1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 struct hugetlbfs_config { 49 struct hstate *hstate; 50 long max_hpages; 51 long nr_inodes; 52 long min_hpages; 53 kuid_t uid; 54 kgid_t gid; 55 umode_t mode; 56 }; 57 58 int sysctl_hugetlb_shm_group; 59 60 enum { 61 Opt_size, Opt_nr_inodes, 62 Opt_mode, Opt_uid, Opt_gid, 63 Opt_pagesize, Opt_min_size, 64 Opt_err, 65 }; 66 67 static const match_table_t tokens = { 68 {Opt_size, "size=%s"}, 69 {Opt_nr_inodes, "nr_inodes=%s"}, 70 {Opt_mode, "mode=%o"}, 71 {Opt_uid, "uid=%u"}, 72 {Opt_gid, "gid=%u"}, 73 {Opt_pagesize, "pagesize=%s"}, 74 {Opt_min_size, "min_size=%s"}, 75 {Opt_err, NULL}, 76 }; 77 78 #ifdef CONFIG_NUMA 79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 80 struct inode *inode, pgoff_t index) 81 { 82 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 83 index); 84 } 85 86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 87 { 88 mpol_cond_put(vma->vm_policy); 89 } 90 #else 91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 92 struct inode *inode, pgoff_t index) 93 { 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 } 99 #endif 100 101 static void huge_pagevec_release(struct pagevec *pvec) 102 { 103 int i; 104 105 for (i = 0; i < pagevec_count(pvec); ++i) 106 put_page(pvec->pages[i]); 107 108 pagevec_reinit(pvec); 109 } 110 111 /* 112 * Mask used when checking the page offset value passed in via system 113 * calls. This value will be converted to a loff_t which is signed. 114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 115 * value. The extra bit (- 1 in the shift value) is to take the sign 116 * bit into account. 117 */ 118 #define PGOFF_LOFFT_MAX \ 119 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 120 121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 122 { 123 struct inode *inode = file_inode(file); 124 loff_t len, vma_len; 125 int ret; 126 struct hstate *h = hstate_file(file); 127 128 /* 129 * vma address alignment (but not the pgoff alignment) has 130 * already been checked by prepare_hugepage_range. If you add 131 * any error returns here, do so after setting VM_HUGETLB, so 132 * is_vm_hugetlb_page tests below unmap_region go the right 133 * way when do_mmap_pgoff unwinds (may be important on powerpc 134 * and ia64). 135 */ 136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 137 vma->vm_ops = &hugetlb_vm_ops; 138 139 /* 140 * page based offset in vm_pgoff could be sufficiently large to 141 * overflow a loff_t when converted to byte offset. This can 142 * only happen on architectures where sizeof(loff_t) == 143 * sizeof(unsigned long). So, only check in those instances. 144 */ 145 if (sizeof(unsigned long) == sizeof(loff_t)) { 146 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 147 return -EINVAL; 148 } 149 150 /* must be huge page aligned */ 151 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 152 return -EINVAL; 153 154 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 155 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 156 /* check for overflow */ 157 if (len < vma_len) 158 return -EINVAL; 159 160 inode_lock(inode); 161 file_accessed(file); 162 163 ret = -ENOMEM; 164 if (hugetlb_reserve_pages(inode, 165 vma->vm_pgoff >> huge_page_order(h), 166 len >> huge_page_shift(h), vma, 167 vma->vm_flags)) 168 goto out; 169 170 ret = 0; 171 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 172 i_size_write(inode, len); 173 out: 174 inode_unlock(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called under down_write(mmap_sem). 181 */ 182 183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 184 static unsigned long 185 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 186 unsigned long len, unsigned long pgoff, unsigned long flags) 187 { 188 struct mm_struct *mm = current->mm; 189 struct vm_area_struct *vma; 190 struct hstate *h = hstate_file(file); 191 struct vm_unmapped_area_info info; 192 193 if (len & ~huge_page_mask(h)) 194 return -EINVAL; 195 if (len > TASK_SIZE) 196 return -ENOMEM; 197 198 if (flags & MAP_FIXED) { 199 if (prepare_hugepage_range(file, addr, len)) 200 return -EINVAL; 201 return addr; 202 } 203 204 if (addr) { 205 addr = ALIGN(addr, huge_page_size(h)); 206 vma = find_vma(mm, addr); 207 if (TASK_SIZE - len >= addr && 208 (!vma || addr + len <= vm_start_gap(vma))) 209 return addr; 210 } 211 212 info.flags = 0; 213 info.length = len; 214 info.low_limit = TASK_UNMAPPED_BASE; 215 info.high_limit = TASK_SIZE; 216 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 217 info.align_offset = 0; 218 return vm_unmapped_area(&info); 219 } 220 #endif 221 222 static size_t 223 hugetlbfs_read_actor(struct page *page, unsigned long offset, 224 struct iov_iter *to, unsigned long size) 225 { 226 size_t copied = 0; 227 int i, chunksize; 228 229 /* Find which 4k chunk and offset with in that chunk */ 230 i = offset >> PAGE_SHIFT; 231 offset = offset & ~PAGE_MASK; 232 233 while (size) { 234 size_t n; 235 chunksize = PAGE_SIZE; 236 if (offset) 237 chunksize -= offset; 238 if (chunksize > size) 239 chunksize = size; 240 n = copy_page_to_iter(&page[i], offset, chunksize, to); 241 copied += n; 242 if (n != chunksize) 243 return copied; 244 offset = 0; 245 size -= chunksize; 246 i++; 247 } 248 return copied; 249 } 250 251 /* 252 * Support for read() - Find the page attached to f_mapping and copy out the 253 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 254 * since it has PAGE_SIZE assumptions. 255 */ 256 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 257 { 258 struct file *file = iocb->ki_filp; 259 struct hstate *h = hstate_file(file); 260 struct address_space *mapping = file->f_mapping; 261 struct inode *inode = mapping->host; 262 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 263 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 264 unsigned long end_index; 265 loff_t isize; 266 ssize_t retval = 0; 267 268 while (iov_iter_count(to)) { 269 struct page *page; 270 size_t nr, copied; 271 272 /* nr is the maximum number of bytes to copy from this page */ 273 nr = huge_page_size(h); 274 isize = i_size_read(inode); 275 if (!isize) 276 break; 277 end_index = (isize - 1) >> huge_page_shift(h); 278 if (index > end_index) 279 break; 280 if (index == end_index) { 281 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 282 if (nr <= offset) 283 break; 284 } 285 nr = nr - offset; 286 287 /* Find the page */ 288 page = find_lock_page(mapping, index); 289 if (unlikely(page == NULL)) { 290 /* 291 * We have a HOLE, zero out the user-buffer for the 292 * length of the hole or request. 293 */ 294 copied = iov_iter_zero(nr, to); 295 } else { 296 unlock_page(page); 297 298 /* 299 * We have the page, copy it to user space buffer. 300 */ 301 copied = hugetlbfs_read_actor(page, offset, to, nr); 302 put_page(page); 303 } 304 offset += copied; 305 retval += copied; 306 if (copied != nr && iov_iter_count(to)) { 307 if (!retval) 308 retval = -EFAULT; 309 break; 310 } 311 index += offset >> huge_page_shift(h); 312 offset &= ~huge_page_mask(h); 313 } 314 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 315 return retval; 316 } 317 318 static int hugetlbfs_write_begin(struct file *file, 319 struct address_space *mapping, 320 loff_t pos, unsigned len, unsigned flags, 321 struct page **pagep, void **fsdata) 322 { 323 return -EINVAL; 324 } 325 326 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 327 loff_t pos, unsigned len, unsigned copied, 328 struct page *page, void *fsdata) 329 { 330 BUG(); 331 return -EINVAL; 332 } 333 334 static void remove_huge_page(struct page *page) 335 { 336 ClearPageDirty(page); 337 ClearPageUptodate(page); 338 delete_from_page_cache(page); 339 } 340 341 static void 342 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 343 { 344 struct vm_area_struct *vma; 345 346 /* 347 * end == 0 indicates that the entire range after 348 * start should be unmapped. 349 */ 350 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 351 unsigned long v_offset; 352 unsigned long v_end; 353 354 /* 355 * Can the expression below overflow on 32-bit arches? 356 * No, because the interval tree returns us only those vmas 357 * which overlap the truncated area starting at pgoff, 358 * and no vma on a 32-bit arch can span beyond the 4GB. 359 */ 360 if (vma->vm_pgoff < start) 361 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 362 else 363 v_offset = 0; 364 365 if (!end) 366 v_end = vma->vm_end; 367 else { 368 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 369 + vma->vm_start; 370 if (v_end > vma->vm_end) 371 v_end = vma->vm_end; 372 } 373 374 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 375 NULL); 376 } 377 } 378 379 /* 380 * remove_inode_hugepages handles two distinct cases: truncation and hole 381 * punch. There are subtle differences in operation for each case. 382 * 383 * truncation is indicated by end of range being LLONG_MAX 384 * In this case, we first scan the range and release found pages. 385 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 386 * maps and global counts. Page faults can not race with truncation 387 * in this routine. hugetlb_no_page() prevents page faults in the 388 * truncated range. It checks i_size before allocation, and again after 389 * with the page table lock for the page held. The same lock must be 390 * acquired to unmap a page. 391 * hole punch is indicated if end is not LLONG_MAX 392 * In the hole punch case we scan the range and release found pages. 393 * Only when releasing a page is the associated region/reserv map 394 * deleted. The region/reserv map for ranges without associated 395 * pages are not modified. Page faults can race with hole punch. 396 * This is indicated if we find a mapped page. 397 * Note: If the passed end of range value is beyond the end of file, but 398 * not LLONG_MAX this routine still performs a hole punch operation. 399 */ 400 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 401 loff_t lend) 402 { 403 struct hstate *h = hstate_inode(inode); 404 struct address_space *mapping = &inode->i_data; 405 const pgoff_t start = lstart >> huge_page_shift(h); 406 const pgoff_t end = lend >> huge_page_shift(h); 407 struct vm_area_struct pseudo_vma; 408 struct pagevec pvec; 409 pgoff_t next, index; 410 int i, freed = 0; 411 bool truncate_op = (lend == LLONG_MAX); 412 413 vma_init(&pseudo_vma, current->mm); 414 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 415 pagevec_init(&pvec); 416 next = start; 417 while (next < end) { 418 /* 419 * When no more pages are found, we are done. 420 */ 421 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 422 break; 423 424 for (i = 0; i < pagevec_count(&pvec); ++i) { 425 struct page *page = pvec.pages[i]; 426 u32 hash; 427 428 index = page->index; 429 hash = hugetlb_fault_mutex_hash(h, mapping, index, 0); 430 mutex_lock(&hugetlb_fault_mutex_table[hash]); 431 432 /* 433 * If page is mapped, it was faulted in after being 434 * unmapped in caller. Unmap (again) now after taking 435 * the fault mutex. The mutex will prevent faults 436 * until we finish removing the page. 437 * 438 * This race can only happen in the hole punch case. 439 * Getting here in a truncate operation is a bug. 440 */ 441 if (unlikely(page_mapped(page))) { 442 BUG_ON(truncate_op); 443 444 i_mmap_lock_write(mapping); 445 hugetlb_vmdelete_list(&mapping->i_mmap, 446 index * pages_per_huge_page(h), 447 (index + 1) * pages_per_huge_page(h)); 448 i_mmap_unlock_write(mapping); 449 } 450 451 lock_page(page); 452 /* 453 * We must free the huge page and remove from page 454 * cache (remove_huge_page) BEFORE removing the 455 * region/reserve map (hugetlb_unreserve_pages). In 456 * rare out of memory conditions, removal of the 457 * region/reserve map could fail. Correspondingly, 458 * the subpool and global reserve usage count can need 459 * to be adjusted. 460 */ 461 VM_BUG_ON(PagePrivate(page)); 462 remove_huge_page(page); 463 freed++; 464 if (!truncate_op) { 465 if (unlikely(hugetlb_unreserve_pages(inode, 466 index, index + 1, 1))) 467 hugetlb_fix_reserve_counts(inode); 468 } 469 470 unlock_page(page); 471 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 472 } 473 huge_pagevec_release(&pvec); 474 cond_resched(); 475 } 476 477 if (truncate_op) 478 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 479 } 480 481 static void hugetlbfs_evict_inode(struct inode *inode) 482 { 483 struct resv_map *resv_map; 484 485 remove_inode_hugepages(inode, 0, LLONG_MAX); 486 resv_map = (struct resv_map *)inode->i_mapping->private_data; 487 /* root inode doesn't have the resv_map, so we should check it */ 488 if (resv_map) 489 resv_map_release(&resv_map->refs); 490 clear_inode(inode); 491 } 492 493 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 494 { 495 pgoff_t pgoff; 496 struct address_space *mapping = inode->i_mapping; 497 struct hstate *h = hstate_inode(inode); 498 499 BUG_ON(offset & ~huge_page_mask(h)); 500 pgoff = offset >> PAGE_SHIFT; 501 502 i_size_write(inode, offset); 503 i_mmap_lock_write(mapping); 504 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 505 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 506 i_mmap_unlock_write(mapping); 507 remove_inode_hugepages(inode, offset, LLONG_MAX); 508 return 0; 509 } 510 511 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 512 { 513 struct hstate *h = hstate_inode(inode); 514 loff_t hpage_size = huge_page_size(h); 515 loff_t hole_start, hole_end; 516 517 /* 518 * For hole punch round up the beginning offset of the hole and 519 * round down the end. 520 */ 521 hole_start = round_up(offset, hpage_size); 522 hole_end = round_down(offset + len, hpage_size); 523 524 if (hole_end > hole_start) { 525 struct address_space *mapping = inode->i_mapping; 526 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 527 528 inode_lock(inode); 529 530 /* protected by i_mutex */ 531 if (info->seals & F_SEAL_WRITE) { 532 inode_unlock(inode); 533 return -EPERM; 534 } 535 536 i_mmap_lock_write(mapping); 537 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 538 hugetlb_vmdelete_list(&mapping->i_mmap, 539 hole_start >> PAGE_SHIFT, 540 hole_end >> PAGE_SHIFT); 541 i_mmap_unlock_write(mapping); 542 remove_inode_hugepages(inode, hole_start, hole_end); 543 inode_unlock(inode); 544 } 545 546 return 0; 547 } 548 549 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 550 loff_t len) 551 { 552 struct inode *inode = file_inode(file); 553 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 554 struct address_space *mapping = inode->i_mapping; 555 struct hstate *h = hstate_inode(inode); 556 struct vm_area_struct pseudo_vma; 557 struct mm_struct *mm = current->mm; 558 loff_t hpage_size = huge_page_size(h); 559 unsigned long hpage_shift = huge_page_shift(h); 560 pgoff_t start, index, end; 561 int error; 562 u32 hash; 563 564 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 565 return -EOPNOTSUPP; 566 567 if (mode & FALLOC_FL_PUNCH_HOLE) 568 return hugetlbfs_punch_hole(inode, offset, len); 569 570 /* 571 * Default preallocate case. 572 * For this range, start is rounded down and end is rounded up 573 * as well as being converted to page offsets. 574 */ 575 start = offset >> hpage_shift; 576 end = (offset + len + hpage_size - 1) >> hpage_shift; 577 578 inode_lock(inode); 579 580 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 581 error = inode_newsize_ok(inode, offset + len); 582 if (error) 583 goto out; 584 585 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 586 error = -EPERM; 587 goto out; 588 } 589 590 /* 591 * Initialize a pseudo vma as this is required by the huge page 592 * allocation routines. If NUMA is configured, use page index 593 * as input to create an allocation policy. 594 */ 595 vma_init(&pseudo_vma, mm); 596 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 597 pseudo_vma.vm_file = file; 598 599 for (index = start; index < end; index++) { 600 /* 601 * This is supposed to be the vaddr where the page is being 602 * faulted in, but we have no vaddr here. 603 */ 604 struct page *page; 605 unsigned long addr; 606 int avoid_reserve = 0; 607 608 cond_resched(); 609 610 /* 611 * fallocate(2) manpage permits EINTR; we may have been 612 * interrupted because we are using up too much memory. 613 */ 614 if (signal_pending(current)) { 615 error = -EINTR; 616 break; 617 } 618 619 /* Set numa allocation policy based on index */ 620 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 621 622 /* addr is the offset within the file (zero based) */ 623 addr = index * hpage_size; 624 625 /* mutex taken here, fault path and hole punch */ 626 hash = hugetlb_fault_mutex_hash(h, mapping, index, addr); 627 mutex_lock(&hugetlb_fault_mutex_table[hash]); 628 629 /* See if already present in mapping to avoid alloc/free */ 630 page = find_get_page(mapping, index); 631 if (page) { 632 put_page(page); 633 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 634 hugetlb_drop_vma_policy(&pseudo_vma); 635 continue; 636 } 637 638 /* Allocate page and add to page cache */ 639 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 640 hugetlb_drop_vma_policy(&pseudo_vma); 641 if (IS_ERR(page)) { 642 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 643 error = PTR_ERR(page); 644 goto out; 645 } 646 clear_huge_page(page, addr, pages_per_huge_page(h)); 647 __SetPageUptodate(page); 648 error = huge_add_to_page_cache(page, mapping, index); 649 if (unlikely(error)) { 650 put_page(page); 651 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 652 goto out; 653 } 654 655 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 656 657 /* 658 * unlock_page because locked by add_to_page_cache() 659 * page_put due to reference from alloc_huge_page() 660 */ 661 unlock_page(page); 662 put_page(page); 663 } 664 665 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 666 i_size_write(inode, offset + len); 667 inode->i_ctime = current_time(inode); 668 out: 669 inode_unlock(inode); 670 return error; 671 } 672 673 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 674 { 675 struct inode *inode = d_inode(dentry); 676 struct hstate *h = hstate_inode(inode); 677 int error; 678 unsigned int ia_valid = attr->ia_valid; 679 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 680 681 BUG_ON(!inode); 682 683 error = setattr_prepare(dentry, attr); 684 if (error) 685 return error; 686 687 if (ia_valid & ATTR_SIZE) { 688 loff_t oldsize = inode->i_size; 689 loff_t newsize = attr->ia_size; 690 691 if (newsize & ~huge_page_mask(h)) 692 return -EINVAL; 693 /* protected by i_mutex */ 694 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 695 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 696 return -EPERM; 697 error = hugetlb_vmtruncate(inode, newsize); 698 if (error) 699 return error; 700 } 701 702 setattr_copy(inode, attr); 703 mark_inode_dirty(inode); 704 return 0; 705 } 706 707 static struct inode *hugetlbfs_get_root(struct super_block *sb, 708 struct hugetlbfs_config *config) 709 { 710 struct inode *inode; 711 712 inode = new_inode(sb); 713 if (inode) { 714 inode->i_ino = get_next_ino(); 715 inode->i_mode = S_IFDIR | config->mode; 716 inode->i_uid = config->uid; 717 inode->i_gid = config->gid; 718 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 719 inode->i_op = &hugetlbfs_dir_inode_operations; 720 inode->i_fop = &simple_dir_operations; 721 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 722 inc_nlink(inode); 723 lockdep_annotate_inode_mutex_key(inode); 724 } 725 return inode; 726 } 727 728 /* 729 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 730 * be taken from reclaim -- unlike regular filesystems. This needs an 731 * annotation because huge_pmd_share() does an allocation under hugetlb's 732 * i_mmap_rwsem. 733 */ 734 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 735 736 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 737 struct inode *dir, 738 umode_t mode, dev_t dev) 739 { 740 struct inode *inode; 741 struct resv_map *resv_map = NULL; 742 743 /* 744 * Reserve maps are only needed for inodes that can have associated 745 * page allocations. 746 */ 747 if (S_ISREG(mode) || S_ISLNK(mode)) { 748 resv_map = resv_map_alloc(); 749 if (!resv_map) 750 return NULL; 751 } 752 753 inode = new_inode(sb); 754 if (inode) { 755 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 756 757 inode->i_ino = get_next_ino(); 758 inode_init_owner(inode, dir, mode); 759 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 760 &hugetlbfs_i_mmap_rwsem_key); 761 inode->i_mapping->a_ops = &hugetlbfs_aops; 762 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 763 inode->i_mapping->private_data = resv_map; 764 info->seals = F_SEAL_SEAL; 765 switch (mode & S_IFMT) { 766 default: 767 init_special_inode(inode, mode, dev); 768 break; 769 case S_IFREG: 770 inode->i_op = &hugetlbfs_inode_operations; 771 inode->i_fop = &hugetlbfs_file_operations; 772 break; 773 case S_IFDIR: 774 inode->i_op = &hugetlbfs_dir_inode_operations; 775 inode->i_fop = &simple_dir_operations; 776 777 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 778 inc_nlink(inode); 779 break; 780 case S_IFLNK: 781 inode->i_op = &page_symlink_inode_operations; 782 inode_nohighmem(inode); 783 break; 784 } 785 lockdep_annotate_inode_mutex_key(inode); 786 } else { 787 if (resv_map) 788 kref_put(&resv_map->refs, resv_map_release); 789 } 790 791 return inode; 792 } 793 794 /* 795 * File creation. Allocate an inode, and we're done.. 796 */ 797 static int hugetlbfs_mknod(struct inode *dir, 798 struct dentry *dentry, umode_t mode, dev_t dev) 799 { 800 struct inode *inode; 801 int error = -ENOSPC; 802 803 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 804 if (inode) { 805 dir->i_ctime = dir->i_mtime = current_time(dir); 806 d_instantiate(dentry, inode); 807 dget(dentry); /* Extra count - pin the dentry in core */ 808 error = 0; 809 } 810 return error; 811 } 812 813 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 814 { 815 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 816 if (!retval) 817 inc_nlink(dir); 818 return retval; 819 } 820 821 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 822 { 823 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 824 } 825 826 static int hugetlbfs_symlink(struct inode *dir, 827 struct dentry *dentry, const char *symname) 828 { 829 struct inode *inode; 830 int error = -ENOSPC; 831 832 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 833 if (inode) { 834 int l = strlen(symname)+1; 835 error = page_symlink(inode, symname, l); 836 if (!error) { 837 d_instantiate(dentry, inode); 838 dget(dentry); 839 } else 840 iput(inode); 841 } 842 dir->i_ctime = dir->i_mtime = current_time(dir); 843 844 return error; 845 } 846 847 /* 848 * mark the head page dirty 849 */ 850 static int hugetlbfs_set_page_dirty(struct page *page) 851 { 852 struct page *head = compound_head(page); 853 854 SetPageDirty(head); 855 return 0; 856 } 857 858 static int hugetlbfs_migrate_page(struct address_space *mapping, 859 struct page *newpage, struct page *page, 860 enum migrate_mode mode) 861 { 862 int rc; 863 864 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 865 if (rc != MIGRATEPAGE_SUCCESS) 866 return rc; 867 868 /* 869 * page_private is subpool pointer in hugetlb pages. Transfer to 870 * new page. PagePrivate is not associated with page_private for 871 * hugetlb pages and can not be set here as only page_huge_active 872 * pages can be migrated. 873 */ 874 if (page_private(page)) { 875 set_page_private(newpage, page_private(page)); 876 set_page_private(page, 0); 877 } 878 879 if (mode != MIGRATE_SYNC_NO_COPY) 880 migrate_page_copy(newpage, page); 881 else 882 migrate_page_states(newpage, page); 883 884 return MIGRATEPAGE_SUCCESS; 885 } 886 887 static int hugetlbfs_error_remove_page(struct address_space *mapping, 888 struct page *page) 889 { 890 struct inode *inode = mapping->host; 891 pgoff_t index = page->index; 892 893 remove_huge_page(page); 894 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 895 hugetlb_fix_reserve_counts(inode); 896 897 return 0; 898 } 899 900 /* 901 * Display the mount options in /proc/mounts. 902 */ 903 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 904 { 905 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 906 struct hugepage_subpool *spool = sbinfo->spool; 907 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 908 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 909 char mod; 910 911 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 912 seq_printf(m, ",uid=%u", 913 from_kuid_munged(&init_user_ns, sbinfo->uid)); 914 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 915 seq_printf(m, ",gid=%u", 916 from_kgid_munged(&init_user_ns, sbinfo->gid)); 917 if (sbinfo->mode != 0755) 918 seq_printf(m, ",mode=%o", sbinfo->mode); 919 if (sbinfo->max_inodes != -1) 920 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 921 922 hpage_size /= 1024; 923 mod = 'K'; 924 if (hpage_size >= 1024) { 925 hpage_size /= 1024; 926 mod = 'M'; 927 } 928 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 929 if (spool) { 930 if (spool->max_hpages != -1) 931 seq_printf(m, ",size=%llu", 932 (unsigned long long)spool->max_hpages << hpage_shift); 933 if (spool->min_hpages != -1) 934 seq_printf(m, ",min_size=%llu", 935 (unsigned long long)spool->min_hpages << hpage_shift); 936 } 937 return 0; 938 } 939 940 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 941 { 942 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 943 struct hstate *h = hstate_inode(d_inode(dentry)); 944 945 buf->f_type = HUGETLBFS_MAGIC; 946 buf->f_bsize = huge_page_size(h); 947 if (sbinfo) { 948 spin_lock(&sbinfo->stat_lock); 949 /* If no limits set, just report 0 for max/free/used 950 * blocks, like simple_statfs() */ 951 if (sbinfo->spool) { 952 long free_pages; 953 954 spin_lock(&sbinfo->spool->lock); 955 buf->f_blocks = sbinfo->spool->max_hpages; 956 free_pages = sbinfo->spool->max_hpages 957 - sbinfo->spool->used_hpages; 958 buf->f_bavail = buf->f_bfree = free_pages; 959 spin_unlock(&sbinfo->spool->lock); 960 buf->f_files = sbinfo->max_inodes; 961 buf->f_ffree = sbinfo->free_inodes; 962 } 963 spin_unlock(&sbinfo->stat_lock); 964 } 965 buf->f_namelen = NAME_MAX; 966 return 0; 967 } 968 969 static void hugetlbfs_put_super(struct super_block *sb) 970 { 971 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 972 973 if (sbi) { 974 sb->s_fs_info = NULL; 975 976 if (sbi->spool) 977 hugepage_put_subpool(sbi->spool); 978 979 kfree(sbi); 980 } 981 } 982 983 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 984 { 985 if (sbinfo->free_inodes >= 0) { 986 spin_lock(&sbinfo->stat_lock); 987 if (unlikely(!sbinfo->free_inodes)) { 988 spin_unlock(&sbinfo->stat_lock); 989 return 0; 990 } 991 sbinfo->free_inodes--; 992 spin_unlock(&sbinfo->stat_lock); 993 } 994 995 return 1; 996 } 997 998 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 999 { 1000 if (sbinfo->free_inodes >= 0) { 1001 spin_lock(&sbinfo->stat_lock); 1002 sbinfo->free_inodes++; 1003 spin_unlock(&sbinfo->stat_lock); 1004 } 1005 } 1006 1007 1008 static struct kmem_cache *hugetlbfs_inode_cachep; 1009 1010 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1011 { 1012 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1013 struct hugetlbfs_inode_info *p; 1014 1015 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1016 return NULL; 1017 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1018 if (unlikely(!p)) { 1019 hugetlbfs_inc_free_inodes(sbinfo); 1020 return NULL; 1021 } 1022 1023 /* 1024 * Any time after allocation, hugetlbfs_destroy_inode can be called 1025 * for the inode. mpol_free_shared_policy is unconditionally called 1026 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1027 * in case of a quick call to destroy. 1028 * 1029 * Note that the policy is initialized even if we are creating a 1030 * private inode. This simplifies hugetlbfs_destroy_inode. 1031 */ 1032 mpol_shared_policy_init(&p->policy, NULL); 1033 1034 return &p->vfs_inode; 1035 } 1036 1037 static void hugetlbfs_i_callback(struct rcu_head *head) 1038 { 1039 struct inode *inode = container_of(head, struct inode, i_rcu); 1040 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1041 } 1042 1043 static void hugetlbfs_destroy_inode(struct inode *inode) 1044 { 1045 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1046 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1047 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 1048 } 1049 1050 static const struct address_space_operations hugetlbfs_aops = { 1051 .write_begin = hugetlbfs_write_begin, 1052 .write_end = hugetlbfs_write_end, 1053 .set_page_dirty = hugetlbfs_set_page_dirty, 1054 .migratepage = hugetlbfs_migrate_page, 1055 .error_remove_page = hugetlbfs_error_remove_page, 1056 }; 1057 1058 1059 static void init_once(void *foo) 1060 { 1061 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1062 1063 inode_init_once(&ei->vfs_inode); 1064 } 1065 1066 const struct file_operations hugetlbfs_file_operations = { 1067 .read_iter = hugetlbfs_read_iter, 1068 .mmap = hugetlbfs_file_mmap, 1069 .fsync = noop_fsync, 1070 .get_unmapped_area = hugetlb_get_unmapped_area, 1071 .llseek = default_llseek, 1072 .fallocate = hugetlbfs_fallocate, 1073 }; 1074 1075 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1076 .create = hugetlbfs_create, 1077 .lookup = simple_lookup, 1078 .link = simple_link, 1079 .unlink = simple_unlink, 1080 .symlink = hugetlbfs_symlink, 1081 .mkdir = hugetlbfs_mkdir, 1082 .rmdir = simple_rmdir, 1083 .mknod = hugetlbfs_mknod, 1084 .rename = simple_rename, 1085 .setattr = hugetlbfs_setattr, 1086 }; 1087 1088 static const struct inode_operations hugetlbfs_inode_operations = { 1089 .setattr = hugetlbfs_setattr, 1090 }; 1091 1092 static const struct super_operations hugetlbfs_ops = { 1093 .alloc_inode = hugetlbfs_alloc_inode, 1094 .destroy_inode = hugetlbfs_destroy_inode, 1095 .evict_inode = hugetlbfs_evict_inode, 1096 .statfs = hugetlbfs_statfs, 1097 .put_super = hugetlbfs_put_super, 1098 .show_options = hugetlbfs_show_options, 1099 }; 1100 1101 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 1102 1103 /* 1104 * Convert size option passed from command line to number of huge pages 1105 * in the pool specified by hstate. Size option could be in bytes 1106 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1107 */ 1108 static long 1109 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1110 enum hugetlbfs_size_type val_type) 1111 { 1112 if (val_type == NO_SIZE) 1113 return -1; 1114 1115 if (val_type == SIZE_PERCENT) { 1116 size_opt <<= huge_page_shift(h); 1117 size_opt *= h->max_huge_pages; 1118 do_div(size_opt, 100); 1119 } 1120 1121 size_opt >>= huge_page_shift(h); 1122 return size_opt; 1123 } 1124 1125 static int 1126 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig) 1127 { 1128 char *p, *rest; 1129 substring_t args[MAX_OPT_ARGS]; 1130 int option; 1131 unsigned long long max_size_opt = 0, min_size_opt = 0; 1132 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE; 1133 1134 if (!options) 1135 return 0; 1136 1137 while ((p = strsep(&options, ",")) != NULL) { 1138 int token; 1139 if (!*p) 1140 continue; 1141 1142 token = match_token(p, tokens, args); 1143 switch (token) { 1144 case Opt_uid: 1145 if (match_int(&args[0], &option)) 1146 goto bad_val; 1147 pconfig->uid = make_kuid(current_user_ns(), option); 1148 if (!uid_valid(pconfig->uid)) 1149 goto bad_val; 1150 break; 1151 1152 case Opt_gid: 1153 if (match_int(&args[0], &option)) 1154 goto bad_val; 1155 pconfig->gid = make_kgid(current_user_ns(), option); 1156 if (!gid_valid(pconfig->gid)) 1157 goto bad_val; 1158 break; 1159 1160 case Opt_mode: 1161 if (match_octal(&args[0], &option)) 1162 goto bad_val; 1163 pconfig->mode = option & 01777U; 1164 break; 1165 1166 case Opt_size: { 1167 /* memparse() will accept a K/M/G without a digit */ 1168 if (!isdigit(*args[0].from)) 1169 goto bad_val; 1170 max_size_opt = memparse(args[0].from, &rest); 1171 max_val_type = SIZE_STD; 1172 if (*rest == '%') 1173 max_val_type = SIZE_PERCENT; 1174 break; 1175 } 1176 1177 case Opt_nr_inodes: 1178 /* memparse() will accept a K/M/G without a digit */ 1179 if (!isdigit(*args[0].from)) 1180 goto bad_val; 1181 pconfig->nr_inodes = memparse(args[0].from, &rest); 1182 break; 1183 1184 case Opt_pagesize: { 1185 unsigned long ps; 1186 ps = memparse(args[0].from, &rest); 1187 pconfig->hstate = size_to_hstate(ps); 1188 if (!pconfig->hstate) { 1189 pr_err("Unsupported page size %lu MB\n", 1190 ps >> 20); 1191 return -EINVAL; 1192 } 1193 break; 1194 } 1195 1196 case Opt_min_size: { 1197 /* memparse() will accept a K/M/G without a digit */ 1198 if (!isdigit(*args[0].from)) 1199 goto bad_val; 1200 min_size_opt = memparse(args[0].from, &rest); 1201 min_val_type = SIZE_STD; 1202 if (*rest == '%') 1203 min_val_type = SIZE_PERCENT; 1204 break; 1205 } 1206 1207 default: 1208 pr_err("Bad mount option: \"%s\"\n", p); 1209 return -EINVAL; 1210 break; 1211 } 1212 } 1213 1214 /* 1215 * Use huge page pool size (in hstate) to convert the size 1216 * options to number of huge pages. If NO_SIZE, -1 is returned. 1217 */ 1218 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1219 max_size_opt, max_val_type); 1220 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1221 min_size_opt, min_val_type); 1222 1223 /* 1224 * If max_size was specified, then min_size must be smaller 1225 */ 1226 if (max_val_type > NO_SIZE && 1227 pconfig->min_hpages > pconfig->max_hpages) { 1228 pr_err("minimum size can not be greater than maximum size\n"); 1229 return -EINVAL; 1230 } 1231 1232 return 0; 1233 1234 bad_val: 1235 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p); 1236 return -EINVAL; 1237 } 1238 1239 static int 1240 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent) 1241 { 1242 int ret; 1243 struct hugetlbfs_config config; 1244 struct hugetlbfs_sb_info *sbinfo; 1245 1246 config.max_hpages = -1; /* No limit on size by default */ 1247 config.nr_inodes = -1; /* No limit on number of inodes by default */ 1248 config.uid = current_fsuid(); 1249 config.gid = current_fsgid(); 1250 config.mode = 0755; 1251 config.hstate = &default_hstate; 1252 config.min_hpages = -1; /* No default minimum size */ 1253 ret = hugetlbfs_parse_options(data, &config); 1254 if (ret) 1255 return ret; 1256 1257 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1258 if (!sbinfo) 1259 return -ENOMEM; 1260 sb->s_fs_info = sbinfo; 1261 sbinfo->hstate = config.hstate; 1262 spin_lock_init(&sbinfo->stat_lock); 1263 sbinfo->max_inodes = config.nr_inodes; 1264 sbinfo->free_inodes = config.nr_inodes; 1265 sbinfo->spool = NULL; 1266 sbinfo->uid = config.uid; 1267 sbinfo->gid = config.gid; 1268 sbinfo->mode = config.mode; 1269 1270 /* 1271 * Allocate and initialize subpool if maximum or minimum size is 1272 * specified. Any needed reservations (for minimim size) are taken 1273 * taken when the subpool is created. 1274 */ 1275 if (config.max_hpages != -1 || config.min_hpages != -1) { 1276 sbinfo->spool = hugepage_new_subpool(config.hstate, 1277 config.max_hpages, 1278 config.min_hpages); 1279 if (!sbinfo->spool) 1280 goto out_free; 1281 } 1282 sb->s_maxbytes = MAX_LFS_FILESIZE; 1283 sb->s_blocksize = huge_page_size(config.hstate); 1284 sb->s_blocksize_bits = huge_page_shift(config.hstate); 1285 sb->s_magic = HUGETLBFS_MAGIC; 1286 sb->s_op = &hugetlbfs_ops; 1287 sb->s_time_gran = 1; 1288 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config)); 1289 if (!sb->s_root) 1290 goto out_free; 1291 return 0; 1292 out_free: 1293 kfree(sbinfo->spool); 1294 kfree(sbinfo); 1295 return -ENOMEM; 1296 } 1297 1298 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type, 1299 int flags, const char *dev_name, void *data) 1300 { 1301 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super); 1302 } 1303 1304 static struct file_system_type hugetlbfs_fs_type = { 1305 .name = "hugetlbfs", 1306 .mount = hugetlbfs_mount, 1307 .kill_sb = kill_litter_super, 1308 }; 1309 1310 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1311 1312 static int can_do_hugetlb_shm(void) 1313 { 1314 kgid_t shm_group; 1315 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1316 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1317 } 1318 1319 static int get_hstate_idx(int page_size_log) 1320 { 1321 struct hstate *h = hstate_sizelog(page_size_log); 1322 1323 if (!h) 1324 return -1; 1325 return h - hstates; 1326 } 1327 1328 /* 1329 * Note that size should be aligned to proper hugepage size in caller side, 1330 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1331 */ 1332 struct file *hugetlb_file_setup(const char *name, size_t size, 1333 vm_flags_t acctflag, struct user_struct **user, 1334 int creat_flags, int page_size_log) 1335 { 1336 struct inode *inode; 1337 struct vfsmount *mnt; 1338 int hstate_idx; 1339 struct file *file; 1340 1341 hstate_idx = get_hstate_idx(page_size_log); 1342 if (hstate_idx < 0) 1343 return ERR_PTR(-ENODEV); 1344 1345 *user = NULL; 1346 mnt = hugetlbfs_vfsmount[hstate_idx]; 1347 if (!mnt) 1348 return ERR_PTR(-ENOENT); 1349 1350 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1351 *user = current_user(); 1352 if (user_shm_lock(size, *user)) { 1353 task_lock(current); 1354 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1355 current->comm, current->pid); 1356 task_unlock(current); 1357 } else { 1358 *user = NULL; 1359 return ERR_PTR(-EPERM); 1360 } 1361 } 1362 1363 file = ERR_PTR(-ENOSPC); 1364 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1365 if (!inode) 1366 goto out; 1367 if (creat_flags == HUGETLB_SHMFS_INODE) 1368 inode->i_flags |= S_PRIVATE; 1369 1370 inode->i_size = size; 1371 clear_nlink(inode); 1372 1373 if (hugetlb_reserve_pages(inode, 0, 1374 size >> huge_page_shift(hstate_inode(inode)), NULL, 1375 acctflag)) 1376 file = ERR_PTR(-ENOMEM); 1377 else 1378 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1379 &hugetlbfs_file_operations); 1380 if (!IS_ERR(file)) 1381 return file; 1382 1383 iput(inode); 1384 out: 1385 if (*user) { 1386 user_shm_unlock(size, *user); 1387 *user = NULL; 1388 } 1389 return file; 1390 } 1391 1392 static int __init init_hugetlbfs_fs(void) 1393 { 1394 struct hstate *h; 1395 int error; 1396 int i; 1397 1398 if (!hugepages_supported()) { 1399 pr_info("disabling because there are no supported hugepage sizes\n"); 1400 return -ENOTSUPP; 1401 } 1402 1403 error = -ENOMEM; 1404 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1405 sizeof(struct hugetlbfs_inode_info), 1406 0, SLAB_ACCOUNT, init_once); 1407 if (hugetlbfs_inode_cachep == NULL) 1408 goto out2; 1409 1410 error = register_filesystem(&hugetlbfs_fs_type); 1411 if (error) 1412 goto out; 1413 1414 i = 0; 1415 for_each_hstate(h) { 1416 char buf[50]; 1417 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10); 1418 1419 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb); 1420 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type, 1421 buf); 1422 1423 if (IS_ERR(hugetlbfs_vfsmount[i])) { 1424 pr_err("Cannot mount internal hugetlbfs for " 1425 "page size %uK", ps_kb); 1426 error = PTR_ERR(hugetlbfs_vfsmount[i]); 1427 hugetlbfs_vfsmount[i] = NULL; 1428 } 1429 i++; 1430 } 1431 /* Non default hstates are optional */ 1432 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx])) 1433 return 0; 1434 1435 out: 1436 kmem_cache_destroy(hugetlbfs_inode_cachep); 1437 out2: 1438 return error; 1439 } 1440 fs_initcall(init_hugetlbfs_fs) 1441
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.