~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ocfs2/file.c

Version: ~ [ linux-5.10-rc5 ] ~ [ linux-5.9.10 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.79 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.159 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.208 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.245 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.245 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /* -*- mode: c; c-basic-offset: 8; -*-
  3  * vim: noexpandtab sw=8 ts=8 sts=0:
  4  *
  5  * file.c
  6  *
  7  * File open, close, extend, truncate
  8  *
  9  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
 10  */
 11 
 12 #include <linux/capability.h>
 13 #include <linux/fs.h>
 14 #include <linux/types.h>
 15 #include <linux/slab.h>
 16 #include <linux/highmem.h>
 17 #include <linux/pagemap.h>
 18 #include <linux/uio.h>
 19 #include <linux/sched.h>
 20 #include <linux/splice.h>
 21 #include <linux/mount.h>
 22 #include <linux/writeback.h>
 23 #include <linux/falloc.h>
 24 #include <linux/quotaops.h>
 25 #include <linux/blkdev.h>
 26 #include <linux/backing-dev.h>
 27 
 28 #include <cluster/masklog.h>
 29 
 30 #include "ocfs2.h"
 31 
 32 #include "alloc.h"
 33 #include "aops.h"
 34 #include "dir.h"
 35 #include "dlmglue.h"
 36 #include "extent_map.h"
 37 #include "file.h"
 38 #include "sysfile.h"
 39 #include "inode.h"
 40 #include "ioctl.h"
 41 #include "journal.h"
 42 #include "locks.h"
 43 #include "mmap.h"
 44 #include "suballoc.h"
 45 #include "super.h"
 46 #include "xattr.h"
 47 #include "acl.h"
 48 #include "quota.h"
 49 #include "refcounttree.h"
 50 #include "ocfs2_trace.h"
 51 
 52 #include "buffer_head_io.h"
 53 
 54 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
 55 {
 56         struct ocfs2_file_private *fp;
 57 
 58         fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
 59         if (!fp)
 60                 return -ENOMEM;
 61 
 62         fp->fp_file = file;
 63         mutex_init(&fp->fp_mutex);
 64         ocfs2_file_lock_res_init(&fp->fp_flock, fp);
 65         file->private_data = fp;
 66 
 67         return 0;
 68 }
 69 
 70 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
 71 {
 72         struct ocfs2_file_private *fp = file->private_data;
 73         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 74 
 75         if (fp) {
 76                 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
 77                 ocfs2_lock_res_free(&fp->fp_flock);
 78                 kfree(fp);
 79                 file->private_data = NULL;
 80         }
 81 }
 82 
 83 static int ocfs2_file_open(struct inode *inode, struct file *file)
 84 {
 85         int status;
 86         int mode = file->f_flags;
 87         struct ocfs2_inode_info *oi = OCFS2_I(inode);
 88 
 89         trace_ocfs2_file_open(inode, file, file->f_path.dentry,
 90                               (unsigned long long)oi->ip_blkno,
 91                               file->f_path.dentry->d_name.len,
 92                               file->f_path.dentry->d_name.name, mode);
 93 
 94         if (file->f_mode & FMODE_WRITE) {
 95                 status = dquot_initialize(inode);
 96                 if (status)
 97                         goto leave;
 98         }
 99 
100         spin_lock(&oi->ip_lock);
101 
102         /* Check that the inode hasn't been wiped from disk by another
103          * node. If it hasn't then we're safe as long as we hold the
104          * spin lock until our increment of open count. */
105         if (oi->ip_flags & OCFS2_INODE_DELETED) {
106                 spin_unlock(&oi->ip_lock);
107 
108                 status = -ENOENT;
109                 goto leave;
110         }
111 
112         if (mode & O_DIRECT)
113                 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
114 
115         oi->ip_open_count++;
116         spin_unlock(&oi->ip_lock);
117 
118         status = ocfs2_init_file_private(inode, file);
119         if (status) {
120                 /*
121                  * We want to set open count back if we're failing the
122                  * open.
123                  */
124                 spin_lock(&oi->ip_lock);
125                 oi->ip_open_count--;
126                 spin_unlock(&oi->ip_lock);
127         }
128 
129         file->f_mode |= FMODE_NOWAIT;
130 
131 leave:
132         return status;
133 }
134 
135 static int ocfs2_file_release(struct inode *inode, struct file *file)
136 {
137         struct ocfs2_inode_info *oi = OCFS2_I(inode);
138 
139         spin_lock(&oi->ip_lock);
140         if (!--oi->ip_open_count)
141                 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
142 
143         trace_ocfs2_file_release(inode, file, file->f_path.dentry,
144                                  oi->ip_blkno,
145                                  file->f_path.dentry->d_name.len,
146                                  file->f_path.dentry->d_name.name,
147                                  oi->ip_open_count);
148         spin_unlock(&oi->ip_lock);
149 
150         ocfs2_free_file_private(inode, file);
151 
152         return 0;
153 }
154 
155 static int ocfs2_dir_open(struct inode *inode, struct file *file)
156 {
157         return ocfs2_init_file_private(inode, file);
158 }
159 
160 static int ocfs2_dir_release(struct inode *inode, struct file *file)
161 {
162         ocfs2_free_file_private(inode, file);
163         return 0;
164 }
165 
166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
167                            int datasync)
168 {
169         int err = 0;
170         struct inode *inode = file->f_mapping->host;
171         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
172         struct ocfs2_inode_info *oi = OCFS2_I(inode);
173         journal_t *journal = osb->journal->j_journal;
174         int ret;
175         tid_t commit_tid;
176         bool needs_barrier = false;
177 
178         trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
179                               oi->ip_blkno,
180                               file->f_path.dentry->d_name.len,
181                               file->f_path.dentry->d_name.name,
182                               (unsigned long long)datasync);
183 
184         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
185                 return -EROFS;
186 
187         err = file_write_and_wait_range(file, start, end);
188         if (err)
189                 return err;
190 
191         commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
192         if (journal->j_flags & JBD2_BARRIER &&
193             !jbd2_trans_will_send_data_barrier(journal, commit_tid))
194                 needs_barrier = true;
195         err = jbd2_complete_transaction(journal, commit_tid);
196         if (needs_barrier) {
197                 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
198                 if (!err)
199                         err = ret;
200         }
201 
202         if (err)
203                 mlog_errno(err);
204 
205         return (err < 0) ? -EIO : 0;
206 }
207 
208 int ocfs2_should_update_atime(struct inode *inode,
209                               struct vfsmount *vfsmnt)
210 {
211         struct timespec64 now;
212         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
213 
214         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
215                 return 0;
216 
217         if ((inode->i_flags & S_NOATIME) ||
218             ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
219                 return 0;
220 
221         /*
222          * We can be called with no vfsmnt structure - NFSD will
223          * sometimes do this.
224          *
225          * Note that our action here is different than touch_atime() -
226          * if we can't tell whether this is a noatime mount, then we
227          * don't know whether to trust the value of s_atime_quantum.
228          */
229         if (vfsmnt == NULL)
230                 return 0;
231 
232         if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
233             ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
234                 return 0;
235 
236         if (vfsmnt->mnt_flags & MNT_RELATIME) {
237                 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238                     (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
239                         return 1;
240 
241                 return 0;
242         }
243 
244         now = current_time(inode);
245         if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
246                 return 0;
247         else
248                 return 1;
249 }
250 
251 int ocfs2_update_inode_atime(struct inode *inode,
252                              struct buffer_head *bh)
253 {
254         int ret;
255         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
256         handle_t *handle;
257         struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258 
259         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260         if (IS_ERR(handle)) {
261                 ret = PTR_ERR(handle);
262                 mlog_errno(ret);
263                 goto out;
264         }
265 
266         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267                                       OCFS2_JOURNAL_ACCESS_WRITE);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out_commit;
271         }
272 
273         /*
274          * Don't use ocfs2_mark_inode_dirty() here as we don't always
275          * have i_mutex to guard against concurrent changes to other
276          * inode fields.
277          */
278         inode->i_atime = current_time(inode);
279         di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280         di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281         ocfs2_update_inode_fsync_trans(handle, inode, 0);
282         ocfs2_journal_dirty(handle, bh);
283 
284 out_commit:
285         ocfs2_commit_trans(osb, handle);
286 out:
287         return ret;
288 }
289 
290 int ocfs2_set_inode_size(handle_t *handle,
291                                 struct inode *inode,
292                                 struct buffer_head *fe_bh,
293                                 u64 new_i_size)
294 {
295         int status;
296 
297         i_size_write(inode, new_i_size);
298         inode->i_blocks = ocfs2_inode_sector_count(inode);
299         inode->i_ctime = inode->i_mtime = current_time(inode);
300 
301         status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
302         if (status < 0) {
303                 mlog_errno(status);
304                 goto bail;
305         }
306 
307 bail:
308         return status;
309 }
310 
311 int ocfs2_simple_size_update(struct inode *inode,
312                              struct buffer_head *di_bh,
313                              u64 new_i_size)
314 {
315         int ret;
316         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317         handle_t *handle = NULL;
318 
319         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320         if (IS_ERR(handle)) {
321                 ret = PTR_ERR(handle);
322                 mlog_errno(ret);
323                 goto out;
324         }
325 
326         ret = ocfs2_set_inode_size(handle, inode, di_bh,
327                                    new_i_size);
328         if (ret < 0)
329                 mlog_errno(ret);
330 
331         ocfs2_update_inode_fsync_trans(handle, inode, 0);
332         ocfs2_commit_trans(osb, handle);
333 out:
334         return ret;
335 }
336 
337 static int ocfs2_cow_file_pos(struct inode *inode,
338                               struct buffer_head *fe_bh,
339                               u64 offset)
340 {
341         int status;
342         u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343         unsigned int num_clusters = 0;
344         unsigned int ext_flags = 0;
345 
346         /*
347          * If the new offset is aligned to the range of the cluster, there is
348          * no space for ocfs2_zero_range_for_truncate to fill, so no need to
349          * CoW either.
350          */
351         if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
352                 return 0;
353 
354         status = ocfs2_get_clusters(inode, cpos, &phys,
355                                     &num_clusters, &ext_flags);
356         if (status) {
357                 mlog_errno(status);
358                 goto out;
359         }
360 
361         if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
362                 goto out;
363 
364         return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
365 
366 out:
367         return status;
368 }
369 
370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
371                                      struct inode *inode,
372                                      struct buffer_head *fe_bh,
373                                      u64 new_i_size)
374 {
375         int status;
376         handle_t *handle;
377         struct ocfs2_dinode *di;
378         u64 cluster_bytes;
379 
380         /*
381          * We need to CoW the cluster contains the offset if it is reflinked
382          * since we will call ocfs2_zero_range_for_truncate later which will
383          * write "" from offset to the end of the cluster.
384          */
385         status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386         if (status) {
387                 mlog_errno(status);
388                 return status;
389         }
390 
391         /* TODO: This needs to actually orphan the inode in this
392          * transaction. */
393 
394         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395         if (IS_ERR(handle)) {
396                 status = PTR_ERR(handle);
397                 mlog_errno(status);
398                 goto out;
399         }
400 
401         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402                                          OCFS2_JOURNAL_ACCESS_WRITE);
403         if (status < 0) {
404                 mlog_errno(status);
405                 goto out_commit;
406         }
407 
408         /*
409          * Do this before setting i_size.
410          */
411         cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412         status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413                                                cluster_bytes);
414         if (status) {
415                 mlog_errno(status);
416                 goto out_commit;
417         }
418 
419         i_size_write(inode, new_i_size);
420         inode->i_ctime = inode->i_mtime = current_time(inode);
421 
422         di = (struct ocfs2_dinode *) fe_bh->b_data;
423         di->i_size = cpu_to_le64(new_i_size);
424         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
425         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
426         ocfs2_update_inode_fsync_trans(handle, inode, 0);
427 
428         ocfs2_journal_dirty(handle, fe_bh);
429 
430 out_commit:
431         ocfs2_commit_trans(osb, handle);
432 out:
433         return status;
434 }
435 
436 int ocfs2_truncate_file(struct inode *inode,
437                                struct buffer_head *di_bh,
438                                u64 new_i_size)
439 {
440         int status = 0;
441         struct ocfs2_dinode *fe = NULL;
442         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
443 
444         /* We trust di_bh because it comes from ocfs2_inode_lock(), which
445          * already validated it */
446         fe = (struct ocfs2_dinode *) di_bh->b_data;
447 
448         trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449                                   (unsigned long long)le64_to_cpu(fe->i_size),
450                                   (unsigned long long)new_i_size);
451 
452         mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453                         "Inode %llu, inode i_size = %lld != di "
454                         "i_size = %llu, i_flags = 0x%x\n",
455                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
456                         i_size_read(inode),
457                         (unsigned long long)le64_to_cpu(fe->i_size),
458                         le32_to_cpu(fe->i_flags));
459 
460         if (new_i_size > le64_to_cpu(fe->i_size)) {
461                 trace_ocfs2_truncate_file_error(
462                         (unsigned long long)le64_to_cpu(fe->i_size),
463                         (unsigned long long)new_i_size);
464                 status = -EINVAL;
465                 mlog_errno(status);
466                 goto bail;
467         }
468 
469         down_write(&OCFS2_I(inode)->ip_alloc_sem);
470 
471         ocfs2_resv_discard(&osb->osb_la_resmap,
472                            &OCFS2_I(inode)->ip_la_data_resv);
473 
474         /*
475          * The inode lock forced other nodes to sync and drop their
476          * pages, which (correctly) happens even if we have a truncate
477          * without allocation change - ocfs2 cluster sizes can be much
478          * greater than page size, so we have to truncate them
479          * anyway.
480          */
481         unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
482         truncate_inode_pages(inode->i_mapping, new_i_size);
483 
484         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485                 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
486                                                i_size_read(inode), 1);
487                 if (status)
488                         mlog_errno(status);
489 
490                 goto bail_unlock_sem;
491         }
492 
493         /* alright, we're going to need to do a full blown alloc size
494          * change. Orphan the inode so that recovery can complete the
495          * truncate if necessary. This does the task of marking
496          * i_size. */
497         status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
498         if (status < 0) {
499                 mlog_errno(status);
500                 goto bail_unlock_sem;
501         }
502 
503         status = ocfs2_commit_truncate(osb, inode, di_bh);
504         if (status < 0) {
505                 mlog_errno(status);
506                 goto bail_unlock_sem;
507         }
508 
509         /* TODO: orphan dir cleanup here. */
510 bail_unlock_sem:
511         up_write(&OCFS2_I(inode)->ip_alloc_sem);
512 
513 bail:
514         if (!status && OCFS2_I(inode)->ip_clusters == 0)
515                 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
516 
517         return status;
518 }
519 
520 /*
521  * extend file allocation only here.
522  * we'll update all the disk stuff, and oip->alloc_size
523  *
524  * expect stuff to be locked, a transaction started and enough data /
525  * metadata reservations in the contexts.
526  *
527  * Will return -EAGAIN, and a reason if a restart is needed.
528  * If passed in, *reason will always be set, even in error.
529  */
530 int ocfs2_add_inode_data(struct ocfs2_super *osb,
531                          struct inode *inode,
532                          u32 *logical_offset,
533                          u32 clusters_to_add,
534                          int mark_unwritten,
535                          struct buffer_head *fe_bh,
536                          handle_t *handle,
537                          struct ocfs2_alloc_context *data_ac,
538                          struct ocfs2_alloc_context *meta_ac,
539                          enum ocfs2_alloc_restarted *reason_ret)
540 {
541         int ret;
542         struct ocfs2_extent_tree et;
543 
544         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
545         ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
546                                           clusters_to_add, mark_unwritten,
547                                           data_ac, meta_ac, reason_ret);
548 
549         return ret;
550 }
551 
552 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
553                                    u32 clusters_to_add, int mark_unwritten)
554 {
555         int status = 0;
556         int restart_func = 0;
557         int credits;
558         u32 prev_clusters;
559         struct buffer_head *bh = NULL;
560         struct ocfs2_dinode *fe = NULL;
561         handle_t *handle = NULL;
562         struct ocfs2_alloc_context *data_ac = NULL;
563         struct ocfs2_alloc_context *meta_ac = NULL;
564         enum ocfs2_alloc_restarted why = RESTART_NONE;
565         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
566         struct ocfs2_extent_tree et;
567         int did_quota = 0;
568 
569         /*
570          * Unwritten extent only exists for file systems which
571          * support holes.
572          */
573         BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
574 
575         status = ocfs2_read_inode_block(inode, &bh);
576         if (status < 0) {
577                 mlog_errno(status);
578                 goto leave;
579         }
580         fe = (struct ocfs2_dinode *) bh->b_data;
581 
582 restart_all:
583         BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
584 
585         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
586         status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
587                                        &data_ac, &meta_ac);
588         if (status) {
589                 mlog_errno(status);
590                 goto leave;
591         }
592 
593         credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
594         handle = ocfs2_start_trans(osb, credits);
595         if (IS_ERR(handle)) {
596                 status = PTR_ERR(handle);
597                 handle = NULL;
598                 mlog_errno(status);
599                 goto leave;
600         }
601 
602 restarted_transaction:
603         trace_ocfs2_extend_allocation(
604                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
605                 (unsigned long long)i_size_read(inode),
606                 le32_to_cpu(fe->i_clusters), clusters_to_add,
607                 why, restart_func);
608 
609         status = dquot_alloc_space_nodirty(inode,
610                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
611         if (status)
612                 goto leave;
613         did_quota = 1;
614 
615         /* reserve a write to the file entry early on - that we if we
616          * run out of credits in the allocation path, we can still
617          * update i_size. */
618         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
619                                          OCFS2_JOURNAL_ACCESS_WRITE);
620         if (status < 0) {
621                 mlog_errno(status);
622                 goto leave;
623         }
624 
625         prev_clusters = OCFS2_I(inode)->ip_clusters;
626 
627         status = ocfs2_add_inode_data(osb,
628                                       inode,
629                                       &logical_start,
630                                       clusters_to_add,
631                                       mark_unwritten,
632                                       bh,
633                                       handle,
634                                       data_ac,
635                                       meta_ac,
636                                       &why);
637         if ((status < 0) && (status != -EAGAIN)) {
638                 if (status != -ENOSPC)
639                         mlog_errno(status);
640                 goto leave;
641         }
642         ocfs2_update_inode_fsync_trans(handle, inode, 1);
643         ocfs2_journal_dirty(handle, bh);
644 
645         spin_lock(&OCFS2_I(inode)->ip_lock);
646         clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
647         spin_unlock(&OCFS2_I(inode)->ip_lock);
648         /* Release unused quota reservation */
649         dquot_free_space(inode,
650                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
651         did_quota = 0;
652 
653         if (why != RESTART_NONE && clusters_to_add) {
654                 if (why == RESTART_META) {
655                         restart_func = 1;
656                         status = 0;
657                 } else {
658                         BUG_ON(why != RESTART_TRANS);
659 
660                         status = ocfs2_allocate_extend_trans(handle, 1);
661                         if (status < 0) {
662                                 /* handle still has to be committed at
663                                  * this point. */
664                                 status = -ENOMEM;
665                                 mlog_errno(status);
666                                 goto leave;
667                         }
668                         goto restarted_transaction;
669                 }
670         }
671 
672         trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
673              le32_to_cpu(fe->i_clusters),
674              (unsigned long long)le64_to_cpu(fe->i_size),
675              OCFS2_I(inode)->ip_clusters,
676              (unsigned long long)i_size_read(inode));
677 
678 leave:
679         if (status < 0 && did_quota)
680                 dquot_free_space(inode,
681                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
682         if (handle) {
683                 ocfs2_commit_trans(osb, handle);
684                 handle = NULL;
685         }
686         if (data_ac) {
687                 ocfs2_free_alloc_context(data_ac);
688                 data_ac = NULL;
689         }
690         if (meta_ac) {
691                 ocfs2_free_alloc_context(meta_ac);
692                 meta_ac = NULL;
693         }
694         if ((!status) && restart_func) {
695                 restart_func = 0;
696                 goto restart_all;
697         }
698         brelse(bh);
699         bh = NULL;
700 
701         return status;
702 }
703 
704 /*
705  * While a write will already be ordering the data, a truncate will not.
706  * Thus, we need to explicitly order the zeroed pages.
707  */
708 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
709                                                       struct buffer_head *di_bh,
710                                                       loff_t start_byte,
711                                                       loff_t length)
712 {
713         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
714         handle_t *handle = NULL;
715         int ret = 0;
716 
717         if (!ocfs2_should_order_data(inode))
718                 goto out;
719 
720         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
721         if (IS_ERR(handle)) {
722                 ret = -ENOMEM;
723                 mlog_errno(ret);
724                 goto out;
725         }
726 
727         ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
728         if (ret < 0) {
729                 mlog_errno(ret);
730                 goto out;
731         }
732 
733         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
734                                       OCFS2_JOURNAL_ACCESS_WRITE);
735         if (ret)
736                 mlog_errno(ret);
737         ocfs2_update_inode_fsync_trans(handle, inode, 1);
738 
739 out:
740         if (ret) {
741                 if (!IS_ERR(handle))
742                         ocfs2_commit_trans(osb, handle);
743                 handle = ERR_PTR(ret);
744         }
745         return handle;
746 }
747 
748 /* Some parts of this taken from generic_cont_expand, which turned out
749  * to be too fragile to do exactly what we need without us having to
750  * worry about recursive locking in ->write_begin() and ->write_end(). */
751 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
752                                  u64 abs_to, struct buffer_head *di_bh)
753 {
754         struct address_space *mapping = inode->i_mapping;
755         struct page *page;
756         unsigned long index = abs_from >> PAGE_SHIFT;
757         handle_t *handle;
758         int ret = 0;
759         unsigned zero_from, zero_to, block_start, block_end;
760         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
761 
762         BUG_ON(abs_from >= abs_to);
763         BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
764         BUG_ON(abs_from & (inode->i_blkbits - 1));
765 
766         handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
767                                                       abs_from,
768                                                       abs_to - abs_from);
769         if (IS_ERR(handle)) {
770                 ret = PTR_ERR(handle);
771                 goto out;
772         }
773 
774         page = find_or_create_page(mapping, index, GFP_NOFS);
775         if (!page) {
776                 ret = -ENOMEM;
777                 mlog_errno(ret);
778                 goto out_commit_trans;
779         }
780 
781         /* Get the offsets within the page that we want to zero */
782         zero_from = abs_from & (PAGE_SIZE - 1);
783         zero_to = abs_to & (PAGE_SIZE - 1);
784         if (!zero_to)
785                 zero_to = PAGE_SIZE;
786 
787         trace_ocfs2_write_zero_page(
788                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
789                         (unsigned long long)abs_from,
790                         (unsigned long long)abs_to,
791                         index, zero_from, zero_to);
792 
793         /* We know that zero_from is block aligned */
794         for (block_start = zero_from; block_start < zero_to;
795              block_start = block_end) {
796                 block_end = block_start + i_blocksize(inode);
797 
798                 /*
799                  * block_start is block-aligned.  Bump it by one to force
800                  * __block_write_begin and block_commit_write to zero the
801                  * whole block.
802                  */
803                 ret = __block_write_begin(page, block_start + 1, 0,
804                                           ocfs2_get_block);
805                 if (ret < 0) {
806                         mlog_errno(ret);
807                         goto out_unlock;
808                 }
809 
810 
811                 /* must not update i_size! */
812                 ret = block_commit_write(page, block_start + 1,
813                                          block_start + 1);
814                 if (ret < 0)
815                         mlog_errno(ret);
816                 else
817                         ret = 0;
818         }
819 
820         /*
821          * fs-writeback will release the dirty pages without page lock
822          * whose offset are over inode size, the release happens at
823          * block_write_full_page().
824          */
825         i_size_write(inode, abs_to);
826         inode->i_blocks = ocfs2_inode_sector_count(inode);
827         di->i_size = cpu_to_le64((u64)i_size_read(inode));
828         inode->i_mtime = inode->i_ctime = current_time(inode);
829         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
830         di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
831         di->i_mtime_nsec = di->i_ctime_nsec;
832         if (handle) {
833                 ocfs2_journal_dirty(handle, di_bh);
834                 ocfs2_update_inode_fsync_trans(handle, inode, 1);
835         }
836 
837 out_unlock:
838         unlock_page(page);
839         put_page(page);
840 out_commit_trans:
841         if (handle)
842                 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
843 out:
844         return ret;
845 }
846 
847 /*
848  * Find the next range to zero.  We do this in terms of bytes because
849  * that's what ocfs2_zero_extend() wants, and it is dealing with the
850  * pagecache.  We may return multiple extents.
851  *
852  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
853  * needs to be zeroed.  range_start and range_end return the next zeroing
854  * range.  A subsequent call should pass the previous range_end as its
855  * zero_start.  If range_end is 0, there's nothing to do.
856  *
857  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
858  */
859 static int ocfs2_zero_extend_get_range(struct inode *inode,
860                                        struct buffer_head *di_bh,
861                                        u64 zero_start, u64 zero_end,
862                                        u64 *range_start, u64 *range_end)
863 {
864         int rc = 0, needs_cow = 0;
865         u32 p_cpos, zero_clusters = 0;
866         u32 zero_cpos =
867                 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
868         u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
869         unsigned int num_clusters = 0;
870         unsigned int ext_flags = 0;
871 
872         while (zero_cpos < last_cpos) {
873                 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
874                                         &num_clusters, &ext_flags);
875                 if (rc) {
876                         mlog_errno(rc);
877                         goto out;
878                 }
879 
880                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
881                         zero_clusters = num_clusters;
882                         if (ext_flags & OCFS2_EXT_REFCOUNTED)
883                                 needs_cow = 1;
884                         break;
885                 }
886 
887                 zero_cpos += num_clusters;
888         }
889         if (!zero_clusters) {
890                 *range_end = 0;
891                 goto out;
892         }
893 
894         while ((zero_cpos + zero_clusters) < last_cpos) {
895                 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
896                                         &p_cpos, &num_clusters,
897                                         &ext_flags);
898                 if (rc) {
899                         mlog_errno(rc);
900                         goto out;
901                 }
902 
903                 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
904                         break;
905                 if (ext_flags & OCFS2_EXT_REFCOUNTED)
906                         needs_cow = 1;
907                 zero_clusters += num_clusters;
908         }
909         if ((zero_cpos + zero_clusters) > last_cpos)
910                 zero_clusters = last_cpos - zero_cpos;
911 
912         if (needs_cow) {
913                 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
914                                         zero_clusters, UINT_MAX);
915                 if (rc) {
916                         mlog_errno(rc);
917                         goto out;
918                 }
919         }
920 
921         *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
922         *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
923                                              zero_cpos + zero_clusters);
924 
925 out:
926         return rc;
927 }
928 
929 /*
930  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
931  * has made sure that the entire range needs zeroing.
932  */
933 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
934                                    u64 range_end, struct buffer_head *di_bh)
935 {
936         int rc = 0;
937         u64 next_pos;
938         u64 zero_pos = range_start;
939 
940         trace_ocfs2_zero_extend_range(
941                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
942                         (unsigned long long)range_start,
943                         (unsigned long long)range_end);
944         BUG_ON(range_start >= range_end);
945 
946         while (zero_pos < range_end) {
947                 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
948                 if (next_pos > range_end)
949                         next_pos = range_end;
950                 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
951                 if (rc < 0) {
952                         mlog_errno(rc);
953                         break;
954                 }
955                 zero_pos = next_pos;
956 
957                 /*
958                  * Very large extends have the potential to lock up
959                  * the cpu for extended periods of time.
960                  */
961                 cond_resched();
962         }
963 
964         return rc;
965 }
966 
967 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
968                       loff_t zero_to_size)
969 {
970         int ret = 0;
971         u64 zero_start, range_start = 0, range_end = 0;
972         struct super_block *sb = inode->i_sb;
973 
974         zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
975         trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
976                                 (unsigned long long)zero_start,
977                                 (unsigned long long)i_size_read(inode));
978         while (zero_start < zero_to_size) {
979                 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
980                                                   zero_to_size,
981                                                   &range_start,
982                                                   &range_end);
983                 if (ret) {
984                         mlog_errno(ret);
985                         break;
986                 }
987                 if (!range_end)
988                         break;
989                 /* Trim the ends */
990                 if (range_start < zero_start)
991                         range_start = zero_start;
992                 if (range_end > zero_to_size)
993                         range_end = zero_to_size;
994 
995                 ret = ocfs2_zero_extend_range(inode, range_start,
996                                               range_end, di_bh);
997                 if (ret) {
998                         mlog_errno(ret);
999                         break;
1000                 }
1001                 zero_start = range_end;
1002         }
1003 
1004         return ret;
1005 }
1006 
1007 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1008                           u64 new_i_size, u64 zero_to)
1009 {
1010         int ret;
1011         u32 clusters_to_add;
1012         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1013 
1014         /*
1015          * Only quota files call this without a bh, and they can't be
1016          * refcounted.
1017          */
1018         BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1019         BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1020 
1021         clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1022         if (clusters_to_add < oi->ip_clusters)
1023                 clusters_to_add = 0;
1024         else
1025                 clusters_to_add -= oi->ip_clusters;
1026 
1027         if (clusters_to_add) {
1028                 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1029                                               clusters_to_add, 0);
1030                 if (ret) {
1031                         mlog_errno(ret);
1032                         goto out;
1033                 }
1034         }
1035 
1036         /*
1037          * Call this even if we don't add any clusters to the tree. We
1038          * still need to zero the area between the old i_size and the
1039          * new i_size.
1040          */
1041         ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1042         if (ret < 0)
1043                 mlog_errno(ret);
1044 
1045 out:
1046         return ret;
1047 }
1048 
1049 static int ocfs2_extend_file(struct inode *inode,
1050                              struct buffer_head *di_bh,
1051                              u64 new_i_size)
1052 {
1053         int ret = 0;
1054         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1055 
1056         BUG_ON(!di_bh);
1057 
1058         /* setattr sometimes calls us like this. */
1059         if (new_i_size == 0)
1060                 goto out;
1061 
1062         if (i_size_read(inode) == new_i_size)
1063                 goto out;
1064         BUG_ON(new_i_size < i_size_read(inode));
1065 
1066         /*
1067          * The alloc sem blocks people in read/write from reading our
1068          * allocation until we're done changing it. We depend on
1069          * i_mutex to block other extend/truncate calls while we're
1070          * here.  We even have to hold it for sparse files because there
1071          * might be some tail zeroing.
1072          */
1073         down_write(&oi->ip_alloc_sem);
1074 
1075         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1076                 /*
1077                  * We can optimize small extends by keeping the inodes
1078                  * inline data.
1079                  */
1080                 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1081                         up_write(&oi->ip_alloc_sem);
1082                         goto out_update_size;
1083                 }
1084 
1085                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1086                 if (ret) {
1087                         up_write(&oi->ip_alloc_sem);
1088                         mlog_errno(ret);
1089                         goto out;
1090                 }
1091         }
1092 
1093         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1094                 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1095         else
1096                 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1097                                             new_i_size);
1098 
1099         up_write(&oi->ip_alloc_sem);
1100 
1101         if (ret < 0) {
1102                 mlog_errno(ret);
1103                 goto out;
1104         }
1105 
1106 out_update_size:
1107         ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1108         if (ret < 0)
1109                 mlog_errno(ret);
1110 
1111 out:
1112         return ret;
1113 }
1114 
1115 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1116 {
1117         int status = 0, size_change;
1118         int inode_locked = 0;
1119         struct inode *inode = d_inode(dentry);
1120         struct super_block *sb = inode->i_sb;
1121         struct ocfs2_super *osb = OCFS2_SB(sb);
1122         struct buffer_head *bh = NULL;
1123         handle_t *handle = NULL;
1124         struct dquot *transfer_to[MAXQUOTAS] = { };
1125         int qtype;
1126         int had_lock;
1127         struct ocfs2_lock_holder oh;
1128 
1129         trace_ocfs2_setattr(inode, dentry,
1130                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1131                             dentry->d_name.len, dentry->d_name.name,
1132                             attr->ia_valid, attr->ia_mode,
1133                             from_kuid(&init_user_ns, attr->ia_uid),
1134                             from_kgid(&init_user_ns, attr->ia_gid));
1135 
1136         /* ensuring we don't even attempt to truncate a symlink */
1137         if (S_ISLNK(inode->i_mode))
1138                 attr->ia_valid &= ~ATTR_SIZE;
1139 
1140 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1141                            | ATTR_GID | ATTR_UID | ATTR_MODE)
1142         if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1143                 return 0;
1144 
1145         status = setattr_prepare(dentry, attr);
1146         if (status)
1147                 return status;
1148 
1149         if (is_quota_modification(inode, attr)) {
1150                 status = dquot_initialize(inode);
1151                 if (status)
1152                         return status;
1153         }
1154         size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1155         if (size_change) {
1156                 /*
1157                  * Here we should wait dio to finish before inode lock
1158                  * to avoid a deadlock between ocfs2_setattr() and
1159                  * ocfs2_dio_end_io_write()
1160                  */
1161                 inode_dio_wait(inode);
1162 
1163                 status = ocfs2_rw_lock(inode, 1);
1164                 if (status < 0) {
1165                         mlog_errno(status);
1166                         goto bail;
1167                 }
1168         }
1169 
1170         had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1171         if (had_lock < 0) {
1172                 status = had_lock;
1173                 goto bail_unlock_rw;
1174         } else if (had_lock) {
1175                 /*
1176                  * As far as we know, ocfs2_setattr() could only be the first
1177                  * VFS entry point in the call chain of recursive cluster
1178                  * locking issue.
1179                  *
1180                  * For instance:
1181                  * chmod_common()
1182                  *  notify_change()
1183                  *   ocfs2_setattr()
1184                  *    posix_acl_chmod()
1185                  *     ocfs2_iop_get_acl()
1186                  *
1187                  * But, we're not 100% sure if it's always true, because the
1188                  * ordering of the VFS entry points in the call chain is out
1189                  * of our control. So, we'd better dump the stack here to
1190                  * catch the other cases of recursive locking.
1191                  */
1192                 mlog(ML_ERROR, "Another case of recursive locking:\n");
1193                 dump_stack();
1194         }
1195         inode_locked = 1;
1196 
1197         if (size_change) {
1198                 status = inode_newsize_ok(inode, attr->ia_size);
1199                 if (status)
1200                         goto bail_unlock;
1201 
1202                 if (i_size_read(inode) >= attr->ia_size) {
1203                         if (ocfs2_should_order_data(inode)) {
1204                                 status = ocfs2_begin_ordered_truncate(inode,
1205                                                                       attr->ia_size);
1206                                 if (status)
1207                                         goto bail_unlock;
1208                         }
1209                         status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1210                 } else
1211                         status = ocfs2_extend_file(inode, bh, attr->ia_size);
1212                 if (status < 0) {
1213                         if (status != -ENOSPC)
1214                                 mlog_errno(status);
1215                         status = -ENOSPC;
1216                         goto bail_unlock;
1217                 }
1218         }
1219 
1220         if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1221             (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1222                 /*
1223                  * Gather pointers to quota structures so that allocation /
1224                  * freeing of quota structures happens here and not inside
1225                  * dquot_transfer() where we have problems with lock ordering
1226                  */
1227                 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1228                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1229                     OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1230                         transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1231                         if (IS_ERR(transfer_to[USRQUOTA])) {
1232                                 status = PTR_ERR(transfer_to[USRQUOTA]);
1233                                 transfer_to[USRQUOTA] = NULL;
1234                                 goto bail_unlock;
1235                         }
1236                 }
1237                 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1238                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1239                     OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1240                         transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1241                         if (IS_ERR(transfer_to[GRPQUOTA])) {
1242                                 status = PTR_ERR(transfer_to[GRPQUOTA]);
1243                                 transfer_to[GRPQUOTA] = NULL;
1244                                 goto bail_unlock;
1245                         }
1246                 }
1247                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1248                                            2 * ocfs2_quota_trans_credits(sb));
1249                 if (IS_ERR(handle)) {
1250                         status = PTR_ERR(handle);
1251                         mlog_errno(status);
1252                         goto bail_unlock;
1253                 }
1254                 status = __dquot_transfer(inode, transfer_to);
1255                 if (status < 0)
1256                         goto bail_commit;
1257         } else {
1258                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1259                 if (IS_ERR(handle)) {
1260                         status = PTR_ERR(handle);
1261                         mlog_errno(status);
1262                         goto bail_unlock;
1263                 }
1264         }
1265 
1266         setattr_copy(inode, attr);
1267         mark_inode_dirty(inode);
1268 
1269         status = ocfs2_mark_inode_dirty(handle, inode, bh);
1270         if (status < 0)
1271                 mlog_errno(status);
1272 
1273 bail_commit:
1274         ocfs2_commit_trans(osb, handle);
1275 bail_unlock:
1276         if (status && inode_locked) {
1277                 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1278                 inode_locked = 0;
1279         }
1280 bail_unlock_rw:
1281         if (size_change)
1282                 ocfs2_rw_unlock(inode, 1);
1283 bail:
1284 
1285         /* Release quota pointers in case we acquired them */
1286         for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1287                 dqput(transfer_to[qtype]);
1288 
1289         if (!status && attr->ia_valid & ATTR_MODE) {
1290                 status = ocfs2_acl_chmod(inode, bh);
1291                 if (status < 0)
1292                         mlog_errno(status);
1293         }
1294         if (inode_locked)
1295                 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1296 
1297         brelse(bh);
1298         return status;
1299 }
1300 
1301 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1302                   u32 request_mask, unsigned int flags)
1303 {
1304         struct inode *inode = d_inode(path->dentry);
1305         struct super_block *sb = path->dentry->d_sb;
1306         struct ocfs2_super *osb = sb->s_fs_info;
1307         int err;
1308 
1309         err = ocfs2_inode_revalidate(path->dentry);
1310         if (err) {
1311                 if (err != -ENOENT)
1312                         mlog_errno(err);
1313                 goto bail;
1314         }
1315 
1316         generic_fillattr(inode, stat);
1317         /*
1318          * If there is inline data in the inode, the inode will normally not
1319          * have data blocks allocated (it may have an external xattr block).
1320          * Report at least one sector for such files, so tools like tar, rsync,
1321          * others don't incorrectly think the file is completely sparse.
1322          */
1323         if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1324                 stat->blocks += (stat->size + 511)>>9;
1325 
1326         /* We set the blksize from the cluster size for performance */
1327         stat->blksize = osb->s_clustersize;
1328 
1329 bail:
1330         return err;
1331 }
1332 
1333 int ocfs2_permission(struct inode *inode, int mask)
1334 {
1335         int ret, had_lock;
1336         struct ocfs2_lock_holder oh;
1337 
1338         if (mask & MAY_NOT_BLOCK)
1339                 return -ECHILD;
1340 
1341         had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1342         if (had_lock < 0) {
1343                 ret = had_lock;
1344                 goto out;
1345         } else if (had_lock) {
1346                 /* See comments in ocfs2_setattr() for details.
1347                  * The call chain of this case could be:
1348                  * do_sys_open()
1349                  *  may_open()
1350                  *   inode_permission()
1351                  *    ocfs2_permission()
1352                  *     ocfs2_iop_get_acl()
1353                  */
1354                 mlog(ML_ERROR, "Another case of recursive locking:\n");
1355                 dump_stack();
1356         }
1357 
1358         ret = generic_permission(inode, mask);
1359 
1360         ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1361 out:
1362         return ret;
1363 }
1364 
1365 static int __ocfs2_write_remove_suid(struct inode *inode,
1366                                      struct buffer_head *bh)
1367 {
1368         int ret;
1369         handle_t *handle;
1370         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1371         struct ocfs2_dinode *di;
1372 
1373         trace_ocfs2_write_remove_suid(
1374                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1375                         inode->i_mode);
1376 
1377         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1378         if (IS_ERR(handle)) {
1379                 ret = PTR_ERR(handle);
1380                 mlog_errno(ret);
1381                 goto out;
1382         }
1383 
1384         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1385                                       OCFS2_JOURNAL_ACCESS_WRITE);
1386         if (ret < 0) {
1387                 mlog_errno(ret);
1388                 goto out_trans;
1389         }
1390 
1391         inode->i_mode &= ~S_ISUID;
1392         if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1393                 inode->i_mode &= ~S_ISGID;
1394 
1395         di = (struct ocfs2_dinode *) bh->b_data;
1396         di->i_mode = cpu_to_le16(inode->i_mode);
1397         ocfs2_update_inode_fsync_trans(handle, inode, 0);
1398 
1399         ocfs2_journal_dirty(handle, bh);
1400 
1401 out_trans:
1402         ocfs2_commit_trans(osb, handle);
1403 out:
1404         return ret;
1405 }
1406 
1407 static int ocfs2_write_remove_suid(struct inode *inode)
1408 {
1409         int ret;
1410         struct buffer_head *bh = NULL;
1411 
1412         ret = ocfs2_read_inode_block(inode, &bh);
1413         if (ret < 0) {
1414                 mlog_errno(ret);
1415                 goto out;
1416         }
1417 
1418         ret =  __ocfs2_write_remove_suid(inode, bh);
1419 out:
1420         brelse(bh);
1421         return ret;
1422 }
1423 
1424 /*
1425  * Allocate enough extents to cover the region starting at byte offset
1426  * start for len bytes. Existing extents are skipped, any extents
1427  * added are marked as "unwritten".
1428  */
1429 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1430                                             u64 start, u64 len)
1431 {
1432         int ret;
1433         u32 cpos, phys_cpos, clusters, alloc_size;
1434         u64 end = start + len;
1435         struct buffer_head *di_bh = NULL;
1436 
1437         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1438                 ret = ocfs2_read_inode_block(inode, &di_bh);
1439                 if (ret) {
1440                         mlog_errno(ret);
1441                         goto out;
1442                 }
1443 
1444                 /*
1445                  * Nothing to do if the requested reservation range
1446                  * fits within the inode.
1447                  */
1448                 if (ocfs2_size_fits_inline_data(di_bh, end))
1449                         goto out;
1450 
1451                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1452                 if (ret) {
1453                         mlog_errno(ret);
1454                         goto out;
1455                 }
1456         }
1457 
1458         /*
1459          * We consider both start and len to be inclusive.
1460          */
1461         cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1462         clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1463         clusters -= cpos;
1464 
1465         while (clusters) {
1466                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1467                                          &alloc_size, NULL);
1468                 if (ret) {
1469                         mlog_errno(ret);
1470                         goto out;
1471                 }
1472 
1473                 /*
1474                  * Hole or existing extent len can be arbitrary, so
1475                  * cap it to our own allocation request.
1476                  */
1477                 if (alloc_size > clusters)
1478                         alloc_size = clusters;
1479 
1480                 if (phys_cpos) {
1481                         /*
1482                          * We already have an allocation at this
1483                          * region so we can safely skip it.
1484                          */
1485                         goto next;
1486                 }
1487 
1488                 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1489                 if (ret) {
1490                         if (ret != -ENOSPC)
1491                                 mlog_errno(ret);
1492                         goto out;
1493                 }
1494 
1495 next:
1496                 cpos += alloc_size;
1497                 clusters -= alloc_size;
1498         }
1499 
1500         ret = 0;
1501 out:
1502 
1503         brelse(di_bh);
1504         return ret;
1505 }
1506 
1507 /*
1508  * Truncate a byte range, avoiding pages within partial clusters. This
1509  * preserves those pages for the zeroing code to write to.
1510  */
1511 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1512                                          u64 byte_len)
1513 {
1514         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1515         loff_t start, end;
1516         struct address_space *mapping = inode->i_mapping;
1517 
1518         start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1519         end = byte_start + byte_len;
1520         end = end & ~(osb->s_clustersize - 1);
1521 
1522         if (start < end) {
1523                 unmap_mapping_range(mapping, start, end - start, 0);
1524                 truncate_inode_pages_range(mapping, start, end - 1);
1525         }
1526 }
1527 
1528 static int ocfs2_zero_partial_clusters(struct inode *inode,
1529                                        u64 start, u64 len)
1530 {
1531         int ret = 0;
1532         u64 tmpend = 0;
1533         u64 end = start + len;
1534         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1535         unsigned int csize = osb->s_clustersize;
1536         handle_t *handle;
1537 
1538         /*
1539          * The "start" and "end" values are NOT necessarily part of
1540          * the range whose allocation is being deleted. Rather, this
1541          * is what the user passed in with the request. We must zero
1542          * partial clusters here. There's no need to worry about
1543          * physical allocation - the zeroing code knows to skip holes.
1544          */
1545         trace_ocfs2_zero_partial_clusters(
1546                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1547                 (unsigned long long)start, (unsigned long long)end);
1548 
1549         /*
1550          * If both edges are on a cluster boundary then there's no
1551          * zeroing required as the region is part of the allocation to
1552          * be truncated.
1553          */
1554         if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1555                 goto out;
1556 
1557         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1558         if (IS_ERR(handle)) {
1559                 ret = PTR_ERR(handle);
1560                 mlog_errno(ret);
1561                 goto out;
1562         }
1563 
1564         /*
1565          * If start is on a cluster boundary and end is somewhere in another
1566          * cluster, we have not COWed the cluster starting at start, unless
1567          * end is also within the same cluster. So, in this case, we skip this
1568          * first call to ocfs2_zero_range_for_truncate() truncate and move on
1569          * to the next one.
1570          */
1571         if ((start & (csize - 1)) != 0) {
1572                 /*
1573                  * We want to get the byte offset of the end of the 1st
1574                  * cluster.
1575                  */
1576                 tmpend = (u64)osb->s_clustersize +
1577                         (start & ~(osb->s_clustersize - 1));
1578                 if (tmpend > end)
1579                         tmpend = end;
1580 
1581                 trace_ocfs2_zero_partial_clusters_range1(
1582                         (unsigned long long)start,
1583                         (unsigned long long)tmpend);
1584 
1585                 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1586                                                     tmpend);
1587                 if (ret)
1588                         mlog_errno(ret);
1589         }
1590 
1591         if (tmpend < end) {
1592                 /*
1593                  * This may make start and end equal, but the zeroing
1594                  * code will skip any work in that case so there's no
1595                  * need to catch it up here.
1596                  */
1597                 start = end & ~(osb->s_clustersize - 1);
1598 
1599                 trace_ocfs2_zero_partial_clusters_range2(
1600                         (unsigned long long)start, (unsigned long long)end);
1601 
1602                 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1603                 if (ret)
1604                         mlog_errno(ret);
1605         }
1606         ocfs2_update_inode_fsync_trans(handle, inode, 1);
1607 
1608         ocfs2_commit_trans(osb, handle);
1609 out:
1610         return ret;
1611 }
1612 
1613 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1614 {
1615         int i;
1616         struct ocfs2_extent_rec *rec = NULL;
1617 
1618         for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1619 
1620                 rec = &el->l_recs[i];
1621 
1622                 if (le32_to_cpu(rec->e_cpos) < pos)
1623                         break;
1624         }
1625 
1626         return i;
1627 }
1628 
1629 /*
1630  * Helper to calculate the punching pos and length in one run, we handle the
1631  * following three cases in order:
1632  *
1633  * - remove the entire record
1634  * - remove a partial record
1635  * - no record needs to be removed (hole-punching completed)
1636 */
1637 static void ocfs2_calc_trunc_pos(struct inode *inode,
1638                                  struct ocfs2_extent_list *el,
1639                                  struct ocfs2_extent_rec *rec,
1640                                  u32 trunc_start, u32 *trunc_cpos,
1641                                  u32 *trunc_len, u32 *trunc_end,
1642                                  u64 *blkno, int *done)
1643 {
1644         int ret = 0;
1645         u32 coff, range;
1646 
1647         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1648 
1649         if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1650                 /*
1651                  * remove an entire extent record.
1652                  */
1653                 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1654                 /*
1655                  * Skip holes if any.
1656                  */
1657                 if (range < *trunc_end)
1658                         *trunc_end = range;
1659                 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1660                 *blkno = le64_to_cpu(rec->e_blkno);
1661                 *trunc_end = le32_to_cpu(rec->e_cpos);
1662         } else if (range > trunc_start) {
1663                 /*
1664                  * remove a partial extent record, which means we're
1665                  * removing the last extent record.
1666                  */
1667                 *trunc_cpos = trunc_start;
1668                 /*
1669                  * skip hole if any.
1670                  */
1671                 if (range < *trunc_end)
1672                         *trunc_end = range;
1673                 *trunc_len = *trunc_end - trunc_start;
1674                 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1675                 *blkno = le64_to_cpu(rec->e_blkno) +
1676                                 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1677                 *trunc_end = trunc_start;
1678         } else {
1679                 /*
1680                  * It may have two following possibilities:
1681                  *
1682                  * - last record has been removed
1683                  * - trunc_start was within a hole
1684                  *
1685                  * both two cases mean the completion of hole punching.
1686                  */
1687                 ret = 1;
1688         }
1689 
1690         *done = ret;
1691 }
1692 
1693 int ocfs2_remove_inode_range(struct inode *inode,
1694                              struct buffer_head *di_bh, u64 byte_start,
1695                              u64 byte_len)
1696 {
1697         int ret = 0, flags = 0, done = 0, i;
1698         u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1699         u32 cluster_in_el;
1700         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1701         struct ocfs2_cached_dealloc_ctxt dealloc;
1702         struct address_space *mapping = inode->i_mapping;
1703         struct ocfs2_extent_tree et;
1704         struct ocfs2_path *path = NULL;
1705         struct ocfs2_extent_list *el = NULL;
1706         struct ocfs2_extent_rec *rec = NULL;
1707         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1708         u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1709 
1710         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1711         ocfs2_init_dealloc_ctxt(&dealloc);
1712 
1713         trace_ocfs2_remove_inode_range(
1714                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1715                         (unsigned long long)byte_start,
1716                         (unsigned long long)byte_len);
1717 
1718         if (byte_len == 0)
1719                 return 0;
1720 
1721         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1722                 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1723                                             byte_start + byte_len, 0);
1724                 if (ret) {
1725                         mlog_errno(ret);
1726                         goto out;
1727                 }
1728                 /*
1729                  * There's no need to get fancy with the page cache
1730                  * truncate of an inline-data inode. We're talking
1731                  * about less than a page here, which will be cached
1732                  * in the dinode buffer anyway.
1733                  */
1734                 unmap_mapping_range(mapping, 0, 0, 0);
1735                 truncate_inode_pages(mapping, 0);
1736                 goto out;
1737         }
1738 
1739         /*
1740          * For reflinks, we may need to CoW 2 clusters which might be
1741          * partially zero'd later, if hole's start and end offset were
1742          * within one cluster(means is not exactly aligned to clustersize).
1743          */
1744 
1745         if (ocfs2_is_refcount_inode(inode)) {
1746                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1747                 if (ret) {
1748                         mlog_errno(ret);
1749                         goto out;
1750                 }
1751 
1752                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1753                 if (ret) {
1754                         mlog_errno(ret);
1755                         goto out;
1756                 }
1757         }
1758 
1759         trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1760         trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1761         cluster_in_el = trunc_end;
1762 
1763         ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1764         if (ret) {
1765                 mlog_errno(ret);
1766                 goto out;
1767         }
1768 
1769         path = ocfs2_new_path_from_et(&et);
1770         if (!path) {
1771                 ret = -ENOMEM;
1772                 mlog_errno(ret);
1773                 goto out;
1774         }
1775 
1776         while (trunc_end > trunc_start) {
1777 
1778                 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1779                                       cluster_in_el);
1780                 if (ret) {
1781                         mlog_errno(ret);
1782                         goto out;
1783                 }
1784 
1785                 el = path_leaf_el(path);
1786 
1787                 i = ocfs2_find_rec(el, trunc_end);
1788                 /*
1789                  * Need to go to previous extent block.
1790                  */
1791                 if (i < 0) {
1792                         if (path->p_tree_depth == 0)
1793                                 break;
1794 
1795                         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1796                                                             path,
1797                                                             &cluster_in_el);
1798                         if (ret) {
1799                                 mlog_errno(ret);
1800                                 goto out;
1801                         }
1802 
1803                         /*
1804                          * We've reached the leftmost extent block,
1805                          * it's safe to leave.
1806                          */
1807                         if (cluster_in_el == 0)
1808                                 break;
1809 
1810                         /*
1811                          * The 'pos' searched for previous extent block is
1812                          * always one cluster less than actual trunc_end.
1813                          */
1814                         trunc_end = cluster_in_el + 1;
1815 
1816                         ocfs2_reinit_path(path, 1);
1817 
1818                         continue;
1819 
1820                 } else
1821                         rec = &el->l_recs[i];
1822 
1823                 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1824                                      &trunc_len, &trunc_end, &blkno, &done);
1825                 if (done)
1826                         break;
1827 
1828                 flags = rec->e_flags;
1829                 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1830 
1831                 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1832                                                phys_cpos, trunc_len, flags,
1833                                                &dealloc, refcount_loc, false);
1834                 if (ret < 0) {
1835                         mlog_errno(ret);
1836                         goto out;
1837                 }
1838 
1839                 cluster_in_el = trunc_end;
1840 
1841                 ocfs2_reinit_path(path, 1);
1842         }
1843 
1844         ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1845 
1846 out:
1847         ocfs2_free_path(path);
1848         ocfs2_schedule_truncate_log_flush(osb, 1);
1849         ocfs2_run_deallocs(osb, &dealloc);
1850 
1851         return ret;
1852 }
1853 
1854 /*
1855  * Parts of this function taken from xfs_change_file_space()
1856  */
1857 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1858                                      loff_t f_pos, unsigned int cmd,
1859                                      struct ocfs2_space_resv *sr,
1860                                      int change_size)
1861 {
1862         int ret;
1863         s64 llen;
1864         loff_t size;
1865         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1866         struct buffer_head *di_bh = NULL;
1867         handle_t *handle;
1868         unsigned long long max_off = inode->i_sb->s_maxbytes;
1869 
1870         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1871                 return -EROFS;
1872 
1873         inode_lock(inode);
1874 
1875         /*
1876          * This prevents concurrent writes on other nodes
1877          */
1878         ret = ocfs2_rw_lock(inode, 1);
1879         if (ret) {
1880                 mlog_errno(ret);
1881                 goto out;
1882         }
1883 
1884         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1885         if (ret) {
1886                 mlog_errno(ret);
1887                 goto out_rw_unlock;
1888         }
1889 
1890         if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1891                 ret = -EPERM;
1892                 goto out_inode_unlock;
1893         }
1894 
1895         switch (sr->l_whence) {
1896         case 0: /*SEEK_SET*/
1897                 break;
1898         case 1: /*SEEK_CUR*/
1899                 sr->l_start += f_pos;
1900                 break;
1901         case 2: /*SEEK_END*/
1902                 sr->l_start += i_size_read(inode);
1903                 break;
1904         default:
1905                 ret = -EINVAL;
1906                 goto out_inode_unlock;
1907         }
1908         sr->l_whence = 0;
1909 
1910         llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1911 
1912         if (sr->l_start < 0
1913             || sr->l_start > max_off
1914             || (sr->l_start + llen) < 0
1915             || (sr->l_start + llen) > max_off) {
1916                 ret = -EINVAL;
1917                 goto out_inode_unlock;
1918         }
1919         size = sr->l_start + sr->l_len;
1920 
1921         if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1922             cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1923                 if (sr->l_len <= 0) {
1924                         ret = -EINVAL;
1925                         goto out_inode_unlock;
1926                 }
1927         }
1928 
1929         if (file && should_remove_suid(file->f_path.dentry)) {
1930                 ret = __ocfs2_write_remove_suid(inode, di_bh);
1931                 if (ret) {
1932                         mlog_errno(ret);
1933                         goto out_inode_unlock;
1934                 }
1935         }
1936 
1937         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1938         switch (cmd) {
1939         case OCFS2_IOC_RESVSP:
1940         case OCFS2_IOC_RESVSP64:
1941                 /*
1942                  * This takes unsigned offsets, but the signed ones we
1943                  * pass have been checked against overflow above.
1944                  */
1945                 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1946                                                        sr->l_len);
1947                 break;
1948         case OCFS2_IOC_UNRESVSP:
1949         case OCFS2_IOC_UNRESVSP64:
1950                 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1951                                                sr->l_len);
1952                 break;
1953         default:
1954                 ret = -EINVAL;
1955         }
1956         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1957         if (ret) {
1958                 mlog_errno(ret);
1959                 goto out_inode_unlock;
1960         }
1961 
1962         /*
1963          * We update c/mtime for these changes
1964          */
1965         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1966         if (IS_ERR(handle)) {
1967                 ret = PTR_ERR(handle);
1968                 mlog_errno(ret);
1969                 goto out_inode_unlock;
1970         }
1971 
1972         if (change_size && i_size_read(inode) < size)
1973                 i_size_write(inode, size);
1974 
1975         inode->i_ctime = inode->i_mtime = current_time(inode);
1976         ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1977         if (ret < 0)
1978                 mlog_errno(ret);
1979 
1980         if (file && (file->f_flags & O_SYNC))
1981                 handle->h_sync = 1;
1982 
1983         ocfs2_commit_trans(osb, handle);
1984 
1985 out_inode_unlock:
1986         brelse(di_bh);
1987         ocfs2_inode_unlock(inode, 1);
1988 out_rw_unlock:
1989         ocfs2_rw_unlock(inode, 1);
1990 
1991 out:
1992         inode_unlock(inode);
1993         return ret;
1994 }
1995 
1996 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1997                             struct ocfs2_space_resv *sr)
1998 {
1999         struct inode *inode = file_inode(file);
2000         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2001         int ret;
2002 
2003         if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2004             !ocfs2_writes_unwritten_extents(osb))
2005                 return -ENOTTY;
2006         else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2007                  !ocfs2_sparse_alloc(osb))
2008                 return -ENOTTY;
2009 
2010         if (!S_ISREG(inode->i_mode))
2011                 return -EINVAL;
2012 
2013         if (!(file->f_mode & FMODE_WRITE))
2014                 return -EBADF;
2015 
2016         ret = mnt_want_write_file(file);
2017         if (ret)
2018                 return ret;
2019         ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2020         mnt_drop_write_file(file);
2021         return ret;
2022 }
2023 
2024 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2025                             loff_t len)
2026 {
2027         struct inode *inode = file_inode(file);
2028         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2029         struct ocfs2_space_resv sr;
2030         int change_size = 1;
2031         int cmd = OCFS2_IOC_RESVSP64;
2032 
2033         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2034                 return -EOPNOTSUPP;
2035         if (!ocfs2_writes_unwritten_extents(osb))
2036                 return -EOPNOTSUPP;
2037 
2038         if (mode & FALLOC_FL_KEEP_SIZE)
2039                 change_size = 0;
2040 
2041         if (mode & FALLOC_FL_PUNCH_HOLE)
2042                 cmd = OCFS2_IOC_UNRESVSP64;
2043 
2044         sr.l_whence = 0;
2045         sr.l_start = (s64)offset;
2046         sr.l_len = (s64)len;
2047 
2048         return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2049                                          change_size);
2050 }
2051 
2052 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2053                                    size_t count)
2054 {
2055         int ret = 0;
2056         unsigned int extent_flags;
2057         u32 cpos, clusters, extent_len, phys_cpos;
2058         struct super_block *sb = inode->i_sb;
2059 
2060         if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2061             !ocfs2_is_refcount_inode(inode) ||
2062             OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2063                 return 0;
2064 
2065         cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2066         clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2067 
2068         while (clusters) {
2069                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2070                                          &extent_flags);
2071                 if (ret < 0) {
2072                         mlog_errno(ret);
2073                         goto out;
2074                 }
2075 
2076                 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2077                         ret = 1;
2078                         break;
2079                 }
2080 
2081                 if (extent_len > clusters)
2082                         extent_len = clusters;
2083 
2084                 clusters -= extent_len;
2085                 cpos += extent_len;
2086         }
2087 out:
2088         return ret;
2089 }
2090 
2091 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2092 {
2093         int blockmask = inode->i_sb->s_blocksize - 1;
2094         loff_t final_size = pos + count;
2095 
2096         if ((pos & blockmask) || (final_size & blockmask))
2097                 return 1;
2098         return 0;
2099 }
2100 
2101 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2102                                             struct buffer_head **di_bh,
2103                                             int meta_level,
2104                                             int write_sem,
2105                                             int wait)
2106 {
2107         int ret = 0;
2108 
2109         if (wait)
2110                 ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2111         else
2112                 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2113         if (ret < 0)
2114                 goto out;
2115 
2116         if (wait) {
2117                 if (write_sem)
2118                         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2119                 else
2120                         down_read(&OCFS2_I(inode)->ip_alloc_sem);
2121         } else {
2122                 if (write_sem)
2123                         ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2124                 else
2125                         ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2126 
2127                 if (!ret) {
2128                         ret = -EAGAIN;
2129                         goto out_unlock;
2130                 }
2131         }
2132 
2133         return ret;
2134 
2135 out_unlock:
2136         brelse(*di_bh);
2137         *di_bh = NULL;
2138         ocfs2_inode_unlock(inode, meta_level);
2139 out:
2140         return ret;
2141 }
2142 
2143 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2144                                                struct buffer_head **di_bh,
2145                                                int meta_level,
2146                                                int write_sem)
2147 {
2148         if (write_sem)
2149                 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2150         else
2151                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2152 
2153         brelse(*di_bh);
2154         *di_bh = NULL;
2155 
2156         if (meta_level >= 0)
2157                 ocfs2_inode_unlock(inode, meta_level);
2158 }
2159 
2160 static int ocfs2_prepare_inode_for_write(struct file *file,
2161                                          loff_t pos, size_t count, int wait)
2162 {
2163         int ret = 0, meta_level = 0, overwrite_io = 0;
2164         int write_sem = 0;
2165         struct dentry *dentry = file->f_path.dentry;
2166         struct inode *inode = d_inode(dentry);
2167         struct buffer_head *di_bh = NULL;
2168         u32 cpos;
2169         u32 clusters;
2170 
2171         /*
2172          * We start with a read level meta lock and only jump to an ex
2173          * if we need to make modifications here.
2174          */
2175         for(;;) {
2176                 ret = ocfs2_inode_lock_for_extent_tree(inode,
2177                                                        &di_bh,
2178                                                        meta_level,
2179                                                        write_sem,
2180                                                        wait);
2181                 if (ret < 0) {
2182                         if (ret != -EAGAIN)
2183                                 mlog_errno(ret);
2184                         goto out;
2185                 }
2186 
2187                 /*
2188                  * Check if IO will overwrite allocated blocks in case
2189                  * IOCB_NOWAIT flag is set.
2190                  */
2191                 if (!wait && !overwrite_io) {
2192                         overwrite_io = 1;
2193 
2194                         ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2195                         if (ret < 0) {
2196                                 if (ret != -EAGAIN)
2197                                         mlog_errno(ret);
2198                                 goto out_unlock;
2199                         }
2200                 }
2201 
2202                 /* Clear suid / sgid if necessary. We do this here
2203                  * instead of later in the write path because
2204                  * remove_suid() calls ->setattr without any hint that
2205                  * we may have already done our cluster locking. Since
2206                  * ocfs2_setattr() *must* take cluster locks to
2207                  * proceed, this will lead us to recursively lock the
2208                  * inode. There's also the dinode i_size state which
2209                  * can be lost via setattr during extending writes (we
2210                  * set inode->i_size at the end of a write. */
2211                 if (should_remove_suid(dentry)) {
2212                         if (meta_level == 0) {
2213                                 ocfs2_inode_unlock_for_extent_tree(inode,
2214                                                                    &di_bh,
2215                                                                    meta_level,
2216                                                                    write_sem);
2217                                 meta_level = 1;
2218                                 continue;
2219                         }
2220 
2221                         ret = ocfs2_write_remove_suid(inode);
2222                         if (ret < 0) {
2223                                 mlog_errno(ret);
2224                                 goto out_unlock;
2225                         }
2226                 }
2227 
2228                 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2229                 if (ret == 1) {
2230                         ocfs2_inode_unlock_for_extent_tree(inode,
2231                                                            &di_bh,
2232                                                            meta_level,
2233                                                            write_sem);
2234                         meta_level = 1;
2235                         write_sem = 1;
2236                         ret = ocfs2_inode_lock_for_extent_tree(inode,
2237                                                                &di_bh,
2238                                                                meta_level,
2239                                                                write_sem,
2240                                                                wait);
2241                         if (ret < 0) {
2242                                 if (ret != -EAGAIN)
2243                                         mlog_errno(ret);
2244                                 goto out;
2245                         }
2246 
2247                         cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2248                         clusters =
2249                                 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2250                         ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2251                 }
2252 
2253                 if (ret < 0) {
2254                         if (ret != -EAGAIN)
2255                                 mlog_errno(ret);
2256                         goto out_unlock;
2257                 }
2258 
2259                 break;
2260         }
2261 
2262 out_unlock:
2263         trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2264                                             pos, count, wait);
2265 
2266         ocfs2_inode_unlock_for_extent_tree(inode,
2267                                            &di_bh,
2268                                            meta_level,
2269                                            write_sem);
2270 
2271 out:
2272         return ret;
2273 }
2274 
2275 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2276                                     struct iov_iter *from)
2277 {
2278         int rw_level;
2279         ssize_t written = 0;
2280         ssize_t ret;
2281         size_t count = iov_iter_count(from);
2282         struct file *file = iocb->ki_filp;
2283         struct inode *inode = file_inode(file);
2284         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2285         int full_coherency = !(osb->s_mount_opt &
2286                                OCFS2_MOUNT_COHERENCY_BUFFERED);
2287         void *saved_ki_complete = NULL;
2288         int append_write = ((iocb->ki_pos + count) >=
2289                         i_size_read(inode) ? 1 : 0);
2290         int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2291         int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2292 
2293         trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2294                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2295                 file->f_path.dentry->d_name.len,
2296                 file->f_path.dentry->d_name.name,
2297                 (unsigned int)from->nr_segs);   /* GRRRRR */
2298 
2299         if (!direct_io && nowait)
2300                 return -EOPNOTSUPP;
2301 
2302         if (count == 0)
2303                 return 0;
2304 
2305         if (nowait) {
2306                 if (!inode_trylock(inode))
2307                         return -EAGAIN;
2308         } else
2309                 inode_lock(inode);
2310 
2311         /*
2312          * Concurrent O_DIRECT writes are allowed with
2313          * mount_option "coherency=buffered".
2314          * For append write, we must take rw EX.
2315          */
2316         rw_level = (!direct_io || full_coherency || append_write);
2317 
2318         if (nowait)
2319                 ret = ocfs2_try_rw_lock(inode, rw_level);
2320         else
2321                 ret = ocfs2_rw_lock(inode, rw_level);
2322         if (ret < 0) {
2323                 if (ret != -EAGAIN)
2324                         mlog_errno(ret);
2325                 goto out_mutex;
2326         }
2327 
2328         /*
2329          * O_DIRECT writes with "coherency=full" need to take EX cluster
2330          * inode_lock to guarantee coherency.
2331          */
2332         if (direct_io && full_coherency) {
2333                 /*
2334                  * We need to take and drop the inode lock to force
2335                  * other nodes to drop their caches.  Buffered I/O
2336                  * already does this in write_begin().
2337                  */
2338                 if (nowait)
2339                         ret = ocfs2_try_inode_lock(inode, NULL, 1);
2340                 else
2341                         ret = ocfs2_inode_lock(inode, NULL, 1);
2342                 if (ret < 0) {
2343                         if (ret != -EAGAIN)
2344                                 mlog_errno(ret);
2345                         goto out;
2346                 }
2347 
2348                 ocfs2_inode_unlock(inode, 1);
2349         }
2350 
2351         ret = generic_write_checks(iocb, from);
2352         if (ret <= 0) {
2353                 if (ret)
2354                         mlog_errno(ret);
2355                 goto out;
2356         }
2357         count = ret;
2358 
2359         ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2360         if (ret < 0) {
2361                 if (ret != -EAGAIN)
2362                         mlog_errno(ret);
2363                 goto out;
2364         }
2365 
2366         if (direct_io && !is_sync_kiocb(iocb) &&
2367             ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2368                 /*
2369                  * Make it a sync io if it's an unaligned aio.
2370                  */
2371                 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2372         }
2373 
2374         /* communicate with ocfs2_dio_end_io */
2375         ocfs2_iocb_set_rw_locked(iocb, rw_level);
2376 
2377         written = __generic_file_write_iter(iocb, from);
2378         /* buffered aio wouldn't have proper lock coverage today */
2379         BUG_ON(written == -EIOCBQUEUED && !direct_io);
2380 
2381         /*
2382          * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2383          * function pointer which is called when o_direct io completes so that
2384          * it can unlock our rw lock.
2385          * Unfortunately there are error cases which call end_io and others
2386          * that don't.  so we don't have to unlock the rw_lock if either an
2387          * async dio is going to do it in the future or an end_io after an
2388          * error has already done it.
2389          */
2390         if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2391                 rw_level = -1;
2392         }
2393 
2394         if (unlikely(written <= 0))
2395                 goto out;
2396 
2397         if (((file->f_flags & O_DSYNC) && !direct_io) ||
2398             IS_SYNC(inode)) {
2399                 ret = filemap_fdatawrite_range(file->f_mapping,
2400                                                iocb->ki_pos - written,
2401                                                iocb->ki_pos - 1);
2402                 if (ret < 0)
2403                         written = ret;
2404 
2405                 if (!ret) {
2406                         ret = jbd2_journal_force_commit(osb->journal->j_journal);
2407                         if (ret < 0)
2408                                 written = ret;
2409                 }
2410 
2411                 if (!ret)
2412                         ret = filemap_fdatawait_range(file->f_mapping,
2413                                                       iocb->ki_pos - written,
2414                                                       iocb->ki_pos - 1);
2415         }
2416 
2417 out:
2418         if (saved_ki_complete)
2419                 xchg(&iocb->ki_complete, saved_ki_complete);
2420 
2421         if (rw_level != -1)
2422                 ocfs2_rw_unlock(inode, rw_level);
2423 
2424 out_mutex:
2425         inode_unlock(inode);
2426 
2427         if (written)
2428                 ret = written;
2429         return ret;
2430 }
2431 
2432 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2433                                    struct iov_iter *to)
2434 {
2435         int ret = 0, rw_level = -1, lock_level = 0;
2436         struct file *filp = iocb->ki_filp;
2437         struct inode *inode = file_inode(filp);
2438         int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2439         int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2440 
2441         trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2442                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2443                         filp->f_path.dentry->d_name.len,
2444                         filp->f_path.dentry->d_name.name,
2445                         to->nr_segs);   /* GRRRRR */
2446 
2447 
2448         if (!inode) {
2449                 ret = -EINVAL;
2450                 mlog_errno(ret);
2451                 goto bail;
2452         }
2453 
2454         if (!direct_io && nowait)
2455                 return -EOPNOTSUPP;
2456 
2457         /*
2458          * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2459          * need locks to protect pending reads from racing with truncate.
2460          */
2461         if (direct_io) {
2462                 if (nowait)
2463                         ret = ocfs2_try_rw_lock(inode, 0);
2464                 else
2465                         ret = ocfs2_rw_lock(inode, 0);
2466 
2467                 if (ret < 0) {
2468                         if (ret != -EAGAIN)
2469                                 mlog_errno(ret);
2470                         goto bail;
2471                 }
2472                 rw_level = 0;
2473                 /* communicate with ocfs2_dio_end_io */
2474                 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2475         }
2476 
2477         /*
2478          * We're fine letting folks race truncates and extending
2479          * writes with read across the cluster, just like they can
2480          * locally. Hence no rw_lock during read.
2481          *
2482          * Take and drop the meta data lock to update inode fields
2483          * like i_size. This allows the checks down below
2484          * generic_file_read_iter() a chance of actually working.
2485          */
2486         ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2487                                      !nowait);
2488         if (ret < 0) {
2489                 if (ret != -EAGAIN)
2490                         mlog_errno(ret);
2491                 goto bail;
2492         }
2493         ocfs2_inode_unlock(inode, lock_level);
2494 
2495         ret = generic_file_read_iter(iocb, to);
2496         trace_generic_file_read_iter_ret(ret);
2497 
2498         /* buffered aio wouldn't have proper lock coverage today */
2499         BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2500 
2501         /* see ocfs2_file_write_iter */
2502         if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2503                 rw_level = -1;
2504         }
2505 
2506 bail:
2507         if (rw_level != -1)
2508                 ocfs2_rw_unlock(inode, rw_level);
2509 
2510         return ret;
2511 }
2512 
2513 /* Refer generic_file_llseek_unlocked() */
2514 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2515 {
2516         struct inode *inode = file->f_mapping->host;
2517         int ret = 0;
2518 
2519         inode_lock(inode);
2520 
2521         switch (whence) {
2522         case SEEK_SET:
2523                 break;
2524         case SEEK_END:
2525                 /* SEEK_END requires the OCFS2 inode lock for the file
2526                  * because it references the file's size.
2527                  */
2528                 ret = ocfs2_inode_lock(inode, NULL, 0);
2529                 if (ret < 0) {
2530                         mlog_errno(ret);
2531                         goto out;
2532                 }
2533                 offset += i_size_read(inode);
2534                 ocfs2_inode_unlock(inode, 0);
2535                 break;
2536         case SEEK_CUR:
2537                 if (offset == 0) {
2538                         offset = file->f_pos;
2539                         goto out;
2540                 }
2541                 offset += file->f_pos;
2542                 break;
2543         case SEEK_DATA:
2544         case SEEK_HOLE:
2545                 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2546                 if (ret)
2547                         goto out;
2548                 break;
2549         default:
2550                 ret = -EINVAL;
2551                 goto out;
2552         }
2553 
2554         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2555 
2556 out:
2557         inode_unlock(inode);
2558         if (ret)
2559                 return ret;
2560         return offset;
2561 }
2562 
2563 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2564                                      struct file *file_out, loff_t pos_out,
2565                                      loff_t len, unsigned int remap_flags)
2566 {
2567         struct inode *inode_in = file_inode(file_in);
2568         struct inode *inode_out = file_inode(file_out);
2569         struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2570         struct buffer_head *in_bh = NULL, *out_bh = NULL;
2571         bool same_inode = (inode_in == inode_out);
2572         loff_t remapped = 0;
2573         ssize_t ret;
2574 
2575         if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2576                 return -EINVAL;
2577         if (!ocfs2_refcount_tree(osb))
2578                 return -EOPNOTSUPP;
2579         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2580                 return -EROFS;
2581 
2582         /* Lock both files against IO */
2583         ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2584         if (ret)
2585                 return ret;
2586 
2587         /* Check file eligibility and prepare for block sharing. */
2588         ret = -EINVAL;
2589         if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2590             (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2591                 goto out_unlock;
2592 
2593         ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2594                         &len, remap_flags);
2595         if (ret < 0 || len == 0)
2596                 goto out_unlock;
2597 
2598         /* Lock out changes to the allocation maps and remap. */
2599         down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2600         if (!same_inode)
2601                 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2602                                   SINGLE_DEPTH_NESTING);
2603 
2604         /* Zap any page cache for the destination file's range. */
2605         truncate_inode_pages_range(&inode_out->i_data,
2606                                    round_down(pos_out, PAGE_SIZE),
2607                                    round_up(pos_out + len, PAGE_SIZE) - 1);
2608 
2609         remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2610                         inode_out, out_bh, pos_out, len);
2611         up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2612         if (!same_inode)
2613                 up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2614         if (remapped < 0) {
2615                 ret = remapped;
2616                 mlog_errno(ret);
2617                 goto out_unlock;
2618         }
2619 
2620         /*
2621          * Empty the extent map so that we may get the right extent
2622          * record from the disk.
2623          */
2624         ocfs2_extent_map_trunc(inode_in, 0);
2625         ocfs2_extent_map_trunc(inode_out, 0);
2626 
2627         ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2628         if (ret) {
2629                 mlog_errno(ret);
2630                 goto out_unlock;
2631         }
2632 
2633 out_unlock:
2634         ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2635         return remapped > 0 ? remapped : ret;
2636 }
2637 
2638 const struct inode_operations ocfs2_file_iops = {
2639         .setattr        = ocfs2_setattr,
2640         .getattr        = ocfs2_getattr,
2641         .permission     = ocfs2_permission,
2642         .listxattr      = ocfs2_listxattr,
2643         .fiemap         = ocfs2_fiemap,
2644         .get_acl        = ocfs2_iop_get_acl,
2645         .set_acl        = ocfs2_iop_set_acl,
2646 };
2647 
2648 const struct inode_operations ocfs2_special_file_iops = {
2649         .setattr        = ocfs2_setattr,
2650         .getattr        = ocfs2_getattr,
2651         .permission     = ocfs2_permission,
2652         .get_acl        = ocfs2_iop_get_acl,
2653         .set_acl        = ocfs2_iop_set_acl,
2654 };
2655 
2656 /*
2657  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2658  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2659  */
2660 const struct file_operations ocfs2_fops = {
2661         .llseek         = ocfs2_file_llseek,
2662         .mmap           = ocfs2_mmap,
2663         .fsync          = ocfs2_sync_file,
2664         .release        = ocfs2_file_release,
2665         .open           = ocfs2_file_open,
2666         .read_iter      = ocfs2_file_read_iter,
2667         .write_iter     = ocfs2_file_write_iter,
2668         .unlocked_ioctl = ocfs2_ioctl,
2669 #ifdef CONFIG_COMPAT
2670         .compat_ioctl   = ocfs2_compat_ioctl,
2671 #endif
2672         .lock           = ocfs2_lock,
2673         .flock          = ocfs2_flock,
2674         .splice_read    = generic_file_splice_read,
2675         .splice_write   = iter_file_splice_write,
2676         .fallocate      = ocfs2_fallocate,
2677         .remap_file_range = ocfs2_remap_file_range,
2678 };
2679 
2680 const struct file_operations ocfs2_dops = {
2681         .llseek         = generic_file_llseek,
2682         .read           = generic_read_dir,
2683         .iterate        = ocfs2_readdir,
2684         .fsync          = ocfs2_sync_file,
2685         .release        = ocfs2_dir_release,
2686         .open           = ocfs2_dir_open,
2687         .unlocked_ioctl = ocfs2_ioctl,
2688 #ifdef CONFIG_COMPAT
2689         .compat_ioctl   = ocfs2_compat_ioctl,
2690 #endif
2691         .lock           = ocfs2_lock,
2692         .flock          = ocfs2_flock,
2693 };
2694 
2695 /*
2696  * POSIX-lockless variants of our file_operations.
2697  *
2698  * These will be used if the underlying cluster stack does not support
2699  * posix file locking, if the user passes the "localflocks" mount
2700  * option, or if we have a local-only fs.
2701  *
2702  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2703  * so we still want it in the case of no stack support for
2704  * plocks. Internally, it will do the right thing when asked to ignore
2705  * the cluster.
2706  */
2707 const struct file_operations ocfs2_fops_no_plocks = {
2708         .llseek         = ocfs2_file_llseek,
2709         .mmap           = ocfs2_mmap,
2710         .fsync          = ocfs2_sync_file,
2711         .release        = ocfs2_file_release,
2712         .open           = ocfs2_file_open,
2713         .read_iter      = ocfs2_file_read_iter,
2714         .write_iter     = ocfs2_file_write_iter,
2715         .unlocked_ioctl = ocfs2_ioctl,
2716 #ifdef CONFIG_COMPAT
2717         .compat_ioctl   = ocfs2_compat_ioctl,
2718 #endif
2719         .flock          = ocfs2_flock,
2720         .splice_read    = generic_file_splice_read,
2721         .splice_write   = iter_file_splice_write,
2722         .fallocate      = ocfs2_fallocate,
2723         .remap_file_range = ocfs2_remap_file_range,
2724 };
2725 
2726 const struct file_operations ocfs2_dops_no_plocks = {
2727         .llseek         = generic_file_llseek,
2728         .read           = generic_read_dir,
2729         .iterate        = ocfs2_readdir,
2730         .fsync          = ocfs2_sync_file,
2731         .release        = ocfs2_dir_release,
2732         .open           = ocfs2_dir_open,
2733         .unlocked_ioctl = ocfs2_ioctl,
2734 #ifdef CONFIG_COMPAT
2735         .compat_ioctl   = ocfs2_compat_ioctl,
2736 #endif
2737         .flock          = ocfs2_flock,
2738 };
2739 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp