634         unsigned int readed, start_blk = 0;
1635         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1636 
1637         do {
1638                 readed = ra_sit_pages(sbi, start_blk, nrpages);
1639 
1640                 start = start_blk * sit_i->sents_per_block;
1641                 end = (start_blk + readed) * sit_i->sents_per_block;
1642 
1643                 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1644                         struct seg_entry *se = &sit_i->sentries[start];
1645                         struct f2fs_sit_block *sit_blk;
1646                         struct f2fs_sit_entry sit;
1647                         struct page *page;
1648 
1649                         mutex_lock(&curseg->curseg_mutex);
1650                         for (i = 0; i < sits_in_cursum(sum); i++) {
1651                                 if (le32_to_cpu(segno_in_journal(sum, i))
1652                                                                 == start) {
1653                                         sit = sit_in_journal(sum, i);
1654                                         mutex_unlock(&curseg->curseg_mutex);
1655                                         goto got_it;
1656                                 }
1657                         }
1658                         mutex_unlock(&curseg->curseg_mutex);
1659 
1660                         page = get_current_sit_page(sbi, start);
1661                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1662                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1663                         f2fs_put_page(page, 1);
1664 got_it:
1665                         check_block_count(sbi, start, &sit);
1666                         seg_info_from_raw_sit(se, &sit);
1667                         if (sbi->segs_per_sec > 1) {
1668                                 struct sec_entry *e = get_sec_entry(sbi, start);
1669                                 e->valid_blocks += se->valid_blocks;
1670                         }
1671                 }
1672                 start_blk += readed;
1673         } while (start_blk < sit_blk_cnt);
1674 }
1675 
1676 static void init_free_segmap(struct f2fs_sb_info *sbi)
1677 {
1678         unsigned int start;
1679         int type;
1680 
1681         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1682                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1683                 if (!sentry->valid_blocks)
1684                         __set_free(sbi, start);
1685         }
1686 
1687         /* set use the current segments */
1688         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1689                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1690                 __set_test_and_inuse(sbi, curseg_t->segno);
1691         }
1692 }
1693 
1694 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1695 {
1696         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1697         struct free_segmap_info *free_i = FREE_I(sbi);
1698         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1699         unsigned short valid_blocks;
1700 
1701         while (1) {
1702                 /* find dirty segment based on free segmap */
1703                 segno = find_next_inuse(free_i, total_segs, offset);
1704                 if (segno >= total_segs)
1705                         break;
1706                 offset = segno + 1;
1707                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1708                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1709                         continue;
1710                 mutex_lock(&dirty_i->seglist_lock);
1711                 __locate_dirty_segment(sbi, segno, DIRTY);
1712                 mutex_unlock(&dirty_i->seglist_lock);
1713         }
1714 }
1715 
1716 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1717 {
1718         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1719         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1720 
1721         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1722         if (!dirty_i->victim_secmap)
1723                 return -ENOMEM;
1724         return 0;
1725 }
1726 
1727 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1728 {
1729         struct dirty_seglist_info *dirty_i;
1730         unsigned int bitmap_size, i;
1731 
1732         /* allocate memory for dirty segments list information */
1733         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1734         if (!dirty_i)
1735                 return -ENOMEM;
1736 
1737         SM_I(sbi)->dirty_info = dirty_i;
1738         mutex_init(&dirty_i->seglist_lock);
1739 
1740         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1741 
1742         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1743                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1744                 if (!dirty_i->dirty_segmap[i])
1745                         return -ENOMEM;
1746         }
1747 
1748         init_dirty_segmap(sbi);
1749         return init_victim_secmap(sbi);
1750 }
1751 
1752 /*
1753  * Update min, max modified time for cost-benefit GC algorithm
1754  */
1755 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1756 {
1757         struct sit_info *sit_i = SIT_I(sbi);
1758         unsigned int segno;
1759 
1760         mutex_lock(&sit_i->sentry_lock);
1761 
1762         sit_i->min_mtime = LLONG_MAX;
1763 
1764         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1765                 unsigned int i;
1766                 unsigned long long mtime = 0;
1767 
1768                 for (i = 0; i < sbi->segs_per_sec; i++)
1769                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1770 
