~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/proc/base.c

Version: ~ [ linux-6.4-rc3 ] ~ [ linux-6.3.4 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.30 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.113 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.180 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.243 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.283 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.315 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/fs/proc/base.c
  4  *
  5  *  Copyright (C) 1991, 1992 Linus Torvalds
  6  *
  7  *  proc base directory handling functions
  8  *
  9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
 10  *  Instead of using magical inumbers to determine the kind of object
 11  *  we allocate and fill in-core inodes upon lookup. They don't even
 12  *  go into icache. We cache the reference to task_struct upon lookup too.
 13  *  Eventually it should become a filesystem in its own. We don't use the
 14  *  rest of procfs anymore.
 15  *
 16  *
 17  *  Changelog:
 18  *  17-Jan-2005
 19  *  Allan Bezerra
 20  *  Bruna Moreira <bruna.moreira@indt.org.br>
 21  *  Edjard Mota <edjard.mota@indt.org.br>
 22  *  Ilias Biris <ilias.biris@indt.org.br>
 23  *  Mauricio Lin <mauricio.lin@indt.org.br>
 24  *
 25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
 26  *
 27  *  A new process specific entry (smaps) included in /proc. It shows the
 28  *  size of rss for each memory area. The maps entry lacks information
 29  *  about physical memory size (rss) for each mapped file, i.e.,
 30  *  rss information for executables and library files.
 31  *  This additional information is useful for any tools that need to know
 32  *  about physical memory consumption for a process specific library.
 33  *
 34  *  Changelog:
 35  *  21-Feb-2005
 36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
 37  *  Pud inclusion in the page table walking.
 38  *
 39  *  ChangeLog:
 40  *  10-Mar-2005
 41  *  10LE Instituto Nokia de Tecnologia - INdT:
 42  *  A better way to walks through the page table as suggested by Hugh Dickins.
 43  *
 44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
 45  *  Smaps information related to shared, private, clean and dirty pages.
 46  *
 47  *  Paul Mundt <paul.mundt@nokia.com>:
 48  *  Overall revision about smaps.
 49  */
 50 
 51 #include <linux/uaccess.h>
 52 
 53 #include <linux/errno.h>
 54 #include <linux/time.h>
 55 #include <linux/proc_fs.h>
 56 #include <linux/stat.h>
 57 #include <linux/task_io_accounting_ops.h>
 58 #include <linux/init.h>
 59 #include <linux/capability.h>
 60 #include <linux/file.h>
 61 #include <linux/fdtable.h>
 62 #include <linux/generic-radix-tree.h>
 63 #include <linux/string.h>
 64 #include <linux/seq_file.h>
 65 #include <linux/namei.h>
 66 #include <linux/mnt_namespace.h>
 67 #include <linux/mm.h>
 68 #include <linux/swap.h>
 69 #include <linux/rcupdate.h>
 70 #include <linux/kallsyms.h>
 71 #include <linux/stacktrace.h>
 72 #include <linux/resource.h>
 73 #include <linux/module.h>
 74 #include <linux/mount.h>
 75 #include <linux/security.h>
 76 #include <linux/ptrace.h>
 77 #include <linux/tracehook.h>
 78 #include <linux/printk.h>
 79 #include <linux/cache.h>
 80 #include <linux/cgroup.h>
 81 #include <linux/cpuset.h>
 82 #include <linux/audit.h>
 83 #include <linux/poll.h>
 84 #include <linux/nsproxy.h>
 85 #include <linux/oom.h>
 86 #include <linux/elf.h>
 87 #include <linux/pid_namespace.h>
 88 #include <linux/user_namespace.h>
 89 #include <linux/fs_struct.h>
 90 #include <linux/slab.h>
 91 #include <linux/sched/autogroup.h>
 92 #include <linux/sched/mm.h>
 93 #include <linux/sched/coredump.h>
 94 #include <linux/sched/debug.h>
 95 #include <linux/sched/stat.h>
 96 #include <linux/posix-timers.h>
 97 #include <trace/events/oom.h>
 98 #include "internal.h"
 99 #include "fd.h"
100 
101 #include "../../lib/kstrtox.h"
102 
103 /* NOTE:
104  *      Implementing inode permission operations in /proc is almost
105  *      certainly an error.  Permission checks need to happen during
106  *      each system call not at open time.  The reason is that most of
107  *      what we wish to check for permissions in /proc varies at runtime.
108  *
109  *      The classic example of a problem is opening file descriptors
110  *      in /proc for a task before it execs a suid executable.
111  */
112 
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115 
116 struct pid_entry {
117         const char *name;
118         unsigned int len;
119         umode_t mode;
120         const struct inode_operations *iop;
121         const struct file_operations *fop;
122         union proc_op op;
123 };
124 
125 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
126         .name = (NAME),                                 \
127         .len  = sizeof(NAME) - 1,                       \
128         .mode = MODE,                                   \
129         .iop  = IOP,                                    \
130         .fop  = FOP,                                    \
131         .op   = OP,                                     \
132 }
133 
134 #define DIR(NAME, MODE, iops, fops)     \
135         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)                                     \
137         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
138                 &proc_pid_link_inode_operations, NULL,          \
139                 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)                           \
141         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)                           \
143         NOD(NAME, (S_IFREG|(MODE)),                     \
144                 NULL, &proc_single_file_operations,     \
145                 { .proc_show = show } )
146 #define ATTR(LSM, NAME, MODE)                           \
147         NOD(NAME, (S_IFREG|(MODE)),                     \
148                 NULL, &proc_pid_attr_operations,        \
149                 { .lsm = LSM })
150 
151 /*
152  * Count the number of hardlinks for the pid_entry table, excluding the .
153  * and .. links.
154  */
155 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
156         unsigned int n)
157 {
158         unsigned int i;
159         unsigned int count;
160 
161         count = 2;
162         for (i = 0; i < n; ++i) {
163                 if (S_ISDIR(entries[i].mode))
164                         ++count;
165         }
166 
167         return count;
168 }
169 
170 static int get_task_root(struct task_struct *task, struct path *root)
171 {
172         int result = -ENOENT;
173 
174         task_lock(task);
175         if (task->fs) {
176                 get_fs_root(task->fs, root);
177                 result = 0;
178         }
179         task_unlock(task);
180         return result;
181 }
182 
183 static int proc_cwd_link(struct dentry *dentry, struct path *path)
184 {
185         struct task_struct *task = get_proc_task(d_inode(dentry));
186         int result = -ENOENT;
187 
188         if (task) {
189                 task_lock(task);
190                 if (task->fs) {
191                         get_fs_pwd(task->fs, path);
192                         result = 0;
193                 }
194                 task_unlock(task);
195                 put_task_struct(task);
196         }
197         return result;
198 }
199 
200 static int proc_root_link(struct dentry *dentry, struct path *path)
201 {
202         struct task_struct *task = get_proc_task(d_inode(dentry));
203         int result = -ENOENT;
204 
205         if (task) {
206                 result = get_task_root(task, path);
207                 put_task_struct(task);
208         }
209         return result;
210 }
211 
212 /*
213  * If the user used setproctitle(), we just get the string from
214  * user space at arg_start, and limit it to a maximum of one page.
215  */
216 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
217                                 size_t count, unsigned long pos,
218                                 unsigned long arg_start)
219 {
220         char *page;
221         int ret, got;
222 
223         if (pos >= PAGE_SIZE)
224                 return 0;
225 
226         page = (char *)__get_free_page(GFP_KERNEL);
227         if (!page)
228                 return -ENOMEM;
229 
230         ret = 0;
231         got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
232         if (got > 0) {
233                 int len = strnlen(page, got);
234 
235                 /* Include the NUL character if it was found */
236                 if (len < got)
237                         len++;
238 
239                 if (len > pos) {
240                         len -= pos;
241                         if (len > count)
242                                 len = count;
243                         len -= copy_to_user(buf, page+pos, len);
244                         if (!len)
245                                 len = -EFAULT;
246                         ret = len;
247                 }
248         }
249         free_page((unsigned long)page);
250         return ret;
251 }
252 
253 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
254                               size_t count, loff_t *ppos)
255 {
256         unsigned long arg_start, arg_end, env_start, env_end;
257         unsigned long pos, len;
258         char *page, c;
259 
260         /* Check if process spawned far enough to have cmdline. */
261         if (!mm->env_end)
262                 return 0;
263 
264         spin_lock(&mm->arg_lock);
265         arg_start = mm->arg_start;
266         arg_end = mm->arg_end;
267         env_start = mm->env_start;
268         env_end = mm->env_end;
269         spin_unlock(&mm->arg_lock);
270 
271         if (arg_start >= arg_end)
272                 return 0;
273 
274         /*
275          * We allow setproctitle() to overwrite the argument
276          * strings, and overflow past the original end. But
277          * only when it overflows into the environment area.
278          */
279         if (env_start != arg_end || env_end < env_start)
280                 env_start = env_end = arg_end;
281         len = env_end - arg_start;
282 
283         /* We're not going to care if "*ppos" has high bits set */
284         pos = *ppos;
285         if (pos >= len)
286                 return 0;
287         if (count > len - pos)
288                 count = len - pos;
289         if (!count)
290                 return 0;
291 
292         /*
293          * Magical special case: if the argv[] end byte is not
294          * zero, the user has overwritten it with setproctitle(3).
295          *
296          * Possible future enhancement: do this only once when
297          * pos is 0, and set a flag in the 'struct file'.
298          */
299         if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
300                 return get_mm_proctitle(mm, buf, count, pos, arg_start);
301 
302         /*
303          * For the non-setproctitle() case we limit things strictly
304          * to the [arg_start, arg_end[ range.
305          */
306         pos += arg_start;
307         if (pos < arg_start || pos >= arg_end)
308                 return 0;
309         if (count > arg_end - pos)
310                 count = arg_end - pos;
311 
312         page = (char *)__get_free_page(GFP_KERNEL);
313         if (!page)
314                 return -ENOMEM;
315 
316         len = 0;
317         while (count) {
318                 int got;
319                 size_t size = min_t(size_t, PAGE_SIZE, count);
320 
321                 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
322                 if (got <= 0)
323                         break;
324                 got -= copy_to_user(buf, page, got);
325                 if (unlikely(!got)) {
326                         if (!len)
327                                 len = -EFAULT;
328                         break;
329                 }
330                 pos += got;
331                 buf += got;
332                 len += got;
333                 count -= got;
334         }
335 
336         free_page((unsigned long)page);
337         return len;
338 }
339 
340 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
341                                 size_t count, loff_t *pos)
342 {
343         struct mm_struct *mm;
344         ssize_t ret;
345 
346         mm = get_task_mm(tsk);
347         if (!mm)
348                 return 0;
349 
350         ret = get_mm_cmdline(mm, buf, count, pos);
351         mmput(mm);
352         return ret;
353 }
354 
355 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
356                                      size_t count, loff_t *pos)
357 {
358         struct task_struct *tsk;
359         ssize_t ret;
360 
361         BUG_ON(*pos < 0);
362 
363         tsk = get_proc_task(file_inode(file));
364         if (!tsk)
365                 return -ESRCH;
366         ret = get_task_cmdline(tsk, buf, count, pos);
367         put_task_struct(tsk);
368         if (ret > 0)
369                 *pos += ret;
370         return ret;
371 }
372 
373 static const struct file_operations proc_pid_cmdline_ops = {
374         .read   = proc_pid_cmdline_read,
375         .llseek = generic_file_llseek,
376 };
377 
378 #ifdef CONFIG_KALLSYMS
379 /*
380  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
381  * Returns the resolved symbol.  If that fails, simply return the address.
382  */
383 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
384                           struct pid *pid, struct task_struct *task)
385 {
386         unsigned long wchan;
387         char symname[KSYM_NAME_LEN];
388 
389         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
390                 goto print0;
391 
392         wchan = get_wchan(task);
393         if (wchan && !lookup_symbol_name(wchan, symname)) {
394                 seq_puts(m, symname);
395                 return 0;
396         }
397 
398 print0:
399         seq_putc(m, '');
400         return 0;
401 }
402 #endif /* CONFIG_KALLSYMS */
403 
404 static int lock_trace(struct task_struct *task)
405 {
406         int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
407         if (err)
408                 return err;
409         if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
410                 mutex_unlock(&task->signal->cred_guard_mutex);
411                 return -EPERM;
412         }
413         return 0;
414 }
415 
416 static void unlock_trace(struct task_struct *task)
417 {
418         mutex_unlock(&task->signal->cred_guard_mutex);
419 }
420 
421 #ifdef CONFIG_STACKTRACE
422 
423 #define MAX_STACK_TRACE_DEPTH   64
424 
425 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
426                           struct pid *pid, struct task_struct *task)
427 {
428         unsigned long *entries;
429         int err;
430 
431         /*
432          * The ability to racily run the kernel stack unwinder on a running task
433          * and then observe the unwinder output is scary; while it is useful for
434          * debugging kernel issues, it can also allow an attacker to leak kernel
435          * stack contents.
436          * Doing this in a manner that is at least safe from races would require
437          * some work to ensure that the remote task can not be scheduled; and
438          * even then, this would still expose the unwinder as local attack
439          * surface.
440          * Therefore, this interface is restricted to root.
441          */
442         if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
443                 return -EACCES;
444 
445         entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
446                                 GFP_KERNEL);
447         if (!entries)
448                 return -ENOMEM;
449 
450         err = lock_trace(task);
451         if (!err) {
452                 unsigned int i, nr_entries;
453 
454                 nr_entries = stack_trace_save_tsk(task, entries,
455                                                   MAX_STACK_TRACE_DEPTH, 0);
456 
457                 for (i = 0; i < nr_entries; i++) {
458                         seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
459                 }
460 
461                 unlock_trace(task);
462         }
463         kfree(entries);
464 
465         return err;
466 }
467 #endif
468 
469 #ifdef CONFIG_SCHED_INFO
470 /*
471  * Provides /proc/PID/schedstat
472  */
473 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
474                               struct pid *pid, struct task_struct *task)
475 {
476         if (unlikely(!sched_info_on()))
477                 seq_puts(m, "0 0 0\n");
478         else
479                 seq_printf(m, "%llu %llu %lu\n",
480                    (unsigned long long)task->se.sum_exec_runtime,
481                    (unsigned long long)task->sched_info.run_delay,
482                    task->sched_info.pcount);
483 
484         return 0;
485 }
486 #endif
487 
488 #ifdef CONFIG_LATENCYTOP
489 static int lstats_show_proc(struct seq_file *m, void *v)
490 {
491         int i;
492         struct inode *inode = m->private;
493         struct task_struct *task = get_proc_task(inode);
494 
495         if (!task)
496                 return -ESRCH;
497         seq_puts(m, "Latency Top version : v0.1\n");
498         for (i = 0; i < LT_SAVECOUNT; i++) {
499                 struct latency_record *lr = &task->latency_record[i];
500                 if (lr->backtrace[0]) {
501                         int q;
502                         seq_printf(m, "%i %li %li",
503                                    lr->count, lr->time, lr->max);
504                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
505                                 unsigned long bt = lr->backtrace[q];
506 
507                                 if (!bt)
508                                         break;
509                                 seq_printf(m, " %ps", (void *)bt);
510                         }
511                         seq_putc(m, '\n');
512                 }
513 
514         }
515         put_task_struct(task);
516         return 0;
517 }
518 
519 static int lstats_open(struct inode *inode, struct file *file)
520 {
521         return single_open(file, lstats_show_proc, inode);
522 }
523 
524 static ssize_t lstats_write(struct file *file, const char __user *buf,
525                             size_t count, loff_t *offs)
526 {
527         struct task_struct *task = get_proc_task(file_inode(file));
528 
529         if (!task)
530                 return -ESRCH;
531         clear_tsk_latency_tracing(task);
532         put_task_struct(task);
533 
534         return count;
535 }
536 
537 static const struct file_operations proc_lstats_operations = {
538         .open           = lstats_open,
539         .read           = seq_read,
540         .write          = lstats_write,
541         .llseek         = seq_lseek,
542         .release        = single_release,
543 };
544 
545 #endif
546 
547 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
548                           struct pid *pid, struct task_struct *task)
549 {
550         unsigned long totalpages = totalram_pages() + total_swap_pages;
551         unsigned long points = 0;
552 
553         points = oom_badness(task, NULL, NULL, totalpages) *
554                                         1000 / totalpages;
555         seq_printf(m, "%lu\n", points);
556 
557         return 0;
558 }
559 
560 struct limit_names {
561         const char *name;
562         const char *unit;
563 };
564 
565 static const struct limit_names lnames[RLIM_NLIMITS] = {
566         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
567         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
568         [RLIMIT_DATA] = {"Max data size", "bytes"},
569         [RLIMIT_STACK] = {"Max stack size", "bytes"},
570         [RLIMIT_CORE] = {"Max core file size", "bytes"},
571         [RLIMIT_RSS] = {"Max resident set", "bytes"},
572         [RLIMIT_NPROC] = {"Max processes", "processes"},
573         [RLIMIT_NOFILE] = {"Max open files", "files"},
574         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
575         [RLIMIT_AS] = {"Max address space", "bytes"},
576         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
577         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
578         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
579         [RLIMIT_NICE] = {"Max nice priority", NULL},
580         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
581         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
582 };
583 
584 /* Display limits for a process */
585 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
586                            struct pid *pid, struct task_struct *task)
587 {
588         unsigned int i;
589         unsigned long flags;
590 
591         struct rlimit rlim[RLIM_NLIMITS];
592 
593         if (!lock_task_sighand(task, &flags))
594                 return 0;
595         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
596         unlock_task_sighand(task, &flags);
597 
598         /*
599          * print the file header
600          */
601         seq_puts(m, "Limit                     "
602                 "Soft Limit           "
603                 "Hard Limit           "
604                 "Units     \n");
605 
606         for (i = 0; i < RLIM_NLIMITS; i++) {
607                 if (rlim[i].rlim_cur == RLIM_INFINITY)
608                         seq_printf(m, "%-25s %-20s ",
609                                    lnames[i].name, "unlimited");
610                 else
611                         seq_printf(m, "%-25s %-20lu ",
612                                    lnames[i].name, rlim[i].rlim_cur);
613 
614                 if (rlim[i].rlim_max == RLIM_INFINITY)
615                         seq_printf(m, "%-20s ", "unlimited");
616                 else
617                         seq_printf(m, "%-20lu ", rlim[i].rlim_max);
618 
619                 if (lnames[i].unit)
620                         seq_printf(m, "%-10s\n", lnames[i].unit);
621                 else
622                         seq_putc(m, '\n');
623         }
624 
625         return 0;
626 }
627 
628 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
629 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
630                             struct pid *pid, struct task_struct *task)
631 {
632         struct syscall_info info;
633         u64 *args = &info.data.args[0];
634         int res;
635 
636         res = lock_trace(task);
637         if (res)
638                 return res;
639 
640         if (task_current_syscall(task, &info))
641                 seq_puts(m, "running\n");
642         else if (info.data.nr < 0)
643                 seq_printf(m, "%d 0x%llx 0x%llx\n",
644                            info.data.nr, info.sp, info.data.instruction_pointer);
645         else
646                 seq_printf(m,
647                        "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
648                        info.data.nr,
649                        args[0], args[1], args[2], args[3], args[4], args[5],
650                        info.sp, info.data.instruction_pointer);
651         unlock_trace(task);
652 
653         return 0;
654 }
655 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
656 
657 /************************************************************************/
658 /*                       Here the fs part begins                        */
659 /************************************************************************/
660 
661 /* permission checks */
662 static int proc_fd_access_allowed(struct inode *inode)
663 {
664         struct task_struct *task;
665         int allowed = 0;
666         /* Allow access to a task's file descriptors if it is us or we
667          * may use ptrace attach to the process and find out that
668          * information.
669          */
670         task = get_proc_task(inode);
671         if (task) {
672                 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
673                 put_task_struct(task);
674         }
675         return allowed;
676 }
677 
678 int proc_setattr(struct dentry *dentry, struct iattr *attr)
679 {
680         int error;
681         struct inode *inode = d_inode(dentry);
682 
683         if (attr->ia_valid & ATTR_MODE)
684                 return -EPERM;
685 
686         error = setattr_prepare(dentry, attr);
687         if (error)
688                 return error;
689 
690         setattr_copy(inode, attr);
691         mark_inode_dirty(inode);
692         return 0;
693 }
694 
695 /*
696  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
697  * or euid/egid (for hide_pid_min=2)?
698  */
699 static bool has_pid_permissions(struct pid_namespace *pid,
700                                  struct task_struct *task,
701                                  int hide_pid_min)
702 {
703         if (pid->hide_pid < hide_pid_min)
704                 return true;
705         if (in_group_p(pid->pid_gid))
706                 return true;
707         return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
708 }
709 
710 
711 static int proc_pid_permission(struct inode *inode, int mask)
712 {
713         struct pid_namespace *pid = proc_pid_ns(inode);
714         struct task_struct *task;
715         bool has_perms;
716 
717         task = get_proc_task(inode);
718         if (!task)
719                 return -ESRCH;
720         has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
721         put_task_struct(task);
722 
723         if (!has_perms) {
724                 if (pid->hide_pid == HIDEPID_INVISIBLE) {
725                         /*
726                          * Let's make getdents(), stat(), and open()
727                          * consistent with each other.  If a process
728                          * may not stat() a file, it shouldn't be seen
729                          * in procfs at all.
730                          */
731                         return -ENOENT;
732                 }
733 
734                 return -EPERM;
735         }
736         return generic_permission(inode, mask);
737 }
738 
739 
740 
741 static const struct inode_operations proc_def_inode_operations = {
742         .setattr        = proc_setattr,
743 };
744 
745 static int proc_single_show(struct seq_file *m, void *v)
746 {
747         struct inode *inode = m->private;
748         struct pid_namespace *ns = proc_pid_ns(inode);
749         struct pid *pid = proc_pid(inode);
750         struct task_struct *task;
751         int ret;
752 
753         task = get_pid_task(pid, PIDTYPE_PID);
754         if (!task)
755                 return -ESRCH;
756 
757         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
758 
759         put_task_struct(task);
760         return ret;
761 }
762 
763 static int proc_single_open(struct inode *inode, struct file *filp)
764 {
765         return single_open(filp, proc_single_show, inode);
766 }
767 
768 static const struct file_operations proc_single_file_operations = {
769         .open           = proc_single_open,
770         .read           = seq_read,
771         .llseek         = seq_lseek,
772         .release        = single_release,
773 };
774 
775 
776 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
777 {
778         struct task_struct *task = get_proc_task(inode);
779         struct mm_struct *mm = ERR_PTR(-ESRCH);
780 
781         if (task) {
782                 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
783                 put_task_struct(task);
784 
785                 if (!IS_ERR_OR_NULL(mm)) {
786                         /* ensure this mm_struct can't be freed */
787                         mmgrab(mm);
788                         /* but do not pin its memory */
789                         mmput(mm);
790                 }
791         }
792 
793         return mm;
794 }
795 
796 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
797 {
798         struct mm_struct *mm = proc_mem_open(inode, mode);
799 
800         if (IS_ERR(mm))
801                 return PTR_ERR(mm);
802 
803         file->private_data = mm;
804         return 0;
805 }
806 
807 static int mem_open(struct inode *inode, struct file *file)
808 {
809         int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
810 
811         /* OK to pass negative loff_t, we can catch out-of-range */
812         file->f_mode |= FMODE_UNSIGNED_OFFSET;
813 
814         return ret;
815 }
816 
817 static ssize_t mem_rw(struct file *file, char __user *buf,
818                         size_t count, loff_t *ppos, int write)
819 {
820         struct mm_struct *mm = file->private_data;
821         unsigned long addr = *ppos;
822         ssize_t copied;
823         char *page;
824         unsigned int flags;
825 
826         if (!mm)
827                 return 0;
828 
829         page = (char *)__get_free_page(GFP_KERNEL);
830         if (!page)
831                 return -ENOMEM;
832 
833         copied = 0;
834         if (!mmget_not_zero(mm))
835                 goto free;
836 
837         flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
838 
839         while (count > 0) {
840                 int this_len = min_t(int, count, PAGE_SIZE);
841 
842                 if (write && copy_from_user(page, buf, this_len)) {
843                         copied = -EFAULT;
844                         break;
845                 }
846 
847                 this_len = access_remote_vm(mm, addr, page, this_len, flags);
848                 if (!this_len) {
849                         if (!copied)
850                                 copied = -EIO;
851                         break;
852                 }
853 
854                 if (!write && copy_to_user(buf, page, this_len)) {
855                         copied = -EFAULT;
856                         break;
857                 }
858 
859                 buf += this_len;
860                 addr += this_len;
861                 copied += this_len;
862                 count -= this_len;
863         }
864         *ppos = addr;
865 
866         mmput(mm);
867 free:
868         free_page((unsigned long) page);
869         return copied;
870 }
871 
872 static ssize_t mem_read(struct file *file, char __user *buf,
873                         size_t count, loff_t *ppos)
874 {
875         return mem_rw(file, buf, count, ppos, 0);
876 }
877 
878 static ssize_t mem_write(struct file *file, const char __user *buf,
879                          size_t count, loff_t *ppos)
880 {
881         return mem_rw(file, (char __user*)buf, count, ppos, 1);
882 }
883 
884 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
885 {
886         switch (orig) {
887         case 0:
888                 file->f_pos = offset;
889                 break;
890         case 1:
891                 file->f_pos += offset;
892                 break;
893         default:
894                 return -EINVAL;
895         }
896         force_successful_syscall_return();
897         return file->f_pos;
898 }
899 
900 static int mem_release(struct inode *inode, struct file *file)
901 {
902         struct mm_struct *mm = file->private_data;
903         if (mm)
904                 mmdrop(mm);
905         return 0;
906 }
907 
908 static const struct file_operations proc_mem_operations = {
909         .llseek         = mem_lseek,
910         .read           = mem_read,
911         .write          = mem_write,
912         .open           = mem_open,
913         .release        = mem_release,
914 };
915 
916 static int environ_open(struct inode *inode, struct file *file)
917 {
918         return __mem_open(inode, file, PTRACE_MODE_READ);
919 }
920 
921 static ssize_t environ_read(struct file *file, char __user *buf,
922                         size_t count, loff_t *ppos)
923 {
924         char *page;
925         unsigned long src = *ppos;
926         int ret = 0;
927         struct mm_struct *mm = file->private_data;
928         unsigned long env_start, env_end;
929 
930         /* Ensure the process spawned far enough to have an environment. */
931         if (!mm || !mm->env_end)
932                 return 0;
933 
934         page = (char *)__get_free_page(GFP_KERNEL);
935         if (!page)
936                 return -ENOMEM;
937 
938         ret = 0;
939         if (!mmget_not_zero(mm))
940                 goto free;
941 
942         spin_lock(&mm->arg_lock);
943         env_start = mm->env_start;
944         env_end = mm->env_end;
945         spin_unlock(&mm->arg_lock);
946 
947         while (count > 0) {
948                 size_t this_len, max_len;
949                 int retval;
950 
951                 if (src >= (env_end - env_start))
952                         break;
953 
954                 this_len = env_end - (env_start + src);
955 
956                 max_len = min_t(size_t, PAGE_SIZE, count);
957                 this_len = min(max_len, this_len);
958 
959                 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
960 
961                 if (retval <= 0) {
962                         ret = retval;
963                         break;
964                 }
965 
966                 if (copy_to_user(buf, page, retval)) {
967                         ret = -EFAULT;
968                         break;
969                 }
970 
971                 ret += retval;
972                 src += retval;
973                 buf += retval;
974                 count -= retval;
975         }
976         *ppos = src;
977         mmput(mm);
978 
979 free:
980         free_page((unsigned long) page);
981         return ret;
982 }
983 
984 static const struct file_operations proc_environ_operations = {
985         .open           = environ_open,
986         .read           = environ_read,
987         .llseek         = generic_file_llseek,
988         .release        = mem_release,
989 };
990 
991 static int auxv_open(struct inode *inode, struct file *file)
992 {
993         return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
994 }
995 
996 static ssize_t auxv_read(struct file *file, char __user *buf,
997                         size_t count, loff_t *ppos)
998 {
999         struct mm_struct *mm = file->private_data;
1000         unsigned int nwords = 0;
1001 
1002         if (!mm)
1003                 return 0;
1004         do {
1005                 nwords += 2;
1006         } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1007         return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1008                                        nwords * sizeof(mm->saved_auxv[0]));
1009 }
1010 
1011 static const struct file_operations proc_auxv_operations = {
1012         .open           = auxv_open,
1013         .read           = auxv_read,
1014         .llseek         = generic_file_llseek,
1015         .release        = mem_release,
1016 };
1017 
1018 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1019                             loff_t *ppos)
1020 {
1021         struct task_struct *task = get_proc_task(file_inode(file));
1022         char buffer[PROC_NUMBUF];
1023         int oom_adj = OOM_ADJUST_MIN;
1024         size_t len;
1025 
1026         if (!task)
1027                 return -ESRCH;
1028         if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1029                 oom_adj = OOM_ADJUST_MAX;
1030         else
1031                 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1032                           OOM_SCORE_ADJ_MAX;
1033         put_task_struct(task);
1034         len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1035         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1036 }
1037 
1038 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1039 {
1040         static DEFINE_MUTEX(oom_adj_mutex);
1041         struct mm_struct *mm = NULL;
1042         struct task_struct *task;
1043         int err = 0;
1044 
1045         task = get_proc_task(file_inode(file));
1046         if (!task)
1047                 return -ESRCH;
1048 
1049         mutex_lock(&oom_adj_mutex);
1050         if (legacy) {
1051                 if (oom_adj < task->signal->oom_score_adj &&
1052                                 !capable(CAP_SYS_RESOURCE)) {
1053                         err = -EACCES;
1054                         goto err_unlock;
1055                 }
1056                 /*
1057                  * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1058                  * /proc/pid/oom_score_adj instead.
1059                  */
1060                 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1061                           current->comm, task_pid_nr(current), task_pid_nr(task),
1062                           task_pid_nr(task));
1063         } else {
1064                 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1065                                 !capable(CAP_SYS_RESOURCE)) {
1066                         err = -EACCES;
1067                         goto err_unlock;
1068                 }
1069         }
1070 
1071         /*
1072          * Make sure we will check other processes sharing the mm if this is
1073          * not vfrok which wants its own oom_score_adj.
1074          * pin the mm so it doesn't go away and get reused after task_unlock
1075          */
1076         if (!task->vfork_done) {
1077                 struct task_struct *p = find_lock_task_mm(task);
1078 
1079                 if (p) {
1080                         if (atomic_read(&p->mm->mm_users) > 1) {
1081                                 mm = p->mm;
1082                                 mmgrab(mm);
1083                         }
1084                         task_unlock(p);
1085                 }
1086         }
1087 
1088         task->signal->oom_score_adj = oom_adj;
1089         if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1090                 task->signal->oom_score_adj_min = (short)oom_adj;
1091         trace_oom_score_adj_update(task);
1092 
1093         if (mm) {
1094                 struct task_struct *p;
1095 
1096                 rcu_read_lock();
1097                 for_each_process(p) {
1098                         if (same_thread_group(task, p))
1099                                 continue;
1100 
1101                         /* do not touch kernel threads or the global init */
1102                         if (p->flags & PF_KTHREAD || is_global_init(p))
1103                                 continue;
1104 
1105                         task_lock(p);
1106                         if (!p->vfork_done && process_shares_mm(p, mm)) {
1107                                 p->signal->oom_score_adj = oom_adj;
1108                                 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1109                                         p->signal->oom_score_adj_min = (short)oom_adj;
1110                         }
1111                         task_unlock(p);
1112                 }
1113                 rcu_read_unlock();
1114                 mmdrop(mm);
1115         }
1116 err_unlock:
1117         mutex_unlock(&oom_adj_mutex);
1118         put_task_struct(task);
1119         return err;
1120 }
1121 
1122 /*
1123  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1124  * kernels.  The effective policy is defined by oom_score_adj, which has a
1125  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1126  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1127  * Processes that become oom disabled via oom_adj will still be oom disabled
1128  * with this implementation.
1129  *
1130  * oom_adj cannot be removed since existing userspace binaries use it.
1131  */
1132 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1133                              size_t count, loff_t *ppos)
1134 {
1135         char buffer[PROC_NUMBUF];
1136         int oom_adj;
1137         int err;
1138 
1139         memset(buffer, 0, sizeof(buffer));
1140         if (count > sizeof(buffer) - 1)
1141                 count = sizeof(buffer) - 1;
1142         if (copy_from_user(buffer, buf, count)) {
1143                 err = -EFAULT;
1144                 goto out;
1145         }
1146 
1147         err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1148         if (err)
1149                 goto out;
1150         if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1151              oom_adj != OOM_DISABLE) {
1152                 err = -EINVAL;
1153                 goto out;
1154         }
1155 
1156         /*
1157          * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1158          * value is always attainable.
1159          */
1160         if (oom_adj == OOM_ADJUST_MAX)
1161                 oom_adj = OOM_SCORE_ADJ_MAX;
1162         else
1163                 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1164 
1165         err = __set_oom_adj(file, oom_adj, true);
1166 out:
1167         return err < 0 ? err : count;
1168 }
1169 
1170 static const struct file_operations proc_oom_adj_operations = {
1171         .read           = oom_adj_read,
1172         .write          = oom_adj_write,
1173         .llseek         = generic_file_llseek,
1174 };
1175 
1176 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1177                                         size_t count, loff_t *ppos)
1178 {
1179         struct task_struct *task = get_proc_task(file_inode(file));
1180         char buffer[PROC_NUMBUF];
1181         short oom_score_adj = OOM_SCORE_ADJ_MIN;
1182         size_t len;
1183 
1184         if (!task)
1185                 return -ESRCH;
1186         oom_score_adj = task->signal->oom_score_adj;
1187         put_task_struct(task);
1188         len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1189         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1190 }
1191 
1192 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1193                                         size_t count, loff_t *ppos)
1194 {
1195         char buffer[PROC_NUMBUF];
1196         int oom_score_adj;
1197         int err;
1198 
1199         memset(buffer, 0, sizeof(buffer));
1200         if (count > sizeof(buffer) - 1)
1201                 count = sizeof(buffer) - 1;
1202         if (copy_from_user(buffer, buf, count)) {
1203                 err = -EFAULT;
1204                 goto out;
1205         }
1206 
1207         err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1208         if (err)
1209                 goto out;
1210         if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1211                         oom_score_adj > OOM_SCORE_ADJ_MAX) {
1212                 err = -EINVAL;
1213                 goto out;
1214         }
1215 
1216         err = __set_oom_adj(file, oom_score_adj, false);
1217 out:
1218         return err < 0 ? err : count;
1219 }
1220 
1221 static const struct file_operations proc_oom_score_adj_operations = {
1222         .read           = oom_score_adj_read,
1223         .write          = oom_score_adj_write,
1224         .llseek         = default_llseek,
1225 };
1226 
1227 #ifdef CONFIG_AUDIT
1228 #define TMPBUFLEN 11
1229 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1230                                   size_t count, loff_t *ppos)
1231 {
1232         struct inode * inode = file_inode(file);
1233         struct task_struct *task = get_proc_task(inode);
1234         ssize_t length;
1235         char tmpbuf[TMPBUFLEN];
1236 
1237         if (!task)
1238                 return -ESRCH;
1239         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1240                            from_kuid(file->f_cred->user_ns,
1241                                      audit_get_loginuid(task)));
1242         put_task_struct(task);
1243         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1244 }
1245 
1246 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1247                                    size_t count, loff_t *ppos)
1248 {
1249         struct inode * inode = file_inode(file);
1250         uid_t loginuid;
1251         kuid_t kloginuid;
1252         int rv;
1253 
1254         rcu_read_lock();
1255         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1256                 rcu_read_unlock();
1257                 return -EPERM;
1258         }
1259         rcu_read_unlock();
1260 
1261         if (*ppos != 0) {
1262                 /* No partial writes. */
1263                 return -EINVAL;
1264         }
1265 
1266         rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1267         if (rv < 0)
1268                 return rv;
1269 
1270         /* is userspace tring to explicitly UNSET the loginuid? */
1271         if (loginuid == AUDIT_UID_UNSET) {
1272                 kloginuid = INVALID_UID;
1273         } else {
1274                 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1275                 if (!uid_valid(kloginuid))
1276                         return -EINVAL;
1277         }
1278 
1279         rv = audit_set_loginuid(kloginuid);
1280         if (rv < 0)
1281                 return rv;
1282         return count;
1283 }
1284 
1285 static const struct file_operations proc_loginuid_operations = {
1286         .read           = proc_loginuid_read,
1287         .write          = proc_loginuid_write,
1288         .llseek         = generic_file_llseek,
1289 };
1290 
1291 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1292                                   size_t count, loff_t *ppos)
1293 {
1294         struct inode * inode = file_inode(file);
1295         struct task_struct *task = get_proc_task(inode);
1296         ssize_t length;
1297         char tmpbuf[TMPBUFLEN];
1298 
1299         if (!task)
1300                 return -ESRCH;
1301         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1302                                 audit_get_sessionid(task));
1303         put_task_struct(task);
1304         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1305 }
1306 
1307 static const struct file_operations proc_sessionid_operations = {
1308         .read           = proc_sessionid_read,
1309         .llseek         = generic_file_llseek,
1310 };
1311 #endif
1312 
1313 #ifdef CONFIG_FAULT_INJECTION
1314 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1315                                       size_t count, loff_t *ppos)
1316 {
1317         struct task_struct *task = get_proc_task(file_inode(file));
1318         char buffer[PROC_NUMBUF];
1319         size_t len;
1320         int make_it_fail;
1321 
1322         if (!task)
1323                 return -ESRCH;
1324         make_it_fail = task->make_it_fail;
1325         put_task_struct(task);
1326 
1327         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1328 
1329         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1330 }
1331 
1332 static ssize_t proc_fault_inject_write(struct file * file,
1333                         const char __user * buf, size_t count, loff_t *ppos)
1334 {
1335         struct task_struct *task;
1336         char buffer[PROC_NUMBUF];
1337         int make_it_fail;
1338         int rv;
1339 
1340         if (!capable(CAP_SYS_RESOURCE))
1341                 return -EPERM;
1342         memset(buffer, 0, sizeof(buffer));
1343         if (count > sizeof(buffer) - 1)
1344                 count = sizeof(buffer) - 1;
1345         if (copy_from_user(buffer, buf, count))
1346                 return -EFAULT;
1347         rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1348         if (rv < 0)
1349                 return rv;
1350         if (make_it_fail < 0 || make_it_fail > 1)
1351                 return -EINVAL;
1352 
1353         task = get_proc_task(file_inode(file));
1354         if (!task)
1355                 return -ESRCH;
1356         task->make_it_fail = make_it_fail;
1357         put_task_struct(task);
1358 
1359         return count;
1360 }
1361 
1362 static const struct file_operations proc_fault_inject_operations = {
1363         .read           = proc_fault_inject_read,
1364         .write          = proc_fault_inject_write,
1365         .llseek         = generic_file_llseek,
1366 };
1367 
1368 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1369                                    size_t count, loff_t *ppos)
1370 {
1371         struct task_struct *task;
1372         int err;
1373         unsigned int n;
1374 
1375         err = kstrtouint_from_user(buf, count, 0, &n);
1376         if (err)
1377                 return err;
1378 
1379         task = get_proc_task(file_inode(file));
1380         if (!task)
1381                 return -ESRCH;
1382         task->fail_nth = n;
1383         put_task_struct(task);
1384 
1385         return count;
1386 }
1387 
1388 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1389                                   size_t count, loff_t *ppos)
1390 {
1391         struct task_struct *task;
1392         char numbuf[PROC_NUMBUF];
1393         ssize_t len;
1394 
1395         task = get_proc_task(file_inode(file));
1396         if (!task)
1397                 return -ESRCH;
1398         len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1399         put_task_struct(task);
1400         return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1401 }
1402 
1403 static const struct file_operations proc_fail_nth_operations = {
1404         .read           = proc_fail_nth_read,
1405         .write          = proc_fail_nth_write,
1406 };
1407 #endif
1408 
1409 
1410 #ifdef CONFIG_SCHED_DEBUG
1411 /*
1412  * Print out various scheduling related per-task fields:
1413  */
1414 static int sched_show(struct seq_file *m, void *v)
1415 {
1416         struct inode *inode = m->private;
1417         struct pid_namespace *ns = proc_pid_ns(inode);
1418         struct task_struct *p;
1419 
1420         p = get_proc_task(inode);
1421         if (!p)
1422                 return -ESRCH;
1423         proc_sched_show_task(p, ns, m);
1424 
1425         put_task_struct(p);
1426 
1427         return 0;
1428 }
1429 
1430 static ssize_t
1431 sched_write(struct file *file, const char __user *buf,
1432             size_t count, loff_t *offset)
1433 {
1434         struct inode *inode = file_inode(file);
1435         struct task_struct *p;
1436 
1437         p = get_proc_task(inode);
1438         if (!p)
1439                 return -ESRCH;
1440         proc_sched_set_task(p);
1441 
1442         put_task_struct(p);
1443 
1444         return count;
1445 }
1446 
1447 static int sched_open(struct inode *inode, struct file *filp)
1448 {
1449         return single_open(filp, sched_show, inode);
1450 }
1451 
1452 static const struct file_operations proc_pid_sched_operations = {
1453         .open           = sched_open,
1454         .read           = seq_read,
1455         .write          = sched_write,
1456         .llseek         = seq_lseek,
1457         .release        = single_release,
1458 };
1459 
1460 #endif
1461 
1462 #ifdef CONFIG_SCHED_AUTOGROUP
1463 /*
1464  * Print out autogroup related information:
1465  */
1466 static int sched_autogroup_show(struct seq_file *m, void *v)
1467 {
1468         struct inode *inode = m->private;
1469         struct task_struct *p;
1470 
1471         p = get_proc_task(inode);
1472         if (!p)
1473                 return -ESRCH;
1474         proc_sched_autogroup_show_task(p, m);
1475 
1476         put_task_struct(p);
1477 
1478         return 0;
1479 }
1480 
1481 static ssize_t
1482 sched_autogroup_write(struct file *file, const char __user *buf,
1483             size_t count, loff_t *offset)
1484 {
1485         struct inode *inode = file_inode(file);
1486         struct task_struct *p;
1487         char buffer[PROC_NUMBUF];
1488         int nice;
1489         int err;
1490 
1491         memset(buffer, 0, sizeof(buffer));
1492         if (count > sizeof(buffer) - 1)
1493                 count = sizeof(buffer) - 1;
1494         if (copy_from_user(buffer, buf, count))
1495                 return -EFAULT;
1496 
1497         err = kstrtoint(strstrip(buffer), 0, &nice);
1498         if (err < 0)
1499                 return err;
1500 
1501         p = get_proc_task(inode);
1502         if (!p)
1503                 return -ESRCH;
1504 
1505         err = proc_sched_autogroup_set_nice(p, nice);
1506         if (err)
1507                 count = err;
1508 
1509         put_task_struct(p);
1510 
1511         return count;
1512 }
1513 
1514 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1515 {
1516         int ret;
1517 
1518         ret = single_open(filp, sched_autogroup_show, NULL);
1519         if (!ret) {
1520                 struct seq_file *m = filp->private_data;
1521 
1522                 m->private = inode;
1523         }
1524         return ret;
1525 }
1526 
1527 static const struct file_operations proc_pid_sched_autogroup_operations = {
1528         .open           = sched_autogroup_open,
1529         .read           = seq_read,
1530         .write          = sched_autogroup_write,
1531         .llseek         = seq_lseek,
1532         .release        = single_release,
1533 };
1534 
1535 #endif /* CONFIG_SCHED_AUTOGROUP */
1536 
1537 static ssize_t comm_write(struct file *file, const char __user *buf,
1538                                 size_t count, loff_t *offset)
1539 {
1540         struct inode *inode = file_inode(file);
1541         struct task_struct *p;
1542         char buffer[TASK_COMM_LEN];
1543         const size_t maxlen = sizeof(buffer) - 1;
1544 
1545         memset(buffer, 0, sizeof(buffer));
1546         if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1547                 return -EFAULT;
1548 
1549         p = get_proc_task(inode);
1550         if (!p)
1551                 return -ESRCH;
1552 
1553         if (same_thread_group(current, p))
1554                 set_task_comm(p, buffer);
1555         else
1556                 count = -EINVAL;
1557 
1558         put_task_struct(p);
1559 
1560         return count;
1561 }
1562 
1563 static int comm_show(struct seq_file *m, void *v)
1564 {
1565         struct inode *inode = m->private;
1566         struct task_struct *p;
1567 
1568         p = get_proc_task(inode);
1569         if (!p)
1570                 return -ESRCH;
1571 
1572         proc_task_name(m, p, false);
1573         seq_putc(m, '\n');
1574 
1575         put_task_struct(p);
1576 
1577         return 0;
1578 }
1579 
1580 static int comm_open(struct inode *inode, struct file *filp)
1581 {
1582         return single_open(filp, comm_show, inode);
1583 }
1584 
1585 static const struct file_operations proc_pid_set_comm_operations = {
1586         .open           = comm_open,
1587         .read           = seq_read,
1588         .write          = comm_write,
1589         .llseek         = seq_lseek,
1590         .release        = single_release,
1591 };
1592 
1593 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1594 {
1595         struct task_struct *task;
1596         struct file *exe_file;
1597 
1598         task = get_proc_task(d_inode(dentry));
1599         if (!task)
1600                 return -ENOENT;
1601         exe_file = get_task_exe_file(task);
1602         put_task_struct(task);
1603         if (exe_file) {
1604                 *exe_path = exe_file->f_path;
1605                 path_get(&exe_file->f_path);
1606                 fput(exe_file);
1607                 return 0;
1608         } else
1609                 return -ENOENT;
1610 }
1611 
1612 static const char *proc_pid_get_link(struct dentry *dentry,
1613                                      struct inode *inode,
1614                                      struct delayed_call *done)
1615 {
1616         struct path path;
1617         int error = -EACCES;
1618 
1619         if (!dentry)
1620                 return ERR_PTR(-ECHILD);
1621 
1622         /* Are we allowed to snoop on the tasks file descriptors? */
1623         if (!proc_fd_access_allowed(inode))
1624                 goto out;
1625 
1626         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1627         if (error)
1628                 goto out;
1629 
1630         nd_jump_link(&path);
1631         return NULL;
1632 out:
1633         return ERR_PTR(error);
1634 }
1635 
1636 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1637 {
1638         char *tmp = (char *)__get_free_page(GFP_KERNEL);
1639         char *pathname;
1640         int len;
1641 
1642         if (!tmp)
1643                 return -ENOMEM;
1644 
1645         pathname = d_path(path, tmp, PAGE_SIZE);
1646         len = PTR_ERR(pathname);
1647         if (IS_ERR(pathname))
1648                 goto out;
1649         len = tmp + PAGE_SIZE - 1 - pathname;
1650 
1651         if (len > buflen)
1652                 len = buflen;
1653         if (copy_to_user(buffer, pathname, len))
1654                 len = -EFAULT;
1655  out:
1656         free_page((unsigned long)tmp);
1657         return len;
1658 }
1659 
1660 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1661 {
1662         int error = -EACCES;
1663         struct inode *inode = d_inode(dentry);
1664         struct path path;
1665 
1666         /* Are we allowed to snoop on the tasks file descriptors? */
1667         if (!proc_fd_access_allowed(inode))
1668                 goto out;
1669 
1670         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1671         if (error)
1672                 goto out;
1673 
1674         error = do_proc_readlink(&path, buffer, buflen);
1675         path_put(&path);
1676 out:
1677         return error;
1678 }
1679 
1680 const struct inode_operations proc_pid_link_inode_operations = {
1681         .readlink       = proc_pid_readlink,
1682         .get_link       = proc_pid_get_link,
1683         .setattr        = proc_setattr,
1684 };
1685 
1686 
1687 /* building an inode */
1688 
1689 void task_dump_owner(struct task_struct *task, umode_t mode,
1690                      kuid_t *ruid, kgid_t *rgid)
1691 {
1692         /* Depending on the state of dumpable compute who should own a
1693          * proc file for a task.
1694          */
1695         const struct cred *cred;
1696         kuid_t uid;
1697         kgid_t gid;
1698 
1699         if (unlikely(task->flags & PF_KTHREAD)) {
1700                 *ruid = GLOBAL_ROOT_UID;
1701                 *rgid = GLOBAL_ROOT_GID;
1702                 return;
1703         }
1704 
1705         /* Default to the tasks effective ownership */
1706         rcu_read_lock();
1707         cred = __task_cred(task);
1708         uid = cred->euid;
1709         gid = cred->egid;
1710         rcu_read_unlock();
1711 
1712         /*
1713          * Before the /proc/pid/status file was created the only way to read
1714          * the effective uid of a /process was to stat /proc/pid.  Reading
1715          * /proc/pid/status is slow enough that procps and other packages
1716          * kept stating /proc/pid.  To keep the rules in /proc simple I have
1717          * made this apply to all per process world readable and executable
1718          * directories.
1719          */
1720         if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1721                 struct mm_struct *mm;
1722                 task_lock(task);
1723                 mm = task->mm;
1724                 /* Make non-dumpable tasks owned by some root */
1725                 if (mm) {
1726                         if (get_dumpable(mm) != SUID_DUMP_USER) {
1727                                 struct user_namespace *user_ns = mm->user_ns;
1728 
1729                                 uid = make_kuid(user_ns, 0);
1730                                 if (!uid_valid(uid))
1731                                         uid = GLOBAL_ROOT_UID;
1732 
1733                                 gid = make_kgid(user_ns, 0);
1734                                 if (!gid_valid(gid))
1735                                         gid = GLOBAL_ROOT_GID;
1736                         }
1737                 } else {
1738                         uid = GLOBAL_ROOT_UID;
1739                         gid = GLOBAL_ROOT_GID;
1740                 }
1741                 task_unlock(task);
1742         }
1743         *ruid = uid;
1744         *rgid = gid;
1745 }
1746 
1747 struct inode *proc_pid_make_inode(struct super_block * sb,
1748                                   struct task_struct *task, umode_t mode)
1749 {
1750         struct inode * inode;
1751         struct proc_inode *ei;
1752 
1753         /* We need a new inode */
1754 
1755         inode = new_inode(sb);
1756         if (!inode)
1757                 goto out;
1758 
1759         /* Common stuff */
1760         ei = PROC_I(inode);
1761         inode->i_mode = mode;
1762         inode->i_ino = get_next_ino();
1763         inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1764         inode->i_op = &proc_def_inode_operations;
1765 
1766         /*
1767          * grab the reference to task.
1768          */
1769         ei->pid = get_task_pid(task, PIDTYPE_PID);
1770         if (!ei->pid)
1771                 goto out_unlock;
1772 
1773         task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1774         security_task_to_inode(task, inode);
1775 
1776 out:
1777         return inode;
1778 
1779 out_unlock:
1780         iput(inode);
1781         return NULL;
1782 }
1783 
1784 int pid_getattr(const struct path *path, struct kstat *stat,
1785                 u32 request_mask, unsigned int query_flags)
1786 {
1787         struct inode *inode = d_inode(path->dentry);
1788         struct pid_namespace *pid = proc_pid_ns(inode);
1789         struct task_struct *task;
1790 
1791         generic_fillattr(inode, stat);
1792 
1793         stat->uid = GLOBAL_ROOT_UID;
1794         stat->gid = GLOBAL_ROOT_GID;
1795         rcu_read_lock();
1796         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1797         if (task) {
1798                 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1799                         rcu_read_unlock();
1800                         /*
1801                          * This doesn't prevent learning whether PID exists,
1802                          * it only makes getattr() consistent with readdir().
1803                          */
1804                         return -ENOENT;
1805                 }
1806                 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1807         }
1808         rcu_read_unlock();
1809         return 0;
1810 }
1811 
1812 /* dentry stuff */
1813 
1814 /*
1815  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1816  */
1817 void pid_update_inode(struct task_struct *task, struct inode *inode)
1818 {
1819         task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1820 
1821         inode->i_mode &= ~(S_ISUID | S_ISGID);
1822         security_task_to_inode(task, inode);
1823 }
1824 
1825 /*
1826  * Rewrite the inode's ownerships here because the owning task may have
1827  * performed a setuid(), etc.
1828  *
1829  */
1830 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1831 {
1832         struct inode *inode;
1833         struct task_struct *task;
1834 
1835         if (flags & LOOKUP_RCU)
1836                 return -ECHILD;
1837 
1838         inode = d_inode(dentry);
1839         task = get_proc_task(inode);
1840 
1841         if (task) {
1842                 pid_update_inode(task, inode);
1843                 put_task_struct(task);
1844                 return 1;
1845         }
1846         return 0;
1847 }
1848 
1849 static inline bool proc_inode_is_dead(struct inode *inode)
1850 {
1851         return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1852 }
1853 
1854 int pid_delete_dentry(const struct dentry *dentry)
1855 {
1856         /* Is the task we represent dead?
1857          * If so, then don't put the dentry on the lru list,
1858          * kill it immediately.
1859          */
1860         return proc_inode_is_dead(d_inode(dentry));
1861 }
1862 
1863 const struct dentry_operations pid_dentry_operations =
1864 {
1865         .d_revalidate   = pid_revalidate,
1866         .d_delete       = pid_delete_dentry,
1867 };
1868 
1869 /* Lookups */
1870 
1871 /*
1872  * Fill a directory entry.
1873  *
1874  * If possible create the dcache entry and derive our inode number and
1875  * file type from dcache entry.
1876  *
1877  * Since all of the proc inode numbers are dynamically generated, the inode
1878  * numbers do not exist until the inode is cache.  This means creating the
1879  * the dcache entry in readdir is necessary to keep the inode numbers
1880  * reported by readdir in sync with the inode numbers reported
1881  * by stat.
1882  */
1883 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1884         const char *name, unsigned int len,
1885         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1886 {
1887         struct dentry *child, *dir = file->f_path.dentry;
1888         struct qstr qname = QSTR_INIT(name, len);
1889         struct inode *inode;
1890         unsigned type = DT_UNKNOWN;
1891         ino_t ino = 1;
1892 
1893         child = d_hash_and_lookup(dir, &qname);
1894         if (!child) {
1895                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1896                 child = d_alloc_parallel(dir, &qname, &wq);
1897                 if (IS_ERR(child))
1898                         goto end_instantiate;
1899                 if (d_in_lookup(child)) {
1900                         struct dentry *res;
1901                         res = instantiate(child, task, ptr);
1902                         d_lookup_done(child);
1903                         if (unlikely(res)) {
1904                                 dput(child);
1905                                 child = res;
1906                                 if (IS_ERR(child))
1907                                         goto end_instantiate;
1908                         }
1909                 }
1910         }
1911         inode = d_inode(child);
1912         ino = inode->i_ino;
1913         type = inode->i_mode >> 12;
1914         dput(child);
1915 end_instantiate:
1916         return dir_emit(ctx, name, len, ino, type);
1917 }
1918 
1919 /*
1920  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1921  * which represent vma start and end addresses.
1922  */
1923 static int dname_to_vma_addr(struct dentry *dentry,
1924                              unsigned long *start, unsigned long *end)
1925 {
1926         const char *str = dentry->d_name.name;
1927         unsigned long long sval, eval;
1928         unsigned int len;
1929 
1930         if (str[0] == '' && str[1] != '-')
1931                 return -EINVAL;
1932         len = _parse_integer(str, 16, &sval);
1933         if (len & KSTRTOX_OVERFLOW)
1934                 return -EINVAL;
1935         if (sval != (unsigned long)sval)
1936                 return -EINVAL;
1937         str += len;
1938 
1939         if (*str != '-')
1940                 return -EINVAL;
1941         str++;
1942 
1943         if (str[0] == '' && str[1])
1944                 return -EINVAL;
1945         len = _parse_integer(str, 16, &eval);
1946         if (len & KSTRTOX_OVERFLOW)
1947                 return -EINVAL;
1948         if (eval != (unsigned long)eval)
1949                 return -EINVAL;
1950         str += len;
1951 
1952         if (*str != '\0')
1953                 return -EINVAL;
1954 
1955         *start = sval;
1956         *end = eval;
1957 
1958         return 0;
1959 }
1960 
1961 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1962 {
1963         unsigned long vm_start, vm_end;
1964         bool exact_vma_exists = false;
1965         struct mm_struct *mm = NULL;
1966         struct task_struct *task;
1967         struct inode *inode;
1968         int status = 0;
1969 
1970         if (flags & LOOKUP_RCU)
1971                 return -ECHILD;
1972 
1973         inode = d_inode(dentry);
1974         task = get_proc_task(inode);
1975         if (!task)
1976                 goto out_notask;
1977 
1978         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1979         if (IS_ERR_OR_NULL(mm))
1980                 goto out;
1981 
1982         if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1983                 status = down_read_killable(&mm->mmap_sem);
1984                 if (!status) {
1985                         exact_vma_exists = !!find_exact_vma(mm, vm_start,
1986                                                             vm_end);
1987                         up_read(&mm->mmap_sem);
1988                 }
1989         }
1990 
1991         mmput(mm);
1992 
1993         if (exact_vma_exists) {
1994                 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1995 
1996                 security_task_to_inode(task, inode);
1997                 status = 1;
1998         }
1999 
2000 out:
2001         put_task_struct(task);
2002 
2003 out_notask:
2004         return status;
2005 }
2006 
2007 static const struct dentry_operations tid_map_files_dentry_operations = {
2008         .d_revalidate   = map_files_d_revalidate,
2009         .d_delete       = pid_delete_dentry,
2010 };
2011 
2012 static int map_files_get_link(struct dentry *dentry, struct path *path)
2013 {
2014         unsigned long vm_start, vm_end;
2015         struct vm_area_struct *vma;
2016         struct task_struct *task;
2017         struct mm_struct *mm;
2018         int rc;
2019 
2020         rc = -ENOENT;
2021         task = get_proc_task(d_inode(dentry));
2022         if (!task)
2023                 goto out;
2024 
2025         mm = get_task_mm(task);
2026         put_task_struct(task);
2027         if (!mm)
2028                 goto out;
2029 
2030         rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2031         if (rc)
2032                 goto out_mmput;
2033 
2034         rc = down_read_killable(&mm->mmap_sem);
2035         if (rc)
2036                 goto out_mmput;
2037 
2038         rc = -ENOENT;
2039         vma = find_exact_vma(mm, vm_start, vm_end);
2040         if (vma && vma->vm_file) {
2041                 *path = vma->vm_file->f_path;
2042                 path_get(path);
2043                 rc = 0;
2044         }
2045         up_read(&mm->mmap_sem);
2046 
2047 out_mmput:
2048         mmput(mm);
2049 out:
2050         return rc;
2051 }
2052 
2053 struct map_files_info {
2054         unsigned long   start;
2055         unsigned long   end;
2056         fmode_t         mode;
2057 };
2058 
2059 /*
2060  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2061  * symlinks may be used to bypass permissions on ancestor directories in the
2062  * path to the file in question.
2063  */
2064 static const char *
2065 proc_map_files_get_link(struct dentry *dentry,
2066                         struct inode *inode,
2067                         struct delayed_call *done)
2068 {
2069         if (!capable(CAP_SYS_ADMIN))
2070                 return ERR_PTR(-EPERM);
2071 
2072         return proc_pid_get_link(dentry, inode, done);
2073 }
2074 
2075 /*
2076  * Identical to proc_pid_link_inode_operations except for get_link()
2077  */
2078 static const struct inode_operations proc_map_files_link_inode_operations = {
2079         .readlink       = proc_pid_readlink,
2080         .get_link       = proc_map_files_get_link,
2081         .setattr        = proc_setattr,
2082 };
2083 
2084 static struct dentry *
2085 proc_map_files_instantiate(struct dentry *dentry,
2086                            struct task_struct *task, const void *ptr)
2087 {
2088         fmode_t mode = (fmode_t)(unsigned long)ptr;
2089         struct proc_inode *ei;
2090         struct inode *inode;
2091 
2092         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2093                                     ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2094                                     ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2095         if (!inode)
2096                 return ERR_PTR(-ENOENT);
2097 
2098         ei = PROC_I(inode);
2099         ei->op.proc_get_link = map_files_get_link;
2100 
2101         inode->i_op = &proc_map_files_link_inode_operations;
2102         inode->i_size = 64;
2103 
2104         d_set_d_op(dentry, &tid_map_files_dentry_operations);
2105         return d_splice_alias(inode, dentry);
2106 }
2107 
2108 static struct dentry *proc_map_files_lookup(struct inode *dir,
2109                 struct dentry *dentry, unsigned int flags)
2110 {
2111         unsigned long vm_start, vm_end;
2112         struct vm_area_struct *vma;
2113         struct task_struct *task;
2114         struct dentry *result;
2115         struct mm_struct *mm;
2116 
2117         result = ERR_PTR(-ENOENT);
2118         task = get_proc_task(dir);
2119         if (!task)
2120                 goto out;
2121 
2122         result = ERR_PTR(-EACCES);
2123         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2124                 goto out_put_task;
2125 
2126         result = ERR_PTR(-ENOENT);
2127         if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2128                 goto out_put_task;
2129 
2130         mm = get_task_mm(task);
2131         if (!mm)
2132                 goto out_put_task;
2133 
2134         result = ERR_PTR(-EINTR);
2135         if (down_read_killable(&mm->mmap_sem))
2136                 goto out_put_mm;
2137 
2138         result = ERR_PTR(-ENOENT);
2139         vma = find_exact_vma(mm, vm_start, vm_end);
2140         if (!vma)
2141                 goto out_no_vma;
2142 
2143         if (vma->vm_file)
2144                 result = proc_map_files_instantiate(dentry, task,
2145                                 (void *)(unsigned long)vma->vm_file->f_mode);
2146 
2147 out_no_vma:
2148         up_read(&mm->mmap_sem);
2149 out_put_mm:
2150         mmput(mm);
2151 out_put_task:
2152         put_task_struct(task);
2153 out:
2154         return result;
2155 }
2156 
2157 static const struct inode_operations proc_map_files_inode_operations = {
2158         .lookup         = proc_map_files_lookup,
2159         .permission     = proc_fd_permission,
2160         .setattr        = proc_setattr,
2161 };
2162 
2163 static int
2164 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2165 {
2166         struct vm_area_struct *vma;
2167         struct task_struct *task;
2168         struct mm_struct *mm;
2169         unsigned long nr_files, pos, i;
2170         GENRADIX(struct map_files_info) fa;
2171         struct map_files_info *p;
2172         int ret;
2173 
2174         genradix_init(&fa);
2175 
2176         ret = -ENOENT;
2177         task = get_proc_task(file_inode(file));
2178         if (!task)
2179                 goto out;
2180 
2181         ret = -EACCES;
2182         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2183                 goto out_put_task;
2184 
2185         ret = 0;
2186         if (!dir_emit_dots(file, ctx))
2187                 goto out_put_task;
2188 
2189         mm = get_task_mm(task);
2190         if (!mm)
2191                 goto out_put_task;
2192 
2193         ret = down_read_killable(&mm->mmap_sem);
2194         if (ret) {
2195                 mmput(mm);
2196                 goto out_put_task;
2197         }
2198 
2199         nr_files = 0;
2200 
2201         /*
2202          * We need two passes here:
2203          *
2204          *  1) Collect vmas of mapped files with mmap_sem taken
2205          *  2) Release mmap_sem and instantiate entries
2206          *
2207          * otherwise we get lockdep complained, since filldir()
2208          * routine might require mmap_sem taken in might_fault().
2209          */
2210 
2211         for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2212                 if (!vma->vm_file)
2213                         continue;
2214                 if (++pos <= ctx->pos)
2215                         continue;
2216 
2217                 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2218                 if (!p) {
2219                         ret = -ENOMEM;
2220                         up_read(&mm->mmap_sem);
2221                         mmput(mm);
2222                         goto out_put_task;
2223                 }
2224 
2225                 p->start = vma->vm_start;
2226                 p->end = vma->vm_end;
2227                 p->mode = vma->vm_file->f_mode;
2228         }
2229         up_read(&mm->mmap_sem);
2230         mmput(mm);
2231 
2232         for (i = 0; i < nr_files; i++) {
2233                 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2234                 unsigned int len;
2235 
2236                 p = genradix_ptr(&fa, i);
2237                 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2238                 if (!proc_fill_cache(file, ctx,
2239                                       buf, len,
2240                                       proc_map_files_instantiate,
2241                                       task,
2242                                       (void *)(unsigned long)p->mode))
2243                         break;
2244                 ctx->pos++;
2245         }
2246 
2247 out_put_task:
2248         put_task_struct(task);
2249 out:
2250         genradix_free(&fa);
2251         return ret;
2252 }
2253 
2254 static const struct file_operations proc_map_files_operations = {
2255         .read           = generic_read_dir,
2256         .iterate_shared = proc_map_files_readdir,
2257         .llseek         = generic_file_llseek,
2258 };
2259 
2260 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2261 struct timers_private {
2262         struct pid *pid;
2263         struct task_struct *task;
2264         struct sighand_struct *sighand;
2265         struct pid_namespace *ns;
2266         unsigned long flags;
2267 };
2268 
2269 static void *timers_start(struct seq_file *m, loff_t *pos)
2270 {
2271         struct timers_private *tp = m->private;
2272 
2273         tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2274         if (!tp->task)
2275                 return ERR_PTR(-ESRCH);
2276 
2277         tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2278         if (!tp->sighand)
2279                 return ERR_PTR(-ESRCH);
2280 
2281         return seq_list_start(&tp->task->signal->posix_timers, *pos);
2282 }
2283 
2284 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2285 {
2286         struct timers_private *tp = m->private;
2287         return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2288 }
2289 
2290 static void timers_stop(struct seq_file *m, void *v)
2291 {
2292         struct timers_private *tp = m->private;
2293 
2294         if (tp->sighand) {
2295                 unlock_task_sighand(tp->task, &tp->flags);
2296                 tp->sighand = NULL;
2297         }
2298 
2299         if (tp->task) {
2300                 put_task_struct(tp->task);
2301                 tp->task = NULL;
2302         }
2303 }
2304 
2305 static int show_timer(struct seq_file *m, void *v)
2306 {
2307         struct k_itimer *timer;
2308         struct timers_private *tp = m->private;
2309         int notify;
2310         static const char * const nstr[] = {
2311                 [SIGEV_SIGNAL] = "signal",
2312                 [SIGEV_NONE] = "none",
2313                 [SIGEV_THREAD] = "thread",
2314         };
2315 
2316         timer = list_entry((struct list_head *)v, struct k_itimer, list);
2317         notify = timer->it_sigev_notify;
2318 
2319         seq_printf(m, "ID: %d\n", timer->it_id);
2320         seq_printf(m, "signal: %d/%px\n",
2321                    timer->sigq->info.si_signo,
2322                    timer->sigq->info.si_value.sival_ptr);
2323         seq_printf(m, "notify: %s/%s.%d\n",
2324                    nstr[notify & ~SIGEV_THREAD_ID],
2325                    (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2326                    pid_nr_ns(timer->it_pid, tp->ns));
2327         seq_printf(m, "ClockID: %d\n", timer->it_clock);
2328 
2329         return 0;
2330 }
2331 
2332 static const struct seq_operations proc_timers_seq_ops = {
2333         .start  = timers_start,
2334         .next   = timers_next,
2335         .stop   = timers_stop,
2336         .show   = show_timer,
2337 };
2338 
2339 static int proc_timers_open(struct inode *inode, struct file *file)
2340 {
2341         struct timers_private *tp;
2342 
2343         tp = __seq_open_private(file, &proc_timers_seq_ops,
2344                         sizeof(struct timers_private));
2345         if (!tp)
2346                 return -ENOMEM;
2347 
2348         tp->pid = proc_pid(inode);
2349         tp->ns = proc_pid_ns(inode);
2350         return 0;
2351 }
2352 
2353 static const struct file_operations proc_timers_operations = {
2354         .open           = proc_timers_open,
2355         .read           = seq_read,
2356         .llseek         = seq_lseek,
2357         .release        = seq_release_private,
2358 };
2359 #endif
2360 
2361 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2362                                         size_t count, loff_t *offset)
2363 {
2364         struct inode *inode = file_inode(file);
2365         struct task_struct *p;
2366         u64 slack_ns;
2367         int err;
2368 
2369         err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2370         if (err < 0)
2371                 return err;
2372 
2373         p = get_proc_task(inode);
2374         if (!p)
2375                 return -ESRCH;
2376 
2377         if (p != current) {
2378                 rcu_read_lock();
2379                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2380                         rcu_read_unlock();
2381                         count = -EPERM;
2382                         goto out;
2383                 }
2384                 rcu_read_unlock();
2385 
2386                 err = security_task_setscheduler(p);
2387                 if (err) {
2388                         count = err;
2389                         goto out;
2390                 }
2391         }
2392 
2393         task_lock(p);
2394         if (slack_ns == 0)
2395                 p->timer_slack_ns = p->default_timer_slack_ns;
2396         else
2397                 p->timer_slack_ns = slack_ns;
2398         task_unlock(p);
2399 
2400 out:
2401         put_task_struct(p);
2402 
2403         return count;
2404 }
2405 
2406 static int timerslack_ns_show(struct seq_file *m, void *v)
2407 {
2408         struct inode *inode = m->private;
2409         struct task_struct *p;
2410         int err = 0;
2411 
2412         p = get_proc_task(inode);
2413         if (!p)
2414                 return -ESRCH;
2415 
2416         if (p != current) {
2417                 rcu_read_lock();
2418                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2419                         rcu_read_unlock();
2420                         err = -EPERM;
2421                         goto out;
2422                 }
2423                 rcu_read_unlock();
2424 
2425                 err = security_task_getscheduler(p);
2426                 if (err)
2427                         goto out;
2428         }
2429 
2430         task_lock(p);
2431         seq_printf(m, "%llu\n", p->timer_slack_ns);
2432         task_unlock(p);
2433 
2434 out:
2435         put_task_struct(p);
2436 
2437         return err;
2438 }
2439 
2440 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2441 {
2442         return single_open(filp, timerslack_ns_show, inode);
2443 }
2444 
2445 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2446         .open           = timerslack_ns_open,
2447         .read           = seq_read,
2448         .write          = timerslack_ns_write,
2449         .llseek         = seq_lseek,
2450         .release        = single_release,
2451 };
2452 
2453 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2454         struct task_struct *task, const void *ptr)
2455 {
2456         const struct pid_entry *p = ptr;
2457         struct inode *inode;
2458         struct proc_inode *ei;
2459 
2460         inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2461         if (!inode)
2462                 return ERR_PTR(-ENOENT);
2463 
2464         ei = PROC_I(inode);
2465         if (S_ISDIR(inode->i_mode))
2466                 set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2467         if (p->iop)
2468                 inode->i_op = p->iop;
2469         if (p->fop)
2470                 inode->i_fop = p->fop;
2471         ei->op = p->op;
2472         pid_update_inode(task, inode);
2473         d_set_d_op(dentry, &pid_dentry_operations);
2474         return d_splice_alias(inode, dentry);
2475 }
2476 
2477 static struct dentry *proc_pident_lookup(struct inode *dir, 
2478                                          struct dentry *dentry,
2479                                          const struct pid_entry *p,
2480                                          const struct pid_entry *end)
2481 {
2482         struct task_struct *task = get_proc_task(dir);
2483         struct dentry *res = ERR_PTR(-ENOENT);
2484 
2485         if (!task)
2486                 goto out_no_task;
2487 
2488         /*
2489          * Yes, it does not scale. And it should not. Don't add
2490          * new entries into /proc/<tgid>/ without very good reasons.
2491          */
2492         for (; p < end; p++) {
2493                 if (p->len != dentry->d_name.len)
2494                         continue;
2495                 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2496                         res = proc_pident_instantiate(dentry, task, p);
2497                         break;
2498                 }
2499         }
2500         put_task_struct(task);
2501 out_no_task:
2502         return res;
2503 }
2504 
2505 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2506                 const struct pid_entry *ents, unsigned int nents)
2507 {
2508         struct task_struct *task = get_proc_task(file_inode(file));
2509         const struct pid_entry *p;
2510 
2511         if (!task)
2512                 return -ENOENT;
2513 
2514         if (!dir_emit_dots(file, ctx))
2515                 goto out;
2516 
2517         if (ctx->pos >= nents + 2)
2518                 goto out;
2519 
2520         for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2521                 if (!proc_fill_cache(file, ctx, p->name, p->len,
2522                                 proc_pident_instantiate, task, p))
2523                         break;
2524                 ctx->pos++;
2525         }
2526 out:
2527         put_task_struct(task);
2528         return 0;
2529 }
2530 
2531 #ifdef CONFIG_SECURITY
2532 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2533                                   size_t count, loff_t *ppos)
2534 {
2535         struct inode * inode = file_inode(file);
2536         char *p = NULL;
2537         ssize_t length;
2538         struct task_struct *task = get_proc_task(inode);
2539 
2540         if (!task)
2541                 return -ESRCH;
2542 
2543         length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2544                                       (char*)file->f_path.dentry->d_name.name,
2545                                       &p);
2546         put_task_struct(task);
2547         if (length > 0)
2548                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2549         kfree(p);
2550         return length;
2551 }
2552 
2553 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2554                                    size_t count, loff_t *ppos)
2555 {
2556         struct inode * inode = file_inode(file);
2557         struct task_struct *task;
2558         void *page;
2559         int rv;
2560 
2561         rcu_read_lock();
2562         task = pid_task(proc_pid(inode), PIDTYPE_PID);
2563         if (!task) {
2564                 rcu_read_unlock();
2565                 return -ESRCH;
2566         }
2567         /* A task may only write its own attributes. */
2568         if (current != task) {
2569                 rcu_read_unlock();
2570                 return -EACCES;
2571         }
2572         /* Prevent changes to overridden credentials. */
2573         if (current_cred() != current_real_cred()) {
2574                 rcu_read_unlock();
2575                 return -EBUSY;
2576         }
2577         rcu_read_unlock();
2578 
2579         if (count > PAGE_SIZE)
2580                 count = PAGE_SIZE;
2581 
2582         /* No partial writes. */
2583         if (*ppos != 0)
2584                 return -EINVAL;
2585 
2586         page = memdup_user(buf, count);
2587         if (IS_ERR(page)) {
2588                 rv = PTR_ERR(page);
2589                 goto out;
2590         }
2591 
2592         /* Guard against adverse ptrace interaction */
2593         rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2594         if (rv < 0)
2595                 goto out_free;
2596 
2597         rv = security_setprocattr(PROC_I(inode)->op.lsm,
2598                                   file->f_path.dentry->d_name.name, page,
2599                                   count);
2600         mutex_unlock(&current->signal->cred_guard_mutex);
2601 out_free:
2602         kfree(page);
2603 out:
2604         return rv;
2605 }
2606 
2607 static const struct file_operations proc_pid_attr_operations = {
2608         .read           = proc_pid_attr_read,
2609         .write          = proc_pid_attr_write,
2610         .llseek         = generic_file_llseek,
2611 };
2612 
2613 #define LSM_DIR_OPS(LSM) \
2614 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2615                              struct dir_context *ctx) \
2616 { \
2617         return proc_pident_readdir(filp, ctx, \
2618                                    LSM##_attr_dir_stuff, \
2619                                    ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2620 } \
2621 \
2622 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2623         .read           = generic_read_dir, \
2624         .iterate        = proc_##LSM##_attr_dir_iterate, \
2625         .llseek         = default_llseek, \
2626 }; \
2627 \
2628 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2629                                 struct dentry *dentry, unsigned int flags) \
2630 { \
2631         return proc_pident_lookup(dir, dentry, \
2632                                   LSM##_attr_dir_stuff, \
2633                                   LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2634 } \
2635 \
2636 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2637         .lookup         = proc_##LSM##_attr_dir_lookup, \
2638         .getattr        = pid_getattr, \
2639         .setattr        = proc_setattr, \
2640 }
2641 
2642 #ifdef CONFIG_SECURITY_SMACK
2643 static const struct pid_entry smack_attr_dir_stuff[] = {
2644         ATTR("smack", "current",        0666),
2645 };
2646 LSM_DIR_OPS(smack);
2647 #endif
2648 
2649 static const struct pid_entry attr_dir_stuff[] = {
2650         ATTR(NULL, "current",           0666),
2651         ATTR(NULL, "prev",              0444),
2652         ATTR(NULL, "exec",              0666),
2653         ATTR(NULL, "fscreate",          0666),
2654         ATTR(NULL, "keycreate",         0666),
2655         ATTR(NULL, "sockcreate",        0666),
2656 #ifdef CONFIG_SECURITY_SMACK
2657         DIR("smack",                    0555,
2658             proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2659 #endif
2660 };
2661 
2662 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2663 {
2664         return proc_pident_readdir(file, ctx, 
2665                                    attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2666 }
2667 
2668 static const struct file_operations proc_attr_dir_operations = {
2669         .read           = generic_read_dir,
2670         .iterate_shared = proc_attr_dir_readdir,
2671         .llseek         = generic_file_llseek,
2672 };
2673 
2674 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2675                                 struct dentry *dentry, unsigned int flags)
2676 {
2677         return proc_pident_lookup(dir, dentry,
2678                                   attr_dir_stuff,
2679                                   attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2680 }
2681 
2682 static const struct inode_operations proc_attr_dir_inode_operations = {
2683         .lookup         = proc_attr_dir_lookup,
2684         .getattr        = pid_getattr,
2685         .setattr        = proc_setattr,
2686 };
2687 
2688 #endif
2689 
2690 #ifdef CONFIG_ELF_CORE
2691 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2692                                          size_t count, loff_t *ppos)
2693 {
2694         struct task_struct *task = get_proc_task(file_inode(file));
2695         struct mm_struct *mm;
2696         char buffer[PROC_NUMBUF];
2697         size_t len;
2698         int ret;
2699 
2700         if (!task)
2701                 return -ESRCH;
2702 
2703         ret = 0;
2704         mm = get_task_mm(task);
2705         if (mm) {
2706                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2707                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2708                                 MMF_DUMP_FILTER_SHIFT));
2709                 mmput(mm);
2710                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2711         }
2712 
2713         put_task_struct(task);
2714 
2715         return ret;
2716 }
2717 
2718 static ssize_t proc_coredump_filter_write(struct file *file,
2719                                           const char __user *buf,
2720                                           size_t count,
2721                                           loff_t *ppos)
2722 {
2723         struct task_struct *task;
2724         struct mm_struct *mm;
2725         unsigned int val;
2726         int ret;
2727         int i;
2728         unsigned long mask;
2729 
2730         ret = kstrtouint_from_user(buf, count, 0, &val);
2731         if (ret < 0)
2732                 return ret;
2733 
2734         ret = -ESRCH;
2735         task = get_proc_task(file_inode(file));
2736         if (!task)
2737                 goto out_no_task;
2738 
2739         mm = get_task_mm(task);
2740         if (!mm)
2741                 goto out_no_mm;
2742         ret = 0;
2743 
2744         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2745                 if (val & mask)
2746                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2747                 else
2748                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2749         }
2750 
2751         mmput(mm);
2752  out_no_mm:
2753         put_task_struct(task);
2754  out_no_task:
2755         if (ret < 0)
2756                 return ret;
2757         return count;
2758 }
2759 
2760 static const struct file_operations proc_coredump_filter_operations = {
2761         .read           = proc_coredump_filter_read,
2762         .write          = proc_coredump_filter_write,
2763         .llseek         = generic_file_llseek,
2764 };
2765 #endif
2766 
2767 #ifdef CONFIG_TASK_IO_ACCOUNTING
2768 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2769 {
2770         struct task_io_accounting acct = task->ioac;
2771         unsigned long flags;
2772         int result;
2773 
2774         result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2775         if (result)
2776                 return result;
2777 
2778         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2779                 result = -EACCES;
2780                 goto out_unlock;
2781         }
2782 
2783         if (whole && lock_task_sighand(task, &flags)) {
2784                 struct task_struct *t = task;
2785 
2786                 task_io_accounting_add(&acct, &task->signal->ioac);
2787                 while_each_thread(task, t)
2788                         task_io_accounting_add(&acct, &t->ioac);
2789 
2790                 unlock_task_sighand(task, &flags);
2791         }
2792         seq_printf(m,
2793                    "rchar: %llu\n"
2794                    "wchar: %llu\n"
2795                    "syscr: %llu\n"
2796                    "syscw: %llu\n"
2797                    "read_bytes: %llu\n"
2798                    "write_bytes: %llu\n"
2799                    "cancelled_write_bytes: %llu\n",
2800                    (unsigned long long)acct.rchar,
2801                    (unsigned long long)acct.wchar,
2802                    (unsigned long long)acct.syscr,
2803                    (unsigned long long)acct.syscw,
2804                    (unsigned long long)acct.read_bytes,
2805                    (unsigned long long)acct.write_bytes,
2806                    (unsigned long long)acct.cancelled_write_bytes);
2807         result = 0;
2808 
2809 out_unlock:
2810         mutex_unlock(&task->signal->cred_guard_mutex);
2811         return result;
2812 }
2813 
2814 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2815                                   struct pid *pid, struct task_struct *task)
2816 {
2817         return do_io_accounting(task, m, 0);
2818 }
2819 
2820 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2821                                    struct pid *pid, struct task_struct *task)
2822 {
2823         return do_io_accounting(task, m, 1);
2824 }
2825 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2826 
2827 #ifdef CONFIG_USER_NS
2828 static int proc_id_map_open(struct inode *inode, struct file *file,
2829         const struct seq_operations *seq_ops)
2830 {
2831         struct user_namespace *ns = NULL;
2832         struct task_struct *task;
2833         struct seq_file *seq;
2834         int ret = -EINVAL;
2835 
2836         task = get_proc_task(inode);
2837         if (task) {
2838                 rcu_read_lock();
2839                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2840                 rcu_read_unlock();
2841                 put_task_struct(task);
2842         }
2843         if (!ns)
2844                 goto err;
2845 
2846         ret = seq_open(file, seq_ops);
2847         if (ret)
2848                 goto err_put_ns;
2849 
2850         seq = file->private_data;
2851         seq->private = ns;
2852 
2853         return 0;
2854 err_put_ns:
2855         put_user_ns(ns);
2856 err:
2857         return ret;
2858 }
2859 
2860 static int proc_id_map_release(struct inode *inode, struct file *file)
2861 {
2862         struct seq_file *seq = file->private_data;
2863         struct user_namespace *ns = seq->private;
2864         put_user_ns(ns);
2865         return seq_release(inode, file);
2866 }
2867 
2868 static int proc_uid_map_open(struct inode *inode, struct file *file)
2869 {
2870         return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2871 }
2872 
2873 static int proc_gid_map_open(struct inode *inode, struct file *file)
2874 {
2875         return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2876 }
2877 
2878 static int proc_projid_map_open(struct inode *inode, struct file *file)
2879 {
2880         return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2881 }
2882 
2883 static const struct file_operations proc_uid_map_operations = {
2884         .open           = proc_uid_map_open,
2885         .write          = proc_uid_map_write,
2886         .read           = seq_read,
2887         .llseek         = seq_lseek,
2888         .release        = proc_id_map_release,
2889 };
2890 
2891 static const struct file_operations proc_gid_map_operations = {
2892         .open           = proc_gid_map_open,
2893         .write          = proc_gid_map_write,
2894         .read           = seq_read,
2895         .llseek         = seq_lseek,
2896         .release        = proc_id_map_release,
2897 };
2898 
2899 static const struct file_operations proc_projid_map_operations = {
2900         .open           = proc_projid_map_open,
2901         .write          = proc_projid_map_write,
2902         .read           = seq_read,
2903         .llseek         = seq_lseek,
2904         .release        = proc_id_map_release,
2905 };
2906 
2907 static int proc_setgroups_open(struct inode *inode, struct file *file)
2908 {
2909         struct user_namespace *ns = NULL;
2910         struct task_struct *task;
2911         int ret;
2912 
2913         ret = -ESRCH;
2914         task = get_proc_task(inode);
2915         if (task) {
2916                 rcu_read_lock();
2917                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2918                 rcu_read_unlock();
2919                 put_task_struct(task);
2920         }
2921         if (!ns)
2922                 goto err;
2923 
2924         if (file->f_mode & FMODE_WRITE) {
2925                 ret = -EACCES;
2926                 if (!ns_capable(ns, CAP_SYS_ADMIN))
2927                         goto err_put_ns;
2928         }
2929 
2930         ret = single_open(file, &proc_setgroups_show, ns);
2931         if (ret)
2932                 goto err_put_ns;
2933 
2934         return 0;
2935 err_put_ns:
2936         put_user_ns(ns);
2937 err:
2938         return ret;
2939 }
2940 
2941 static int proc_setgroups_release(struct inode *inode, struct file *file)
2942 {
2943         struct seq_file *seq = file->private_data;
2944         struct user_namespace *ns = seq->private;
2945         int ret = single_release(inode, file);
2946         put_user_ns(ns);
2947         return ret;
2948 }
2949 
2950 static const struct file_operations proc_setgroups_operations = {
2951         .open           = proc_setgroups_open,
2952         .write          = proc_setgroups_write,
2953         .read           = seq_read,
2954         .llseek         = seq_lseek,
2955         .release        = proc_setgroups_release,
2956 };
2957 #endif /* CONFIG_USER_NS */
2958 
2959 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2960                                 struct pid *pid, struct task_struct *task)
2961 {
2962         int err = lock_trace(task);
2963         if (!err) {
2964                 seq_printf(m, "%08x\n", task->personality);
2965                 unlock_trace(task);
2966         }
2967         return err;
2968 }
2969 
2970 #ifdef CONFIG_LIVEPATCH
2971 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2972                                 struct pid *pid, struct task_struct *task)
2973 {
2974         seq_printf(m, "%d\n", task->patch_state);
2975         return 0;
2976 }
2977 #endif /* CONFIG_LIVEPATCH */
2978 
2979 #ifdef CONFIG_STACKLEAK_METRICS
2980 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2981                                 struct pid *pid, struct task_struct *task)
2982 {
2983         unsigned long prev_depth = THREAD_SIZE -
2984                                 (task->prev_lowest_stack & (THREAD_SIZE - 1));
2985         unsigned long depth = THREAD_SIZE -
2986                                 (task->lowest_stack & (THREAD_SIZE - 1));
2987 
2988         seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2989                                                         prev_depth, depth);
2990         return 0;
2991 }
2992 #endif /* CONFIG_STACKLEAK_METRICS */
2993 
2994 /*
2995  * Thread groups
2996  */
2997 static const struct file_operations proc_task_operations;
2998 static const struct inode_operations proc_task_inode_operations;
2999 
3000 static const struct pid_entry tgid_base_stuff[] = {
3001         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3002         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3003         DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3004         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3005         DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3006 #ifdef CONFIG_NET
3007         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3008 #endif
3009         REG("environ",    S_IRUSR, proc_environ_operations),
3010         REG("auxv",       S_IRUSR, proc_auxv_operations),
3011         ONE("status",     S_IRUGO, proc_pid_status),
3012         ONE("personality", S_IRUSR, proc_pid_personality),
3013         ONE("limits",     S_IRUGO, proc_pid_limits),
3014 #ifdef CONFIG_SCHED_DEBUG
3015         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3016 #endif
3017 #ifdef CONFIG_SCHED_AUTOGROUP
3018         REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3019 #endif
3020         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3021 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3022         ONE("syscall",    S_IRUSR, proc_pid_syscall),
3023 #endif
3024         REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3025         ONE("stat",       S_IRUGO, proc_tgid_stat),
3026         ONE("statm",      S_IRUGO, proc_pid_statm),
3027         REG("maps",       S_IRUGO, proc_pid_maps_operations),
3028 #ifdef CONFIG_NUMA
3029         REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3030 #endif
3031         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3032         LNK("cwd",        proc_cwd_link),
3033         LNK("root",       proc_root_link),
3034         LNK("exe",        proc_exe_link),
3035         REG("mounts",     S_IRUGO, proc_mounts_operations),
3036         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3037         REG("mountstats", S_IRUSR, proc_mountstats_operations),
3038 #ifdef CONFIG_PROC_PAGE_MONITOR
3039         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3040         REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3041         REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3042         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3043 #endif
3044 #ifdef CONFIG_SECURITY
3045         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3046 #endif
3047 #ifdef CONFIG_KALLSYMS
3048         ONE("wchan",      S_IRUGO, proc_pid_wchan),
3049 #endif
3050 #ifdef CONFIG_STACKTRACE
3051         ONE("stack",      S_IRUSR, proc_pid_stack),
3052 #endif
3053 #ifdef CONFIG_SCHED_INFO
3054         ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3055 #endif
3056 #ifdef CONFIG_LATENCYTOP
3057         REG("latency",  S_IRUGO, proc_lstats_operations),
3058 #endif
3059 #ifdef CONFIG_PROC_PID_CPUSET
3060         ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3061 #endif
3062 #ifdef CONFIG_CGROUPS
3063         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3064 #endif
3065         ONE("oom_score",  S_IRUGO, proc_oom_score),
3066         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3067         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3068 #ifdef CONFIG_AUDIT
3069         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3070         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3071 #endif
3072 #ifdef CONFIG_FAULT_INJECTION
3073         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3074         REG("fail-nth", 0644, proc_fail_nth_operations),
3075 #endif
3076 #ifdef CONFIG_ELF_CORE
3077         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3078 #endif
3079 #ifdef CONFIG_TASK_IO_ACCOUNTING
3080         ONE("io",       S_IRUSR, proc_tgid_io_accounting),
3081 #endif
3082 #ifdef CONFIG_USER_NS
3083         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3084         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3085         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3086         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3087 #endif
3088 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3089         REG("timers",     S_IRUGO, proc_timers_operations),
3090 #endif
3091         REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3092 #ifdef CONFIG_LIVEPATCH
3093         ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3094 #endif
3095 #ifdef CONFIG_STACKLEAK_METRICS
3096         ONE("stack_depth", S_IRUGO, proc_stack_depth),
3097 #endif
3098 };
3099 
3100 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3101 {
3102         return proc_pident_readdir(file, ctx,
3103                                    tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3104 }
3105 
3106 static const struct file_operations proc_tgid_base_operations = {
3107         .read           = generic_read_dir,
3108         .iterate_shared = proc_tgid_base_readdir,
3109         .llseek         = generic_file_llseek,
3110 };
3111 
3112 struct pid *tgid_pidfd_to_pid(const struct file *file)
3113 {
3114         if (file->f_op != &proc_tgid_base_operations)
3115                 return ERR_PTR(-EBADF);
3116 
3117         return proc_pid(file_inode(file));
3118 }
3119 
3120 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3121 {
3122         return proc_pident_lookup(dir, dentry,
3123                                   tgid_base_stuff,
3124                                   tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3125 }
3126 
3127 static const struct inode_operations proc_tgid_base_inode_operations = {
3128         .lookup         = proc_tgid_base_lookup,
3129         .getattr        = pid_getattr,
3130         .setattr        = proc_setattr,
3131         .permission     = proc_pid_permission,
3132 };
3133 
3134 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3135 {
3136         struct dentry *dentry, *leader, *dir;
3137         char buf[10 + 1];
3138         struct qstr name;
3139 
3140         name.name = buf;
3141         name.len = snprintf(buf, sizeof(buf), "%u", pid);
3142         /* no ->d_hash() rejects on procfs */
3143         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3144         if (dentry) {
3145                 d_invalidate(dentry);
3146                 dput(dentry);
3147         }
3148 
3149         if (pid == tgid)
3150                 return;
3151 
3152         name.name = buf;
3153         name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3154         leader = d_hash_and_lookup(mnt->mnt_root, &name);
3155         if (!leader)
3156                 goto out;
3157 
3158         name.name = "task";
3159         name.len = strlen(name.name);
3160         dir = d_hash_and_lookup(leader, &name);
3161         if (!dir)
3162                 goto out_put_leader;
3163 
3164         name.name = buf;
3165         name.len = snprintf(buf, sizeof(buf), "%u", pid);
3166         dentry = d_hash_and_lookup(dir, &name);
3167         if (dentry) {
3168                 d_invalidate(dentry);
3169                 dput(dentry);
3170         }
3171 
3172         dput(dir);
3173 out_put_leader:
3174         dput(leader);
3175 out:
3176         return;
3177 }
3178 
3179 /**
3180  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3181  * @task: task that should be flushed.
3182  *
3183  * When flushing dentries from proc, one needs to flush them from global
3184  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3185  * in. This call is supposed to do all of this job.
3186  *
3187  * Looks in the dcache for
3188  * /proc/@pid
3189  * /proc/@tgid/task/@pid
3190  * if either directory is present flushes it and all of it'ts children
3191  * from the dcache.
3192  *
3193  * It is safe and reasonable to cache /proc entries for a task until
3194  * that task exits.  After that they just clog up the dcache with
3195  * useless entries, possibly causing useful dcache entries to be
3196  * flushed instead.  This routine is proved to flush those useless
3197  * dcache entries at process exit time.
3198  *
3199  * NOTE: This routine is just an optimization so it does not guarantee
3200  *       that no dcache entries will exist at process exit time it
3201  *       just makes it very unlikely that any will persist.
3202  */
3203 
3204 void proc_flush_task(struct task_struct *task)
3205 {
3206         int i;
3207         struct pid *pid, *tgid;
3208         struct upid *upid;
3209 
3210         pid = task_pid(task);
3211         tgid = task_tgid(task);
3212 
3213         for (i = 0; i <= pid->level; i++) {
3214                 upid = &pid->numbers[i];
3215                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3216                                         tgid->numbers[i].nr);
3217         }
3218 }
3219 
3220 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3221                                    struct task_struct *task, const void *ptr)
3222 {
3223         struct inode *inode;
3224 
3225         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3226         if (!inode)
3227                 return ERR_PTR(-ENOENT);
3228 
3229         inode->i_op = &proc_tgid_base_inode_operations;
3230         inode->i_fop = &proc_tgid_base_operations;
3231         inode->i_flags|=S_IMMUTABLE;
3232 
3233         set_nlink(inode, nlink_tgid);
3234         pid_update_inode(task, inode);
3235 
3236         d_set_d_op(dentry, &pid_dentry_operations);
3237         return d_splice_alias(inode, dentry);
3238 }
3239 
3240 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3241 {
3242         struct task_struct *task;
3243         unsigned tgid;
3244         struct pid_namespace *ns;
3245         struct dentry *result = ERR_PTR(-ENOENT);
3246 
3247         tgid = name_to_int(&dentry->d_name);
3248         if (tgid == ~0U)
3249                 goto out;
3250 
3251         ns = dentry->d_sb->s_fs_info;
3252         rcu_read_lock();
3253         task = find_task_by_pid_ns(tgid, ns);
3254         if (task)
3255                 get_task_struct(task);
3256         rcu_read_unlock();
3257         if (!task)
3258                 goto out;
3259 
3260         result = proc_pid_instantiate(dentry, task, NULL);
3261         put_task_struct(task);
3262 out:
3263         return result;
3264 }
3265 
3266 /*
3267  * Find the first task with tgid >= tgid
3268  *
3269  */
3270 struct tgid_iter {
3271         unsigned int tgid;
3272         struct task_struct *task;
3273 };
3274 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3275 {
3276         struct pid *pid;
3277 
3278         if (iter.task)
3279                 put_task_struct(iter.task);
3280         rcu_read_lock();
3281 retry:
3282         iter.task = NULL;
3283         pid = find_ge_pid(iter.tgid, ns);
3284         if (pid) {
3285                 iter.tgid = pid_nr_ns(pid, ns);
3286                 iter.task = pid_task(pid, PIDTYPE_PID);
3287                 /* What we to know is if the pid we have find is the
3288                  * pid of a thread_group_leader.  Testing for task
3289                  * being a thread_group_leader is the obvious thing
3290                  * todo but there is a window when it fails, due to
3291                  * the pid transfer logic in de_thread.
3292                  *
3293                  * So we perform the straight forward test of seeing
3294                  * if the pid we have found is the pid of a thread
3295                  * group leader, and don't worry if the task we have
3296                  * found doesn't happen to be a thread group leader.
3297                  * As we don't care in the case of readdir.
3298                  */
3299                 if (!iter.task || !has_group_leader_pid(iter.task)) {
3300                         iter.tgid += 1;
3301                         goto retry;
3302                 }
3303                 get_task_struct(iter.task);
3304         }
3305         rcu_read_unlock();
3306         return iter;
3307 }
3308 
3309 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3310 
3311 /* for the /proc/ directory itself, after non-process stuff has been done */
3312 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3313 {
3314         struct tgid_iter iter;
3315         struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3316         loff_t pos = ctx->pos;
3317 
3318         if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3319                 return 0;
3320 
3321         if (pos == TGID_OFFSET - 2) {
3322                 struct inode *inode = d_inode(ns->proc_self);
3323                 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3324                         return 0;
3325                 ctx->pos = pos = pos + 1;
3326         }
3327         if (pos == TGID_OFFSET - 1) {
3328                 struct inode *inode = d_inode(ns->proc_thread_self);
3329                 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3330                         return 0;
3331                 ctx->pos = pos = pos + 1;
3332         }
3333         iter.tgid = pos - TGID_OFFSET;
3334         iter.task = NULL;
3335         for (iter = next_tgid(ns, iter);
3336              iter.task;
3337              iter.tgid += 1, iter = next_tgid(ns, iter)) {
3338                 char name[10 + 1];
3339                 unsigned int len;
3340 
3341                 cond_resched();
3342                 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3343                         continue;
3344 
3345                 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3346                 ctx->pos = iter.tgid + TGID_OFFSET;
3347                 if (!proc_fill_cache(file, ctx, name, len,
3348                                      proc_pid_instantiate, iter.task, NULL)) {
3349                         put_task_struct(iter.task);
3350                         return 0;
3351                 }
3352         }
3353         ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3354         return 0;
3355 }
3356 
3357 /*
3358  * proc_tid_comm_permission is a special permission function exclusively
3359  * used for the node /proc/<pid>/task/<tid>/comm.
3360  * It bypasses generic permission checks in the case where a task of the same
3361  * task group attempts to access the node.
3362  * The rationale behind this is that glibc and bionic access this node for
3363  * cross thread naming (pthread_set/getname_np(!self)). However, if
3364  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3365  * which locks out the cross thread naming implementation.
3366  * This function makes sure that the node is always accessible for members of
3367  * same thread group.
3368  */
3369 static int proc_tid_comm_permission(struct inode *inode, int mask)
3370 {
3371         bool is_same_tgroup;
3372         struct task_struct *task;
3373 
3374         task = get_proc_task(inode);
3375         if (!task)
3376                 return -ESRCH;
3377         is_same_tgroup = same_thread_group(current, task);
3378         put_task_struct(task);
3379 
3380         if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3381                 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3382                  * read or written by the members of the corresponding
3383                  * thread group.
3384                  */
3385                 return 0;
3386         }
3387 
3388         return generic_permission(inode, mask);
3389 }
3390 
3391 static const struct inode_operations proc_tid_comm_inode_operations = {
3392                 .permission = proc_tid_comm_permission,
3393 };
3394 
3395 /*
3396  * Tasks
3397  */
3398 static const struct pid_entry tid_base_stuff[] = {
3399         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3400         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3401         DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3402 #ifdef CONFIG_NET
3403         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3404 #endif
3405         REG("environ",   S_IRUSR, proc_environ_operations),
3406         REG("auxv",      S_IRUSR, proc_auxv_operations),
3407         ONE("status",    S_IRUGO, proc_pid_status),
3408         ONE("personality", S_IRUSR, proc_pid_personality),
3409         ONE("limits",    S_IRUGO, proc_pid_limits),
3410 #ifdef CONFIG_SCHED_DEBUG
3411         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3412 #endif
3413         NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3414                          &proc_tid_comm_inode_operations,
3415                          &proc_pid_set_comm_operations, {}),
3416 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3417         ONE("syscall",   S_IRUSR, proc_pid_syscall),
3418 #endif
3419         REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3420         ONE("stat",      S_IRUGO, proc_tid_stat),
3421         ONE("statm",     S_IRUGO, proc_pid_statm),
3422         REG("maps",      S_IRUGO, proc_pid_maps_operations),
3423 #ifdef CONFIG_PROC_CHILDREN
3424         REG("children",  S_IRUGO, proc_tid_children_operations),
3425 #endif
3426 #ifdef CONFIG_NUMA
3427         REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3428 #endif
3429         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3430         LNK("cwd",       proc_cwd_link),
3431         LNK("root",      proc_root_link),
3432         LNK("exe",       proc_exe_link),
3433         REG("mounts",    S_IRUGO, proc_mounts_operations),
3434         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3435 #ifdef CONFIG_PROC_PAGE_MONITOR
3436         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3437         REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3438         REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3439         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3440 #endif
3441 #ifdef CONFIG_SECURITY
3442         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3443 #endif
3444 #ifdef CONFIG_KALLSYMS
3445         ONE("wchan",     S_IRUGO, proc_pid_wchan),
3446 #endif
3447 #ifdef CONFIG_STACKTRACE
3448         ONE("stack",      S_IRUSR, proc_pid_stack),
3449 #endif
3450 #ifdef CONFIG_SCHED_INFO
3451         ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3452 #endif
3453 #ifdef CONFIG_LATENCYTOP
3454         REG("latency",  S_IRUGO, proc_lstats_operations),
3455 #endif
3456 #ifdef CONFIG_PROC_PID_CPUSET
3457         ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3458 #endif
3459 #ifdef CONFIG_CGROUPS
3460         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3461 #endif
3462         ONE("oom_score", S_IRUGO, proc_oom_score),
3463         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3464         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3465 #ifdef CONFIG_AUDIT
3466         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3467         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3468 #endif
3469 #ifdef CONFIG_FAULT_INJECTION
3470         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3471         REG("fail-nth", 0644, proc_fail_nth_operations),
3472 #endif
3473 #ifdef CONFIG_TASK_IO_ACCOUNTING
3474         ONE("io",       S_IRUSR, proc_tid_io_accounting),
3475 #endif
3476 #ifdef CONFIG_USER_NS
3477         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3478         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3479         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3480         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3481 #endif
3482 #ifdef CONFIG_LIVEPATCH
3483         ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3484 #endif
3485 };
3486 
3487 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3488 {
3489         return proc_pident_readdir(file, ctx,
3490                                    tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3491 }
3492 
3493 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3494 {
3495         return proc_pident_lookup(dir, dentry,
3496                                   tid_base_stuff,
3497                                   tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3498 }
3499 
3500 static const struct file_operations proc_tid_base_operations = {
3501         .read           = generic_read_dir,
3502         .iterate_shared = proc_tid_base_readdir,
3503         .llseek         = generic_file_llseek,
3504 };
3505 
3506 static const struct inode_operations proc_tid_base_inode_operations = {
3507         .lookup         = proc_tid_base_lookup,
3508         .getattr        = pid_getattr,
3509         .setattr        = proc_setattr,
3510 };
3511 
3512 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3513         struct task_struct *task, const void *ptr)
3514 {
3515         struct inode *inode;
3516         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3517         if (!inode)
3518                 return ERR_PTR(-ENOENT);
3519 
3520         inode->i_op = &proc_tid_base_inode_operations;
3521         inode->i_fop = &proc_tid_base_operations;
3522         inode->i_flags |= S_IMMUTABLE;
3523 
3524         set_nlink(inode, nlink_tid);
3525         pid_update_inode(task, inode);
3526 
3527         d_set_d_op(dentry, &pid_dentry_operations);
3528         return d_splice_alias(inode, dentry);
3529 }
3530 
3531 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3532 {
3533         struct task_struct *task;
3534         struct task_struct *leader = get_proc_task(dir);
3535         unsigned tid;
3536         struct pid_namespace *ns;
3537         struct dentry *result = ERR_PTR(-ENOENT);
3538 
3539         if (!leader)
3540                 goto out_no_task;
3541 
3542         tid = name_to_int(&dentry->d_name);
3543         if (tid == ~0U)
3544                 goto out;
3545 
3546         ns = dentry->d_sb->s_fs_info;
3547         rcu_read_lock();
3548         task = find_task_by_pid_ns(tid, ns);
3549         if (task)
3550                 get_task_struct(task);
3551         rcu_read_unlock();
3552         if (!task)
3553                 goto out;
3554         if (!same_thread_group(leader, task))
3555                 goto out_drop_task;
3556 
3557         result = proc_task_instantiate(dentry, task, NULL);
3558 out_drop_task:
3559         put_task_struct(task);
3560 out:
3561         put_task_struct(leader);
3562 out_no_task:
3563         return result;
3564 }
3565 
3566 /*
3567  * Find the first tid of a thread group to return to user space.
3568  *
3569  * Usually this is just the thread group leader, but if the users
3570  * buffer was too small or there was a seek into the middle of the
3571  * directory we have more work todo.
3572  *
3573  * In the case of a short read we start with find_task_by_pid.
3574  *
3575  * In the case of a seek we start with the leader and walk nr
3576  * threads past it.
3577  */
3578 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3579                                         struct pid_namespace *ns)
3580 {
3581         struct task_struct *pos, *task;
3582         unsigned long nr = f_pos;
3583 
3584         if (nr != f_pos)        /* 32bit overflow? */
3585                 return NULL;
3586 
3587         rcu_read_lock();
3588         task = pid_task(pid, PIDTYPE_PID);
3589         if (!task)
3590                 goto fail;
3591 
3592         /* Attempt to start with the tid of a thread */
3593         if (tid && nr) {
3594                 pos = find_task_by_pid_ns(tid, ns);
3595                 if (pos && same_thread_group(pos, task))
3596                         goto found;
3597         }
3598 
3599         /* If nr exceeds the number of threads there is nothing todo */
3600         if (nr >= get_nr_threads(task))
3601                 goto fail;
3602 
3603         /* If we haven't found our starting place yet start
3604          * with the leader and walk nr threads forward.
3605          */
3606         pos = task = task->group_leader;
3607         do {
3608                 if (!nr--)
3609                         goto found;
3610         } while_each_thread(task, pos);
3611 fail:
3612         pos = NULL;
3613         goto out;
3614 found:
3615         get_task_struct(pos);
3616 out:
3617         rcu_read_unlock();
3618         return pos;
3619 }
3620 
3621 /*
3622  * Find the next thread in the thread list.
3623  * Return NULL if there is an error or no next thread.
3624  *
3625  * The reference to the input task_struct is released.
3626  */
3627 static struct task_struct *next_tid(struct task_struct *start)
3628 {
3629         struct task_struct *pos = NULL;
3630         rcu_read_lock();
3631         if (pid_alive(start)) {
3632                 pos = next_thread(start);
3633                 if (thread_group_leader(pos))
3634                         pos = NULL;
3635                 else
3636                         get_task_struct(pos);
3637         }
3638         rcu_read_unlock();
3639         put_task_struct(start);
3640         return pos;
3641 }
3642 
3643 /* for the /proc/TGID/task/ directories */
3644 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3645 {
3646         struct inode *inode = file_inode(file);
3647         struct task_struct *task;
3648         struct pid_namespace *ns;
3649         int tid;
3650 
3651         if (proc_inode_is_dead(inode))
3652                 return -ENOENT;
3653 
3654         if (!dir_emit_dots(file, ctx))
3655                 return 0;
3656 
3657         /* f_version caches the tgid value that the last readdir call couldn't
3658          * return. lseek aka telldir automagically resets f_version to 0.
3659          */
3660         ns = proc_pid_ns(inode);
3661         tid = (int)file->f_version;
3662         file->f_version = 0;
3663         for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3664              task;
3665              task = next_tid(task), ctx->pos++) {
3666                 char name[10 + 1];
3667                 unsigned int len;
3668                 tid = task_pid_nr_ns(task, ns);
3669                 len = snprintf(name, sizeof(name), "%u", tid);
3670                 if (!proc_fill_cache(file, ctx, name, len,
3671                                 proc_task_instantiate, task, NULL)) {
3672                         /* returning this tgid failed, save it as the first
3673                          * pid for the next readir call */
3674                         file->f_version = (u64)tid;
3675                         put_task_struct(task);
3676                         break;
3677                 }
3678         }
3679 
3680         return 0;
3681 }
3682 
3683 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3684                              u32 request_mask, unsigned int query_flags)
3685 {
3686         struct inode *inode = d_inode(path->dentry);
3687         struct task_struct *p = get_proc_task(inode);
3688         generic_fillattr(inode, stat);
3689 
3690         if (p) {
3691                 stat->nlink += get_nr_threads(p);
3692                 put_task_struct(p);
3693         }
3694 
3695         return 0;
3696 }
3697 
3698 static const struct inode_operations proc_task_inode_operations = {
3699         .lookup         = proc_task_lookup,
3700         .getattr        = proc_task_getattr,
3701         .setattr        = proc_setattr,
3702         .permission     = proc_pid_permission,
3703 };
3704 
3705 static const struct file_operations proc_task_operations = {
3706         .read           = generic_read_dir,
3707         .iterate_shared = proc_task_readdir,
3708         .llseek         = generic_file_llseek,
3709 };
3710 
3711 void __init set_proc_pid_nlink(void)
3712 {
3713         nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3714         nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3715 }
3716 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp