1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/module.h> 50 51 #include <linux/nfs_fs.h> 52 #include <linux/nfs_page.h> 53 #include <linux/sunrpc/clnt.h> 54 55 #include <asm/uaccess.h> 56 #include <linux/atomic.h> 57 58 #include "internal.h" 59 #include "iostat.h" 60 #include "pnfs.h" 61 62 #define NFSDBG_FACILITY NFSDBG_VFS 63 64 static struct kmem_cache *nfs_direct_cachep; 65 66 /* 67 * This represents a set of asynchronous requests that we're waiting on 68 */ 69 struct nfs_direct_req { 70 struct kref kref; /* release manager */ 71 72 /* I/O parameters */ 73 struct nfs_open_context *ctx; /* file open context info */ 74 struct nfs_lock_context *l_ctx; /* Lock context info */ 75 struct kiocb * iocb; /* controlling i/o request */ 76 struct inode * inode; /* target file of i/o */ 77 78 /* completion state */ 79 atomic_t io_count; /* i/os we're waiting for */ 80 spinlock_t lock; /* protect completion state */ 81 ssize_t count, /* bytes actually processed */ 82 bytes_left, /* bytes left to be sent */ 83 error; /* any reported error */ 84 struct completion completion; /* wait for i/o completion */ 85 86 /* commit state */ 87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 89 struct work_struct work; 90 int flags; 91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 93 struct nfs_writeverf verf; /* unstable write verifier */ 94 }; 95 96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 99 static void nfs_direct_write_schedule_work(struct work_struct *work); 100 101 static inline void get_dreq(struct nfs_direct_req *dreq) 102 { 103 atomic_inc(&dreq->io_count); 104 } 105 106 static inline int put_dreq(struct nfs_direct_req *dreq) 107 { 108 return atomic_dec_and_test(&dreq->io_count); 109 } 110 111 /** 112 * nfs_direct_IO - NFS address space operation for direct I/O 113 * @rw: direction (read or write) 114 * @iocb: target I/O control block 115 * @iov: array of vectors that define I/O buffer 116 * @pos: offset in file to begin the operation 117 * @nr_segs: size of iovec array 118 * 119 * The presence of this routine in the address space ops vector means 120 * the NFS client supports direct I/O. However, for most direct IO, we 121 * shunt off direct read and write requests before the VFS gets them, 122 * so this method is only ever called for swap. 123 */ 124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 125 { 126 struct inode *inode = iocb->ki_filp->f_mapping->host; 127 128 /* we only support swap file calling nfs_direct_IO */ 129 if (!IS_SWAPFILE(inode)) 130 return 0; 131 132 #ifndef CONFIG_NFS_SWAP 133 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n", 134 iocb->ki_filp->f_path.dentry->d_name.name, 135 (long long) pos, nr_segs); 136 137 return -EINVAL; 138 #else 139 VM_BUG_ON(iocb->ki_left != PAGE_SIZE); 140 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE); 141 142 if (rw == READ || rw == KERNEL_READ) 143 return nfs_file_direct_read(iocb, iov, nr_segs, pos, 144 rw == READ ? true : false); 145 return nfs_file_direct_write(iocb, iov, nr_segs, pos, 146 rw == WRITE ? true : false); 147 #endif /* CONFIG_NFS_SWAP */ 148 } 149 150 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 151 { 152 unsigned int i; 153 for (i = 0; i < npages; i++) 154 page_cache_release(pages[i]); 155 } 156 157 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 158 struct nfs_direct_req *dreq) 159 { 160 cinfo->lock = &dreq->lock; 161 cinfo->mds = &dreq->mds_cinfo; 162 cinfo->ds = &dreq->ds_cinfo; 163 cinfo->dreq = dreq; 164 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 165 } 166 167 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 168 { 169 struct nfs_direct_req *dreq; 170 171 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 172 if (!dreq) 173 return NULL; 174 175 kref_init(&dreq->kref); 176 kref_get(&dreq->kref); 177 init_completion(&dreq->completion); 178 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 179 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 180 spin_lock_init(&dreq->lock); 181 182 return dreq; 183 } 184 185 static void nfs_direct_req_free(struct kref *kref) 186 { 187 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 188 189 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo); 190 if (dreq->l_ctx != NULL) 191 nfs_put_lock_context(dreq->l_ctx); 192 if (dreq->ctx != NULL) 193 put_nfs_open_context(dreq->ctx); 194 kmem_cache_free(nfs_direct_cachep, dreq); 195 } 196 197 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 198 { 199 kref_put(&dreq->kref, nfs_direct_req_free); 200 } 201 202 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 203 { 204 return dreq->bytes_left; 205 } 206 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 207 208 /* 209 * Collects and returns the final error value/byte-count. 210 */ 211 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 212 { 213 ssize_t result = -EIOCBQUEUED; 214 215 /* Async requests don't wait here */ 216 if (dreq->iocb) 217 goto out; 218 219 result = wait_for_completion_killable(&dreq->completion); 220 221 if (!result) 222 result = dreq->error; 223 if (!result) 224 result = dreq->count; 225 226 out: 227 return (ssize_t) result; 228 } 229 230 /* 231 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 232 * the iocb is still valid here if this is a synchronous request. 233 */ 234 static void nfs_direct_complete(struct nfs_direct_req *dreq) 235 { 236 if (dreq->iocb) { 237 long res = (long) dreq->error; 238 if (!res) 239 res = (long) dreq->count; 240 aio_complete(dreq->iocb, res, 0); 241 } 242 complete_all(&dreq->completion); 243 244 nfs_direct_req_release(dreq); 245 } 246 247 static void nfs_direct_readpage_release(struct nfs_page *req) 248 { 249 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n", 250 req->wb_context->dentry->d_inode->i_sb->s_id, 251 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 252 req->wb_bytes, 253 (long long)req_offset(req)); 254 nfs_release_request(req); 255 } 256 257 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 258 { 259 unsigned long bytes = 0; 260 struct nfs_direct_req *dreq = hdr->dreq; 261 262 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 263 goto out_put; 264 265 spin_lock(&dreq->lock); 266 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 267 dreq->error = hdr->error; 268 else 269 dreq->count += hdr->good_bytes; 270 spin_unlock(&dreq->lock); 271 272 while (!list_empty(&hdr->pages)) { 273 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 274 struct page *page = req->wb_page; 275 276 if (!PageCompound(page) && bytes < hdr->good_bytes) 277 set_page_dirty(page); 278 bytes += req->wb_bytes; 279 nfs_list_remove_request(req); 280 nfs_direct_readpage_release(req); 281 } 282 out_put: 283 if (put_dreq(dreq)) 284 nfs_direct_complete(dreq); 285 hdr->release(hdr); 286 } 287 288 static void nfs_read_sync_pgio_error(struct list_head *head) 289 { 290 struct nfs_page *req; 291 292 while (!list_empty(head)) { 293 req = nfs_list_entry(head->next); 294 nfs_list_remove_request(req); 295 nfs_release_request(req); 296 } 297 } 298 299 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 300 { 301 get_dreq(hdr->dreq); 302 } 303 304 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 305 .error_cleanup = nfs_read_sync_pgio_error, 306 .init_hdr = nfs_direct_pgio_init, 307 .completion = nfs_direct_read_completion, 308 }; 309 310 /* 311 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 312 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 313 * bail and stop sending more reads. Read length accounting is 314 * handled automatically by nfs_direct_read_result(). Otherwise, if 315 * no requests have been sent, just return an error. 316 */ 317 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 318 const struct iovec *iov, 319 loff_t pos, bool uio) 320 { 321 struct nfs_direct_req *dreq = desc->pg_dreq; 322 struct nfs_open_context *ctx = dreq->ctx; 323 struct inode *inode = ctx->dentry->d_inode; 324 unsigned long user_addr = (unsigned long)iov->iov_base; 325 size_t count = iov->iov_len; 326 size_t rsize = NFS_SERVER(inode)->rsize; 327 unsigned int pgbase; 328 int result; 329 ssize_t started = 0; 330 struct page **pagevec = NULL; 331 unsigned int npages; 332 333 do { 334 size_t bytes; 335 int i; 336 337 pgbase = user_addr & ~PAGE_MASK; 338 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 339 340 result = -ENOMEM; 341 npages = nfs_page_array_len(pgbase, bytes); 342 if (!pagevec) 343 pagevec = kmalloc(npages * sizeof(struct page *), 344 GFP_KERNEL); 345 if (!pagevec) 346 break; 347 if (uio) { 348 down_read(¤t->mm->mmap_sem); 349 result = get_user_pages(current, current->mm, user_addr, 350 npages, 1, 0, pagevec, NULL); 351 up_read(¤t->mm->mmap_sem); 352 if (result < 0) 353 break; 354 } else { 355 WARN_ON(npages != 1); 356 result = get_kernel_page(user_addr, 1, pagevec); 357 if (WARN_ON(result != 1)) 358 break; 359 } 360 361 if ((unsigned)result < npages) { 362 bytes = result * PAGE_SIZE; 363 if (bytes <= pgbase) { 364 nfs_direct_release_pages(pagevec, result); 365 break; 366 } 367 bytes -= pgbase; 368 npages = result; 369 } 370 371 for (i = 0; i < npages; i++) { 372 struct nfs_page *req; 373 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 374 /* XXX do we need to do the eof zeroing found in async_filler? */ 375 req = nfs_create_request(dreq->ctx, dreq->inode, 376 pagevec[i], 377 pgbase, req_len); 378 if (IS_ERR(req)) { 379 result = PTR_ERR(req); 380 break; 381 } 382 req->wb_index = pos >> PAGE_SHIFT; 383 req->wb_offset = pos & ~PAGE_MASK; 384 if (!nfs_pageio_add_request(desc, req)) { 385 result = desc->pg_error; 386 nfs_release_request(req); 387 break; 388 } 389 pgbase = 0; 390 bytes -= req_len; 391 started += req_len; 392 user_addr += req_len; 393 pos += req_len; 394 count -= req_len; 395 dreq->bytes_left -= req_len; 396 } 397 /* The nfs_page now hold references to these pages */ 398 nfs_direct_release_pages(pagevec, npages); 399 } while (count != 0 && result >= 0); 400 401 kfree(pagevec); 402 403 if (started) 404 return started; 405 return result < 0 ? (ssize_t) result : -EFAULT; 406 } 407 408 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 409 const struct iovec *iov, 410 unsigned long nr_segs, 411 loff_t pos, bool uio) 412 { 413 struct nfs_pageio_descriptor desc; 414 ssize_t result = -EINVAL; 415 size_t requested_bytes = 0; 416 unsigned long seg; 417 418 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode, 419 &nfs_direct_read_completion_ops); 420 get_dreq(dreq); 421 desc.pg_dreq = dreq; 422 423 for (seg = 0; seg < nr_segs; seg++) { 424 const struct iovec *vec = &iov[seg]; 425 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio); 426 if (result < 0) 427 break; 428 requested_bytes += result; 429 if ((size_t)result < vec->iov_len) 430 break; 431 pos += vec->iov_len; 432 } 433 434 nfs_pageio_complete(&desc); 435 436 /* 437 * If no bytes were started, return the error, and let the 438 * generic layer handle the completion. 439 */ 440 if (requested_bytes == 0) { 441 nfs_direct_req_release(dreq); 442 return result < 0 ? result : -EIO; 443 } 444 445 if (put_dreq(dreq)) 446 nfs_direct_complete(dreq); 447 return 0; 448 } 449 450 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov, 451 unsigned long nr_segs, loff_t pos, bool uio) 452 { 453 ssize_t result = -ENOMEM; 454 struct inode *inode = iocb->ki_filp->f_mapping->host; 455 struct nfs_direct_req *dreq; 456 struct nfs_lock_context *l_ctx; 457 458 dreq = nfs_direct_req_alloc(); 459 if (dreq == NULL) 460 goto out; 461 462 dreq->inode = inode; 463 dreq->bytes_left = iov_length(iov, nr_segs); 464 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 465 l_ctx = nfs_get_lock_context(dreq->ctx); 466 if (IS_ERR(l_ctx)) { 467 result = PTR_ERR(l_ctx); 468 goto out_release; 469 } 470 dreq->l_ctx = l_ctx; 471 if (!is_sync_kiocb(iocb)) 472 dreq->iocb = iocb; 473 474 NFS_I(inode)->read_io += iov_length(iov, nr_segs); 475 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio); 476 if (!result) 477 result = nfs_direct_wait(dreq); 478 out_release: 479 nfs_direct_req_release(dreq); 480 out: 481 return result; 482 } 483 484 static void nfs_inode_dio_write_done(struct inode *inode) 485 { 486 nfs_zap_mapping(inode, inode->i_mapping); 487 inode_dio_done(inode); 488 } 489 490 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 491 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 492 { 493 struct nfs_pageio_descriptor desc; 494 struct nfs_page *req, *tmp; 495 LIST_HEAD(reqs); 496 struct nfs_commit_info cinfo; 497 LIST_HEAD(failed); 498 499 nfs_init_cinfo_from_dreq(&cinfo, dreq); 500 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 501 spin_lock(cinfo.lock); 502 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 503 spin_unlock(cinfo.lock); 504 505 dreq->count = 0; 506 get_dreq(dreq); 507 508 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE, 509 &nfs_direct_write_completion_ops); 510 desc.pg_dreq = dreq; 511 512 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 513 if (!nfs_pageio_add_request(&desc, req)) { 514 nfs_list_remove_request(req); 515 nfs_list_add_request(req, &failed); 516 spin_lock(cinfo.lock); 517 dreq->flags = 0; 518 dreq->error = -EIO; 519 spin_unlock(cinfo.lock); 520 } 521 nfs_release_request(req); 522 } 523 nfs_pageio_complete(&desc); 524 525 while (!list_empty(&failed)) { 526 req = nfs_list_entry(failed.next); 527 nfs_list_remove_request(req); 528 nfs_unlock_and_release_request(req); 529 } 530 531 if (put_dreq(dreq)) 532 nfs_direct_write_complete(dreq, dreq->inode); 533 } 534 535 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 536 { 537 struct nfs_direct_req *dreq = data->dreq; 538 struct nfs_commit_info cinfo; 539 struct nfs_page *req; 540 int status = data->task.tk_status; 541 542 nfs_init_cinfo_from_dreq(&cinfo, dreq); 543 if (status < 0) { 544 dprintk("NFS: %5u commit failed with error %d.\n", 545 data->task.tk_pid, status); 546 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 547 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 548 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 549 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 550 } 551 552 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 553 while (!list_empty(&data->pages)) { 554 req = nfs_list_entry(data->pages.next); 555 nfs_list_remove_request(req); 556 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 557 /* Note the rewrite will go through mds */ 558 nfs_mark_request_commit(req, NULL, &cinfo); 559 } else 560 nfs_release_request(req); 561 nfs_unlock_and_release_request(req); 562 } 563 564 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 565 nfs_direct_write_complete(dreq, data->inode); 566 } 567 568 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 569 { 570 /* There is no lock to clear */ 571 } 572 573 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 574 .completion = nfs_direct_commit_complete, 575 .error_cleanup = nfs_direct_error_cleanup, 576 }; 577 578 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 579 { 580 int res; 581 struct nfs_commit_info cinfo; 582 LIST_HEAD(mds_list); 583 584 nfs_init_cinfo_from_dreq(&cinfo, dreq); 585 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 586 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 587 if (res < 0) /* res == -ENOMEM */ 588 nfs_direct_write_reschedule(dreq); 589 } 590 591 static void nfs_direct_write_schedule_work(struct work_struct *work) 592 { 593 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 594 int flags = dreq->flags; 595 596 dreq->flags = 0; 597 switch (flags) { 598 case NFS_ODIRECT_DO_COMMIT: 599 nfs_direct_commit_schedule(dreq); 600 break; 601 case NFS_ODIRECT_RESCHED_WRITES: 602 nfs_direct_write_reschedule(dreq); 603 break; 604 default: 605 nfs_inode_dio_write_done(dreq->inode); 606 nfs_direct_complete(dreq); 607 } 608 } 609 610 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 611 { 612 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 613 } 614 615 #else 616 static void nfs_direct_write_schedule_work(struct work_struct *work) 617 { 618 } 619 620 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 621 { 622 nfs_inode_dio_write_done(inode); 623 nfs_direct_complete(dreq); 624 } 625 #endif 626 627 /* 628 * NB: Return the value of the first error return code. Subsequent 629 * errors after the first one are ignored. 630 */ 631 /* 632 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 633 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 634 * bail and stop sending more writes. Write length accounting is 635 * handled automatically by nfs_direct_write_result(). Otherwise, if 636 * no requests have been sent, just return an error. 637 */ 638 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 639 const struct iovec *iov, 640 loff_t pos, bool uio) 641 { 642 struct nfs_direct_req *dreq = desc->pg_dreq; 643 struct nfs_open_context *ctx = dreq->ctx; 644 struct inode *inode = ctx->dentry->d_inode; 645 unsigned long user_addr = (unsigned long)iov->iov_base; 646 size_t count = iov->iov_len; 647 size_t wsize = NFS_SERVER(inode)->wsize; 648 unsigned int pgbase; 649 int result; 650 ssize_t started = 0; 651 struct page **pagevec = NULL; 652 unsigned int npages; 653 654 do { 655 size_t bytes; 656 int i; 657 658 pgbase = user_addr & ~PAGE_MASK; 659 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 660 661 result = -ENOMEM; 662 npages = nfs_page_array_len(pgbase, bytes); 663 if (!pagevec) 664 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 665 if (!pagevec) 666 break; 667 668 if (uio) { 669 down_read(¤t->mm->mmap_sem); 670 result = get_user_pages(current, current->mm, user_addr, 671 npages, 0, 0, pagevec, NULL); 672 up_read(¤t->mm->mmap_sem); 673 if (result < 0) 674 break; 675 } else { 676 WARN_ON(npages != 1); 677 result = get_kernel_page(user_addr, 0, pagevec); 678 if (WARN_ON(result != 1)) 679 break; 680 } 681 682 if ((unsigned)result < npages) { 683 bytes = result * PAGE_SIZE; 684 if (bytes <= pgbase) { 685 nfs_direct_release_pages(pagevec, result); 686 break; 687 } 688 bytes -= pgbase; 689 npages = result; 690 } 691 692 for (i = 0; i < npages; i++) { 693 struct nfs_page *req; 694 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 695 696 req = nfs_create_request(dreq->ctx, dreq->inode, 697 pagevec[i], 698 pgbase, req_len); 699 if (IS_ERR(req)) { 700 result = PTR_ERR(req); 701 break; 702 } 703 nfs_lock_request(req); 704 req->wb_index = pos >> PAGE_SHIFT; 705 req->wb_offset = pos & ~PAGE_MASK; 706 if (!nfs_pageio_add_request(desc, req)) { 707 result = desc->pg_error; 708 nfs_unlock_and_release_request(req); 709 break; 710 } 711 pgbase = 0; 712 bytes -= req_len; 713 started += req_len; 714 user_addr += req_len; 715 pos += req_len; 716 count -= req_len; 717 dreq->bytes_left -= req_len; 718 } 719 /* The nfs_page now hold references to these pages */ 720 nfs_direct_release_pages(pagevec, npages); 721 } while (count != 0 && result >= 0); 722 723 kfree(pagevec); 724 725 if (started) 726 return started; 727 return result < 0 ? (ssize_t) result : -EFAULT; 728 } 729 730 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 731 { 732 struct nfs_direct_req *dreq = hdr->dreq; 733 struct nfs_commit_info cinfo; 734 int bit = -1; 735 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 736 737 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 738 goto out_put; 739 740 nfs_init_cinfo_from_dreq(&cinfo, dreq); 741 742 spin_lock(&dreq->lock); 743 744 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 745 dreq->flags = 0; 746 dreq->error = hdr->error; 747 } 748 if (dreq->error != 0) 749 bit = NFS_IOHDR_ERROR; 750 else { 751 dreq->count += hdr->good_bytes; 752 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 753 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 754 bit = NFS_IOHDR_NEED_RESCHED; 755 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 756 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 757 bit = NFS_IOHDR_NEED_RESCHED; 758 else if (dreq->flags == 0) { 759 memcpy(&dreq->verf, hdr->verf, 760 sizeof(dreq->verf)); 761 bit = NFS_IOHDR_NEED_COMMIT; 762 dreq->flags = NFS_ODIRECT_DO_COMMIT; 763 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 764 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) { 765 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 766 bit = NFS_IOHDR_NEED_RESCHED; 767 } else 768 bit = NFS_IOHDR_NEED_COMMIT; 769 } 770 } 771 } 772 spin_unlock(&dreq->lock); 773 774 while (!list_empty(&hdr->pages)) { 775 req = nfs_list_entry(hdr->pages.next); 776 nfs_list_remove_request(req); 777 switch (bit) { 778 case NFS_IOHDR_NEED_RESCHED: 779 case NFS_IOHDR_NEED_COMMIT: 780 kref_get(&req->wb_kref); 781 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 782 } 783 nfs_unlock_and_release_request(req); 784 } 785 786 out_put: 787 if (put_dreq(dreq)) 788 nfs_direct_write_complete(dreq, hdr->inode); 789 hdr->release(hdr); 790 } 791 792 static void nfs_write_sync_pgio_error(struct list_head *head) 793 { 794 struct nfs_page *req; 795 796 while (!list_empty(head)) { 797 req = nfs_list_entry(head->next); 798 nfs_list_remove_request(req); 799 nfs_unlock_and_release_request(req); 800 } 801 } 802 803 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 804 .error_cleanup = nfs_write_sync_pgio_error, 805 .init_hdr = nfs_direct_pgio_init, 806 .completion = nfs_direct_write_completion, 807 }; 808 809 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 810 const struct iovec *iov, 811 unsigned long nr_segs, 812 loff_t pos, bool uio) 813 { 814 struct nfs_pageio_descriptor desc; 815 struct inode *inode = dreq->inode; 816 ssize_t result = 0; 817 size_t requested_bytes = 0; 818 unsigned long seg; 819 820 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE, 821 &nfs_direct_write_completion_ops); 822 desc.pg_dreq = dreq; 823 get_dreq(dreq); 824 atomic_inc(&inode->i_dio_count); 825 826 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs); 827 for (seg = 0; seg < nr_segs; seg++) { 828 const struct iovec *vec = &iov[seg]; 829 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio); 830 if (result < 0) 831 break; 832 requested_bytes += result; 833 if ((size_t)result < vec->iov_len) 834 break; 835 pos += vec->iov_len; 836 } 837 nfs_pageio_complete(&desc); 838 839 /* 840 * If no bytes were started, return the error, and let the 841 * generic layer handle the completion. 842 */ 843 if (requested_bytes == 0) { 844 inode_dio_done(inode); 845 nfs_direct_req_release(dreq); 846 return result < 0 ? result : -EIO; 847 } 848 849 if (put_dreq(dreq)) 850 nfs_direct_write_complete(dreq, dreq->inode); 851 return 0; 852 } 853 854 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov, 855 unsigned long nr_segs, loff_t pos, 856 size_t count, bool uio) 857 { 858 ssize_t result = -ENOMEM; 859 struct inode *inode = iocb->ki_filp->f_mapping->host; 860 struct nfs_direct_req *dreq; 861 struct nfs_lock_context *l_ctx; 862 863 dreq = nfs_direct_req_alloc(); 864 if (!dreq) 865 goto out; 866 867 dreq->inode = inode; 868 dreq->bytes_left = count; 869 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 870 l_ctx = nfs_get_lock_context(dreq->ctx); 871 if (IS_ERR(l_ctx)) { 872 result = PTR_ERR(l_ctx); 873 goto out_release; 874 } 875 dreq->l_ctx = l_ctx; 876 if (!is_sync_kiocb(iocb)) 877 dreq->iocb = iocb; 878 879 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio); 880 if (!result) 881 result = nfs_direct_wait(dreq); 882 out_release: 883 nfs_direct_req_release(dreq); 884 out: 885 return result; 886 } 887 888 /** 889 * nfs_file_direct_read - file direct read operation for NFS files 890 * @iocb: target I/O control block 891 * @iov: vector of user buffers into which to read data 892 * @nr_segs: size of iov vector 893 * @pos: byte offset in file where reading starts 894 * 895 * We use this function for direct reads instead of calling 896 * generic_file_aio_read() in order to avoid gfar's check to see if 897 * the request starts before the end of the file. For that check 898 * to work, we must generate a GETATTR before each direct read, and 899 * even then there is a window between the GETATTR and the subsequent 900 * READ where the file size could change. Our preference is simply 901 * to do all reads the application wants, and the server will take 902 * care of managing the end of file boundary. 903 * 904 * This function also eliminates unnecessarily updating the file's 905 * atime locally, as the NFS server sets the file's atime, and this 906 * client must read the updated atime from the server back into its 907 * cache. 908 */ 909 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov, 910 unsigned long nr_segs, loff_t pos, bool uio) 911 { 912 ssize_t retval = -EINVAL; 913 struct file *file = iocb->ki_filp; 914 struct address_space *mapping = file->f_mapping; 915 size_t count; 916 917 count = iov_length(iov, nr_segs); 918 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 919 920 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n", 921 file->f_path.dentry->d_parent->d_name.name, 922 file->f_path.dentry->d_name.name, 923 count, (long long) pos); 924 925 retval = 0; 926 if (!count) 927 goto out; 928 929 retval = nfs_sync_mapping(mapping); 930 if (retval) 931 goto out; 932 933 task_io_account_read(count); 934 935 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio); 936 if (retval > 0) 937 iocb->ki_pos = pos + retval; 938 939 out: 940 return retval; 941 } 942 943 /** 944 * nfs_file_direct_write - file direct write operation for NFS files 945 * @iocb: target I/O control block 946 * @iov: vector of user buffers from which to write data 947 * @nr_segs: size of iov vector 948 * @pos: byte offset in file where writing starts 949 * 950 * We use this function for direct writes instead of calling 951 * generic_file_aio_write() in order to avoid taking the inode 952 * semaphore and updating the i_size. The NFS server will set 953 * the new i_size and this client must read the updated size 954 * back into its cache. We let the server do generic write 955 * parameter checking and report problems. 956 * 957 * We eliminate local atime updates, see direct read above. 958 * 959 * We avoid unnecessary page cache invalidations for normal cached 960 * readers of this file. 961 * 962 * Note that O_APPEND is not supported for NFS direct writes, as there 963 * is no atomic O_APPEND write facility in the NFS protocol. 964 */ 965 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 966 unsigned long nr_segs, loff_t pos, bool uio) 967 { 968 ssize_t retval = -EINVAL; 969 struct file *file = iocb->ki_filp; 970 struct address_space *mapping = file->f_mapping; 971 size_t count; 972 973 count = iov_length(iov, nr_segs); 974 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 975 976 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n", 977 file->f_path.dentry->d_parent->d_name.name, 978 file->f_path.dentry->d_name.name, 979 count, (long long) pos); 980 981 retval = generic_write_checks(file, &pos, &count, 0); 982 if (retval) 983 goto out; 984 985 retval = -EINVAL; 986 if ((ssize_t) count < 0) 987 goto out; 988 retval = 0; 989 if (!count) 990 goto out; 991 992 retval = nfs_sync_mapping(mapping); 993 if (retval) 994 goto out; 995 996 task_io_account_write(count); 997 998 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio); 999 if (retval > 0) { 1000 struct inode *inode = mapping->host; 1001 1002 iocb->ki_pos = pos + retval; 1003 spin_lock(&inode->i_lock); 1004 if (i_size_read(inode) < iocb->ki_pos) 1005 i_size_write(inode, iocb->ki_pos); 1006 spin_unlock(&inode->i_lock); 1007 } 1008 out: 1009 return retval; 1010 } 1011 1012 /** 1013 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1014 * 1015 */ 1016 int __init nfs_init_directcache(void) 1017 { 1018 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1019 sizeof(struct nfs_direct_req), 1020 0, (SLAB_RECLAIM_ACCOUNT| 1021 SLAB_MEM_SPREAD), 1022 NULL); 1023 if (nfs_direct_cachep == NULL) 1024 return -ENOMEM; 1025 1026 return 0; 1027 } 1028 1029 /** 1030 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1031 * 1032 */ 1033 void nfs_destroy_directcache(void) 1034 { 1035 kmem_cache_destroy(nfs_direct_cachep); 1036 } 1037
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.