1771                 mtime = div_u64(mtime, sbi->segs_per_sec);
1772 
1773                 if (sit_i->min_mtime > mtime)
1774                         sit_i->min_mtime = mtime;
1775         }
1776         sit_i->max_mtime = get_mtime(sbi);
1777         mutex_unlock(&sit_i->sentry_lock);
1778 }
1779 
1780 int build_segment_manager(struct f2fs_sb_info *sbi)
1781 {
1782         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1783         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1784         struct f2fs_sm_info *sm_info;
1785         int err;
1786 
1787         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1788         if (!sm_info)
1789                 return -ENOMEM;
1790 
1791         /* init sm info */
1792         sbi->sm_info = sm_info;
1793         INIT_LIST_HEAD(&sm_info->wblist_head);
1794         spin_lock_init(&sm_info->wblist_lock);
1795         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1796         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1797         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1798         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1799         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1800         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1801         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1802         sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1803         sm_info->ipu_policy = F2FS_IPU_DISABLE;
1804         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1805 
1806         INIT_LIST_HEAD(&sm_info->discard_list);
1807         sm_info->nr_discards = 0;
1808         sm_info->max_discards = 0;
1809 
1810         err = build_sit_info(sbi);
1811         if (err)
1812                 return err;
1813         err = build_free_segmap(sbi);
1814         if (err)
1815                 return err;
1816         err = build_curseg(sbi);
1817         if (err)
1818                 return err;
1819 
1820         /* reinit free segmap based on SIT */
1821         build_sit_entries(sbi);
1822 
1823         init_free_segmap(sbi);
1824         err = build_dirty_segmap(sbi);
1825         if (err)
1826                 return err;
1827 
1828         init_min_max_mtime(sbi);
1829         return 0;
1830 }
1831 
1832 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1833                 enum dirty_type dirty_type)
1834 {
1835         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1836 
1837         mutex_lock(&dirty_i->seglist_lock);
1838         kfree(dirty_i->dirty_segmap[dirty_type]);
1839         dirty_i->nr_dirty[dirty_type] = 0;
1840         mutex_unlock(&dirty_i->seglist_lock);
1841 }
1842 
1843 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1844 {
1845         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1846         kfree(dirty_i->victim_secmap);
1847 }
1848 
1849 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1850 {
1851         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1852         int i;
1853 
1854         if (!dirty_i)
1855                 return;
1856 
1857         /* discard pre-free/dirty segments list */
1858         for (i = 0; i < NR_DIRTY_TYPE; i++)
1859                 discard_dirty_segmap(sbi, i);
1860 
1861         destroy_victim_secmap(sbi);
1862         SM_I(sbi)->dirty_info = NULL;
1863         kfree(dirty_i);
1864 }
1865 
1866 static void destroy_curseg(struct f2fs_sb_info *sbi)
1867 {
1868         struct curseg_info *array = SM_I(sbi)->curseg_array;
1869         int i;
1870 
1871         if (!array)
1872                 return;
1873         SM_I(sbi)->curseg_array = NULL;
1874         for (i = 0; i < NR_CURSEG_TYPE; i++)
1875                 kfree(array[i].sum_blk);
1876         kfree(array);
1877 }
1878 
1879 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1880 {
1881         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1882         if (!free_i)
1883                 return;
1884         SM_I(sbi)->free_info = NULL;
1885         kfree(free_i->free_segmap);
1886         kfree(free_i->free_secmap);
1887         kfree(free_i);
1888 }
1889 
1890 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1891 {
1892         struct sit_info *sit_i = SIT_I(sbi);
1893         unsigned int start;
1894 
1895         if (!sit_i)
1896                 return;
1897 
1898         if (sit_i->sentries) {
1899                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1900                         kfree(sit_i->sentries[start].cur_valid_map);
1901                         kfree(sit_i->sentries[start].ckpt_valid_map);
1902                 }
1903         }
1904         vfree(sit_i->sentries);
1905         vfree(sit_i->sec_entries);
1906         kfree(sit_i->dirty_sentries_bitmap);
1907 
1908         SM_I(sbi)->sit_info = NULL;
1909         kfree(sit_i->sit_bitmap);
1910         kfree(sit_i);
1911 }
1912 
1913 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1914 {
1915         struct f2fs_sm_info *sm_info = SM_I(sbi);
1916         if (!sm_info)
1917                 return;
1918         destroy_dirty_segmap(sbi);
1919         destroy_curseg(sbi);
1920         destroy_free_segmap(sbi);
1921         destroy_sit_info(sbi);
1922         sbi->sm_info = NULL;
1923         kfree(sm_info);
1924 }
1925 
1926 int __init create_segment_manager_caches(void)
1927 {
1928         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
1929                         sizeof(struct discard_entry), NULL);
1930         if (!discard_entry_slab)
1931                 return -ENOMEM;
1932         return 0;
1933 }
1934 
1935 void destroy_segment_manager_caches(void)
1936 {
1937         kmem_cache_destroy(discard_entry_slab);
1938 }
1939 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp