~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/segment.h

Version: ~ [ linux-5.19-rc8 ] ~ [ linux-5.18.14 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.57 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.133 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.207 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.253 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.289 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.324 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * fs/f2fs/segment.h
  4  *
  5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6  *             http://www.samsung.com/
  7  */
  8 #include <linux/blkdev.h>
  9 #include <linux/backing-dev.h>
 10 
 11 /* constant macro */
 12 #define NULL_SEGNO                      ((unsigned int)(~0))
 13 #define NULL_SECNO                      ((unsigned int)(~0))
 14 
 15 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
 17 
 18 #define F2FS_MIN_SEGMENTS       9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 19 
 20 /* L: Logical segment # in volume, R: Relative segment # in main area */
 21 #define GET_L2R_SEGNO(free_i, segno)    ((segno) - (free_i)->start_segno)
 22 #define GET_R2L_SEGNO(free_i, segno)    ((segno) + (free_i)->start_segno)
 23 
 24 #define IS_DATASEG(t)   ((t) <= CURSEG_COLD_DATA)
 25 #define IS_NODESEG(t)   ((t) >= CURSEG_HOT_NODE)
 26 
 27 #define IS_HOT(t)       ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 28 #define IS_WARM(t)      ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 29 #define IS_COLD(t)      ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 30 
 31 #define IS_CURSEG(sbi, seg)                                             \
 32         (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||    \
 33          ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||   \
 34          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||   \
 35          ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||    \
 36          ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||   \
 37          ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 38 
 39 #define IS_CURSEC(sbi, secno)                                           \
 40         (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /            \
 41           (sbi)->segs_per_sec) ||       \
 42          ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /           \
 43           (sbi)->segs_per_sec) ||       \
 44          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /           \
 45           (sbi)->segs_per_sec) ||       \
 46          ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /            \
 47           (sbi)->segs_per_sec) ||       \
 48          ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /           \
 49           (sbi)->segs_per_sec) ||       \
 50          ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /           \
 51           (sbi)->segs_per_sec)) \
 52 
 53 #define MAIN_BLKADDR(sbi)                                               \
 54         (SM_I(sbi) ? SM_I(sbi)->main_blkaddr :                          \
 55                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 56 #define SEG0_BLKADDR(sbi)                                               \
 57         (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr :                          \
 58                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 59 
 60 #define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
 61 #define MAIN_SECS(sbi)  ((sbi)->total_sections)
 62 
 63 #define TOTAL_SEGS(sbi)                                                 \
 64         (SM_I(sbi) ? SM_I(sbi)->segment_count :                                 \
 65                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 66 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 67 
 68 #define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 69 #define SEGMENT_SIZE(sbi)       (1ULL << ((sbi)->log_blocksize +        \
 70                                         (sbi)->log_blocks_per_seg))
 71 
 72 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
 73          (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 74 
 75 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
 76         (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 77 
 78 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
 79 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
 80         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 81 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
 82         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 83 
 84 #define GET_SEGNO(sbi, blk_addr)                                        \
 85         ((!is_valid_data_blkaddr(sbi, blk_addr)) ?                      \
 86         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
 87                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 88 #define BLKS_PER_SEC(sbi)                                       \
 89         ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
 90 #define GET_SEC_FROM_SEG(sbi, segno)                            \
 91         ((segno) / (sbi)->segs_per_sec)
 92 #define GET_SEG_FROM_SEC(sbi, secno)                            \
 93         ((secno) * (sbi)->segs_per_sec)
 94 #define GET_ZONE_FROM_SEC(sbi, secno)                           \
 95         ((secno) / (sbi)->secs_per_zone)
 96 #define GET_ZONE_FROM_SEG(sbi, segno)                           \
 97         GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
 98 
 99 #define GET_SUM_BLOCK(sbi, segno)                               \
100         ((sbi)->sm_info->ssa_blkaddr + (segno))
101 
102 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
103 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
104 
105 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
106         ((segno) % (sit_i)->sents_per_block)
107 #define SIT_BLOCK_OFFSET(segno)                                 \
108         ((segno) / SIT_ENTRY_PER_BLOCK)
109 #define START_SEGNO(segno)              \
110         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111 #define SIT_BLK_CNT(sbi)                        \
112         ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
113 #define f2fs_bitmap_size(nr)                    \
114         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
115 
116 #define SECTOR_FROM_BLOCK(blk_addr)                                     \
117         (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118 #define SECTOR_TO_BLOCK(sectors)                                        \
119         ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
120 
121 /*
122  * indicate a block allocation direction: RIGHT and LEFT.
123  * RIGHT means allocating new sections towards the end of volume.
124  * LEFT means the opposite direction.
125  */
126 enum {
127         ALLOC_RIGHT = 0,
128         ALLOC_LEFT
129 };
130 
131 /*
132  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133  * LFS writes data sequentially with cleaning operations.
134  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
135  */
136 enum {
137         LFS = 0,
138         SSR
139 };
140 
141 /*
142  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143  * GC_CB is based on cost-benefit algorithm.
144  * GC_GREEDY is based on greedy algorithm.
145  */
146 enum {
147         GC_CB = 0,
148         GC_GREEDY,
149         ALLOC_NEXT,
150         FLUSH_DEVICE,
151         MAX_GC_POLICY,
152 };
153 
154 /*
155  * BG_GC means the background cleaning job.
156  * FG_GC means the on-demand cleaning job.
157  * FORCE_FG_GC means on-demand cleaning job in background.
158  */
159 enum {
160         BG_GC = 0,
161         FG_GC,
162         FORCE_FG_GC,
163 };
164 
165 /* for a function parameter to select a victim segment */
166 struct victim_sel_policy {
167         int alloc_mode;                 /* LFS or SSR */
168         int gc_mode;                    /* GC_CB or GC_GREEDY */
169         unsigned long *dirty_segmap;    /* dirty segment bitmap */
170         unsigned int max_search;        /* maximum # of segments to search */
171         unsigned int offset;            /* last scanned bitmap offset */
172         unsigned int ofs_unit;          /* bitmap search unit */
173         unsigned int min_cost;          /* minimum cost */
174         unsigned int min_segno;         /* segment # having min. cost */
175 };
176 
177 struct seg_entry {
178         unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
179         unsigned int valid_blocks:10;   /* # of valid blocks */
180         unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
181         unsigned int padding:6;         /* padding */
182         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
183 #ifdef CONFIG_F2FS_CHECK_FS
184         unsigned char *cur_valid_map_mir;       /* mirror of current valid bitmap */
185 #endif
186         /*
187          * # of valid blocks and the validity bitmap stored in the the last
188          * checkpoint pack. This information is used by the SSR mode.
189          */
190         unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
191         unsigned char *discard_map;
192         unsigned long long mtime;       /* modification time of the segment */
193 };
194 
195 struct sec_entry {
196         unsigned int valid_blocks;      /* # of valid blocks in a section */
197 };
198 
199 struct segment_allocation {
200         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
201 };
202 
203 /*
204  * this value is set in page as a private data which indicate that
205  * the page is atomically written, and it is in inmem_pages list.
206  */
207 #define ATOMIC_WRITTEN_PAGE             ((unsigned long)-1)
208 #define DUMMY_WRITTEN_PAGE              ((unsigned long)-2)
209 
210 #define IS_ATOMIC_WRITTEN_PAGE(page)                    \
211                 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
212 #define IS_DUMMY_WRITTEN_PAGE(page)                     \
213                 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
214 
215 #define MAX_SKIP_GC_COUNT                       16
216 
217 struct inmem_pages {
218         struct list_head list;
219         struct page *page;
220         block_t old_addr;               /* for revoking when fail to commit */
221 };
222 
223 struct sit_info {
224         const struct segment_allocation *s_ops;
225 
226         block_t sit_base_addr;          /* start block address of SIT area */
227         block_t sit_blocks;             /* # of blocks used by SIT area */
228         block_t written_valid_blocks;   /* # of valid blocks in main area */
229         char *sit_bitmap;               /* SIT bitmap pointer */
230 #ifdef CONFIG_F2FS_CHECK_FS
231         char *sit_bitmap_mir;           /* SIT bitmap mirror */
232 #endif
233         unsigned int bitmap_size;       /* SIT bitmap size */
234 
235         unsigned long *tmp_map;                 /* bitmap for temporal use */
236         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
237         unsigned int dirty_sentries;            /* # of dirty sentries */
238         unsigned int sents_per_block;           /* # of SIT entries per block */
239         struct rw_semaphore sentry_lock;        /* to protect SIT cache */
240         struct seg_entry *sentries;             /* SIT segment-level cache */
241         struct sec_entry *sec_entries;          /* SIT section-level cache */
242 
243         /* for cost-benefit algorithm in cleaning procedure */
244         unsigned long long elapsed_time;        /* elapsed time after mount */
245         unsigned long long mounted_time;        /* mount time */
246         unsigned long long min_mtime;           /* min. modification time */
247         unsigned long long max_mtime;           /* max. modification time */
248 
249         unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
250 };
251 
252 struct free_segmap_info {
253         unsigned int start_segno;       /* start segment number logically */
254         unsigned int free_segments;     /* # of free segments */
255         unsigned int free_sections;     /* # of free sections */
256         spinlock_t segmap_lock;         /* free segmap lock */
257         unsigned long *free_segmap;     /* free segment bitmap */
258         unsigned long *free_secmap;     /* free section bitmap */
259 };
260 
261 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
262 enum dirty_type {
263         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
264         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
265         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
266         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
267         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
268         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
269         DIRTY,                  /* to count # of dirty segments */
270         PRE,                    /* to count # of entirely obsolete segments */
271         NR_DIRTY_TYPE
272 };
273 
274 struct dirty_seglist_info {
275         const struct victim_selection *v_ops;   /* victim selction operation */
276         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
277         struct mutex seglist_lock;              /* lock for segment bitmaps */
278         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
279         unsigned long *victim_secmap;           /* background GC victims */
280 };
281 
282 /* victim selection function for cleaning and SSR */
283 struct victim_selection {
284         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
285                                                         int, int, char);
286 };
287 
288 /* for active log information */
289 struct curseg_info {
290         struct mutex curseg_mutex;              /* lock for consistency */
291         struct f2fs_summary_block *sum_blk;     /* cached summary block */
292         struct rw_semaphore journal_rwsem;      /* protect journal area */
293         struct f2fs_journal *journal;           /* cached journal info */
294         unsigned char alloc_type;               /* current allocation type */
295         unsigned int segno;                     /* current segment number */
296         unsigned short next_blkoff;             /* next block offset to write */
297         unsigned int zone;                      /* current zone number */
298         unsigned int next_segno;                /* preallocated segment */
299 };
300 
301 struct sit_entry_set {
302         struct list_head set_list;      /* link with all sit sets */
303         unsigned int start_segno;       /* start segno of sits in set */
304         unsigned int entry_cnt;         /* the # of sit entries in set */
305 };
306 
307 /*
308  * inline functions
309  */
310 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
311 {
312         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
313 }
314 
315 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
316                                                 unsigned int segno)
317 {
318         struct sit_info *sit_i = SIT_I(sbi);
319         return &sit_i->sentries[segno];
320 }
321 
322 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
323                                                 unsigned int segno)
324 {
325         struct sit_info *sit_i = SIT_I(sbi);
326         return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
327 }
328 
329 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
330                                 unsigned int segno, bool use_section)
331 {
332         /*
333          * In order to get # of valid blocks in a section instantly from many
334          * segments, f2fs manages two counting structures separately.
335          */
336         if (use_section && sbi->segs_per_sec > 1)
337                 return get_sec_entry(sbi, segno)->valid_blocks;
338         else
339                 return get_seg_entry(sbi, segno)->valid_blocks;
340 }
341 
342 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
343                                 unsigned int segno)
344 {
345         return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
346 }
347 
348 static inline void seg_info_from_raw_sit(struct seg_entry *se,
349                                         struct f2fs_sit_entry *rs)
350 {
351         se->valid_blocks = GET_SIT_VBLOCKS(rs);
352         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
353         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
354         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
355 #ifdef CONFIG_F2FS_CHECK_FS
356         memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
357 #endif
358         se->type = GET_SIT_TYPE(rs);
359         se->mtime = le64_to_cpu(rs->mtime);
360 }
361 
362 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
363                                         struct f2fs_sit_entry *rs)
364 {
365         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
366                                         se->valid_blocks;
367         rs->vblocks = cpu_to_le16(raw_vblocks);
368         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
369         rs->mtime = cpu_to_le64(se->mtime);
370 }
371 
372 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
373                                 struct page *page, unsigned int start)
374 {
375         struct f2fs_sit_block *raw_sit;
376         struct seg_entry *se;
377         struct f2fs_sit_entry *rs;
378         unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
379                                         (unsigned long)MAIN_SEGS(sbi));
380         int i;
381 
382         raw_sit = (struct f2fs_sit_block *)page_address(page);
383         memset(raw_sit, 0, PAGE_SIZE);
384         for (i = 0; i < end - start; i++) {
385                 rs = &raw_sit->entries[i];
386                 se = get_seg_entry(sbi, start + i);
387                 __seg_info_to_raw_sit(se, rs);
388         }
389 }
390 
391 static inline void seg_info_to_raw_sit(struct seg_entry *se,
392                                         struct f2fs_sit_entry *rs)
393 {
394         __seg_info_to_raw_sit(se, rs);
395 
396         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
397         se->ckpt_valid_blocks = se->valid_blocks;
398 }
399 
400 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
401                 unsigned int max, unsigned int segno)
402 {
403         unsigned int ret;
404         spin_lock(&free_i->segmap_lock);
405         ret = find_next_bit(free_i->free_segmap, max, segno);
406         spin_unlock(&free_i->segmap_lock);
407         return ret;
408 }
409 
410 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
411 {
412         struct free_segmap_info *free_i = FREE_I(sbi);
413         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
414         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
415         unsigned int next;
416 
417         spin_lock(&free_i->segmap_lock);
418         clear_bit(segno, free_i->free_segmap);
419         free_i->free_segments++;
420 
421         next = find_next_bit(free_i->free_segmap,
422                         start_segno + sbi->segs_per_sec, start_segno);
423         if (next >= start_segno + sbi->segs_per_sec) {
424                 clear_bit(secno, free_i->free_secmap);
425                 free_i->free_sections++;
426         }
427         spin_unlock(&free_i->segmap_lock);
428 }
429 
430 static inline void __set_inuse(struct f2fs_sb_info *sbi,
431                 unsigned int segno)
432 {
433         struct free_segmap_info *free_i = FREE_I(sbi);
434         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
435 
436         set_bit(segno, free_i->free_segmap);
437         free_i->free_segments--;
438         if (!test_and_set_bit(secno, free_i->free_secmap))
439                 free_i->free_sections--;
440 }
441 
442 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
443                 unsigned int segno)
444 {
445         struct free_segmap_info *free_i = FREE_I(sbi);
446         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
447         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
448         unsigned int next;
449 
450         spin_lock(&free_i->segmap_lock);
451         if (test_and_clear_bit(segno, free_i->free_segmap)) {
452                 free_i->free_segments++;
453 
454                 if (IS_CURSEC(sbi, secno))
455                         goto skip_free;
456                 next = find_next_bit(free_i->free_segmap,
457                                 start_segno + sbi->segs_per_sec, start_segno);
458                 if (next >= start_segno + sbi->segs_per_sec) {
459                         if (test_and_clear_bit(secno, free_i->free_secmap))
460                                 free_i->free_sections++;
461                 }
462         }
463 skip_free:
464         spin_unlock(&free_i->segmap_lock);
465 }
466 
467 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
468                 unsigned int segno)
469 {
470         struct free_segmap_info *free_i = FREE_I(sbi);
471         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
472 
473         spin_lock(&free_i->segmap_lock);
474         if (!test_and_set_bit(segno, free_i->free_segmap)) {
475                 free_i->free_segments--;
476                 if (!test_and_set_bit(secno, free_i->free_secmap))
477                         free_i->free_sections--;
478         }
479         spin_unlock(&free_i->segmap_lock);
480 }
481 
482 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
483                 void *dst_addr)
484 {
485         struct sit_info *sit_i = SIT_I(sbi);
486 
487 #ifdef CONFIG_F2FS_CHECK_FS
488         if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
489                                                 sit_i->bitmap_size))
490                 f2fs_bug_on(sbi, 1);
491 #endif
492         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
493 }
494 
495 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
496 {
497         return SIT_I(sbi)->written_valid_blocks;
498 }
499 
500 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
501 {
502         return FREE_I(sbi)->free_segments;
503 }
504 
505 static inline int reserved_segments(struct f2fs_sb_info *sbi)
506 {
507         return SM_I(sbi)->reserved_segments;
508 }
509 
510 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
511 {
512         return FREE_I(sbi)->free_sections;
513 }
514 
515 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
516 {
517         return DIRTY_I(sbi)->nr_dirty[PRE];
518 }
519 
520 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
521 {
522         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
523                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
524                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
525                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
526                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
527                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
528 }
529 
530 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
531 {
532         return SM_I(sbi)->ovp_segments;
533 }
534 
535 static inline int reserved_sections(struct f2fs_sb_info *sbi)
536 {
537         return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
538 }
539 
540 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
541 {
542         unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
543                                         get_pages(sbi, F2FS_DIRTY_DENTS);
544         unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
545         unsigned int segno, left_blocks;
546         int i;
547 
548         /* check current node segment */
549         for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
550                 segno = CURSEG_I(sbi, i)->segno;
551                 left_blocks = sbi->blocks_per_seg -
552                         get_seg_entry(sbi, segno)->ckpt_valid_blocks;
553 
554                 if (node_blocks > left_blocks)
555                         return false;
556         }
557 
558         /* check current data segment */
559         segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
560         left_blocks = sbi->blocks_per_seg -
561                         get_seg_entry(sbi, segno)->ckpt_valid_blocks;
562         if (dent_blocks > left_blocks)
563                 return false;
564         return true;
565 }
566 
567 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
568                                         int freed, int needed)
569 {
570         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
571         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
572         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
573 
574         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
575                 return false;
576 
577         if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
578                         has_curseg_enough_space(sbi))
579                 return false;
580         return (free_sections(sbi) + freed) <=
581                 (node_secs + 2 * dent_secs + imeta_secs +
582                 reserved_sections(sbi) + needed);
583 }
584 
585 static inline int f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
586 {
587         if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
588                 return 0;
589         if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
590                 return 0;
591         return -ENOSPC;
592 }
593 
594 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
595 {
596         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
597 }
598 
599 static inline int utilization(struct f2fs_sb_info *sbi)
600 {
601         return div_u64((u64)valid_user_blocks(sbi) * 100,
602                                         sbi->user_block_count);
603 }
604 
605 /*
606  * Sometimes f2fs may be better to drop out-of-place update policy.
607  * And, users can control the policy through sysfs entries.
608  * There are five policies with triggering conditions as follows.
609  * F2FS_IPU_FORCE - all the time,
610  * F2FS_IPU_SSR - if SSR mode is activated,
611  * F2FS_IPU_UTIL - if FS utilization is over threashold,
612  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
613  *                     threashold,
614  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
615  *                     storages. IPU will be triggered only if the # of dirty
616  *                     pages over min_fsync_blocks.
617  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
618  */
619 #define DEF_MIN_IPU_UTIL        70
620 #define DEF_MIN_FSYNC_BLOCKS    8
621 #define DEF_MIN_HOT_BLOCKS      16
622 
623 #define SMALL_VOLUME_SEGMENTS   (16 * 512)      /* 16GB */
624 
625 enum {
626         F2FS_IPU_FORCE,
627         F2FS_IPU_SSR,
628         F2FS_IPU_UTIL,
629         F2FS_IPU_SSR_UTIL,
630         F2FS_IPU_FSYNC,
631         F2FS_IPU_ASYNC,
632 };
633 
634 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
635                 int type)
636 {
637         struct curseg_info *curseg = CURSEG_I(sbi, type);
638         return curseg->segno;
639 }
640 
641 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
642                 int type)
643 {
644         struct curseg_info *curseg = CURSEG_I(sbi, type);
645         return curseg->alloc_type;
646 }
647 
648 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
649 {
650         struct curseg_info *curseg = CURSEG_I(sbi, type);
651         return curseg->next_blkoff;
652 }
653 
654 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
655 {
656         f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
657 }
658 
659 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
660 {
661         struct f2fs_sb_info *sbi = fio->sbi;
662 
663         if (__is_meta_io(fio))
664                 verify_blkaddr(sbi, blk_addr, META_GENERIC);
665         else
666                 verify_blkaddr(sbi, blk_addr, DATA_GENERIC);
667 }
668 
669 /*
670  * Summary block is always treated as an invalid block
671  */
672 static inline int check_block_count(struct f2fs_sb_info *sbi,
673                 int segno, struct f2fs_sit_entry *raw_sit)
674 {
675 #ifdef CONFIG_F2FS_CHECK_FS
676         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
677         int valid_blocks = 0;
678         int cur_pos = 0, next_pos;
679 
680         /* check bitmap with valid block count */
681         do {
682                 if (is_valid) {
683                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
684                                         sbi->blocks_per_seg,
685                                         cur_pos);
686                         valid_blocks += next_pos - cur_pos;
687                 } else
688                         next_pos = find_next_bit_le(&raw_sit->valid_map,
689                                         sbi->blocks_per_seg,
690                                         cur_pos);
691                 cur_pos = next_pos;
692                 is_valid = !is_valid;
693         } while (cur_pos < sbi->blocks_per_seg);
694 
695         if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
696                 f2fs_msg(sbi->sb, KERN_ERR,
697                                 "Mismatch valid blocks %d vs. %d",
698                                         GET_SIT_VBLOCKS(raw_sit), valid_blocks);
699                 set_sbi_flag(sbi, SBI_NEED_FSCK);
700                 return -EINVAL;
701         }
702 #endif
703         /* check segment usage, and check boundary of a given segment number */
704         if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
705                                         || segno > TOTAL_SEGS(sbi) - 1)) {
706                 f2fs_msg(sbi->sb, KERN_ERR,
707                                 "Wrong valid blocks %d or segno %u",
708                                         GET_SIT_VBLOCKS(raw_sit), segno);
709                 set_sbi_flag(sbi, SBI_NEED_FSCK);
710                 return -EINVAL;
711         }
712         return 0;
713 }
714 
715 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
716                                                 unsigned int start)
717 {
718         struct sit_info *sit_i = SIT_I(sbi);
719         unsigned int offset = SIT_BLOCK_OFFSET(start);
720         block_t blk_addr = sit_i->sit_base_addr + offset;
721 
722         check_seg_range(sbi, start);
723 
724 #ifdef CONFIG_F2FS_CHECK_FS
725         if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
726                         f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
727                 f2fs_bug_on(sbi, 1);
728 #endif
729 
730         /* calculate sit block address */
731         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
732                 blk_addr += sit_i->sit_blocks;
733 
734         return blk_addr;
735 }
736 
737 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
738                                                 pgoff_t block_addr)
739 {
740         struct sit_info *sit_i = SIT_I(sbi);
741         block_addr -= sit_i->sit_base_addr;
742         if (block_addr < sit_i->sit_blocks)
743                 block_addr += sit_i->sit_blocks;
744         else
745                 block_addr -= sit_i->sit_blocks;
746 
747         return block_addr + sit_i->sit_base_addr;
748 }
749 
750 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
751 {
752         unsigned int block_off = SIT_BLOCK_OFFSET(start);
753 
754         f2fs_change_bit(block_off, sit_i->sit_bitmap);
755 #ifdef CONFIG_F2FS_CHECK_FS
756         f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
757 #endif
758 }
759 
760 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
761                                                 bool base_time)
762 {
763         struct sit_info *sit_i = SIT_I(sbi);
764         time64_t diff, now = ktime_get_real_seconds();
765 
766         if (now >= sit_i->mounted_time)
767                 return sit_i->elapsed_time + now - sit_i->mounted_time;
768 
769         /* system time is set to the past */
770         if (!base_time) {
771                 diff = sit_i->mounted_time - now;
772                 if (sit_i->elapsed_time >= diff)
773                         return sit_i->elapsed_time - diff;
774                 return 0;
775         }
776         return sit_i->elapsed_time;
777 }
778 
779 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
780                         unsigned int ofs_in_node, unsigned char version)
781 {
782         sum->nid = cpu_to_le32(nid);
783         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
784         sum->version = version;
785 }
786 
787 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
788 {
789         return __start_cp_addr(sbi) +
790                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
791 }
792 
793 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
794 {
795         return __start_cp_addr(sbi) +
796                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
797                                 - (base + 1) + type;
798 }
799 
800 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
801 {
802         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
803                 return true;
804         return false;
805 }
806 
807 /*
808  * It is very important to gather dirty pages and write at once, so that we can
809  * submit a big bio without interfering other data writes.
810  * By default, 512 pages for directory data,
811  * 512 pages (2MB) * 8 for nodes, and
812  * 256 pages * 8 for meta are set.
813  */
814 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
815 {
816         if (sbi->sb->s_bdi->wb.dirty_exceeded)
817                 return 0;
818 
819         if (type == DATA)
820                 return sbi->blocks_per_seg;
821         else if (type == NODE)
822                 return 8 * sbi->blocks_per_seg;
823         else if (type == META)
824                 return 8 * BIO_MAX_PAGES;
825         else
826                 return 0;
827 }
828 
829 /*
830  * When writing pages, it'd better align nr_to_write for segment size.
831  */
832 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
833                                         struct writeback_control *wbc)
834 {
835         long nr_to_write, desired;
836 
837         if (wbc->sync_mode != WB_SYNC_NONE)
838                 return 0;
839 
840         nr_to_write = wbc->nr_to_write;
841         desired = BIO_MAX_PAGES;
842         if (type == NODE)
843                 desired <<= 1;
844 
845         wbc->nr_to_write = desired;
846         return desired - nr_to_write;
847 }
848 
849 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
850 {
851         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
852         bool wakeup = false;
853         int i;
854 
855         if (force)
856                 goto wake_up;
857 
858         mutex_lock(&dcc->cmd_lock);
859         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
860                 if (i + 1 < dcc->discard_granularity)
861                         break;
862                 if (!list_empty(&dcc->pend_list[i])) {
863                         wakeup = true;
864                         break;
865                 }
866         }
867         mutex_unlock(&dcc->cmd_lock);
868         if (!wakeup)
869                 return;
870 wake_up:
871         dcc->discard_wake = 1;
872         wake_up_interruptible_all(&dcc->discard_wait_queue);
873 }
874 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp