~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/segment.c

Version: ~ [ linux-5.4-rc3 ] ~ [ linux-5.3.6 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.79 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.149 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.196 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.196 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.75 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * fs/f2fs/segment.c
  3  *
  4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5  *             http://www.samsung.com/
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  */
 11 #include <linux/fs.h>
 12 #include <linux/f2fs_fs.h>
 13 #include <linux/bio.h>
 14 #include <linux/blkdev.h>
 15 #include <linux/prefetch.h>
 16 #include <linux/kthread.h>
 17 #include <linux/vmalloc.h>
 18 #include <linux/swap.h>
 19 
 20 #include "f2fs.h"
 21 #include "segment.h"
 22 #include "node.h"
 23 #include "trace.h"
 24 #include <trace/events/f2fs.h>
 25 
 26 #define __reverse_ffz(x) __reverse_ffs(~(x))
 27 
 28 static struct kmem_cache *discard_entry_slab;
 29 static struct kmem_cache *sit_entry_set_slab;
 30 static struct kmem_cache *inmem_entry_slab;
 31 
 32 /*
 33  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
 34  * MSB and LSB are reversed in a byte by f2fs_set_bit.
 35  */
 36 static inline unsigned long __reverse_ffs(unsigned long word)
 37 {
 38         int num = 0;
 39 
 40 #if BITS_PER_LONG == 64
 41         if ((word & 0xffffffff) == 0) {
 42                 num += 32;
 43                 word >>= 32;
 44         }
 45 #endif
 46         if ((word & 0xffff) == 0) {
 47                 num += 16;
 48                 word >>= 16;
 49         }
 50         if ((word & 0xff) == 0) {
 51                 num += 8;
 52                 word >>= 8;
 53         }
 54         if ((word & 0xf0) == 0)
 55                 num += 4;
 56         else
 57                 word >>= 4;
 58         if ((word & 0xc) == 0)
 59                 num += 2;
 60         else
 61                 word >>= 2;
 62         if ((word & 0x2) == 0)
 63                 num += 1;
 64         return num;
 65 }
 66 
 67 /*
 68  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
 69  * f2fs_set_bit makes MSB and LSB reversed in a byte.
 70  * Example:
 71  *                             LSB <--> MSB
 72  *   f2fs_set_bit(0, bitmap) => 0000 0001
 73  *   f2fs_set_bit(7, bitmap) => 1000 0000
 74  */
 75 static unsigned long __find_rev_next_bit(const unsigned long *addr,
 76                         unsigned long size, unsigned long offset)
 77 {
 78         const unsigned long *p = addr + BIT_WORD(offset);
 79         unsigned long result = offset & ~(BITS_PER_LONG - 1);
 80         unsigned long tmp;
 81         unsigned long mask, submask;
 82         unsigned long quot, rest;
 83 
 84         if (offset >= size)
 85                 return size;
 86 
 87         size -= result;
 88         offset %= BITS_PER_LONG;
 89         if (!offset)
 90                 goto aligned;
 91 
 92         tmp = *(p++);
 93         quot = (offset >> 3) << 3;
 94         rest = offset & 0x7;
 95         mask = ~0UL << quot;
 96         submask = (unsigned char)(0xff << rest) >> rest;
 97         submask <<= quot;
 98         mask &= submask;
 99         tmp &= mask;
100         if (size < BITS_PER_LONG)
101                 goto found_first;
102         if (tmp)
103                 goto found_middle;
104 
105         size -= BITS_PER_LONG;
106         result += BITS_PER_LONG;
107 aligned:
108         while (size & ~(BITS_PER_LONG-1)) {
109                 tmp = *(p++);
110                 if (tmp)
111                         goto found_middle;
112                 result += BITS_PER_LONG;
113                 size -= BITS_PER_LONG;
114         }
115         if (!size)
116                 return result;
117         tmp = *p;
118 found_first:
119         tmp &= (~0UL >> (BITS_PER_LONG - size));
120         if (tmp == 0UL)         /* Are any bits set? */
121                 return result + size;   /* Nope. */
122 found_middle:
123         return result + __reverse_ffs(tmp);
124 }
125 
126 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
127                         unsigned long size, unsigned long offset)
128 {
129         const unsigned long *p = addr + BIT_WORD(offset);
130         unsigned long result = offset & ~(BITS_PER_LONG - 1);
131         unsigned long tmp;
132         unsigned long mask, submask;
133         unsigned long quot, rest;
134 
135         if (offset >= size)
136                 return size;
137 
138         size -= result;
139         offset %= BITS_PER_LONG;
140         if (!offset)
141                 goto aligned;
142 
143         tmp = *(p++);
144         quot = (offset >> 3) << 3;
145         rest = offset & 0x7;
146         mask = ~(~0UL << quot);
147         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
148         submask <<= quot;
149         mask += submask;
150         tmp |= mask;
151         if (size < BITS_PER_LONG)
152                 goto found_first;
153         if (~tmp)
154                 goto found_middle;
155 
156         size -= BITS_PER_LONG;
157         result += BITS_PER_LONG;
158 aligned:
159         while (size & ~(BITS_PER_LONG - 1)) {
160                 tmp = *(p++);
161                 if (~tmp)
162                         goto found_middle;
163                 result += BITS_PER_LONG;
164                 size -= BITS_PER_LONG;
165         }
166         if (!size)
167                 return result;
168         tmp = *p;
169 
170 found_first:
171         tmp |= ~0UL << size;
172         if (tmp == ~0UL)        /* Are any bits zero? */
173                 return result + size;   /* Nope. */
174 found_middle:
175         return result + __reverse_ffz(tmp);
176 }
177 
178 void register_inmem_page(struct inode *inode, struct page *page)
179 {
180         struct f2fs_inode_info *fi = F2FS_I(inode);
181         struct inmem_pages *new;
182         int err;
183 
184         SetPagePrivate(page);
185         f2fs_trace_pid(page);
186 
187         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
188 
189         /* add atomic page indices to the list */
190         new->page = page;
191         INIT_LIST_HEAD(&new->list);
192 retry:
193         /* increase reference count with clean state */
194         mutex_lock(&fi->inmem_lock);
195         err = radix_tree_insert(&fi->inmem_root, page->index, new);
196         if (err == -EEXIST) {
197                 mutex_unlock(&fi->inmem_lock);
198                 kmem_cache_free(inmem_entry_slab, new);
199                 return;
200         } else if (err) {
201                 mutex_unlock(&fi->inmem_lock);
202                 goto retry;
203         }
204         get_page(page);
205         list_add_tail(&new->list, &fi->inmem_pages);
206         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
207         mutex_unlock(&fi->inmem_lock);
208 
209         trace_f2fs_register_inmem_page(page, INMEM);
210 }
211 
212 void commit_inmem_pages(struct inode *inode, bool abort)
213 {
214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215         struct f2fs_inode_info *fi = F2FS_I(inode);
216         struct inmem_pages *cur, *tmp;
217         bool submit_bio = false;
218         struct f2fs_io_info fio = {
219                 .type = DATA,
220                 .rw = WRITE_SYNC | REQ_PRIO,
221         };
222 
223         /*
224          * The abort is true only when f2fs_evict_inode is called.
225          * Basically, the f2fs_evict_inode doesn't produce any data writes, so
226          * that we don't need to call f2fs_balance_fs.
227          * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
228          * inode becomes free by iget_locked in f2fs_iget.
229          */
230         if (!abort) {
231                 f2fs_balance_fs(sbi);
232                 f2fs_lock_op(sbi);
233         }
234 
235         mutex_lock(&fi->inmem_lock);
236         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
237                 if (!abort) {
238                         lock_page(cur->page);
239                         if (cur->page->mapping == inode->i_mapping) {
240                                 f2fs_wait_on_page_writeback(cur->page, DATA);
241                                 if (clear_page_dirty_for_io(cur->page))
242                                         inode_dec_dirty_pages(inode);
243                                 trace_f2fs_commit_inmem_page(cur->page, INMEM);
244                                 do_write_data_page(cur->page, &fio);
245                                 submit_bio = true;
246                         }
247                         f2fs_put_page(cur->page, 1);
248                 } else {
249                         trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP);
250                         put_page(cur->page);
251                 }
252                 radix_tree_delete(&fi->inmem_root, cur->page->index);
253                 list_del(&cur->list);
254                 kmem_cache_free(inmem_entry_slab, cur);
255                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
256         }
257         mutex_unlock(&fi->inmem_lock);
258 
259         if (!abort) {
260                 f2fs_unlock_op(sbi);
261                 if (submit_bio)
262                         f2fs_submit_merged_bio(sbi, DATA, WRITE);
263         }
264 }
265 
266 /*
267  * This function balances dirty node and dentry pages.
268  * In addition, it controls garbage collection.
269  */
270 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
271 {
272         /*
273          * We should do GC or end up with checkpoint, if there are so many dirty
274          * dir/node pages without enough free segments.
275          */
276         if (has_not_enough_free_secs(sbi, 0)) {
277                 mutex_lock(&sbi->gc_mutex);
278                 f2fs_gc(sbi);
279         }
280 }
281 
282 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
283 {
284         /* try to shrink extent cache when there is no enough memory */
285         f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
286 
287         /* check the # of cached NAT entries and prefree segments */
288         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
289                         excess_prefree_segs(sbi) ||
290                         !available_free_memory(sbi, INO_ENTRIES))
291                 f2fs_sync_fs(sbi->sb, true);
292 }
293 
294 static int issue_flush_thread(void *data)
295 {
296         struct f2fs_sb_info *sbi = data;
297         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
298         wait_queue_head_t *q = &fcc->flush_wait_queue;
299 repeat:
300         if (kthread_should_stop())
301                 return 0;
302 
303         if (!llist_empty(&fcc->issue_list)) {
304                 struct bio *bio = bio_alloc(GFP_NOIO, 0);
305                 struct flush_cmd *cmd, *next;
306                 int ret;
307 
308                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
309                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
310 
311                 bio->bi_bdev = sbi->sb->s_bdev;
312                 ret = submit_bio_wait(WRITE_FLUSH, bio);
313 
314                 llist_for_each_entry_safe(cmd, next,
315                                           fcc->dispatch_list, llnode) {
316                         cmd->ret = ret;
317                         complete(&cmd->wait);
318                 }
319                 bio_put(bio);
320                 fcc->dispatch_list = NULL;
321         }
322 
323         wait_event_interruptible(*q,
324                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
325         goto repeat;
326 }
327 
328 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
329 {
330         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
331         struct flush_cmd cmd;
332 
333         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
334                                         test_opt(sbi, FLUSH_MERGE));
335 
336         if (test_opt(sbi, NOBARRIER))
337                 return 0;
338 
339         if (!test_opt(sbi, FLUSH_MERGE))
340                 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
341 
342         init_completion(&cmd.wait);
343 
344         llist_add(&cmd.llnode, &fcc->issue_list);
345 
346         if (!fcc->dispatch_list)
347                 wake_up(&fcc->flush_wait_queue);
348 
349         wait_for_completion(&cmd.wait);
350 
351         return cmd.ret;
352 }
353 
354 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
355 {
356         dev_t dev = sbi->sb->s_bdev->bd_dev;
357         struct flush_cmd_control *fcc;
358         int err = 0;
359 
360         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
361         if (!fcc)
362                 return -ENOMEM;
363         init_waitqueue_head(&fcc->flush_wait_queue);
364         init_llist_head(&fcc->issue_list);
365         SM_I(sbi)->cmd_control_info = fcc;
366         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
367                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
368         if (IS_ERR(fcc->f2fs_issue_flush)) {
369                 err = PTR_ERR(fcc->f2fs_issue_flush);
370                 kfree(fcc);
371                 SM_I(sbi)->cmd_control_info = NULL;
372                 return err;
373         }
374 
375         return err;
376 }
377 
378 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
379 {
380         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
381 
382         if (fcc && fcc->f2fs_issue_flush)
383                 kthread_stop(fcc->f2fs_issue_flush);
384         kfree(fcc);
385         SM_I(sbi)->cmd_control_info = NULL;
386 }
387 
388 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
389                 enum dirty_type dirty_type)
390 {
391         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
392 
393         /* need not be added */
394         if (IS_CURSEG(sbi, segno))
395                 return;
396 
397         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
398                 dirty_i->nr_dirty[dirty_type]++;
399 
400         if (dirty_type == DIRTY) {
401                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
402                 enum dirty_type t = sentry->type;
403 
404                 if (unlikely(t >= DIRTY)) {
405                         f2fs_bug_on(sbi, 1);
406                         return;
407                 }
408                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
409                         dirty_i->nr_dirty[t]++;
410         }
411 }
412 
413 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
414                 enum dirty_type dirty_type)
415 {
416         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
417 
418         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
419                 dirty_i->nr_dirty[dirty_type]--;
420 
421         if (dirty_type == DIRTY) {
422                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
423                 enum dirty_type t = sentry->type;
424 
425                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
426                         dirty_i->nr_dirty[t]--;
427 
428                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
429                         clear_bit(GET_SECNO(sbi, segno),
430                                                 dirty_i->victim_secmap);
431         }
432 }
433 
434 /*
435  * Should not occur error such as -ENOMEM.
436  * Adding dirty entry into seglist is not critical operation.
437  * If a given segment is one of current working segments, it won't be added.
438  */
439 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
440 {
441         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
442         unsigned short valid_blocks;
443 
444         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
445                 return;
446 
447         mutex_lock(&dirty_i->seglist_lock);
448 
449         valid_blocks = get_valid_blocks(sbi, segno, 0);
450 
451         if (valid_blocks == 0) {
452                 __locate_dirty_segment(sbi, segno, PRE);
453                 __remove_dirty_segment(sbi, segno, DIRTY);
454         } else if (valid_blocks < sbi->blocks_per_seg) {
455                 __locate_dirty_segment(sbi, segno, DIRTY);
456         } else {
457                 /* Recovery routine with SSR needs this */
458                 __remove_dirty_segment(sbi, segno, DIRTY);
459         }
460 
461         mutex_unlock(&dirty_i->seglist_lock);
462 }
463 
464 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
465                                 block_t blkstart, block_t blklen)
466 {
467         sector_t start = SECTOR_FROM_BLOCK(blkstart);
468         sector_t len = SECTOR_FROM_BLOCK(blklen);
469         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
470         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
471 }
472 
473 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
474 {
475         if (f2fs_issue_discard(sbi, blkaddr, 1)) {
476                 struct page *page = grab_meta_page(sbi, blkaddr);
477                 /* zero-filled page */
478                 set_page_dirty(page);
479                 f2fs_put_page(page, 1);
480         }
481 }
482 
483 static void __add_discard_entry(struct f2fs_sb_info *sbi,
484                 struct cp_control *cpc, unsigned int start, unsigned int end)
485 {
486         struct list_head *head = &SM_I(sbi)->discard_list;
487         struct discard_entry *new, *last;
488 
489         if (!list_empty(head)) {
490                 last = list_last_entry(head, struct discard_entry, list);
491                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
492                                                 last->blkaddr + last->len) {
493                         last->len += end - start;
494                         goto done;
495                 }
496         }
497 
498         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
499         INIT_LIST_HEAD(&new->list);
500         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
501         new->len = end - start;
502         list_add_tail(&new->list, head);
503 done:
504         SM_I(sbi)->nr_discards += end - start;
505         cpc->trimmed += end - start;
506 }
507 
508 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
509 {
510         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
511         int max_blocks = sbi->blocks_per_seg;
512         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
513         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
514         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
515         unsigned long *dmap = SIT_I(sbi)->tmp_map;
516         unsigned int start = 0, end = -1;
517         bool force = (cpc->reason == CP_DISCARD);
518         int i;
519 
520         if (!force && (!test_opt(sbi, DISCARD) ||
521                         SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards))
522                 return;
523 
524         if (force && !se->valid_blocks) {
525                 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
526                 /*
527                  * if this segment is registered in the prefree list, then
528                  * we should skip adding a discard candidate, and let the
529                  * checkpoint do that later.
530                  */
531                 mutex_lock(&dirty_i->seglist_lock);
532                 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) {
533                         mutex_unlock(&dirty_i->seglist_lock);
534                         cpc->trimmed += sbi->blocks_per_seg;
535                         return;
536                 }
537                 mutex_unlock(&dirty_i->seglist_lock);
538 
539                 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg);
540                 return;
541         }
542 
543         /* zero block will be discarded through the prefree list */
544         if (!se->valid_blocks || se->valid_blocks == max_blocks)
545                 return;
546 
547         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
548         for (i = 0; i < entries; i++)
549                 dmap[i] = force ? ~ckpt_map[i] :
550                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
551 
552         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
553                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
554                 if (start >= max_blocks)
555                         break;
556 
557                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
558 
559                 if (force && end - start < cpc->trim_minlen)
560                         continue;
561 
562                 __add_discard_entry(sbi, cpc, start, end);
563         }
564 }
565 
566 void release_discard_addrs(struct f2fs_sb_info *sbi)
567 {
568         struct list_head *head = &(SM_I(sbi)->discard_list);
569         struct discard_entry *entry, *this;
570 
571         /* drop caches */
572         list_for_each_entry_safe(entry, this, head, list) {
573                 list_del(&entry->list);
574                 kmem_cache_free(discard_entry_slab, entry);
575         }
576 }
577 
578 /*
579  * Should call clear_prefree_segments after checkpoint is done.
580  */
581 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
582 {
583         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
584         unsigned int segno;
585 
586         mutex_lock(&dirty_i->seglist_lock);
587         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
588                 __set_test_and_free(sbi, segno);
589         mutex_unlock(&dirty_i->seglist_lock);
590 }
591 
592 void clear_prefree_segments(struct f2fs_sb_info *sbi)
593 {
594         struct list_head *head = &(SM_I(sbi)->discard_list);
595         struct discard_entry *entry, *this;
596         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
597         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
598         unsigned int start = 0, end = -1;
599 
600         mutex_lock(&dirty_i->seglist_lock);
601 
602         while (1) {
603                 int i;
604                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
605                 if (start >= MAIN_SEGS(sbi))
606                         break;
607                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
608                                                                 start + 1);
609 
610                 for (i = start; i < end; i++)
611                         clear_bit(i, prefree_map);
612 
613                 dirty_i->nr_dirty[PRE] -= end - start;
614 
615                 if (!test_opt(sbi, DISCARD))
616                         continue;
617 
618                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
619                                 (end - start) << sbi->log_blocks_per_seg);
620         }
621         mutex_unlock(&dirty_i->seglist_lock);
622 
623         /* send small discards */
624         list_for_each_entry_safe(entry, this, head, list) {
625                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
626                 list_del(&entry->list);
627                 SM_I(sbi)->nr_discards -= entry->len;
628                 kmem_cache_free(discard_entry_slab, entry);
629         }
630 }
631 
632 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
633 {
634         struct sit_info *sit_i = SIT_I(sbi);
635 
636         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
637                 sit_i->dirty_sentries++;
638                 return false;
639         }
640 
641         return true;
642 }
643 
644 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
645                                         unsigned int segno, int modified)
646 {
647         struct seg_entry *se = get_seg_entry(sbi, segno);
648         se->type = type;
649         if (modified)
650                 __mark_sit_entry_dirty(sbi, segno);
651 }
652 
653 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
654 {
655         struct seg_entry *se;
656         unsigned int segno, offset;
657         long int new_vblocks;
658 
659         segno = GET_SEGNO(sbi, blkaddr);
660 
661         se = get_seg_entry(sbi, segno);
662         new_vblocks = se->valid_blocks + del;
663         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
664 
665         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
666                                 (new_vblocks > sbi->blocks_per_seg)));
667 
668         se->valid_blocks = new_vblocks;
669         se->mtime = get_mtime(sbi);
670         SIT_I(sbi)->max_mtime = se->mtime;
671 
672         /* Update valid block bitmap */
673         if (del > 0) {
674                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
675                         f2fs_bug_on(sbi, 1);
676         } else {
677                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
678                         f2fs_bug_on(sbi, 1);
679         }
680         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
681                 se->ckpt_valid_blocks += del;
682 
683         __mark_sit_entry_dirty(sbi, segno);
684 
685         /* update total number of valid blocks to be written in ckpt area */
686         SIT_I(sbi)->written_valid_blocks += del;
687 
688         if (sbi->segs_per_sec > 1)
689                 get_sec_entry(sbi, segno)->valid_blocks += del;
690 }
691 
692 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
693 {
694         update_sit_entry(sbi, new, 1);
695         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
696                 update_sit_entry(sbi, old, -1);
697 
698         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
699         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
700 }
701 
702 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
703 {
704         unsigned int segno = GET_SEGNO(sbi, addr);
705         struct sit_info *sit_i = SIT_I(sbi);
706 
707         f2fs_bug_on(sbi, addr == NULL_ADDR);
708         if (addr == NEW_ADDR)
709                 return;
710 
711         /* add it into sit main buffer */
712         mutex_lock(&sit_i->sentry_lock);
713 
714         update_sit_entry(sbi, addr, -1);
715 
716         /* add it into dirty seglist */
717         locate_dirty_segment(sbi, segno);
718 
719         mutex_unlock(&sit_i->sentry_lock);
720 }
721 
722 /*
723  * This function should be resided under the curseg_mutex lock
724  */
725 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
726                                         struct f2fs_summary *sum)
727 {
728         struct curseg_info *curseg = CURSEG_I(sbi, type);
729         void *addr = curseg->sum_blk;
730         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
731         memcpy(addr, sum, sizeof(struct f2fs_summary));
732 }
733 
734 /*
735  * Calculate the number of current summary pages for writing
736  */
737 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
738 {
739         int valid_sum_count = 0;
740         int i, sum_in_page;
741 
742         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
743                 if (sbi->ckpt->alloc_type[i] == SSR)
744                         valid_sum_count += sbi->blocks_per_seg;
745                 else {
746                         if (for_ra)
747                                 valid_sum_count += le16_to_cpu(
748                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
749                         else
750                                 valid_sum_count += curseg_blkoff(sbi, i);
751                 }
752         }
753 
754         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
755                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
756         if (valid_sum_count <= sum_in_page)
757                 return 1;
758         else if ((valid_sum_count - sum_in_page) <=
759                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
760                 return 2;
761         return 3;
762 }
763 
764 /*
765  * Caller should put this summary page
766  */
767 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
768 {
769         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
770 }
771 
772 static void write_sum_page(struct f2fs_sb_info *sbi,
773                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
774 {
775         struct page *page = grab_meta_page(sbi, blk_addr);
776         void *kaddr = page_address(page);
777         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
778         set_page_dirty(page);
779         f2fs_put_page(page, 1);
780 }
781 
782 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
783 {
784         struct curseg_info *curseg = CURSEG_I(sbi, type);
785         unsigned int segno = curseg->segno + 1;
786         struct free_segmap_info *free_i = FREE_I(sbi);
787 
788         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
789                 return !test_bit(segno, free_i->free_segmap);
790         return 0;
791 }
792 
793 /*
794  * Find a new segment from the free segments bitmap to right order
795  * This function should be returned with success, otherwise BUG
796  */
797 static void get_new_segment(struct f2fs_sb_info *sbi,
798                         unsigned int *newseg, bool new_sec, int dir)
799 {
800         struct free_segmap_info *free_i = FREE_I(sbi);
801         unsigned int segno, secno, zoneno;
802         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
803         unsigned int hint = *newseg / sbi->segs_per_sec;
804         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
805         unsigned int left_start = hint;
806         bool init = true;
807         int go_left = 0;
808         int i;
809 
810         spin_lock(&free_i->segmap_lock);
811 
812         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
813                 segno = find_next_zero_bit(free_i->free_segmap,
814                                         MAIN_SEGS(sbi), *newseg + 1);
815                 if (segno - *newseg < sbi->segs_per_sec -
816                                         (*newseg % sbi->segs_per_sec))
817                         goto got_it;
818         }
819 find_other_zone:
820         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
821         if (secno >= MAIN_SECS(sbi)) {
822                 if (dir == ALLOC_RIGHT) {
823                         secno = find_next_zero_bit(free_i->free_secmap,
824                                                         MAIN_SECS(sbi), 0);
825                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
826                 } else {
827                         go_left = 1;
828                         left_start = hint - 1;
829                 }
830         }
831         if (go_left == 0)
832                 goto skip_left;
833 
834         while (test_bit(left_start, free_i->free_secmap)) {
835                 if (left_start > 0) {
836                         left_start--;
837                         continue;
838                 }
839                 left_start = find_next_zero_bit(free_i->free_secmap,
840                                                         MAIN_SECS(sbi), 0);
841                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
842                 break;
843         }
844         secno = left_start;
845 skip_left:
846         hint = secno;
847         segno = secno * sbi->segs_per_sec;
848         zoneno = secno / sbi->secs_per_zone;
849 
850         /* give up on finding another zone */
851         if (!init)
852                 goto got_it;
853         if (sbi->secs_per_zone == 1)
854                 goto got_it;
855         if (zoneno == old_zoneno)
856                 goto got_it;
857         if (dir == ALLOC_LEFT) {
858                 if (!go_left && zoneno + 1 >= total_zones)
859                         goto got_it;
860                 if (go_left && zoneno == 0)
861                         goto got_it;
862         }
863         for (i = 0; i < NR_CURSEG_TYPE; i++)
864                 if (CURSEG_I(sbi, i)->zone == zoneno)
865                         break;
866 
867         if (i < NR_CURSEG_TYPE) {
868                 /* zone is in user, try another */
869                 if (go_left)
870                         hint = zoneno * sbi->secs_per_zone - 1;
871                 else if (zoneno + 1 >= total_zones)
872                         hint = 0;
873                 else
874                         hint = (zoneno + 1) * sbi->secs_per_zone;
875                 init = false;
876                 goto find_other_zone;
877         }
878 got_it:
879         /* set it as dirty segment in free segmap */
880         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
881         __set_inuse(sbi, segno);
882         *newseg = segno;
883         spin_unlock(&free_i->segmap_lock);
884 }
885 
886 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
887 {
888         struct curseg_info *curseg = CURSEG_I(sbi, type);
889         struct summary_footer *sum_footer;
890 
891         curseg->segno = curseg->next_segno;
892         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
893         curseg->next_blkoff = 0;
894         curseg->next_segno = NULL_SEGNO;
895 
896         sum_footer = &(curseg->sum_blk->footer);
897         memset(sum_footer, 0, sizeof(struct summary_footer));
898         if (IS_DATASEG(type))
899                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
900         if (IS_NODESEG(type))
901                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
902         __set_sit_entry_type(sbi, type, curseg->segno, modified);
903 }
904 
905 /*
906  * Allocate a current working segment.
907  * This function always allocates a free segment in LFS manner.
908  */
909 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
910 {
911         struct curseg_info *curseg = CURSEG_I(sbi, type);
912         unsigned int segno = curseg->segno;
913         int dir = ALLOC_LEFT;
914 
915         write_sum_page(sbi, curseg->sum_blk,
916                                 GET_SUM_BLOCK(sbi, segno));
917         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
918                 dir = ALLOC_RIGHT;
919 
920         if (test_opt(sbi, NOHEAP))
921                 dir = ALLOC_RIGHT;
922 
923         get_new_segment(sbi, &segno, new_sec, dir);
924         curseg->next_segno = segno;
925         reset_curseg(sbi, type, 1);
926         curseg->alloc_type = LFS;
927 }
928 
929 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
930                         struct curseg_info *seg, block_t start)
931 {
932         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
933         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
934         unsigned long *target_map = SIT_I(sbi)->tmp_map;
935         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
936         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
937         int i, pos;
938 
939         for (i = 0; i < entries; i++)
940                 target_map[i] = ckpt_map[i] | cur_map[i];
941 
942         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
943 
944         seg->next_blkoff = pos;
945 }
946 
947 /*
948  * If a segment is written by LFS manner, next block offset is just obtained
949  * by increasing the current block offset. However, if a segment is written by
950  * SSR manner, next block offset obtained by calling __next_free_blkoff
951  */
952 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
953                                 struct curseg_info *seg)
954 {
955         if (seg->alloc_type == SSR)
956                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
957         else
958                 seg->next_blkoff++;
959 }
960 
961 /*
962  * This function always allocates a used segment(from dirty seglist) by SSR
963  * manner, so it should recover the existing segment information of valid blocks
964  */
965 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
966 {
967         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
968         struct curseg_info *curseg = CURSEG_I(sbi, type);
969         unsigned int new_segno = curseg->next_segno;
970         struct f2fs_summary_block *sum_node;
971         struct page *sum_page;
972 
973         write_sum_page(sbi, curseg->sum_blk,
974                                 GET_SUM_BLOCK(sbi, curseg->segno));
975         __set_test_and_inuse(sbi, new_segno);
976 
977         mutex_lock(&dirty_i->seglist_lock);
978         __remove_dirty_segment(sbi, new_segno, PRE);
979         __remove_dirty_segment(sbi, new_segno, DIRTY);
980         mutex_unlock(&dirty_i->seglist_lock);
981 
982         reset_curseg(sbi, type, 1);
983         curseg->alloc_type = SSR;
984         __next_free_blkoff(sbi, curseg, 0);
985 
986         if (reuse) {
987                 sum_page = get_sum_page(sbi, new_segno);
988                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
989                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
990                 f2fs_put_page(sum_page, 1);
991         }
992 }
993 
994 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
995 {
996         struct curseg_info *curseg = CURSEG_I(sbi, type);
997         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
998 
999         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1000                 return v_ops->get_victim(sbi,
1001                                 &(curseg)->next_segno, BG_GC, type, SSR);
1002 
1003         /* For data segments, let's do SSR more intensively */
1004         for (; type >= CURSEG_HOT_DATA; type--)
1005                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1006                                                 BG_GC, type, SSR))
1007                         return 1;
1008         return 0;
1009 }
1010 
1011 /*
1012  * flush out current segment and replace it with new segment
1013  * This function should be returned with success, otherwise BUG
1014  */
1015 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1016                                                 int type, bool force)
1017 {
1018         struct curseg_info *curseg = CURSEG_I(sbi, type);
1019 
1020         if (force)
1021                 new_curseg(sbi, type, true);
1022         else if (type == CURSEG_WARM_NODE)
1023                 new_curseg(sbi, type, false);
1024         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1025                 new_curseg(sbi, type, false);
1026         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1027                 change_curseg(sbi, type, true);
1028         else
1029                 new_curseg(sbi, type, false);
1030 
1031         stat_inc_seg_type(sbi, curseg);
1032 }
1033 
1034 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1035 {
1036         struct curseg_info *curseg = CURSEG_I(sbi, type);
1037         unsigned int old_segno;
1038 
1039         old_segno = curseg->segno;
1040         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1041         locate_dirty_segment(sbi, old_segno);
1042 }
1043 
1044 void allocate_new_segments(struct f2fs_sb_info *sbi)
1045 {
1046         int i;
1047 
1048         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1049                 __allocate_new_segments(sbi, i);
1050 }
1051 
1052 static const struct segment_allocation default_salloc_ops = {
1053         .allocate_segment = allocate_segment_by_default,
1054 };
1055 
1056 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1057 {
1058         __u64 start = F2FS_BYTES_TO_BLK(range->start);
1059         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1060         unsigned int start_segno, end_segno;
1061         struct cp_control cpc;
1062 
1063         if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) ||
1064                                                 range->len < sbi->blocksize)
1065                 return -EINVAL;
1066 
1067         cpc.trimmed = 0;
1068         if (end <= MAIN_BLKADDR(sbi))
1069                 goto out;
1070 
1071         /* start/end segment number in main_area */
1072         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1073         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1074                                                 GET_SEGNO(sbi, end);
1075         cpc.reason = CP_DISCARD;
1076         cpc.trim_minlen = F2FS_BYTES_TO_BLK(range->minlen);
1077 
1078         /* do checkpoint to issue discard commands safely */
1079         for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1080                 cpc.trim_start = start_segno;
1081                 cpc.trim_end = min_t(unsigned int, rounddown(start_segno +
1082                                 BATCHED_TRIM_SEGMENTS(sbi),
1083                                 sbi->segs_per_sec) - 1, end_segno);
1084 
1085                 mutex_lock(&sbi->gc_mutex);
1086                 write_checkpoint(sbi, &cpc);
1087                 mutex_unlock(&sbi->gc_mutex);
1088         }
1089 out:
1090         range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1091         return 0;
1092 }
1093 
1094 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1095 {
1096         struct curseg_info *curseg = CURSEG_I(sbi, type);
1097         if (curseg->next_blkoff < sbi->blocks_per_seg)
1098                 return true;
1099         return false;
1100 }
1101 
1102 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1103 {
1104         if (p_type == DATA)
1105                 return CURSEG_HOT_DATA;
1106         else
1107                 return CURSEG_HOT_NODE;
1108 }
1109 
1110 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1111 {
1112         if (p_type == DATA) {
1113                 struct inode *inode = page->mapping->host;
1114 
1115                 if (S_ISDIR(inode->i_mode))
1116                         return CURSEG_HOT_DATA;
1117                 else
1118                         return CURSEG_COLD_DATA;
1119         } else {
1120                 if (IS_DNODE(page) && is_cold_node(page))
1121                         return CURSEG_WARM_NODE;
1122                 else
1123                         return CURSEG_COLD_NODE;
1124         }
1125 }
1126 
1127 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1128 {
1129         if (p_type == DATA) {
1130                 struct inode *inode = page->mapping->host;
1131 
1132                 if (S_ISDIR(inode->i_mode))
1133                         return CURSEG_HOT_DATA;
1134                 else if (is_cold_data(page) || file_is_cold(inode))
1135                         return CURSEG_COLD_DATA;
1136                 else
1137                         return CURSEG_WARM_DATA;
1138         } else {
1139                 if (IS_DNODE(page))
1140                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1141                                                 CURSEG_HOT_NODE;
1142                 else
1143                         return CURSEG_COLD_NODE;
1144         }
1145 }
1146 
1147 static int __get_segment_type(struct page *page, enum page_type p_type)
1148 {
1149         switch (F2FS_P_SB(page)->active_logs) {
1150         case 2:
1151                 return __get_segment_type_2(page, p_type);
1152         case 4:
1153                 return __get_segment_type_4(page, p_type);
1154         }
1155         /* NR_CURSEG_TYPE(6) logs by default */
1156         f2fs_bug_on(F2FS_P_SB(page),
1157                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1158         return __get_segment_type_6(page, p_type);
1159 }
1160 
1161 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1162                 block_t old_blkaddr, block_t *new_blkaddr,
1163                 struct f2fs_summary *sum, int type)
1164 {
1165         struct sit_info *sit_i = SIT_I(sbi);
1166         struct curseg_info *curseg;
1167         bool direct_io = (type == CURSEG_DIRECT_IO);
1168 
1169         type = direct_io ? CURSEG_WARM_DATA : type;
1170 
1171         curseg = CURSEG_I(sbi, type);
1172 
1173         mutex_lock(&curseg->curseg_mutex);
1174         mutex_lock(&sit_i->sentry_lock);
1175 
1176         /* direct_io'ed data is aligned to the segment for better performance */
1177         if (direct_io && curseg->next_blkoff)
1178                 __allocate_new_segments(sbi, type);
1179 
1180         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1181 
1182         /*
1183          * __add_sum_entry should be resided under the curseg_mutex
1184          * because, this function updates a summary entry in the
1185          * current summary block.
1186          */
1187         __add_sum_entry(sbi, type, sum);
1188 
1189         __refresh_next_blkoff(sbi, curseg);
1190 
1191         stat_inc_block_count(sbi, curseg);
1192 
1193         if (!__has_curseg_space(sbi, type))
1194                 sit_i->s_ops->allocate_segment(sbi, type, false);
1195         /*
1196          * SIT information should be updated before segment allocation,
1197          * since SSR needs latest valid block information.
1198          */
1199         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1200 
1201         mutex_unlock(&sit_i->sentry_lock);
1202 
1203         if (page && IS_NODESEG(type))
1204                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1205 
1206         mutex_unlock(&curseg->curseg_mutex);
1207 }
1208 
1209 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1210                         struct f2fs_summary *sum,
1211                         struct f2fs_io_info *fio)
1212 {
1213         int type = __get_segment_type(page, fio->type);
1214 
1215         allocate_data_block(sbi, page, fio->blk_addr, &fio->blk_addr, sum, type);
1216 
1217         /* writeout dirty page into bdev */
1218         f2fs_submit_page_mbio(sbi, page, fio);
1219 }
1220 
1221 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1222 {
1223         struct f2fs_io_info fio = {
1224                 .type = META,
1225                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1226                 .blk_addr = page->index,
1227         };
1228 
1229         set_page_writeback(page);
1230         f2fs_submit_page_mbio(sbi, page, &fio);
1231 }
1232 
1233 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1234                         unsigned int nid, struct f2fs_io_info *fio)
1235 {
1236         struct f2fs_summary sum;
1237         set_summary(&sum, nid, 0, 0);
1238         do_write_page(sbi, page, &sum, fio);
1239 }
1240 
1241 void write_data_page(struct page *page, struct dnode_of_data *dn,
1242                                 struct f2fs_io_info *fio)
1243 {
1244         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1245         struct f2fs_summary sum;
1246         struct node_info ni;
1247 
1248         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1249         get_node_info(sbi, dn->nid, &ni);
1250         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1251         do_write_page(sbi, page, &sum, fio);
1252         dn->data_blkaddr = fio->blk_addr;
1253 }
1254 
1255 void rewrite_data_page(struct page *page, struct f2fs_io_info *fio)
1256 {
1257         stat_inc_inplace_blocks(F2FS_P_SB(page));
1258         f2fs_submit_page_mbio(F2FS_P_SB(page), page, fio);
1259 }
1260 
1261 void recover_data_page(struct f2fs_sb_info *sbi,
1262                         struct page *page, struct f2fs_summary *sum,
1263                         block_t old_blkaddr, block_t new_blkaddr)
1264 {
1265         struct sit_info *sit_i = SIT_I(sbi);
1266         struct curseg_info *curseg;
1267         unsigned int segno, old_cursegno;
1268         struct seg_entry *se;
1269         int type;
1270 
1271         segno = GET_SEGNO(sbi, new_blkaddr);
1272         se = get_seg_entry(sbi, segno);
1273         type = se->type;
1274 
1275         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1276                 if (old_blkaddr == NULL_ADDR)
1277                         type = CURSEG_COLD_DATA;
1278                 else
1279                         type = CURSEG_WARM_DATA;
1280         }
1281         curseg = CURSEG_I(sbi, type);
1282 
1283         mutex_lock(&curseg->curseg_mutex);
1284         mutex_lock(&sit_i->sentry_lock);
1285 
1286         old_cursegno = curseg->segno;
1287 
1288         /* change the current segment */
1289         if (segno != curseg->segno) {
1290                 curseg->next_segno = segno;
1291                 change_curseg(sbi, type, true);
1292         }
1293 
1294         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1295         __add_sum_entry(sbi, type, sum);
1296 
1297         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1298         locate_dirty_segment(sbi, old_cursegno);
1299 
1300         mutex_unlock(&sit_i->sentry_lock);
1301         mutex_unlock(&curseg->curseg_mutex);
1302 }
1303 
1304 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1305                                         struct page *page, enum page_type type)
1306 {
1307         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1308         struct f2fs_bio_info *io = &sbi->write_io[btype];
1309         struct bio_vec *bvec;
1310         int i;
1311 
1312         down_read(&io->io_rwsem);
1313         if (!io->bio)
1314                 goto out;
1315 
1316         bio_for_each_segment_all(bvec, io->bio, i) {
1317                 if (page == bvec->bv_page) {
1318                         up_read(&io->io_rwsem);
1319                         return true;
1320                 }
1321         }
1322 
1323 out:
1324         up_read(&io->io_rwsem);
1325         return false;
1326 }
1327 
1328 void f2fs_wait_on_page_writeback(struct page *page,
1329                                 enum page_type type)
1330 {
1331         if (PageWriteback(page)) {
1332                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1333 
1334                 if (is_merged_page(sbi, page, type))
1335                         f2fs_submit_merged_bio(sbi, type, WRITE);
1336                 wait_on_page_writeback(page);
1337         }
1338 }
1339 
1340 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1341 {
1342         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1343         struct curseg_info *seg_i;
1344         unsigned char *kaddr;
1345         struct page *page;
1346         block_t start;
1347         int i, j, offset;
1348 
1349         start = start_sum_block(sbi);
1350 
1351         page = get_meta_page(sbi, start++);
1352         kaddr = (unsigned char *)page_address(page);
1353 
1354         /* Step 1: restore nat cache */
1355         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1356         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1357 
1358         /* Step 2: restore sit cache */
1359         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1360         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1361                                                 SUM_JOURNAL_SIZE);
1362         offset = 2 * SUM_JOURNAL_SIZE;
1363 
1364         /* Step 3: restore summary entries */
1365         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1366                 unsigned short blk_off;
1367                 unsigned int segno;
1368 
1369                 seg_i = CURSEG_I(sbi, i);
1370                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1371                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1372                 seg_i->next_segno = segno;
1373                 reset_curseg(sbi, i, 0);
1374                 seg_i->alloc_type = ckpt->alloc_type[i];
1375                 seg_i->next_blkoff = blk_off;
1376 
1377                 if (seg_i->alloc_type == SSR)
1378                         blk_off = sbi->blocks_per_seg;
1379 
1380                 for (j = 0; j < blk_off; j++) {
1381                         struct f2fs_summary *s;
1382                         s = (struct f2fs_summary *)(kaddr + offset);
1383                         seg_i->sum_blk->entries[j] = *s;
1384                         offset += SUMMARY_SIZE;
1385                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1386                                                 SUM_FOOTER_SIZE)
1387                                 continue;
1388 
1389                         f2fs_put_page(page, 1);
1390                         page = NULL;
1391 
1392                         page = get_meta_page(sbi, start++);
1393                         kaddr = (unsigned char *)page_address(page);
1394                         offset = 0;
1395                 }
1396         }
1397         f2fs_put_page(page, 1);
1398         return 0;
1399 }
1400 
1401 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1402 {
1403         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1404         struct f2fs_summary_block *sum;
1405         struct curseg_info *curseg;
1406         struct page *new;
1407         unsigned short blk_off;
1408         unsigned int segno = 0;
1409         block_t blk_addr = 0;
1410 
1411         /* get segment number and block addr */
1412         if (IS_DATASEG(type)) {
1413                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1414                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1415                                                         CURSEG_HOT_DATA]);
1416                 if (__exist_node_summaries(sbi))
1417                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1418                 else
1419                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1420         } else {
1421                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1422                                                         CURSEG_HOT_NODE]);
1423                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1424                                                         CURSEG_HOT_NODE]);
1425                 if (__exist_node_summaries(sbi))
1426                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1427                                                         type - CURSEG_HOT_NODE);
1428                 else
1429                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1430         }
1431 
1432         new = get_meta_page(sbi, blk_addr);
1433         sum = (struct f2fs_summary_block *)page_address(new);
1434 
1435         if (IS_NODESEG(type)) {
1436                 if (__exist_node_summaries(sbi)) {
1437                         struct f2fs_summary *ns = &sum->entries[0];
1438                         int i;
1439                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1440                                 ns->version = 0;
1441                                 ns->ofs_in_node = 0;
1442                         }
1443                 } else {
1444                         int err;
1445 
1446                         err = restore_node_summary(sbi, segno, sum);
1447                         if (err) {
1448                                 f2fs_put_page(new, 1);
1449                                 return err;
1450                         }
1451                 }
1452         }
1453 
1454         /* set uncompleted segment to curseg */
1455         curseg = CURSEG_I(sbi, type);
1456         mutex_lock(&curseg->curseg_mutex);
1457         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1458         curseg->next_segno = segno;
1459         reset_curseg(sbi, type, 0);
1460         curseg->alloc_type = ckpt->alloc_type[type];
1461         curseg->next_blkoff = blk_off;
1462         mutex_unlock(&curseg->curseg_mutex);
1463         f2fs_put_page(new, 1);
1464         return 0;
1465 }
1466 
1467 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1468 {
1469         int type = CURSEG_HOT_DATA;
1470         int err;
1471 
1472         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1473                 int npages = npages_for_summary_flush(sbi, true);
1474 
1475                 if (npages >= 2)
1476                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1477                                                                 META_CP);
1478 
1479                 /* restore for compacted data summary */
1480                 if (read_compacted_summaries(sbi))
1481                         return -EINVAL;
1482                 type = CURSEG_HOT_NODE;
1483         }
1484 
1485         if (__exist_node_summaries(sbi))
1486                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1487                                         NR_CURSEG_TYPE - type, META_CP);
1488 
1489         for (; type <= CURSEG_COLD_NODE; type++) {
1490                 err = read_normal_summaries(sbi, type);
1491                 if (err)
1492                         return err;
1493         }
1494 
1495         return 0;
1496 }
1497 
1498 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1499 {
1500         struct page *page;
1501         unsigned char *kaddr;
1502         struct f2fs_summary *summary;
1503         struct curseg_info *seg_i;
1504         int written_size = 0;
1505         int i, j;
1506 
1507         page = grab_meta_page(sbi, blkaddr++);
1508         kaddr = (unsigned char *)page_address(page);
1509 
1510         /* Step 1: write nat cache */
1511         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1512         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1513         written_size += SUM_JOURNAL_SIZE;
1514 
1515         /* Step 2: write sit cache */
1516         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1517         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1518                                                 SUM_JOURNAL_SIZE);
1519         written_size += SUM_JOURNAL_SIZE;
1520 
1521         /* Step 3: write summary entries */
1522         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1523                 unsigned short blkoff;
1524                 seg_i = CURSEG_I(sbi, i);
1525                 if (sbi->ckpt->alloc_type[i] == SSR)
1526                         blkoff = sbi->blocks_per_seg;
1527                 else
1528                         blkoff = curseg_blkoff(sbi, i);
1529 
1530                 for (j = 0; j < blkoff; j++) {
1531                         if (!page) {
1532                                 page = grab_meta_page(sbi, blkaddr++);
1533                                 kaddr = (unsigned char *)page_address(page);
1534                                 written_size = 0;
1535                         }
1536                         summary = (struct f2fs_summary *)(kaddr + written_size);
1537                         *summary = seg_i->sum_blk->entries[j];
1538                         written_size += SUMMARY_SIZE;
1539 
1540                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1541                                                         SUM_FOOTER_SIZE)
1542                                 continue;
1543 
1544                         set_page_dirty(page);
1545                         f2fs_put_page(page, 1);
1546                         page = NULL;
1547                 }
1548         }
1549         if (page) {
1550                 set_page_dirty(page);
1551                 f2fs_put_page(page, 1);
1552         }
1553 }
1554 
1555 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1556                                         block_t blkaddr, int type)
1557 {
1558         int i, end;
1559         if (IS_DATASEG(type))
1560                 end = type + NR_CURSEG_DATA_TYPE;
1561         else
1562                 end = type + NR_CURSEG_NODE_TYPE;
1563 
1564         for (i = type; i < end; i++) {
1565                 struct curseg_info *sum = CURSEG_I(sbi, i);
1566                 mutex_lock(&sum->curseg_mutex);
1567                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1568                 mutex_unlock(&sum->curseg_mutex);
1569         }
1570 }
1571 
1572 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1573 {
1574         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1575                 write_compacted_summaries(sbi, start_blk);
1576         else
1577                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1578 }
1579 
1580 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1581 {
1582         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1583 }
1584 
1585 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1586                                         unsigned int val, int alloc)
1587 {
1588         int i;
1589 
1590         if (type == NAT_JOURNAL) {
1591                 for (i = 0; i < nats_in_cursum(sum); i++) {
1592                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1593                                 return i;
1594                 }
1595                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1596                         return update_nats_in_cursum(sum, 1);
1597         } else if (type == SIT_JOURNAL) {
1598                 for (i = 0; i < sits_in_cursum(sum); i++)
1599                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1600                                 return i;
1601                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1602                         return update_sits_in_cursum(sum, 1);
1603         }
1604         return -1;
1605 }
1606 
1607 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1608                                         unsigned int segno)
1609 {
1610         return get_meta_page(sbi, current_sit_addr(sbi, segno));
1611 }
1612 
1613 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1614                                         unsigned int start)
1615 {
1616         struct sit_info *sit_i = SIT_I(sbi);
1617         struct page *src_page, *dst_page;
1618         pgoff_t src_off, dst_off;
1619         void *src_addr, *dst_addr;
1620 
1621         src_off = current_sit_addr(sbi, start);
1622         dst_off = next_sit_addr(sbi, src_off);
1623 
1624         /* get current sit block page without lock */
1625         src_page = get_meta_page(sbi, src_off);
1626         dst_page = grab_meta_page(sbi, dst_off);
1627         f2fs_bug_on(sbi, PageDirty(src_page));
1628 
1629         src_addr = page_address(src_page);
1630         dst_addr = page_address(dst_page);
1631         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1632 
1633         set_page_dirty(dst_page);
1634         f2fs_put_page(src_page, 1);
1635 
1636         set_to_next_sit(sit_i, start);
1637 
1638         return dst_page;
1639 }
1640 
1641 static struct sit_entry_set *grab_sit_entry_set(void)
1642 {
1643         struct sit_entry_set *ses =
1644                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1645 
1646         ses->entry_cnt = 0;
1647         INIT_LIST_HEAD(&ses->set_list);
1648         return ses;
1649 }
1650 
1651 static void release_sit_entry_set(struct sit_entry_set *ses)
1652 {
1653         list_del(&ses->set_list);
1654         kmem_cache_free(sit_entry_set_slab, ses);
1655 }
1656 
1657 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1658                                                 struct list_head *head)
1659 {
1660         struct sit_entry_set *next = ses;
1661 
1662         if (list_is_last(&ses->set_list, head))
1663                 return;
1664 
1665         list_for_each_entry_continue(next, head, set_list)
1666                 if (ses->entry_cnt <= next->entry_cnt)
1667                         break;
1668 
1669         list_move_tail(&ses->set_list, &next->set_list);
1670 }
1671 
1672 static void add_sit_entry(unsigned int segno, struct list_head *head)
1673 {
1674         struct sit_entry_set *ses;
1675         unsigned int start_segno = START_SEGNO(segno);
1676 
1677         list_for_each_entry(ses, head, set_list) {
1678                 if (ses->start_segno == start_segno) {
1679                         ses->entry_cnt++;
1680                         adjust_sit_entry_set(ses, head);
1681                         return;
1682                 }
1683         }
1684 
1685         ses = grab_sit_entry_set();
1686 
1687         ses->start_segno = start_segno;
1688         ses->entry_cnt++;
1689         list_add(&ses->set_list, head);
1690 }
1691 
1692 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1693 {
1694         struct f2fs_sm_info *sm_info = SM_I(sbi);
1695         struct list_head *set_list = &sm_info->sit_entry_set;
1696         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1697         unsigned int segno;
1698 
1699         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1700                 add_sit_entry(segno, set_list);
1701 }
1702 
1703 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1704 {
1705         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1706         struct f2fs_summary_block *sum = curseg->sum_blk;
1707         int i;
1708 
1709         for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1710                 unsigned int segno;
1711                 bool dirtied;
1712 
1713                 segno = le32_to_cpu(segno_in_journal(sum, i));
1714                 dirtied = __mark_sit_entry_dirty(sbi, segno);
1715 
1716                 if (!dirtied)
1717                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1718         }
1719         update_sits_in_cursum(sum, -sits_in_cursum(sum));
1720 }
1721 
1722 /*
1723  * CP calls this function, which flushes SIT entries including sit_journal,
1724  * and moves prefree segs to free segs.
1725  */
1726 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1727 {
1728         struct sit_info *sit_i = SIT_I(sbi);
1729         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1730         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1731         struct f2fs_summary_block *sum = curseg->sum_blk;
1732         struct sit_entry_set *ses, *tmp;
1733         struct list_head *head = &SM_I(sbi)->sit_entry_set;
1734         bool to_journal = true;
1735         struct seg_entry *se;
1736 
1737         mutex_lock(&curseg->curseg_mutex);
1738         mutex_lock(&sit_i->sentry_lock);
1739 
1740         if (!sit_i->dirty_sentries)
1741                 goto out;
1742 
1743         /*
1744          * add and account sit entries of dirty bitmap in sit entry
1745          * set temporarily
1746          */
1747         add_sits_in_set(sbi);
1748 
1749         /*
1750          * if there are no enough space in journal to store dirty sit
1751          * entries, remove all entries from journal and add and account
1752          * them in sit entry set.
1753          */
1754         if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1755                 remove_sits_in_journal(sbi);
1756 
1757         /*
1758          * there are two steps to flush sit entries:
1759          * #1, flush sit entries to journal in current cold data summary block.
1760          * #2, flush sit entries to sit page.
1761          */
1762         list_for_each_entry_safe(ses, tmp, head, set_list) {
1763                 struct page *page = NULL;
1764                 struct f2fs_sit_block *raw_sit = NULL;
1765                 unsigned int start_segno = ses->start_segno;
1766                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1767                                                 (unsigned long)MAIN_SEGS(sbi));
1768                 unsigned int segno = start_segno;
1769 
1770                 if (to_journal &&
1771                         !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1772                         to_journal = false;
1773 
1774                 if (!to_journal) {
1775                         page = get_next_sit_page(sbi, start_segno);
1776                         raw_sit = page_address(page);
1777                 }
1778 
1779                 /* flush dirty sit entries in region of current sit set */
1780                 for_each_set_bit_from(segno, bitmap, end) {
1781                         int offset, sit_offset;
1782 
1783                         se = get_seg_entry(sbi, segno);
1784 
1785                         /* add discard candidates */
1786                         if (cpc->reason != CP_DISCARD) {
1787                                 cpc->trim_start = segno;
1788                                 add_discard_addrs(sbi, cpc);
1789                         }
1790 
1791                         if (to_journal) {
1792                                 offset = lookup_journal_in_cursum(sum,
1793                                                         SIT_JOURNAL, segno, 1);
1794                                 f2fs_bug_on(sbi, offset < 0);
1795                                 segno_in_journal(sum, offset) =
1796                                                         cpu_to_le32(segno);
1797                                 seg_info_to_raw_sit(se,
1798                                                 &sit_in_journal(sum, offset));
1799                         } else {
1800                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1801                                 seg_info_to_raw_sit(se,
1802                                                 &raw_sit->entries[sit_offset]);
1803                         }
1804 
1805                         __clear_bit(segno, bitmap);
1806                         sit_i->dirty_sentries--;
1807                         ses->entry_cnt--;
1808                 }
1809 
1810                 if (!to_journal)
1811                         f2fs_put_page(page, 1);
1812 
1813                 f2fs_bug_on(sbi, ses->entry_cnt);
1814                 release_sit_entry_set(ses);
1815         }
1816 
1817         f2fs_bug_on(sbi, !list_empty(head));
1818         f2fs_bug_on(sbi, sit_i->dirty_sentries);
1819 out:
1820         if (cpc->reason == CP_DISCARD) {
1821                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1822                         add_discard_addrs(sbi, cpc);
1823         }
1824         mutex_unlock(&sit_i->sentry_lock);
1825         mutex_unlock(&curseg->curseg_mutex);
1826 
1827         set_prefree_as_free_segments(sbi);
1828 }
1829 
1830 static int build_sit_info(struct f2fs_sb_info *sbi)
1831 {
1832         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1833         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1834         struct sit_info *sit_i;
1835         unsigned int sit_segs, start;
1836         char *src_bitmap, *dst_bitmap;
1837         unsigned int bitmap_size;
1838 
1839         /* allocate memory for SIT information */
1840         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1841         if (!sit_i)
1842                 return -ENOMEM;
1843 
1844         SM_I(sbi)->sit_info = sit_i;
1845 
1846         sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
1847         if (!sit_i->sentries)
1848                 return -ENOMEM;
1849 
1850         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1851         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1852         if (!sit_i->dirty_sentries_bitmap)
1853                 return -ENOMEM;
1854 
1855         for (start = 0; start < MAIN_SEGS(sbi); start++) {
1856                 sit_i->sentries[start].cur_valid_map
1857                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1858                 sit_i->sentries[start].ckpt_valid_map
1859                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1860                 if (!sit_i->sentries[start].cur_valid_map
1861                                 || !sit_i->sentries[start].ckpt_valid_map)
1862                         return -ENOMEM;
1863         }
1864 
1865         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1866         if (!sit_i->tmp_map)
1867                 return -ENOMEM;
1868 
1869         if (sbi->segs_per_sec > 1) {
1870                 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
1871                                         sizeof(struct sec_entry));
1872                 if (!sit_i->sec_entries)
1873                         return -ENOMEM;
1874         }
1875 
1876         /* get information related with SIT */
1877         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1878 
1879         /* setup SIT bitmap from ckeckpoint pack */
1880         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1881         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1882 
1883         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1884         if (!dst_bitmap)
1885                 return -ENOMEM;
1886 
1887         /* init SIT information */
1888         sit_i->s_ops = &default_salloc_ops;
1889 
1890         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1891         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1892         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1893         sit_i->sit_bitmap = dst_bitmap;
1894         sit_i->bitmap_size = bitmap_size;
1895         sit_i->dirty_sentries = 0;
1896         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1897         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1898         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1899         mutex_init(&sit_i->sentry_lock);
1900         return 0;
1901 }
1902 
1903 static int build_free_segmap(struct f2fs_sb_info *sbi)
1904 {
1905         struct free_segmap_info *free_i;
1906         unsigned int bitmap_size, sec_bitmap_size;
1907 
1908         /* allocate memory for free segmap information */
1909         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1910         if (!free_i)
1911                 return -ENOMEM;
1912 
1913         SM_I(sbi)->free_info = free_i;
1914 
1915         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1916         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1917         if (!free_i->free_segmap)
1918                 return -ENOMEM;
1919 
1920         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
1921         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1922         if (!free_i->free_secmap)
1923                 return -ENOMEM;
1924 
1925         /* set all segments as dirty temporarily */
1926         memset(free_i->free_segmap, 0xff, bitmap_size);
1927         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1928 
1929         /* init free segmap information */
1930         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
1931         free_i->free_segments = 0;
1932         free_i->free_sections = 0;
1933         spin_lock_init(&free_i->segmap_lock);
1934         return 0;
1935 }
1936 
1937 static int build_curseg(struct f2fs_sb_info *sbi)
1938 {
1939         struct curseg_info *array;
1940         int i;
1941 
1942         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1943         if (!array)
1944                 return -ENOMEM;
1945 
1946         SM_I(sbi)->curseg_array = array;
1947 
1948         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1949                 mutex_init(&array[i].curseg_mutex);
1950                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1951                 if (!array[i].sum_blk)
1952                         return -ENOMEM;
1953                 array[i].segno = NULL_SEGNO;
1954                 array[i].next_blkoff = 0;
1955         }
1956         return restore_curseg_summaries(sbi);
1957 }
1958 
1959 static void build_sit_entries(struct f2fs_sb_info *sbi)
1960 {
1961         struct sit_info *sit_i = SIT_I(sbi);
1962         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1963         struct f2fs_summary_block *sum = curseg->sum_blk;
1964         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1965         unsigned int i, start, end;
1966         unsigned int readed, start_blk = 0;
1967         int nrpages = MAX_BIO_BLOCKS(sbi);
1968 
1969         do {
1970                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1971 
1972                 start = start_blk * sit_i->sents_per_block;
1973                 end = (start_blk + readed) * sit_i->sents_per_block;
1974 
1975                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
1976                         struct seg_entry *se = &sit_i->sentries[start];
1977                         struct f2fs_sit_block *sit_blk;
1978                         struct f2fs_sit_entry sit;
1979                         struct page *page;
1980 
1981                         mutex_lock(&curseg->curseg_mutex);
1982                         for (i = 0; i < sits_in_cursum(sum); i++) {
1983                                 if (le32_to_cpu(segno_in_journal(sum, i))
1984                                                                 == start) {
1985                                         sit = sit_in_journal(sum, i);
1986                                         mutex_unlock(&curseg->curseg_mutex);
1987                                         goto got_it;
1988                                 }
1989                         }
1990                         mutex_unlock(&curseg->curseg_mutex);
1991 
1992                         page = get_current_sit_page(sbi, start);
1993                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1994                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1995                         f2fs_put_page(page, 1);
1996 got_it:
1997                         check_block_count(sbi, start, &sit);
1998                         seg_info_from_raw_sit(se, &sit);
1999                         if (sbi->segs_per_sec > 1) {
2000                                 struct sec_entry *e = get_sec_entry(sbi, start);
2001                                 e->valid_blocks += se->valid_blocks;
2002                         }
2003                 }
2004                 start_blk += readed;
2005         } while (start_blk < sit_blk_cnt);
2006 }
2007 
2008 static void init_free_segmap(struct f2fs_sb_info *sbi)
2009 {
2010         unsigned int start;
2011         int type;
2012 
2013         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2014                 struct seg_entry *sentry = get_seg_entry(sbi, start);
2015                 if (!sentry->valid_blocks)
2016                         __set_free(sbi, start);
2017         }
2018 
2019         /* set use the current segments */
2020         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2021                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2022                 __set_test_and_inuse(sbi, curseg_t->segno);
2023         }
2024 }
2025 
2026 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2027 {
2028         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2029         struct free_segmap_info *free_i = FREE_I(sbi);
2030         unsigned int segno = 0, offset = 0;
2031         unsigned short valid_blocks;
2032 
2033         while (1) {
2034                 /* find dirty segment based on free segmap */
2035                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2036                 if (segno >= MAIN_SEGS(sbi))
2037                         break;
2038                 offset = segno + 1;
2039                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2040                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2041                         continue;
2042                 if (valid_blocks > sbi->blocks_per_seg) {
2043                         f2fs_bug_on(sbi, 1);
2044                         continue;
2045                 }
2046                 mutex_lock(&dirty_i->seglist_lock);
2047                 __locate_dirty_segment(sbi, segno, DIRTY);
2048                 mutex_unlock(&dirty_i->seglist_lock);
2049         }
2050 }
2051 
2052 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2053 {
2054         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2055         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2056 
2057         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2058         if (!dirty_i->victim_secmap)
2059                 return -ENOMEM;
2060         return 0;
2061 }
2062 
2063 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2064 {
2065         struct dirty_seglist_info *dirty_i;
2066         unsigned int bitmap_size, i;
2067 
2068         /* allocate memory for dirty segments list information */
2069         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2070         if (!dirty_i)
2071                 return -ENOMEM;
2072 
2073         SM_I(sbi)->dirty_info = dirty_i;
2074         mutex_init(&dirty_i->seglist_lock);
2075 
2076         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2077 
2078         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2079                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
2080                 if (!dirty_i->dirty_segmap[i])
2081                         return -ENOMEM;
2082         }
2083 
2084         init_dirty_segmap(sbi);
2085         return init_victim_secmap(sbi);
2086 }
2087 
2088 /*
2089  * Update min, max modified time for cost-benefit GC algorithm
2090  */
2091 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2092 {
2093         struct sit_info *sit_i = SIT_I(sbi);
2094         unsigned int segno;
2095 
2096         mutex_lock(&sit_i->sentry_lock);
2097 
2098         sit_i->min_mtime = LLONG_MAX;
2099 
2100         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2101                 unsigned int i;
2102                 unsigned long long mtime = 0;
2103 
2104                 for (i = 0; i < sbi->segs_per_sec; i++)
2105                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2106 
2107                 mtime = div_u64(mtime, sbi->segs_per_sec);
2108 
2109                 if (sit_i->min_mtime > mtime)
2110                         sit_i->min_mtime = mtime;
2111         }
2112         sit_i->max_mtime = get_mtime(sbi);
2113         mutex_unlock(&sit_i->sentry_lock);
2114 }
2115 
2116 int build_segment_manager(struct f2fs_sb_info *sbi)
2117 {
2118         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2119         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2120         struct f2fs_sm_info *sm_info;
2121         int err;
2122 
2123         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2124         if (!sm_info)
2125                 return -ENOMEM;
2126 
2127         /* init sm info */
2128         sbi->sm_info = sm_info;
2129         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2130         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2131         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2132         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2133         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2134         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2135         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2136         sm_info->rec_prefree_segments = sm_info->main_segments *
2137                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2138         sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2139         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2140         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2141 
2142         INIT_LIST_HEAD(&sm_info->discard_list);
2143         sm_info->nr_discards = 0;
2144         sm_info->max_discards = 0;
2145 
2146         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2147 
2148         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2149 
2150         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2151                 err = create_flush_cmd_control(sbi);
2152                 if (err)
2153                         return err;
2154         }
2155 
2156         err = build_sit_info(sbi);
2157         if (err)
2158                 return err;
2159         err = build_free_segmap(sbi);
2160         if (err)
2161                 return err;
2162         err = build_curseg(sbi);
2163         if (err)
2164                 return err;
2165 
2166         /* reinit free segmap based on SIT */
2167         build_sit_entries(sbi);
2168 
2169         init_free_segmap(sbi);
2170         err = build_dirty_segmap(sbi);
2171         if (err)
2172                 return err;
2173 
2174         init_min_max_mtime(sbi);
2175         return 0;
2176 }
2177 
2178 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2179                 enum dirty_type dirty_type)
2180 {
2181         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2182 
2183         mutex_lock(&dirty_i->seglist_lock);
2184         kfree(dirty_i->dirty_segmap[dirty_type]);
2185         dirty_i->nr_dirty[dirty_type] = 0;
2186         mutex_unlock(&dirty_i->seglist_lock);
2187 }
2188 
2189 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2190 {
2191         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2192         kfree(dirty_i->victim_secmap);
2193 }
2194 
2195 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2196 {
2197         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2198         int i;
2199 
2200         if (!dirty_i)
2201                 return;
2202 
2203         /* discard pre-free/dirty segments list */
2204         for (i = 0; i < NR_DIRTY_TYPE; i++)
2205                 discard_dirty_segmap(sbi, i);
2206 
2207         destroy_victim_secmap(sbi);
2208         SM_I(sbi)->dirty_info = NULL;
2209         kfree(dirty_i);
2210 }
2211 
2212 static void destroy_curseg(struct f2fs_sb_info *sbi)
2213 {
2214         struct curseg_info *array = SM_I(sbi)->curseg_array;
2215         int i;
2216 
2217         if (!array)
2218                 return;
2219         SM_I(sbi)->curseg_array = NULL;
2220         for (i = 0; i < NR_CURSEG_TYPE; i++)
2221                 kfree(array[i].sum_blk);
2222         kfree(array);
2223 }
2224 
2225 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2226 {
2227         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2228         if (!free_i)
2229                 return;
2230         SM_I(sbi)->free_info = NULL;
2231         kfree(free_i->free_segmap);
2232         kfree(free_i->free_secmap);
2233         kfree(free_i);
2234 }
2235 
2236 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2237 {
2238         struct sit_info *sit_i = SIT_I(sbi);
2239         unsigned int start;
2240 
2241         if (!sit_i)
2242                 return;
2243 
2244         if (sit_i->sentries) {
2245                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2246                         kfree(sit_i->sentries[start].cur_valid_map);
2247                         kfree(sit_i->sentries[start].ckpt_valid_map);
2248                 }
2249         }
2250         kfree(sit_i->tmp_map);
2251 
2252         vfree(sit_i->sentries);
2253         vfree(sit_i->sec_entries);
2254         kfree(sit_i->dirty_sentries_bitmap);
2255 
2256         SM_I(sbi)->sit_info = NULL;
2257         kfree(sit_i->sit_bitmap);
2258         kfree(sit_i);
2259 }
2260 
2261 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2262 {
2263         struct f2fs_sm_info *sm_info = SM_I(sbi);
2264 
2265         if (!sm_info)
2266                 return;
2267         destroy_flush_cmd_control(sbi);
2268         destroy_dirty_segmap(sbi);
2269         destroy_curseg(sbi);
2270         destroy_free_segmap(sbi);
2271         destroy_sit_info(sbi);
2272         sbi->sm_info = NULL;
2273         kfree(sm_info);
2274 }
2275 
2276 int __init create_segment_manager_caches(void)
2277 {
2278         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2279                         sizeof(struct discard_entry));
2280         if (!discard_entry_slab)
2281                 goto fail;
2282 
2283         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2284                         sizeof(struct sit_entry_set));
2285         if (!sit_entry_set_slab)
2286                 goto destory_discard_entry;
2287 
2288         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2289                         sizeof(struct inmem_pages));
2290         if (!inmem_entry_slab)
2291                 goto destroy_sit_entry_set;
2292         return 0;
2293 
2294 destroy_sit_entry_set:
2295         kmem_cache_destroy(sit_entry_set_slab);
2296 destory_discard_entry:
2297         kmem_cache_destroy(discard_entry_slab);
2298 fail:
2299         return -ENOMEM;
2300 }
2301 
2302 void destroy_segment_manager_caches(void)
2303 {
2304         kmem_cache_destroy(sit_entry_set_slab);
2305         kmem_cache_destroy(discard_entry_slab);
2306         kmem_cache_destroy(inmem_entry_slab);
2307 }
2308 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp