~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/jbd2/revoke.c

Version: ~ [ linux-5.4-rc3 ] ~ [ linux-5.3.6 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.79 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.149 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.196 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.196 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.75 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * linux/fs/jbd2/revoke.c
  3  *
  4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5  *
  6  * Copyright 2000 Red Hat corp --- All Rights Reserved
  7  *
  8  * This file is part of the Linux kernel and is made available under
  9  * the terms of the GNU General Public License, version 2, or at your
 10  * option, any later version, incorporated herein by reference.
 11  *
 12  * Journal revoke routines for the generic filesystem journaling code;
 13  * part of the ext2fs journaling system.
 14  *
 15  * Revoke is the mechanism used to prevent old log records for deleted
 16  * metadata from being replayed on top of newer data using the same
 17  * blocks.  The revoke mechanism is used in two separate places:
 18  *
 19  * + Commit: during commit we write the entire list of the current
 20  *   transaction's revoked blocks to the journal
 21  *
 22  * + Recovery: during recovery we record the transaction ID of all
 23  *   revoked blocks.  If there are multiple revoke records in the log
 24  *   for a single block, only the last one counts, and if there is a log
 25  *   entry for a block beyond the last revoke, then that log entry still
 26  *   gets replayed.
 27  *
 28  * We can get interactions between revokes and new log data within a
 29  * single transaction:
 30  *
 31  * Block is revoked and then journaled:
 32  *   The desired end result is the journaling of the new block, so we
 33  *   cancel the revoke before the transaction commits.
 34  *
 35  * Block is journaled and then revoked:
 36  *   The revoke must take precedence over the write of the block, so we
 37  *   need either to cancel the journal entry or to write the revoke
 38  *   later in the log than the log block.  In this case, we choose the
 39  *   latter: journaling a block cancels any revoke record for that block
 40  *   in the current transaction, so any revoke for that block in the
 41  *   transaction must have happened after the block was journaled and so
 42  *   the revoke must take precedence.
 43  *
 44  * Block is revoked and then written as data:
 45  *   The data write is allowed to succeed, but the revoke is _not_
 46  *   cancelled.  We still need to prevent old log records from
 47  *   overwriting the new data.  We don't even need to clear the revoke
 48  *   bit here.
 49  *
 50  * We cache revoke status of a buffer in the current transaction in b_states
 51  * bits.  As the name says, revokevalid flag indicates that the cached revoke
 52  * status of a buffer is valid and we can rely on the cached status.
 53  *
 54  * Revoke information on buffers is a tri-state value:
 55  *
 56  * RevokeValid clear:   no cached revoke status, need to look it up
 57  * RevokeValid set, Revoked clear:
 58  *                      buffer has not been revoked, and cancel_revoke
 59  *                      need do nothing.
 60  * RevokeValid set, Revoked set:
 61  *                      buffer has been revoked.
 62  *
 63  * Locking rules:
 64  * We keep two hash tables of revoke records. One hashtable belongs to the
 65  * running transaction (is pointed to by journal->j_revoke), the other one
 66  * belongs to the committing transaction. Accesses to the second hash table
 67  * happen only from the kjournald and no other thread touches this table.  Also
 68  * journal_switch_revoke_table() which switches which hashtable belongs to the
 69  * running and which to the committing transaction is called only from
 70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
 71  * to the committing transaction.
 72  *
 73  * All users operating on the hash table belonging to the running transaction
 74  * have a handle to the transaction. Therefore they are safe from kjournald
 75  * switching hash tables under them. For operations on the lists of entries in
 76  * the hash table j_revoke_lock is used.
 77  *
 78  * Finally, also replay code uses the hash tables but at this moment no one else
 79  * can touch them (filesystem isn't mounted yet) and hence no locking is
 80  * needed.
 81  */
 82 
 83 #ifndef __KERNEL__
 84 #include "jfs_user.h"
 85 #else
 86 #include <linux/time.h>
 87 #include <linux/fs.h>
 88 #include <linux/jbd2.h>
 89 #include <linux/errno.h>
 90 #include <linux/slab.h>
 91 #include <linux/list.h>
 92 #include <linux/init.h>
 93 #include <linux/bio.h>
 94 #include <linux/log2.h>
 95 #include <linux/hash.h>
 96 #endif
 97 
 98 static struct kmem_cache *jbd2_revoke_record_cache;
 99 static struct kmem_cache *jbd2_revoke_table_cache;
100 
101 /* Each revoke record represents one single revoked block.  During
102    journal replay, this involves recording the transaction ID of the
103    last transaction to revoke this block. */
104 
105 struct jbd2_revoke_record_s
106 {
107         struct list_head  hash;
108         tid_t             sequence;     /* Used for recovery only */
109         unsigned long long        blocknr;
110 };
111 
112 
113 /* The revoke table is just a simple hash table of revoke records. */
114 struct jbd2_revoke_table_s
115 {
116         /* It is conceivable that we might want a larger hash table
117          * for recovery.  Must be a power of two. */
118         int               hash_size;
119         int               hash_shift;
120         struct list_head *hash_table;
121 };
122 
123 
124 #ifdef __KERNEL__
125 static void write_one_revoke_record(transaction_t *,
126                                     struct list_head *,
127                                     struct buffer_head **, int *,
128                                     struct jbd2_revoke_record_s *);
129 static void flush_descriptor(journal_t *, struct buffer_head *, int);
130 #endif
131 
132 /* Utility functions to maintain the revoke table */
133 
134 static inline int hash(journal_t *journal, unsigned long long block)
135 {
136         return hash_64(block, journal->j_revoke->hash_shift);
137 }
138 
139 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140                               tid_t seq)
141 {
142         struct list_head *hash_list;
143         struct jbd2_revoke_record_s *record;
144         gfp_t gfp_mask = GFP_NOFS;
145 
146         if (journal_oom_retry)
147                 gfp_mask |= __GFP_NOFAIL;
148         record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
149         if (!record)
150                 return -ENOMEM;
151 
152         record->sequence = seq;
153         record->blocknr = blocknr;
154         hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
155         spin_lock(&journal->j_revoke_lock);
156         list_add(&record->hash, hash_list);
157         spin_unlock(&journal->j_revoke_lock);
158         return 0;
159 }
160 
161 /* Find a revoke record in the journal's hash table. */
162 
163 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
164                                                       unsigned long long blocknr)
165 {
166         struct list_head *hash_list;
167         struct jbd2_revoke_record_s *record;
168 
169         hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
170 
171         spin_lock(&journal->j_revoke_lock);
172         record = (struct jbd2_revoke_record_s *) hash_list->next;
173         while (&(record->hash) != hash_list) {
174                 if (record->blocknr == blocknr) {
175                         spin_unlock(&journal->j_revoke_lock);
176                         return record;
177                 }
178                 record = (struct jbd2_revoke_record_s *) record->hash.next;
179         }
180         spin_unlock(&journal->j_revoke_lock);
181         return NULL;
182 }
183 
184 void jbd2_journal_destroy_revoke_caches(void)
185 {
186         if (jbd2_revoke_record_cache) {
187                 kmem_cache_destroy(jbd2_revoke_record_cache);
188                 jbd2_revoke_record_cache = NULL;
189         }
190         if (jbd2_revoke_table_cache) {
191                 kmem_cache_destroy(jbd2_revoke_table_cache);
192                 jbd2_revoke_table_cache = NULL;
193         }
194 }
195 
196 int __init jbd2_journal_init_revoke_caches(void)
197 {
198         J_ASSERT(!jbd2_revoke_record_cache);
199         J_ASSERT(!jbd2_revoke_table_cache);
200 
201         jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
202                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
203         if (!jbd2_revoke_record_cache)
204                 goto record_cache_failure;
205 
206         jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
207                                              SLAB_TEMPORARY);
208         if (!jbd2_revoke_table_cache)
209                 goto table_cache_failure;
210         return 0;
211 table_cache_failure:
212         jbd2_journal_destroy_revoke_caches();
213 record_cache_failure:
214                 return -ENOMEM;
215 }
216 
217 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
218 {
219         int shift = 0;
220         int tmp = hash_size;
221         struct jbd2_revoke_table_s *table;
222 
223         table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
224         if (!table)
225                 goto out;
226 
227         while((tmp >>= 1UL) != 0UL)
228                 shift++;
229 
230         table->hash_size = hash_size;
231         table->hash_shift = shift;
232         table->hash_table =
233                 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
234         if (!table->hash_table) {
235                 kmem_cache_free(jbd2_revoke_table_cache, table);
236                 table = NULL;
237                 goto out;
238         }
239 
240         for (tmp = 0; tmp < hash_size; tmp++)
241                 INIT_LIST_HEAD(&table->hash_table[tmp]);
242 
243 out:
244         return table;
245 }
246 
247 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
248 {
249         int i;
250         struct list_head *hash_list;
251 
252         for (i = 0; i < table->hash_size; i++) {
253                 hash_list = &table->hash_table[i];
254                 J_ASSERT(list_empty(hash_list));
255         }
256 
257         kfree(table->hash_table);
258         kmem_cache_free(jbd2_revoke_table_cache, table);
259 }
260 
261 /* Initialise the revoke table for a given journal to a given size. */
262 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
263 {
264         J_ASSERT(journal->j_revoke_table[0] == NULL);
265         J_ASSERT(is_power_of_2(hash_size));
266 
267         journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
268         if (!journal->j_revoke_table[0])
269                 goto fail0;
270 
271         journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
272         if (!journal->j_revoke_table[1])
273                 goto fail1;
274 
275         journal->j_revoke = journal->j_revoke_table[1];
276 
277         spin_lock_init(&journal->j_revoke_lock);
278 
279         return 0;
280 
281 fail1:
282         jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
283         journal->j_revoke_table[0] = NULL;
284 fail0:
285         return -ENOMEM;
286 }
287 
288 /* Destroy a journal's revoke table.  The table must already be empty! */
289 void jbd2_journal_destroy_revoke(journal_t *journal)
290 {
291         journal->j_revoke = NULL;
292         if (journal->j_revoke_table[0])
293                 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
294         if (journal->j_revoke_table[1])
295                 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
296 }
297 
298 
299 #ifdef __KERNEL__
300 
301 /*
302  * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
303  * prevents the block from being replayed during recovery if we take a
304  * crash after this current transaction commits.  Any subsequent
305  * metadata writes of the buffer in this transaction cancel the
306  * revoke.
307  *
308  * Note that this call may block --- it is up to the caller to make
309  * sure that there are no further calls to journal_write_metadata
310  * before the revoke is complete.  In ext3, this implies calling the
311  * revoke before clearing the block bitmap when we are deleting
312  * metadata.
313  *
314  * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
315  * parameter, but does _not_ forget the buffer_head if the bh was only
316  * found implicitly.
317  *
318  * bh_in may not be a journalled buffer - it may have come off
319  * the hash tables without an attached journal_head.
320  *
321  * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
322  * by one.
323  */
324 
325 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
326                    struct buffer_head *bh_in)
327 {
328         struct buffer_head *bh = NULL;
329         journal_t *journal;
330         struct block_device *bdev;
331         int err;
332 
333         might_sleep();
334         if (bh_in)
335                 BUFFER_TRACE(bh_in, "enter");
336 
337         journal = handle->h_transaction->t_journal;
338         if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
339                 J_ASSERT (!"Cannot set revoke feature!");
340                 return -EINVAL;
341         }
342 
343         bdev = journal->j_fs_dev;
344         bh = bh_in;
345 
346         if (!bh) {
347                 bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
348                 if (bh)
349                         BUFFER_TRACE(bh, "found on hash");
350         }
351 #ifdef JBD2_EXPENSIVE_CHECKING
352         else {
353                 struct buffer_head *bh2;
354 
355                 /* If there is a different buffer_head lying around in
356                  * memory anywhere... */
357                 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
358                 if (bh2) {
359                         /* ... and it has RevokeValid status... */
360                         if (bh2 != bh && buffer_revokevalid(bh2))
361                                 /* ...then it better be revoked too,
362                                  * since it's illegal to create a revoke
363                                  * record against a buffer_head which is
364                                  * not marked revoked --- that would
365                                  * risk missing a subsequent revoke
366                                  * cancel. */
367                                 J_ASSERT_BH(bh2, buffer_revoked(bh2));
368                         put_bh(bh2);
369                 }
370         }
371 #endif
372 
373         /* We really ought not ever to revoke twice in a row without
374            first having the revoke cancelled: it's illegal to free a
375            block twice without allocating it in between! */
376         if (bh) {
377                 if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
378                                  "inconsistent data on disk")) {
379                         if (!bh_in)
380                                 brelse(bh);
381                         return -EIO;
382                 }
383                 set_buffer_revoked(bh);
384                 set_buffer_revokevalid(bh);
385                 if (bh_in) {
386                         BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
387                         jbd2_journal_forget(handle, bh_in);
388                 } else {
389                         BUFFER_TRACE(bh, "call brelse");
390                         __brelse(bh);
391                 }
392         }
393 
394         jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
395         err = insert_revoke_hash(journal, blocknr,
396                                 handle->h_transaction->t_tid);
397         BUFFER_TRACE(bh_in, "exit");
398         return err;
399 }
400 
401 /*
402  * Cancel an outstanding revoke.  For use only internally by the
403  * journaling code (called from jbd2_journal_get_write_access).
404  *
405  * We trust buffer_revoked() on the buffer if the buffer is already
406  * being journaled: if there is no revoke pending on the buffer, then we
407  * don't do anything here.
408  *
409  * This would break if it were possible for a buffer to be revoked and
410  * discarded, and then reallocated within the same transaction.  In such
411  * a case we would have lost the revoked bit, but when we arrived here
412  * the second time we would still have a pending revoke to cancel.  So,
413  * do not trust the Revoked bit on buffers unless RevokeValid is also
414  * set.
415  */
416 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
417 {
418         struct jbd2_revoke_record_s *record;
419         journal_t *journal = handle->h_transaction->t_journal;
420         int need_cancel;
421         int did_revoke = 0;     /* akpm: debug */
422         struct buffer_head *bh = jh2bh(jh);
423 
424         jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
425 
426         /* Is the existing Revoke bit valid?  If so, we trust it, and
427          * only perform the full cancel if the revoke bit is set.  If
428          * not, we can't trust the revoke bit, and we need to do the
429          * full search for a revoke record. */
430         if (test_set_buffer_revokevalid(bh)) {
431                 need_cancel = test_clear_buffer_revoked(bh);
432         } else {
433                 need_cancel = 1;
434                 clear_buffer_revoked(bh);
435         }
436 
437         if (need_cancel) {
438                 record = find_revoke_record(journal, bh->b_blocknr);
439                 if (record) {
440                         jbd_debug(4, "cancelled existing revoke on "
441                                   "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
442                         spin_lock(&journal->j_revoke_lock);
443                         list_del(&record->hash);
444                         spin_unlock(&journal->j_revoke_lock);
445                         kmem_cache_free(jbd2_revoke_record_cache, record);
446                         did_revoke = 1;
447                 }
448         }
449 
450 #ifdef JBD2_EXPENSIVE_CHECKING
451         /* There better not be one left behind by now! */
452         record = find_revoke_record(journal, bh->b_blocknr);
453         J_ASSERT_JH(jh, record == NULL);
454 #endif
455 
456         /* Finally, have we just cleared revoke on an unhashed
457          * buffer_head?  If so, we'd better make sure we clear the
458          * revoked status on any hashed alias too, otherwise the revoke
459          * state machine will get very upset later on. */
460         if (need_cancel) {
461                 struct buffer_head *bh2;
462                 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
463                 if (bh2) {
464                         if (bh2 != bh)
465                                 clear_buffer_revoked(bh2);
466                         __brelse(bh2);
467                 }
468         }
469         return did_revoke;
470 }
471 
472 /*
473  * journal_clear_revoked_flag clears revoked flag of buffers in
474  * revoke table to reflect there is no revoked buffers in the next
475  * transaction which is going to be started.
476  */
477 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
478 {
479         struct jbd2_revoke_table_s *revoke = journal->j_revoke;
480         int i = 0;
481 
482         for (i = 0; i < revoke->hash_size; i++) {
483                 struct list_head *hash_list;
484                 struct list_head *list_entry;
485                 hash_list = &revoke->hash_table[i];
486 
487                 list_for_each(list_entry, hash_list) {
488                         struct jbd2_revoke_record_s *record;
489                         struct buffer_head *bh;
490                         record = (struct jbd2_revoke_record_s *)list_entry;
491                         bh = __find_get_block(journal->j_fs_dev,
492                                               record->blocknr,
493                                               journal->j_blocksize);
494                         if (bh) {
495                                 clear_buffer_revoked(bh);
496                                 __brelse(bh);
497                         }
498                 }
499         }
500 }
501 
502 /* journal_switch_revoke table select j_revoke for next transaction
503  * we do not want to suspend any processing until all revokes are
504  * written -bzzz
505  */
506 void jbd2_journal_switch_revoke_table(journal_t *journal)
507 {
508         int i;
509 
510         if (journal->j_revoke == journal->j_revoke_table[0])
511                 journal->j_revoke = journal->j_revoke_table[1];
512         else
513                 journal->j_revoke = journal->j_revoke_table[0];
514 
515         for (i = 0; i < journal->j_revoke->hash_size; i++)
516                 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
517 }
518 
519 /*
520  * Write revoke records to the journal for all entries in the current
521  * revoke hash, deleting the entries as we go.
522  */
523 void jbd2_journal_write_revoke_records(transaction_t *transaction,
524                                        struct list_head *log_bufs)
525 {
526         journal_t *journal = transaction->t_journal;
527         struct buffer_head *descriptor;
528         struct jbd2_revoke_record_s *record;
529         struct jbd2_revoke_table_s *revoke;
530         struct list_head *hash_list;
531         int i, offset, count;
532 
533         descriptor = NULL;
534         offset = 0;
535         count = 0;
536 
537         /* select revoke table for committing transaction */
538         revoke = journal->j_revoke == journal->j_revoke_table[0] ?
539                 journal->j_revoke_table[1] : journal->j_revoke_table[0];
540 
541         for (i = 0; i < revoke->hash_size; i++) {
542                 hash_list = &revoke->hash_table[i];
543 
544                 while (!list_empty(hash_list)) {
545                         record = (struct jbd2_revoke_record_s *)
546                                 hash_list->next;
547                         write_one_revoke_record(transaction, log_bufs,
548                                                 &descriptor, &offset, record);
549                         count++;
550                         list_del(&record->hash);
551                         kmem_cache_free(jbd2_revoke_record_cache, record);
552                 }
553         }
554         if (descriptor)
555                 flush_descriptor(journal, descriptor, offset);
556         jbd_debug(1, "Wrote %d revoke records\n", count);
557 }
558 
559 /*
560  * Write out one revoke record.  We need to create a new descriptor
561  * block if the old one is full or if we have not already created one.
562  */
563 
564 static void write_one_revoke_record(transaction_t *transaction,
565                                     struct list_head *log_bufs,
566                                     struct buffer_head **descriptorp,
567                                     int *offsetp,
568                                     struct jbd2_revoke_record_s *record)
569 {
570         journal_t *journal = transaction->t_journal;
571         int csum_size = 0;
572         struct buffer_head *descriptor;
573         int sz, offset;
574 
575         /* If we are already aborting, this all becomes a noop.  We
576            still need to go round the loop in
577            jbd2_journal_write_revoke_records in order to free all of the
578            revoke records: only the IO to the journal is omitted. */
579         if (is_journal_aborted(journal))
580                 return;
581 
582         descriptor = *descriptorp;
583         offset = *offsetp;
584 
585         /* Do we need to leave space at the end for a checksum? */
586         if (jbd2_journal_has_csum_v2or3(journal))
587                 csum_size = sizeof(struct jbd2_journal_block_tail);
588 
589         if (jbd2_has_feature_64bit(journal))
590                 sz = 8;
591         else
592                 sz = 4;
593 
594         /* Make sure we have a descriptor with space left for the record */
595         if (descriptor) {
596                 if (offset + sz > journal->j_blocksize - csum_size) {
597                         flush_descriptor(journal, descriptor, offset);
598                         descriptor = NULL;
599                 }
600         }
601 
602         if (!descriptor) {
603                 descriptor = jbd2_journal_get_descriptor_buffer(transaction,
604                                                         JBD2_REVOKE_BLOCK);
605                 if (!descriptor)
606                         return;
607 
608                 /* Record it so that we can wait for IO completion later */
609                 BUFFER_TRACE(descriptor, "file in log_bufs");
610                 jbd2_file_log_bh(log_bufs, descriptor);
611 
612                 offset = sizeof(jbd2_journal_revoke_header_t);
613                 *descriptorp = descriptor;
614         }
615 
616         if (jbd2_has_feature_64bit(journal))
617                 * ((__be64 *)(&descriptor->b_data[offset])) =
618                         cpu_to_be64(record->blocknr);
619         else
620                 * ((__be32 *)(&descriptor->b_data[offset])) =
621                         cpu_to_be32(record->blocknr);
622         offset += sz;
623 
624         *offsetp = offset;
625 }
626 
627 /*
628  * Flush a revoke descriptor out to the journal.  If we are aborting,
629  * this is a noop; otherwise we are generating a buffer which needs to
630  * be waited for during commit, so it has to go onto the appropriate
631  * journal buffer list.
632  */
633 
634 static void flush_descriptor(journal_t *journal,
635                              struct buffer_head *descriptor,
636                              int offset)
637 {
638         jbd2_journal_revoke_header_t *header;
639 
640         if (is_journal_aborted(journal)) {
641                 put_bh(descriptor);
642                 return;
643         }
644 
645         header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
646         header->r_count = cpu_to_be32(offset);
647         jbd2_descriptor_block_csum_set(journal, descriptor);
648 
649         set_buffer_jwrite(descriptor);
650         BUFFER_TRACE(descriptor, "write");
651         set_buffer_dirty(descriptor);
652         write_dirty_buffer(descriptor, REQ_SYNC);
653 }
654 #endif
655 
656 /*
657  * Revoke support for recovery.
658  *
659  * Recovery needs to be able to:
660  *
661  *  record all revoke records, including the tid of the latest instance
662  *  of each revoke in the journal
663  *
664  *  check whether a given block in a given transaction should be replayed
665  *  (ie. has not been revoked by a revoke record in that or a subsequent
666  *  transaction)
667  *
668  *  empty the revoke table after recovery.
669  */
670 
671 /*
672  * First, setting revoke records.  We create a new revoke record for
673  * every block ever revoked in the log as we scan it for recovery, and
674  * we update the existing records if we find multiple revokes for a
675  * single block.
676  */
677 
678 int jbd2_journal_set_revoke(journal_t *journal,
679                        unsigned long long blocknr,
680                        tid_t sequence)
681 {
682         struct jbd2_revoke_record_s *record;
683 
684         record = find_revoke_record(journal, blocknr);
685         if (record) {
686                 /* If we have multiple occurrences, only record the
687                  * latest sequence number in the hashed record */
688                 if (tid_gt(sequence, record->sequence))
689                         record->sequence = sequence;
690                 return 0;
691         }
692         return insert_revoke_hash(journal, blocknr, sequence);
693 }
694 
695 /*
696  * Test revoke records.  For a given block referenced in the log, has
697  * that block been revoked?  A revoke record with a given transaction
698  * sequence number revokes all blocks in that transaction and earlier
699  * ones, but later transactions still need replayed.
700  */
701 
702 int jbd2_journal_test_revoke(journal_t *journal,
703                         unsigned long long blocknr,
704                         tid_t sequence)
705 {
706         struct jbd2_revoke_record_s *record;
707 
708         record = find_revoke_record(journal, blocknr);
709         if (!record)
710                 return 0;
711         if (tid_gt(sequence, record->sequence))
712                 return 0;
713         return 1;
714 }
715 
716 /*
717  * Finally, once recovery is over, we need to clear the revoke table so
718  * that it can be reused by the running filesystem.
719  */
720 
721 void jbd2_journal_clear_revoke(journal_t *journal)
722 {
723         int i;
724         struct list_head *hash_list;
725         struct jbd2_revoke_record_s *record;
726         struct jbd2_revoke_table_s *revoke;
727 
728         revoke = journal->j_revoke;
729 
730         for (i = 0; i < revoke->hash_size; i++) {
731                 hash_list = &revoke->hash_table[i];
732                 while (!list_empty(hash_list)) {
733                         record = (struct jbd2_revoke_record_s*) hash_list->next;
734                         list_del(&record->hash);
735                         kmem_cache_free(jbd2_revoke_record_cache, record);
736                 }
737         }
738 }
739 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp