1 /* 2 * fs/logfs/dir.c - directory-related code 3 * 4 * As should be obvious for Linux kernel code, license is GPLv2 5 * 6 * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> 7 */ 8 #include "logfs.h" 9 #include <linux/slab.h> 10 11 /* 12 * Atomic dir operations 13 * 14 * Directory operations are by default not atomic. Dentries and Inodes are 15 * created/removed/altered in separate operations. Therefore we need to do 16 * a small amount of journaling. 17 * 18 * Create, link, mkdir, mknod and symlink all share the same function to do 19 * the work: __logfs_create. This function works in two atomic steps: 20 * 1. allocate inode (remember in journal) 21 * 2. allocate dentry (clear journal) 22 * 23 * As we can only get interrupted between the two, when the inode we just 24 * created is simply stored in the anchor. On next mount, if we were 25 * interrupted, we delete the inode. From a users point of view the 26 * operation never happened. 27 * 28 * Unlink and rmdir also share the same function: unlink. Again, this 29 * function works in two atomic steps 30 * 1. remove dentry (remember inode in journal) 31 * 2. unlink inode (clear journal) 32 * 33 * And again, on the next mount, if we were interrupted, we delete the inode. 34 * From a users point of view the operation succeeded. 35 * 36 * Rename is the real pain to deal with, harder than all the other methods 37 * combined. Depending on the circumstances we can run into three cases. 38 * A "target rename" where the target dentry already existed, a "local 39 * rename" where both parent directories are identical or a "cross-directory 40 * rename" in the remaining case. 41 * 42 * Local rename is atomic, as the old dentry is simply rewritten with a new 43 * name. 44 * 45 * Cross-directory rename works in two steps, similar to __logfs_create and 46 * logfs_unlink: 47 * 1. Write new dentry (remember old dentry in journal) 48 * 2. Remove old dentry (clear journal) 49 * 50 * Here we remember a dentry instead of an inode. On next mount, if we were 51 * interrupted, we delete the dentry. From a users point of view, the 52 * operation succeeded. 53 * 54 * Target rename works in three atomic steps: 55 * 1. Attach old inode to new dentry (remember old dentry and new inode) 56 * 2. Remove old dentry (still remember the new inode) 57 * 3. Remove victim inode 58 * 59 * Here we remember both an inode an a dentry. If we get interrupted 60 * between steps 1 and 2, we delete both the dentry and the inode. If 61 * we get interrupted between steps 2 and 3, we delete just the inode. 62 * In either case, the remaining objects are deleted on next mount. From 63 * a users point of view, the operation succeeded. 64 */ 65 66 static int write_dir(struct inode *dir, struct logfs_disk_dentry *dd, 67 loff_t pos) 68 { 69 return logfs_inode_write(dir, dd, sizeof(*dd), pos, WF_LOCK, NULL); 70 } 71 72 static int write_inode(struct inode *inode) 73 { 74 return __logfs_write_inode(inode, NULL, WF_LOCK); 75 } 76 77 static s64 dir_seek_data(struct inode *inode, s64 pos) 78 { 79 s64 new_pos = logfs_seek_data(inode, pos); 80 81 return max(pos, new_pos - 1); 82 } 83 84 static int beyond_eof(struct inode *inode, loff_t bix) 85 { 86 loff_t pos = bix << inode->i_sb->s_blocksize_bits; 87 return pos >= i_size_read(inode); 88 } 89 90 /* 91 * Prime value was chosen to be roughly 256 + 26. r5 hash uses 11, 92 * so short names (len <= 9) don't even occupy the complete 32bit name 93 * space. A prime >256 ensures short names quickly spread the 32bit 94 * name space. Add about 26 for the estimated amount of information 95 * of each character and pick a prime nearby, preferably a bit-sparse 96 * one. 97 */ 98 static u32 hash_32(const char *s, int len, u32 seed) 99 { 100 u32 hash = seed; 101 int i; 102 103 for (i = 0; i < len; i++) 104 hash = hash * 293 + s[i]; 105 return hash; 106 } 107 108 /* 109 * We have to satisfy several conflicting requirements here. Small 110 * directories should stay fairly compact and not require too many 111 * indirect blocks. The number of possible locations for a given hash 112 * should be small to make lookup() fast. And we should try hard not 113 * to overflow the 32bit name space or nfs and 32bit host systems will 114 * be unhappy. 115 * 116 * So we use the following scheme. First we reduce the hash to 0..15 117 * and try a direct block. If that is occupied we reduce the hash to 118 * 16..255 and try an indirect block. Same for 2x and 3x indirect 119 * blocks. Lastly we reduce the hash to 0x800_0000 .. 0xffff_ffff, 120 * but use buckets containing eight entries instead of a single one. 121 * 122 * Using 16 entries should allow for a reasonable amount of hash 123 * collisions, so the 32bit name space can be packed fairly tight 124 * before overflowing. Oh and currently we don't overflow but return 125 * and error. 126 * 127 * How likely are collisions? Doing the appropriate math is beyond me 128 * and the Bronstein textbook. But running a test program to brute 129 * force collisions for a couple of days showed that on average the 130 * first collision occurs after 598M entries, with 290M being the 131 * smallest result. Obviously 21 entries could already cause a 132 * collision if all entries are carefully chosen. 133 */ 134 static pgoff_t hash_index(u32 hash, int round) 135 { 136 u32 i0_blocks = I0_BLOCKS; 137 u32 i1_blocks = I1_BLOCKS; 138 u32 i2_blocks = I2_BLOCKS; 139 u32 i3_blocks = I3_BLOCKS; 140 141 switch (round) { 142 case 0: 143 return hash % i0_blocks; 144 case 1: 145 return i0_blocks + hash % (i1_blocks - i0_blocks); 146 case 2: 147 return i1_blocks + hash % (i2_blocks - i1_blocks); 148 case 3: 149 return i2_blocks + hash % (i3_blocks - i2_blocks); 150 case 4 ... 19: 151 return i3_blocks + 16 * (hash % (((1<<31) - i3_blocks) / 16)) 152 + round - 4; 153 } 154 BUG(); 155 } 156 157 static struct page *logfs_get_dd_page(struct inode *dir, struct dentry *dentry) 158 { 159 struct qstr *name = &dentry->d_name; 160 struct page *page; 161 struct logfs_disk_dentry *dd; 162 u32 hash = hash_32(name->name, name->len, 0); 163 pgoff_t index; 164 int round; 165 166 if (name->len > LOGFS_MAX_NAMELEN) 167 return ERR_PTR(-ENAMETOOLONG); 168 169 for (round = 0; round < 20; round++) { 170 index = hash_index(hash, round); 171 172 if (beyond_eof(dir, index)) 173 return NULL; 174 if (!logfs_exist_block(dir, index)) 175 continue; 176 page = read_cache_page(dir->i_mapping, index, 177 (filler_t *)logfs_readpage, NULL); 178 if (IS_ERR(page)) 179 return page; 180 dd = kmap_atomic(page); 181 BUG_ON(dd->namelen == 0); 182 183 if (name->len != be16_to_cpu(dd->namelen) || 184 memcmp(name->name, dd->name, name->len)) { 185 kunmap_atomic(dd); 186 page_cache_release(page); 187 continue; 188 } 189 190 kunmap_atomic(dd); 191 return page; 192 } 193 return NULL; 194 } 195 196 static int logfs_remove_inode(struct inode *inode) 197 { 198 int ret; 199 200 drop_nlink(inode); 201 ret = write_inode(inode); 202 LOGFS_BUG_ON(ret, inode->i_sb); 203 return ret; 204 } 205 206 static void abort_transaction(struct inode *inode, struct logfs_transaction *ta) 207 { 208 if (logfs_inode(inode)->li_block) 209 logfs_inode(inode)->li_block->ta = NULL; 210 kfree(ta); 211 } 212 213 static int logfs_unlink(struct inode *dir, struct dentry *dentry) 214 { 215 struct logfs_super *super = logfs_super(dir->i_sb); 216 struct inode *inode = dentry->d_inode; 217 struct logfs_transaction *ta; 218 struct page *page; 219 pgoff_t index; 220 int ret; 221 222 ta = kzalloc(sizeof(*ta), GFP_KERNEL); 223 if (!ta) 224 return -ENOMEM; 225 226 ta->state = UNLINK_1; 227 ta->ino = inode->i_ino; 228 229 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 230 231 page = logfs_get_dd_page(dir, dentry); 232 if (!page) { 233 kfree(ta); 234 return -ENOENT; 235 } 236 if (IS_ERR(page)) { 237 kfree(ta); 238 return PTR_ERR(page); 239 } 240 index = page->index; 241 page_cache_release(page); 242 243 mutex_lock(&super->s_dirop_mutex); 244 logfs_add_transaction(dir, ta); 245 246 ret = logfs_delete(dir, index, NULL); 247 if (!ret) 248 ret = write_inode(dir); 249 250 if (ret) { 251 abort_transaction(dir, ta); 252 printk(KERN_ERR"LOGFS: unable to delete inode\n"); 253 goto out; 254 } 255 256 ta->state = UNLINK_2; 257 logfs_add_transaction(inode, ta); 258 ret = logfs_remove_inode(inode); 259 out: 260 mutex_unlock(&super->s_dirop_mutex); 261 return ret; 262 } 263 264 static inline int logfs_empty_dir(struct inode *dir) 265 { 266 u64 data; 267 268 data = logfs_seek_data(dir, 0) << dir->i_sb->s_blocksize_bits; 269 return data >= i_size_read(dir); 270 } 271 272 static int logfs_rmdir(struct inode *dir, struct dentry *dentry) 273 { 274 struct inode *inode = dentry->d_inode; 275 276 if (!logfs_empty_dir(inode)) 277 return -ENOTEMPTY; 278 279 return logfs_unlink(dir, dentry); 280 } 281 282 /* FIXME: readdir currently has it's own dir_walk code. I don't see a good 283 * way to combine the two copies */ 284 #define IMPLICIT_NODES 2 285 static int __logfs_readdir(struct file *file, void *buf, filldir_t filldir) 286 { 287 struct inode *dir = file_inode(file); 288 loff_t pos = file->f_pos - IMPLICIT_NODES; 289 struct page *page; 290 struct logfs_disk_dentry *dd; 291 int full; 292 293 BUG_ON(pos < 0); 294 for (;; pos++) { 295 if (beyond_eof(dir, pos)) 296 break; 297 if (!logfs_exist_block(dir, pos)) { 298 /* deleted dentry */ 299 pos = dir_seek_data(dir, pos); 300 continue; 301 } 302 page = read_cache_page(dir->i_mapping, pos, 303 (filler_t *)logfs_readpage, NULL); 304 if (IS_ERR(page)) 305 return PTR_ERR(page); 306 dd = kmap(page); 307 BUG_ON(dd->namelen == 0); 308 309 full = filldir(buf, (char *)dd->name, be16_to_cpu(dd->namelen), 310 pos, be64_to_cpu(dd->ino), dd->type); 311 kunmap(page); 312 page_cache_release(page); 313 if (full) 314 break; 315 } 316 317 file->f_pos = pos + IMPLICIT_NODES; 318 return 0; 319 } 320 321 static int logfs_readdir(struct file *file, void *buf, filldir_t filldir) 322 { 323 struct inode *inode = file_inode(file); 324 ino_t pino = parent_ino(file->f_dentry); 325 int err; 326 327 if (file->f_pos < 0) 328 return -EINVAL; 329 330 if (file->f_pos == 0) { 331 if (filldir(buf, ".", 1, 1, inode->i_ino, DT_DIR) < 0) 332 return 0; 333 file->f_pos++; 334 } 335 if (file->f_pos == 1) { 336 if (filldir(buf, "..", 2, 2, pino, DT_DIR) < 0) 337 return 0; 338 file->f_pos++; 339 } 340 341 err = __logfs_readdir(file, buf, filldir); 342 return err; 343 } 344 345 static void logfs_set_name(struct logfs_disk_dentry *dd, struct qstr *name) 346 { 347 dd->namelen = cpu_to_be16(name->len); 348 memcpy(dd->name, name->name, name->len); 349 } 350 351 static struct dentry *logfs_lookup(struct inode *dir, struct dentry *dentry, 352 unsigned int flags) 353 { 354 struct page *page; 355 struct logfs_disk_dentry *dd; 356 pgoff_t index; 357 u64 ino = 0; 358 struct inode *inode; 359 360 page = logfs_get_dd_page(dir, dentry); 361 if (IS_ERR(page)) 362 return ERR_CAST(page); 363 if (!page) { 364 d_add(dentry, NULL); 365 return NULL; 366 } 367 index = page->index; 368 dd = kmap_atomic(page); 369 ino = be64_to_cpu(dd->ino); 370 kunmap_atomic(dd); 371 page_cache_release(page); 372 373 inode = logfs_iget(dir->i_sb, ino); 374 if (IS_ERR(inode)) 375 printk(KERN_ERR"LogFS: Cannot read inode #%llx for dentry (%lx, %lx)n", 376 ino, dir->i_ino, index); 377 return d_splice_alias(inode, dentry); 378 } 379 380 static void grow_dir(struct inode *dir, loff_t index) 381 { 382 index = (index + 1) << dir->i_sb->s_blocksize_bits; 383 if (i_size_read(dir) < index) 384 i_size_write(dir, index); 385 } 386 387 static int logfs_write_dir(struct inode *dir, struct dentry *dentry, 388 struct inode *inode) 389 { 390 struct page *page; 391 struct logfs_disk_dentry *dd; 392 u32 hash = hash_32(dentry->d_name.name, dentry->d_name.len, 0); 393 pgoff_t index; 394 int round, err; 395 396 for (round = 0; round < 20; round++) { 397 index = hash_index(hash, round); 398 399 if (logfs_exist_block(dir, index)) 400 continue; 401 page = find_or_create_page(dir->i_mapping, index, GFP_KERNEL); 402 if (!page) 403 return -ENOMEM; 404 405 dd = kmap_atomic(page); 406 memset(dd, 0, sizeof(*dd)); 407 dd->ino = cpu_to_be64(inode->i_ino); 408 dd->type = logfs_type(inode); 409 logfs_set_name(dd, &dentry->d_name); 410 kunmap_atomic(dd); 411 412 err = logfs_write_buf(dir, page, WF_LOCK); 413 unlock_page(page); 414 page_cache_release(page); 415 if (!err) 416 grow_dir(dir, index); 417 return err; 418 } 419 /* FIXME: Is there a better return value? In most cases neither 420 * the filesystem nor the directory are full. But we have had 421 * too many collisions for this particular hash and no fallback. 422 */ 423 return -ENOSPC; 424 } 425 426 static int __logfs_create(struct inode *dir, struct dentry *dentry, 427 struct inode *inode, const char *dest, long destlen) 428 { 429 struct logfs_super *super = logfs_super(dir->i_sb); 430 struct logfs_inode *li = logfs_inode(inode); 431 struct logfs_transaction *ta; 432 int ret; 433 434 ta = kzalloc(sizeof(*ta), GFP_KERNEL); 435 if (!ta) { 436 drop_nlink(inode); 437 iput(inode); 438 return -ENOMEM; 439 } 440 441 ta->state = CREATE_1; 442 ta->ino = inode->i_ino; 443 mutex_lock(&super->s_dirop_mutex); 444 logfs_add_transaction(inode, ta); 445 446 if (dest) { 447 /* symlink */ 448 ret = logfs_inode_write(inode, dest, destlen, 0, WF_LOCK, NULL); 449 if (!ret) 450 ret = write_inode(inode); 451 } else { 452 /* creat/mkdir/mknod */ 453 ret = write_inode(inode); 454 } 455 if (ret) { 456 abort_transaction(inode, ta); 457 li->li_flags |= LOGFS_IF_STILLBORN; 458 /* FIXME: truncate symlink */ 459 drop_nlink(inode); 460 iput(inode); 461 goto out; 462 } 463 464 ta->state = CREATE_2; 465 logfs_add_transaction(dir, ta); 466 ret = logfs_write_dir(dir, dentry, inode); 467 /* sync directory */ 468 if (!ret) 469 ret = write_inode(dir); 470 471 if (ret) { 472 logfs_del_transaction(dir, ta); 473 ta->state = CREATE_2; 474 logfs_add_transaction(inode, ta); 475 logfs_remove_inode(inode); 476 iput(inode); 477 goto out; 478 } 479 d_instantiate(dentry, inode); 480 out: 481 mutex_unlock(&super->s_dirop_mutex); 482 return ret; 483 } 484 485 static int logfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 486 { 487 struct inode *inode; 488 489 /* 490 * FIXME: why do we have to fill in S_IFDIR, while the mode is 491 * correct for mknod, creat, etc.? Smells like the vfs *should* 492 * do it for us but for some reason fails to do so. 493 */ 494 inode = logfs_new_inode(dir, S_IFDIR | mode); 495 if (IS_ERR(inode)) 496 return PTR_ERR(inode); 497 498 inode->i_op = &logfs_dir_iops; 499 inode->i_fop = &logfs_dir_fops; 500 501 return __logfs_create(dir, dentry, inode, NULL, 0); 502 } 503 504 static int logfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 505 bool excl) 506 { 507 struct inode *inode; 508 509 inode = logfs_new_inode(dir, mode); 510 if (IS_ERR(inode)) 511 return PTR_ERR(inode); 512 513 inode->i_op = &logfs_reg_iops; 514 inode->i_fop = &logfs_reg_fops; 515 inode->i_mapping->a_ops = &logfs_reg_aops; 516 517 return __logfs_create(dir, dentry, inode, NULL, 0); 518 } 519 520 static int logfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, 521 dev_t rdev) 522 { 523 struct inode *inode; 524 525 if (dentry->d_name.len > LOGFS_MAX_NAMELEN) 526 return -ENAMETOOLONG; 527 528 inode = logfs_new_inode(dir, mode); 529 if (IS_ERR(inode)) 530 return PTR_ERR(inode); 531 532 init_special_inode(inode, mode, rdev); 533 534 return __logfs_create(dir, dentry, inode, NULL, 0); 535 } 536 537 static int logfs_symlink(struct inode *dir, struct dentry *dentry, 538 const char *target) 539 { 540 struct inode *inode; 541 size_t destlen = strlen(target) + 1; 542 543 if (destlen > dir->i_sb->s_blocksize) 544 return -ENAMETOOLONG; 545 546 inode = logfs_new_inode(dir, S_IFLNK | 0777); 547 if (IS_ERR(inode)) 548 return PTR_ERR(inode); 549 550 inode->i_op = &logfs_symlink_iops; 551 inode->i_mapping->a_ops = &logfs_reg_aops; 552 553 return __logfs_create(dir, dentry, inode, target, destlen); 554 } 555 556 static int logfs_link(struct dentry *old_dentry, struct inode *dir, 557 struct dentry *dentry) 558 { 559 struct inode *inode = old_dentry->d_inode; 560 561 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 562 ihold(inode); 563 inc_nlink(inode); 564 mark_inode_dirty_sync(inode); 565 566 return __logfs_create(dir, dentry, inode, NULL, 0); 567 } 568 569 static int logfs_get_dd(struct inode *dir, struct dentry *dentry, 570 struct logfs_disk_dentry *dd, loff_t *pos) 571 { 572 struct page *page; 573 void *map; 574 575 page = logfs_get_dd_page(dir, dentry); 576 if (IS_ERR(page)) 577 return PTR_ERR(page); 578 *pos = page->index; 579 map = kmap_atomic(page); 580 memcpy(dd, map, sizeof(*dd)); 581 kunmap_atomic(map); 582 page_cache_release(page); 583 return 0; 584 } 585 586 static int logfs_delete_dd(struct inode *dir, loff_t pos) 587 { 588 /* 589 * Getting called with pos somewhere beyond eof is either a goofup 590 * within this file or means someone maliciously edited the 591 * (crc-protected) journal. 592 */ 593 BUG_ON(beyond_eof(dir, pos)); 594 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 595 log_dir(" Delete dentry (%lx, %llx)\n", dir->i_ino, pos); 596 return logfs_delete(dir, pos, NULL); 597 } 598 599 /* 600 * Cross-directory rename, target does not exist. Just a little nasty. 601 * Create a new dentry in the target dir, then remove the old dentry, 602 * all the while taking care to remember our operation in the journal. 603 */ 604 static int logfs_rename_cross(struct inode *old_dir, struct dentry *old_dentry, 605 struct inode *new_dir, struct dentry *new_dentry) 606 { 607 struct logfs_super *super = logfs_super(old_dir->i_sb); 608 struct logfs_disk_dentry dd; 609 struct logfs_transaction *ta; 610 loff_t pos; 611 int err; 612 613 /* 1. locate source dd */ 614 err = logfs_get_dd(old_dir, old_dentry, &dd, &pos); 615 if (err) 616 return err; 617 618 ta = kzalloc(sizeof(*ta), GFP_KERNEL); 619 if (!ta) 620 return -ENOMEM; 621 622 ta->state = CROSS_RENAME_1; 623 ta->dir = old_dir->i_ino; 624 ta->pos = pos; 625 626 /* 2. write target dd */ 627 mutex_lock(&super->s_dirop_mutex); 628 logfs_add_transaction(new_dir, ta); 629 err = logfs_write_dir(new_dir, new_dentry, old_dentry->d_inode); 630 if (!err) 631 err = write_inode(new_dir); 632 633 if (err) { 634 super->s_rename_dir = 0; 635 super->s_rename_pos = 0; 636 abort_transaction(new_dir, ta); 637 goto out; 638 } 639 640 /* 3. remove source dd */ 641 ta->state = CROSS_RENAME_2; 642 logfs_add_transaction(old_dir, ta); 643 err = logfs_delete_dd(old_dir, pos); 644 if (!err) 645 err = write_inode(old_dir); 646 LOGFS_BUG_ON(err, old_dir->i_sb); 647 out: 648 mutex_unlock(&super->s_dirop_mutex); 649 return err; 650 } 651 652 static int logfs_replace_inode(struct inode *dir, struct dentry *dentry, 653 struct logfs_disk_dentry *dd, struct inode *inode) 654 { 655 loff_t pos; 656 int err; 657 658 err = logfs_get_dd(dir, dentry, dd, &pos); 659 if (err) 660 return err; 661 dd->ino = cpu_to_be64(inode->i_ino); 662 dd->type = logfs_type(inode); 663 664 err = write_dir(dir, dd, pos); 665 if (err) 666 return err; 667 log_dir("Replace dentry (%lx, %llx) %s -> %llx\n", dir->i_ino, pos, 668 dd->name, be64_to_cpu(dd->ino)); 669 return write_inode(dir); 670 } 671 672 /* Target dentry exists - the worst case. We need to attach the source 673 * inode to the target dentry, then remove the orphaned target inode and 674 * source dentry. 675 */ 676 static int logfs_rename_target(struct inode *old_dir, struct dentry *old_dentry, 677 struct inode *new_dir, struct dentry *new_dentry) 678 { 679 struct logfs_super *super = logfs_super(old_dir->i_sb); 680 struct inode *old_inode = old_dentry->d_inode; 681 struct inode *new_inode = new_dentry->d_inode; 682 int isdir = S_ISDIR(old_inode->i_mode); 683 struct logfs_disk_dentry dd; 684 struct logfs_transaction *ta; 685 loff_t pos; 686 int err; 687 688 BUG_ON(isdir != S_ISDIR(new_inode->i_mode)); 689 if (isdir) { 690 if (!logfs_empty_dir(new_inode)) 691 return -ENOTEMPTY; 692 } 693 694 /* 1. locate source dd */ 695 err = logfs_get_dd(old_dir, old_dentry, &dd, &pos); 696 if (err) 697 return err; 698 699 ta = kzalloc(sizeof(*ta), GFP_KERNEL); 700 if (!ta) 701 return -ENOMEM; 702 703 ta->state = TARGET_RENAME_1; 704 ta->dir = old_dir->i_ino; 705 ta->pos = pos; 706 ta->ino = new_inode->i_ino; 707 708 /* 2. attach source inode to target dd */ 709 mutex_lock(&super->s_dirop_mutex); 710 logfs_add_transaction(new_dir, ta); 711 err = logfs_replace_inode(new_dir, new_dentry, &dd, old_inode); 712 if (err) { 713 super->s_rename_dir = 0; 714 super->s_rename_pos = 0; 715 super->s_victim_ino = 0; 716 abort_transaction(new_dir, ta); 717 goto out; 718 } 719 720 /* 3. remove source dd */ 721 ta->state = TARGET_RENAME_2; 722 logfs_add_transaction(old_dir, ta); 723 err = logfs_delete_dd(old_dir, pos); 724 if (!err) 725 err = write_inode(old_dir); 726 LOGFS_BUG_ON(err, old_dir->i_sb); 727 728 /* 4. remove target inode */ 729 ta->state = TARGET_RENAME_3; 730 logfs_add_transaction(new_inode, ta); 731 err = logfs_remove_inode(new_inode); 732 733 out: 734 mutex_unlock(&super->s_dirop_mutex); 735 return err; 736 } 737 738 static int logfs_rename(struct inode *old_dir, struct dentry *old_dentry, 739 struct inode *new_dir, struct dentry *new_dentry) 740 { 741 if (new_dentry->d_inode) 742 return logfs_rename_target(old_dir, old_dentry, 743 new_dir, new_dentry); 744 return logfs_rename_cross(old_dir, old_dentry, new_dir, new_dentry); 745 } 746 747 /* No locking done here, as this is called before .get_sb() returns. */ 748 int logfs_replay_journal(struct super_block *sb) 749 { 750 struct logfs_super *super = logfs_super(sb); 751 struct inode *inode; 752 u64 ino, pos; 753 int err; 754 755 if (super->s_victim_ino) { 756 /* delete victim inode */ 757 ino = super->s_victim_ino; 758 printk(KERN_INFO"LogFS: delete unmapped inode #%llx\n", ino); 759 inode = logfs_iget(sb, ino); 760 if (IS_ERR(inode)) 761 goto fail; 762 763 LOGFS_BUG_ON(i_size_read(inode) > 0, sb); 764 super->s_victim_ino = 0; 765 err = logfs_remove_inode(inode); 766 iput(inode); 767 if (err) { 768 super->s_victim_ino = ino; 769 goto fail; 770 } 771 } 772 if (super->s_rename_dir) { 773 /* delete old dd from rename */ 774 ino = super->s_rename_dir; 775 pos = super->s_rename_pos; 776 printk(KERN_INFO"LogFS: delete unbacked dentry (%llx, %llx)\n", 777 ino, pos); 778 inode = logfs_iget(sb, ino); 779 if (IS_ERR(inode)) 780 goto fail; 781 782 super->s_rename_dir = 0; 783 super->s_rename_pos = 0; 784 err = logfs_delete_dd(inode, pos); 785 iput(inode); 786 if (err) { 787 super->s_rename_dir = ino; 788 super->s_rename_pos = pos; 789 goto fail; 790 } 791 } 792 return 0; 793 fail: 794 LOGFS_BUG(sb); 795 return -EIO; 796 } 797 798 const struct inode_operations logfs_symlink_iops = { 799 .readlink = generic_readlink, 800 .follow_link = page_follow_link_light, 801 }; 802 803 const struct inode_operations logfs_dir_iops = { 804 .create = logfs_create, 805 .link = logfs_link, 806 .lookup = logfs_lookup, 807 .mkdir = logfs_mkdir, 808 .mknod = logfs_mknod, 809 .rename = logfs_rename, 810 .rmdir = logfs_rmdir, 811 .symlink = logfs_symlink, 812 .unlink = logfs_unlink, 813 }; 814 const struct file_operations logfs_dir_fops = { 815 .fsync = logfs_fsync, 816 .unlocked_ioctl = logfs_ioctl, 817 .readdir = logfs_readdir, 818 .read = generic_read_dir, 819 .llseek = default_llseek, 820 }; 821
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.