1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/tracehook.h> 78 #include <linux/printk.h> 79 #include <linux/cache.h> 80 #include <linux/cgroup.h> 81 #include <linux/cpuset.h> 82 #include <linux/audit.h> 83 #include <linux/poll.h> 84 #include <linux/nsproxy.h> 85 #include <linux/oom.h> 86 #include <linux/elf.h> 87 #include <linux/pid_namespace.h> 88 #include <linux/user_namespace.h> 89 #include <linux/fs_struct.h> 90 #include <linux/slab.h> 91 #include <linux/sched/autogroup.h> 92 #include <linux/sched/mm.h> 93 #include <linux/sched/coredump.h> 94 #include <linux/sched/debug.h> 95 #include <linux/sched/stat.h> 96 #include <linux/posix-timers.h> 97 #include <linux/time_namespace.h> 98 #include <linux/resctrl.h> 99 #include <trace/events/oom.h> 100 #include "internal.h" 101 #include "fd.h" 102 103 #include "../../lib/kstrtox.h" 104 105 /* NOTE: 106 * Implementing inode permission operations in /proc is almost 107 * certainly an error. Permission checks need to happen during 108 * each system call not at open time. The reason is that most of 109 * what we wish to check for permissions in /proc varies at runtime. 110 * 111 * The classic example of a problem is opening file descriptors 112 * in /proc for a task before it execs a suid executable. 113 */ 114 115 static u8 nlink_tid __ro_after_init; 116 static u8 nlink_tgid __ro_after_init; 117 118 struct pid_entry { 119 const char *name; 120 unsigned int len; 121 umode_t mode; 122 const struct inode_operations *iop; 123 const struct file_operations *fop; 124 union proc_op op; 125 }; 126 127 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 128 .name = (NAME), \ 129 .len = sizeof(NAME) - 1, \ 130 .mode = MODE, \ 131 .iop = IOP, \ 132 .fop = FOP, \ 133 .op = OP, \ 134 } 135 136 #define DIR(NAME, MODE, iops, fops) \ 137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 138 #define LNK(NAME, get_link) \ 139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 140 &proc_pid_link_inode_operations, NULL, \ 141 { .proc_get_link = get_link } ) 142 #define REG(NAME, MODE, fops) \ 143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 144 #define ONE(NAME, MODE, show) \ 145 NOD(NAME, (S_IFREG|(MODE)), \ 146 NULL, &proc_single_file_operations, \ 147 { .proc_show = show } ) 148 #define ATTR(LSM, NAME, MODE) \ 149 NOD(NAME, (S_IFREG|(MODE)), \ 150 NULL, &proc_pid_attr_operations, \ 151 { .lsm = LSM }) 152 153 /* 154 * Count the number of hardlinks for the pid_entry table, excluding the . 155 * and .. links. 156 */ 157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 158 unsigned int n) 159 { 160 unsigned int i; 161 unsigned int count; 162 163 count = 2; 164 for (i = 0; i < n; ++i) { 165 if (S_ISDIR(entries[i].mode)) 166 ++count; 167 } 168 169 return count; 170 } 171 172 static int get_task_root(struct task_struct *task, struct path *root) 173 { 174 int result = -ENOENT; 175 176 task_lock(task); 177 if (task->fs) { 178 get_fs_root(task->fs, root); 179 result = 0; 180 } 181 task_unlock(task); 182 return result; 183 } 184 185 static int proc_cwd_link(struct dentry *dentry, struct path *path) 186 { 187 struct task_struct *task = get_proc_task(d_inode(dentry)); 188 int result = -ENOENT; 189 190 if (task) { 191 task_lock(task); 192 if (task->fs) { 193 get_fs_pwd(task->fs, path); 194 result = 0; 195 } 196 task_unlock(task); 197 put_task_struct(task); 198 } 199 return result; 200 } 201 202 static int proc_root_link(struct dentry *dentry, struct path *path) 203 { 204 struct task_struct *task = get_proc_task(d_inode(dentry)); 205 int result = -ENOENT; 206 207 if (task) { 208 result = get_task_root(task, path); 209 put_task_struct(task); 210 } 211 return result; 212 } 213 214 /* 215 * If the user used setproctitle(), we just get the string from 216 * user space at arg_start, and limit it to a maximum of one page. 217 */ 218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 219 size_t count, unsigned long pos, 220 unsigned long arg_start) 221 { 222 char *page; 223 int ret, got; 224 225 if (pos >= PAGE_SIZE) 226 return 0; 227 228 page = (char *)__get_free_page(GFP_KERNEL); 229 if (!page) 230 return -ENOMEM; 231 232 ret = 0; 233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 234 if (got > 0) { 235 int len = strnlen(page, got); 236 237 /* Include the NUL character if it was found */ 238 if (len < got) 239 len++; 240 241 if (len > pos) { 242 len -= pos; 243 if (len > count) 244 len = count; 245 len -= copy_to_user(buf, page+pos, len); 246 if (!len) 247 len = -EFAULT; 248 ret = len; 249 } 250 } 251 free_page((unsigned long)page); 252 return ret; 253 } 254 255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 256 size_t count, loff_t *ppos) 257 { 258 unsigned long arg_start, arg_end, env_start, env_end; 259 unsigned long pos, len; 260 char *page, c; 261 262 /* Check if process spawned far enough to have cmdline. */ 263 if (!mm->env_end) 264 return 0; 265 266 spin_lock(&mm->arg_lock); 267 arg_start = mm->arg_start; 268 arg_end = mm->arg_end; 269 env_start = mm->env_start; 270 env_end = mm->env_end; 271 spin_unlock(&mm->arg_lock); 272 273 if (arg_start >= arg_end) 274 return 0; 275 276 /* 277 * We allow setproctitle() to overwrite the argument 278 * strings, and overflow past the original end. But 279 * only when it overflows into the environment area. 280 */ 281 if (env_start != arg_end || env_end < env_start) 282 env_start = env_end = arg_end; 283 len = env_end - arg_start; 284 285 /* We're not going to care if "*ppos" has high bits set */ 286 pos = *ppos; 287 if (pos >= len) 288 return 0; 289 if (count > len - pos) 290 count = len - pos; 291 if (!count) 292 return 0; 293 294 /* 295 * Magical special case: if the argv[] end byte is not 296 * zero, the user has overwritten it with setproctitle(3). 297 * 298 * Possible future enhancement: do this only once when 299 * pos is 0, and set a flag in the 'struct file'. 300 */ 301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 302 return get_mm_proctitle(mm, buf, count, pos, arg_start); 303 304 /* 305 * For the non-setproctitle() case we limit things strictly 306 * to the [arg_start, arg_end[ range. 307 */ 308 pos += arg_start; 309 if (pos < arg_start || pos >= arg_end) 310 return 0; 311 if (count > arg_end - pos) 312 count = arg_end - pos; 313 314 page = (char *)__get_free_page(GFP_KERNEL); 315 if (!page) 316 return -ENOMEM; 317 318 len = 0; 319 while (count) { 320 int got; 321 size_t size = min_t(size_t, PAGE_SIZE, count); 322 323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 324 if (got <= 0) 325 break; 326 got -= copy_to_user(buf, page, got); 327 if (unlikely(!got)) { 328 if (!len) 329 len = -EFAULT; 330 break; 331 } 332 pos += got; 333 buf += got; 334 len += got; 335 count -= got; 336 } 337 338 free_page((unsigned long)page); 339 return len; 340 } 341 342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 343 size_t count, loff_t *pos) 344 { 345 struct mm_struct *mm; 346 ssize_t ret; 347 348 mm = get_task_mm(tsk); 349 if (!mm) 350 return 0; 351 352 ret = get_mm_cmdline(mm, buf, count, pos); 353 mmput(mm); 354 return ret; 355 } 356 357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 358 size_t count, loff_t *pos) 359 { 360 struct task_struct *tsk; 361 ssize_t ret; 362 363 BUG_ON(*pos < 0); 364 365 tsk = get_proc_task(file_inode(file)); 366 if (!tsk) 367 return -ESRCH; 368 ret = get_task_cmdline(tsk, buf, count, pos); 369 put_task_struct(tsk); 370 if (ret > 0) 371 *pos += ret; 372 return ret; 373 } 374 375 static const struct file_operations proc_pid_cmdline_ops = { 376 .read = proc_pid_cmdline_read, 377 .llseek = generic_file_llseek, 378 }; 379 380 #ifdef CONFIG_KALLSYMS 381 /* 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 383 * Returns the resolved symbol. If that fails, simply return the address. 384 */ 385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 386 struct pid *pid, struct task_struct *task) 387 { 388 unsigned long wchan; 389 char symname[KSYM_NAME_LEN]; 390 391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 392 goto print0; 393 394 wchan = get_wchan(task); 395 if (wchan && !lookup_symbol_name(wchan, symname)) { 396 seq_puts(m, symname); 397 return 0; 398 } 399 400 print0: 401 seq_putc(m, ''); 402 return 0; 403 } 404 #endif /* CONFIG_KALLSYMS */ 405 406 static int lock_trace(struct task_struct *task) 407 { 408 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 409 if (err) 410 return err; 411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 412 mutex_unlock(&task->signal->cred_guard_mutex); 413 return -EPERM; 414 } 415 return 0; 416 } 417 418 static void unlock_trace(struct task_struct *task) 419 { 420 mutex_unlock(&task->signal->cred_guard_mutex); 421 } 422 423 #ifdef CONFIG_STACKTRACE 424 425 #define MAX_STACK_TRACE_DEPTH 64 426 427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 428 struct pid *pid, struct task_struct *task) 429 { 430 unsigned long *entries; 431 int err; 432 433 /* 434 * The ability to racily run the kernel stack unwinder on a running task 435 * and then observe the unwinder output is scary; while it is useful for 436 * debugging kernel issues, it can also allow an attacker to leak kernel 437 * stack contents. 438 * Doing this in a manner that is at least safe from races would require 439 * some work to ensure that the remote task can not be scheduled; and 440 * even then, this would still expose the unwinder as local attack 441 * surface. 442 * Therefore, this interface is restricted to root. 443 */ 444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 445 return -EACCES; 446 447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 448 GFP_KERNEL); 449 if (!entries) 450 return -ENOMEM; 451 452 err = lock_trace(task); 453 if (!err) { 454 unsigned int i, nr_entries; 455 456 nr_entries = stack_trace_save_tsk(task, entries, 457 MAX_STACK_TRACE_DEPTH, 0); 458 459 for (i = 0; i < nr_entries; i++) { 460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 461 } 462 463 unlock_trace(task); 464 } 465 kfree(entries); 466 467 return err; 468 } 469 #endif 470 471 #ifdef CONFIG_SCHED_INFO 472 /* 473 * Provides /proc/PID/schedstat 474 */ 475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 476 struct pid *pid, struct task_struct *task) 477 { 478 if (unlikely(!sched_info_on())) 479 seq_puts(m, "0 0 0\n"); 480 else 481 seq_printf(m, "%llu %llu %lu\n", 482 (unsigned long long)task->se.sum_exec_runtime, 483 (unsigned long long)task->sched_info.run_delay, 484 task->sched_info.pcount); 485 486 return 0; 487 } 488 #endif 489 490 #ifdef CONFIG_LATENCYTOP 491 static int lstats_show_proc(struct seq_file *m, void *v) 492 { 493 int i; 494 struct inode *inode = m->private; 495 struct task_struct *task = get_proc_task(inode); 496 497 if (!task) 498 return -ESRCH; 499 seq_puts(m, "Latency Top version : v0.1\n"); 500 for (i = 0; i < LT_SAVECOUNT; i++) { 501 struct latency_record *lr = &task->latency_record[i]; 502 if (lr->backtrace[0]) { 503 int q; 504 seq_printf(m, "%i %li %li", 505 lr->count, lr->time, lr->max); 506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 507 unsigned long bt = lr->backtrace[q]; 508 509 if (!bt) 510 break; 511 seq_printf(m, " %ps", (void *)bt); 512 } 513 seq_putc(m, '\n'); 514 } 515 516 } 517 put_task_struct(task); 518 return 0; 519 } 520 521 static int lstats_open(struct inode *inode, struct file *file) 522 { 523 return single_open(file, lstats_show_proc, inode); 524 } 525 526 static ssize_t lstats_write(struct file *file, const char __user *buf, 527 size_t count, loff_t *offs) 528 { 529 struct task_struct *task = get_proc_task(file_inode(file)); 530 531 if (!task) 532 return -ESRCH; 533 clear_tsk_latency_tracing(task); 534 put_task_struct(task); 535 536 return count; 537 } 538 539 static const struct file_operations proc_lstats_operations = { 540 .open = lstats_open, 541 .read = seq_read, 542 .write = lstats_write, 543 .llseek = seq_lseek, 544 .release = single_release, 545 }; 546 547 #endif 548 549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 550 struct pid *pid, struct task_struct *task) 551 { 552 unsigned long totalpages = totalram_pages() + total_swap_pages; 553 unsigned long points = 0; 554 555 points = oom_badness(task, totalpages) * 1000 / totalpages; 556 seq_printf(m, "%lu\n", points); 557 558 return 0; 559 } 560 561 struct limit_names { 562 const char *name; 563 const char *unit; 564 }; 565 566 static const struct limit_names lnames[RLIM_NLIMITS] = { 567 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 568 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 569 [RLIMIT_DATA] = {"Max data size", "bytes"}, 570 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 571 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 572 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 573 [RLIMIT_NPROC] = {"Max processes", "processes"}, 574 [RLIMIT_NOFILE] = {"Max open files", "files"}, 575 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 576 [RLIMIT_AS] = {"Max address space", "bytes"}, 577 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 578 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 579 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 580 [RLIMIT_NICE] = {"Max nice priority", NULL}, 581 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 582 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 583 }; 584 585 /* Display limits for a process */ 586 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 587 struct pid *pid, struct task_struct *task) 588 { 589 unsigned int i; 590 unsigned long flags; 591 592 struct rlimit rlim[RLIM_NLIMITS]; 593 594 if (!lock_task_sighand(task, &flags)) 595 return 0; 596 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 597 unlock_task_sighand(task, &flags); 598 599 /* 600 * print the file header 601 */ 602 seq_puts(m, "Limit " 603 "Soft Limit " 604 "Hard Limit " 605 "Units \n"); 606 607 for (i = 0; i < RLIM_NLIMITS; i++) { 608 if (rlim[i].rlim_cur == RLIM_INFINITY) 609 seq_printf(m, "%-25s %-20s ", 610 lnames[i].name, "unlimited"); 611 else 612 seq_printf(m, "%-25s %-20lu ", 613 lnames[i].name, rlim[i].rlim_cur); 614 615 if (rlim[i].rlim_max == RLIM_INFINITY) 616 seq_printf(m, "%-20s ", "unlimited"); 617 else 618 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 619 620 if (lnames[i].unit) 621 seq_printf(m, "%-10s\n", lnames[i].unit); 622 else 623 seq_putc(m, '\n'); 624 } 625 626 return 0; 627 } 628 629 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 630 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 631 struct pid *pid, struct task_struct *task) 632 { 633 struct syscall_info info; 634 u64 *args = &info.data.args[0]; 635 int res; 636 637 res = lock_trace(task); 638 if (res) 639 return res; 640 641 if (task_current_syscall(task, &info)) 642 seq_puts(m, "running\n"); 643 else if (info.data.nr < 0) 644 seq_printf(m, "%d 0x%llx 0x%llx\n", 645 info.data.nr, info.sp, info.data.instruction_pointer); 646 else 647 seq_printf(m, 648 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 649 info.data.nr, 650 args[0], args[1], args[2], args[3], args[4], args[5], 651 info.sp, info.data.instruction_pointer); 652 unlock_trace(task); 653 654 return 0; 655 } 656 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 657 658 /************************************************************************/ 659 /* Here the fs part begins */ 660 /************************************************************************/ 661 662 /* permission checks */ 663 static int proc_fd_access_allowed(struct inode *inode) 664 { 665 struct task_struct *task; 666 int allowed = 0; 667 /* Allow access to a task's file descriptors if it is us or we 668 * may use ptrace attach to the process and find out that 669 * information. 670 */ 671 task = get_proc_task(inode); 672 if (task) { 673 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 674 put_task_struct(task); 675 } 676 return allowed; 677 } 678 679 int proc_setattr(struct dentry *dentry, struct iattr *attr) 680 { 681 int error; 682 struct inode *inode = d_inode(dentry); 683 684 if (attr->ia_valid & ATTR_MODE) 685 return -EPERM; 686 687 error = setattr_prepare(dentry, attr); 688 if (error) 689 return error; 690 691 setattr_copy(inode, attr); 692 mark_inode_dirty(inode); 693 return 0; 694 } 695 696 /* 697 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 698 * or euid/egid (for hide_pid_min=2)? 699 */ 700 static bool has_pid_permissions(struct pid_namespace *pid, 701 struct task_struct *task, 702 int hide_pid_min) 703 { 704 if (pid->hide_pid < hide_pid_min) 705 return true; 706 if (in_group_p(pid->pid_gid)) 707 return true; 708 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 709 } 710 711 712 static int proc_pid_permission(struct inode *inode, int mask) 713 { 714 struct pid_namespace *pid = proc_pid_ns(inode); 715 struct task_struct *task; 716 bool has_perms; 717 718 task = get_proc_task(inode); 719 if (!task) 720 return -ESRCH; 721 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS); 722 put_task_struct(task); 723 724 if (!has_perms) { 725 if (pid->hide_pid == HIDEPID_INVISIBLE) { 726 /* 727 * Let's make getdents(), stat(), and open() 728 * consistent with each other. If a process 729 * may not stat() a file, it shouldn't be seen 730 * in procfs at all. 731 */ 732 return -ENOENT; 733 } 734 735 return -EPERM; 736 } 737 return generic_permission(inode, mask); 738 } 739 740 741 742 static const struct inode_operations proc_def_inode_operations = { 743 .setattr = proc_setattr, 744 }; 745 746 static int proc_single_show(struct seq_file *m, void *v) 747 { 748 struct inode *inode = m->private; 749 struct pid_namespace *ns = proc_pid_ns(inode); 750 struct pid *pid = proc_pid(inode); 751 struct task_struct *task; 752 int ret; 753 754 task = get_pid_task(pid, PIDTYPE_PID); 755 if (!task) 756 return -ESRCH; 757 758 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 759 760 put_task_struct(task); 761 return ret; 762 } 763 764 static int proc_single_open(struct inode *inode, struct file *filp) 765 { 766 return single_open(filp, proc_single_show, inode); 767 } 768 769 static const struct file_operations proc_single_file_operations = { 770 .open = proc_single_open, 771 .read = seq_read, 772 .llseek = seq_lseek, 773 .release = single_release, 774 }; 775 776 777 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 778 { 779 struct task_struct *task = get_proc_task(inode); 780 struct mm_struct *mm = ERR_PTR(-ESRCH); 781 782 if (task) { 783 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 784 put_task_struct(task); 785 786 if (!IS_ERR_OR_NULL(mm)) { 787 /* ensure this mm_struct can't be freed */ 788 mmgrab(mm); 789 /* but do not pin its memory */ 790 mmput(mm); 791 } 792 } 793 794 return mm; 795 } 796 797 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 798 { 799 struct mm_struct *mm = proc_mem_open(inode, mode); 800 801 if (IS_ERR(mm)) 802 return PTR_ERR(mm); 803 804 file->private_data = mm; 805 return 0; 806 } 807 808 static int mem_open(struct inode *inode, struct file *file) 809 { 810 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 811 812 /* OK to pass negative loff_t, we can catch out-of-range */ 813 file->f_mode |= FMODE_UNSIGNED_OFFSET; 814 815 return ret; 816 } 817 818 static ssize_t mem_rw(struct file *file, char __user *buf, 819 size_t count, loff_t *ppos, int write) 820 { 821 struct mm_struct *mm = file->private_data; 822 unsigned long addr = *ppos; 823 ssize_t copied; 824 char *page; 825 unsigned int flags; 826 827 if (!mm) 828 return 0; 829 830 page = (char *)__get_free_page(GFP_KERNEL); 831 if (!page) 832 return -ENOMEM; 833 834 copied = 0; 835 if (!mmget_not_zero(mm)) 836 goto free; 837 838 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 839 840 while (count > 0) { 841 int this_len = min_t(int, count, PAGE_SIZE); 842 843 if (write && copy_from_user(page, buf, this_len)) { 844 copied = -EFAULT; 845 break; 846 } 847 848 this_len = access_remote_vm(mm, addr, page, this_len, flags); 849 if (!this_len) { 850 if (!copied) 851 copied = -EIO; 852 break; 853 } 854 855 if (!write && copy_to_user(buf, page, this_len)) { 856 copied = -EFAULT; 857 break; 858 } 859 860 buf += this_len; 861 addr += this_len; 862 copied += this_len; 863 count -= this_len; 864 } 865 *ppos = addr; 866 867 mmput(mm); 868 free: 869 free_page((unsigned long) page); 870 return copied; 871 } 872 873 static ssize_t mem_read(struct file *file, char __user *buf, 874 size_t count, loff_t *ppos) 875 { 876 return mem_rw(file, buf, count, ppos, 0); 877 } 878 879 static ssize_t mem_write(struct file *file, const char __user *buf, 880 size_t count, loff_t *ppos) 881 { 882 return mem_rw(file, (char __user*)buf, count, ppos, 1); 883 } 884 885 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 886 { 887 switch (orig) { 888 case 0: 889 file->f_pos = offset; 890 break; 891 case 1: 892 file->f_pos += offset; 893 break; 894 default: 895 return -EINVAL; 896 } 897 force_successful_syscall_return(); 898 return file->f_pos; 899 } 900 901 static int mem_release(struct inode *inode, struct file *file) 902 { 903 struct mm_struct *mm = file->private_data; 904 if (mm) 905 mmdrop(mm); 906 return 0; 907 } 908 909 static const struct file_operations proc_mem_operations = { 910 .llseek = mem_lseek, 911 .read = mem_read, 912 .write = mem_write, 913 .open = mem_open, 914 .release = mem_release, 915 }; 916 917 static int environ_open(struct inode *inode, struct file *file) 918 { 919 return __mem_open(inode, file, PTRACE_MODE_READ); 920 } 921 922 static ssize_t environ_read(struct file *file, char __user *buf, 923 size_t count, loff_t *ppos) 924 { 925 char *page; 926 unsigned long src = *ppos; 927 int ret = 0; 928 struct mm_struct *mm = file->private_data; 929 unsigned long env_start, env_end; 930 931 /* Ensure the process spawned far enough to have an environment. */ 932 if (!mm || !mm->env_end) 933 return 0; 934 935 page = (char *)__get_free_page(GFP_KERNEL); 936 if (!page) 937 return -ENOMEM; 938 939 ret = 0; 940 if (!mmget_not_zero(mm)) 941 goto free; 942 943 spin_lock(&mm->arg_lock); 944 env_start = mm->env_start; 945 env_end = mm->env_end; 946 spin_unlock(&mm->arg_lock); 947 948 while (count > 0) { 949 size_t this_len, max_len; 950 int retval; 951 952 if (src >= (env_end - env_start)) 953 break; 954 955 this_len = env_end - (env_start + src); 956 957 max_len = min_t(size_t, PAGE_SIZE, count); 958 this_len = min(max_len, this_len); 959 960 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 961 962 if (retval <= 0) { 963 ret = retval; 964 break; 965 } 966 967 if (copy_to_user(buf, page, retval)) { 968 ret = -EFAULT; 969 break; 970 } 971 972 ret += retval; 973 src += retval; 974 buf += retval; 975 count -= retval; 976 } 977 *ppos = src; 978 mmput(mm); 979 980 free: 981 free_page((unsigned long) page); 982 return ret; 983 } 984 985 static const struct file_operations proc_environ_operations = { 986 .open = environ_open, 987 .read = environ_read, 988 .llseek = generic_file_llseek, 989 .release = mem_release, 990 }; 991 992 static int auxv_open(struct inode *inode, struct file *file) 993 { 994 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 995 } 996 997 static ssize_t auxv_read(struct file *file, char __user *buf, 998 size_t count, loff_t *ppos) 999 { 1000 struct mm_struct *mm = file->private_data; 1001 unsigned int nwords = 0; 1002 1003 if (!mm) 1004 return 0; 1005 do { 1006 nwords += 2; 1007 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1008 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1009 nwords * sizeof(mm->saved_auxv[0])); 1010 } 1011 1012 static const struct file_operations proc_auxv_operations = { 1013 .open = auxv_open, 1014 .read = auxv_read, 1015 .llseek = generic_file_llseek, 1016 .release = mem_release, 1017 }; 1018 1019 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1020 loff_t *ppos) 1021 { 1022 struct task_struct *task = get_proc_task(file_inode(file)); 1023 char buffer[PROC_NUMBUF]; 1024 int oom_adj = OOM_ADJUST_MIN; 1025 size_t len; 1026 1027 if (!task) 1028 return -ESRCH; 1029 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1030 oom_adj = OOM_ADJUST_MAX; 1031 else 1032 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1033 OOM_SCORE_ADJ_MAX; 1034 put_task_struct(task); 1035 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1036 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1037 } 1038 1039 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1040 { 1041 static DEFINE_MUTEX(oom_adj_mutex); 1042 struct mm_struct *mm = NULL; 1043 struct task_struct *task; 1044 int err = 0; 1045 1046 task = get_proc_task(file_inode(file)); 1047 if (!task) 1048 return -ESRCH; 1049 1050 mutex_lock(&oom_adj_mutex); 1051 if (legacy) { 1052 if (oom_adj < task->signal->oom_score_adj && 1053 !capable(CAP_SYS_RESOURCE)) { 1054 err = -EACCES; 1055 goto err_unlock; 1056 } 1057 /* 1058 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1059 * /proc/pid/oom_score_adj instead. 1060 */ 1061 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1062 current->comm, task_pid_nr(current), task_pid_nr(task), 1063 task_pid_nr(task)); 1064 } else { 1065 if ((short)oom_adj < task->signal->oom_score_adj_min && 1066 !capable(CAP_SYS_RESOURCE)) { 1067 err = -EACCES; 1068 goto err_unlock; 1069 } 1070 } 1071 1072 /* 1073 * Make sure we will check other processes sharing the mm if this is 1074 * not vfrok which wants its own oom_score_adj. 1075 * pin the mm so it doesn't go away and get reused after task_unlock 1076 */ 1077 if (!task->vfork_done) { 1078 struct task_struct *p = find_lock_task_mm(task); 1079 1080 if (p) { 1081 if (atomic_read(&p->mm->mm_users) > 1) { 1082 mm = p->mm; 1083 mmgrab(mm); 1084 } 1085 task_unlock(p); 1086 } 1087 } 1088 1089 task->signal->oom_score_adj = oom_adj; 1090 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1091 task->signal->oom_score_adj_min = (short)oom_adj; 1092 trace_oom_score_adj_update(task); 1093 1094 if (mm) { 1095 struct task_struct *p; 1096 1097 rcu_read_lock(); 1098 for_each_process(p) { 1099 if (same_thread_group(task, p)) 1100 continue; 1101 1102 /* do not touch kernel threads or the global init */ 1103 if (p->flags & PF_KTHREAD || is_global_init(p)) 1104 continue; 1105 1106 task_lock(p); 1107 if (!p->vfork_done && process_shares_mm(p, mm)) { 1108 p->signal->oom_score_adj = oom_adj; 1109 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1110 p->signal->oom_score_adj_min = (short)oom_adj; 1111 } 1112 task_unlock(p); 1113 } 1114 rcu_read_unlock(); 1115 mmdrop(mm); 1116 } 1117 err_unlock: 1118 mutex_unlock(&oom_adj_mutex); 1119 put_task_struct(task); 1120 return err; 1121 } 1122 1123 /* 1124 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1125 * kernels. The effective policy is defined by oom_score_adj, which has a 1126 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1127 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1128 * Processes that become oom disabled via oom_adj will still be oom disabled 1129 * with this implementation. 1130 * 1131 * oom_adj cannot be removed since existing userspace binaries use it. 1132 */ 1133 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1134 size_t count, loff_t *ppos) 1135 { 1136 char buffer[PROC_NUMBUF]; 1137 int oom_adj; 1138 int err; 1139 1140 memset(buffer, 0, sizeof(buffer)); 1141 if (count > sizeof(buffer) - 1) 1142 count = sizeof(buffer) - 1; 1143 if (copy_from_user(buffer, buf, count)) { 1144 err = -EFAULT; 1145 goto out; 1146 } 1147 1148 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1149 if (err) 1150 goto out; 1151 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1152 oom_adj != OOM_DISABLE) { 1153 err = -EINVAL; 1154 goto out; 1155 } 1156 1157 /* 1158 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1159 * value is always attainable. 1160 */ 1161 if (oom_adj == OOM_ADJUST_MAX) 1162 oom_adj = OOM_SCORE_ADJ_MAX; 1163 else 1164 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1165 1166 err = __set_oom_adj(file, oom_adj, true); 1167 out: 1168 return err < 0 ? err : count; 1169 } 1170 1171 static const struct file_operations proc_oom_adj_operations = { 1172 .read = oom_adj_read, 1173 .write = oom_adj_write, 1174 .llseek = generic_file_llseek, 1175 }; 1176 1177 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1178 size_t count, loff_t *ppos) 1179 { 1180 struct task_struct *task = get_proc_task(file_inode(file)); 1181 char buffer[PROC_NUMBUF]; 1182 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1183 size_t len; 1184 1185 if (!task) 1186 return -ESRCH; 1187 oom_score_adj = task->signal->oom_score_adj; 1188 put_task_struct(task); 1189 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1190 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1191 } 1192 1193 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1194 size_t count, loff_t *ppos) 1195 { 1196 char buffer[PROC_NUMBUF]; 1197 int oom_score_adj; 1198 int err; 1199 1200 memset(buffer, 0, sizeof(buffer)); 1201 if (count > sizeof(buffer) - 1) 1202 count = sizeof(buffer) - 1; 1203 if (copy_from_user(buffer, buf, count)) { 1204 err = -EFAULT; 1205 goto out; 1206 } 1207 1208 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1209 if (err) 1210 goto out; 1211 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1212 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1213 err = -EINVAL; 1214 goto out; 1215 } 1216 1217 err = __set_oom_adj(file, oom_score_adj, false); 1218 out: 1219 return err < 0 ? err : count; 1220 } 1221 1222 static const struct file_operations proc_oom_score_adj_operations = { 1223 .read = oom_score_adj_read, 1224 .write = oom_score_adj_write, 1225 .llseek = default_llseek, 1226 }; 1227 1228 #ifdef CONFIG_AUDIT 1229 #define TMPBUFLEN 11 1230 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1231 size_t count, loff_t *ppos) 1232 { 1233 struct inode * inode = file_inode(file); 1234 struct task_struct *task = get_proc_task(inode); 1235 ssize_t length; 1236 char tmpbuf[TMPBUFLEN]; 1237 1238 if (!task) 1239 return -ESRCH; 1240 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1241 from_kuid(file->f_cred->user_ns, 1242 audit_get_loginuid(task))); 1243 put_task_struct(task); 1244 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1245 } 1246 1247 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1248 size_t count, loff_t *ppos) 1249 { 1250 struct inode * inode = file_inode(file); 1251 uid_t loginuid; 1252 kuid_t kloginuid; 1253 int rv; 1254 1255 rcu_read_lock(); 1256 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1257 rcu_read_unlock(); 1258 return -EPERM; 1259 } 1260 rcu_read_unlock(); 1261 1262 if (*ppos != 0) { 1263 /* No partial writes. */ 1264 return -EINVAL; 1265 } 1266 1267 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1268 if (rv < 0) 1269 return rv; 1270 1271 /* is userspace tring to explicitly UNSET the loginuid? */ 1272 if (loginuid == AUDIT_UID_UNSET) { 1273 kloginuid = INVALID_UID; 1274 } else { 1275 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1276 if (!uid_valid(kloginuid)) 1277 return -EINVAL; 1278 } 1279 1280 rv = audit_set_loginuid(kloginuid); 1281 if (rv < 0) 1282 return rv; 1283 return count; 1284 } 1285 1286 static const struct file_operations proc_loginuid_operations = { 1287 .read = proc_loginuid_read, 1288 .write = proc_loginuid_write, 1289 .llseek = generic_file_llseek, 1290 }; 1291 1292 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1293 size_t count, loff_t *ppos) 1294 { 1295 struct inode * inode = file_inode(file); 1296 struct task_struct *task = get_proc_task(inode); 1297 ssize_t length; 1298 char tmpbuf[TMPBUFLEN]; 1299 1300 if (!task) 1301 return -ESRCH; 1302 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1303 audit_get_sessionid(task)); 1304 put_task_struct(task); 1305 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1306 } 1307 1308 static const struct file_operations proc_sessionid_operations = { 1309 .read = proc_sessionid_read, 1310 .llseek = generic_file_llseek, 1311 }; 1312 #endif 1313 1314 #ifdef CONFIG_FAULT_INJECTION 1315 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1316 size_t count, loff_t *ppos) 1317 { 1318 struct task_struct *task = get_proc_task(file_inode(file)); 1319 char buffer[PROC_NUMBUF]; 1320 size_t len; 1321 int make_it_fail; 1322 1323 if (!task) 1324 return -ESRCH; 1325 make_it_fail = task->make_it_fail; 1326 put_task_struct(task); 1327 1328 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1329 1330 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1331 } 1332 1333 static ssize_t proc_fault_inject_write(struct file * file, 1334 const char __user * buf, size_t count, loff_t *ppos) 1335 { 1336 struct task_struct *task; 1337 char buffer[PROC_NUMBUF]; 1338 int make_it_fail; 1339 int rv; 1340 1341 if (!capable(CAP_SYS_RESOURCE)) 1342 return -EPERM; 1343 memset(buffer, 0, sizeof(buffer)); 1344 if (count > sizeof(buffer) - 1) 1345 count = sizeof(buffer) - 1; 1346 if (copy_from_user(buffer, buf, count)) 1347 return -EFAULT; 1348 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1349 if (rv < 0) 1350 return rv; 1351 if (make_it_fail < 0 || make_it_fail > 1) 1352 return -EINVAL; 1353 1354 task = get_proc_task(file_inode(file)); 1355 if (!task) 1356 return -ESRCH; 1357 task->make_it_fail = make_it_fail; 1358 put_task_struct(task); 1359 1360 return count; 1361 } 1362 1363 static const struct file_operations proc_fault_inject_operations = { 1364 .read = proc_fault_inject_read, 1365 .write = proc_fault_inject_write, 1366 .llseek = generic_file_llseek, 1367 }; 1368 1369 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1370 size_t count, loff_t *ppos) 1371 { 1372 struct task_struct *task; 1373 int err; 1374 unsigned int n; 1375 1376 err = kstrtouint_from_user(buf, count, 0, &n); 1377 if (err) 1378 return err; 1379 1380 task = get_proc_task(file_inode(file)); 1381 if (!task) 1382 return -ESRCH; 1383 task->fail_nth = n; 1384 put_task_struct(task); 1385 1386 return count; 1387 } 1388 1389 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1390 size_t count, loff_t *ppos) 1391 { 1392 struct task_struct *task; 1393 char numbuf[PROC_NUMBUF]; 1394 ssize_t len; 1395 1396 task = get_proc_task(file_inode(file)); 1397 if (!task) 1398 return -ESRCH; 1399 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1400 put_task_struct(task); 1401 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1402 } 1403 1404 static const struct file_operations proc_fail_nth_operations = { 1405 .read = proc_fail_nth_read, 1406 .write = proc_fail_nth_write, 1407 }; 1408 #endif 1409 1410 1411 #ifdef CONFIG_SCHED_DEBUG 1412 /* 1413 * Print out various scheduling related per-task fields: 1414 */ 1415 static int sched_show(struct seq_file *m, void *v) 1416 { 1417 struct inode *inode = m->private; 1418 struct pid_namespace *ns = proc_pid_ns(inode); 1419 struct task_struct *p; 1420 1421 p = get_proc_task(inode); 1422 if (!p) 1423 return -ESRCH; 1424 proc_sched_show_task(p, ns, m); 1425 1426 put_task_struct(p); 1427 1428 return 0; 1429 } 1430 1431 static ssize_t 1432 sched_write(struct file *file, const char __user *buf, 1433 size_t count, loff_t *offset) 1434 { 1435 struct inode *inode = file_inode(file); 1436 struct task_struct *p; 1437 1438 p = get_proc_task(inode); 1439 if (!p) 1440 return -ESRCH; 1441 proc_sched_set_task(p); 1442 1443 put_task_struct(p); 1444 1445 return count; 1446 } 1447 1448 static int sched_open(struct inode *inode, struct file *filp) 1449 { 1450 return single_open(filp, sched_show, inode); 1451 } 1452 1453 static const struct file_operations proc_pid_sched_operations = { 1454 .open = sched_open, 1455 .read = seq_read, 1456 .write = sched_write, 1457 .llseek = seq_lseek, 1458 .release = single_release, 1459 }; 1460 1461 #endif 1462 1463 #ifdef CONFIG_SCHED_AUTOGROUP 1464 /* 1465 * Print out autogroup related information: 1466 */ 1467 static int sched_autogroup_show(struct seq_file *m, void *v) 1468 { 1469 struct inode *inode = m->private; 1470 struct task_struct *p; 1471 1472 p = get_proc_task(inode); 1473 if (!p) 1474 return -ESRCH; 1475 proc_sched_autogroup_show_task(p, m); 1476 1477 put_task_struct(p); 1478 1479 return 0; 1480 } 1481 1482 static ssize_t 1483 sched_autogroup_write(struct file *file, const char __user *buf, 1484 size_t count, loff_t *offset) 1485 { 1486 struct inode *inode = file_inode(file); 1487 struct task_struct *p; 1488 char buffer[PROC_NUMBUF]; 1489 int nice; 1490 int err; 1491 1492 memset(buffer, 0, sizeof(buffer)); 1493 if (count > sizeof(buffer) - 1) 1494 count = sizeof(buffer) - 1; 1495 if (copy_from_user(buffer, buf, count)) 1496 return -EFAULT; 1497 1498 err = kstrtoint(strstrip(buffer), 0, &nice); 1499 if (err < 0) 1500 return err; 1501 1502 p = get_proc_task(inode); 1503 if (!p) 1504 return -ESRCH; 1505 1506 err = proc_sched_autogroup_set_nice(p, nice); 1507 if (err) 1508 count = err; 1509 1510 put_task_struct(p); 1511 1512 return count; 1513 } 1514 1515 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1516 { 1517 int ret; 1518 1519 ret = single_open(filp, sched_autogroup_show, NULL); 1520 if (!ret) { 1521 struct seq_file *m = filp->private_data; 1522 1523 m->private = inode; 1524 } 1525 return ret; 1526 } 1527 1528 static const struct file_operations proc_pid_sched_autogroup_operations = { 1529 .open = sched_autogroup_open, 1530 .read = seq_read, 1531 .write = sched_autogroup_write, 1532 .llseek = seq_lseek, 1533 .release = single_release, 1534 }; 1535 1536 #endif /* CONFIG_SCHED_AUTOGROUP */ 1537 1538 #ifdef CONFIG_TIME_NS 1539 static int timens_offsets_show(struct seq_file *m, void *v) 1540 { 1541 struct task_struct *p; 1542 1543 p = get_proc_task(file_inode(m->file)); 1544 if (!p) 1545 return -ESRCH; 1546 proc_timens_show_offsets(p, m); 1547 1548 put_task_struct(p); 1549 1550 return 0; 1551 } 1552 1553 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1554 size_t count, loff_t *ppos) 1555 { 1556 struct inode *inode = file_inode(file); 1557 struct proc_timens_offset offsets[2]; 1558 char *kbuf = NULL, *pos, *next_line; 1559 struct task_struct *p; 1560 int ret, noffsets; 1561 1562 /* Only allow < page size writes at the beginning of the file */ 1563 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1564 return -EINVAL; 1565 1566 /* Slurp in the user data */ 1567 kbuf = memdup_user_nul(buf, count); 1568 if (IS_ERR(kbuf)) 1569 return PTR_ERR(kbuf); 1570 1571 /* Parse the user data */ 1572 ret = -EINVAL; 1573 noffsets = 0; 1574 for (pos = kbuf; pos; pos = next_line) { 1575 struct proc_timens_offset *off = &offsets[noffsets]; 1576 char clock[10]; 1577 int err; 1578 1579 /* Find the end of line and ensure we don't look past it */ 1580 next_line = strchr(pos, '\n'); 1581 if (next_line) { 1582 *next_line = '\0'; 1583 next_line++; 1584 if (*next_line == '\0') 1585 next_line = NULL; 1586 } 1587 1588 err = sscanf(pos, "%9s %lld %lu", clock, 1589 &off->val.tv_sec, &off->val.tv_nsec); 1590 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1591 goto out; 1592 1593 clock[sizeof(clock) - 1] = 0; 1594 if (strcmp(clock, "monotonic") == 0 || 1595 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1596 off->clockid = CLOCK_MONOTONIC; 1597 else if (strcmp(clock, "boottime") == 0 || 1598 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1599 off->clockid = CLOCK_BOOTTIME; 1600 else 1601 goto out; 1602 1603 noffsets++; 1604 if (noffsets == ARRAY_SIZE(offsets)) { 1605 if (next_line) 1606 count = next_line - kbuf; 1607 break; 1608 } 1609 } 1610 1611 ret = -ESRCH; 1612 p = get_proc_task(inode); 1613 if (!p) 1614 goto out; 1615 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1616 put_task_struct(p); 1617 if (ret) 1618 goto out; 1619 1620 ret = count; 1621 out: 1622 kfree(kbuf); 1623 return ret; 1624 } 1625 1626 static int timens_offsets_open(struct inode *inode, struct file *filp) 1627 { 1628 return single_open(filp, timens_offsets_show, inode); 1629 } 1630 1631 static const struct file_operations proc_timens_offsets_operations = { 1632 .open = timens_offsets_open, 1633 .read = seq_read, 1634 .write = timens_offsets_write, 1635 .llseek = seq_lseek, 1636 .release = single_release, 1637 }; 1638 #endif /* CONFIG_TIME_NS */ 1639 1640 static ssize_t comm_write(struct file *file, const char __user *buf, 1641 size_t count, loff_t *offset) 1642 { 1643 struct inode *inode = file_inode(file); 1644 struct task_struct *p; 1645 char buffer[TASK_COMM_LEN]; 1646 const size_t maxlen = sizeof(buffer) - 1; 1647 1648 memset(buffer, 0, sizeof(buffer)); 1649 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1650 return -EFAULT; 1651 1652 p = get_proc_task(inode); 1653 if (!p) 1654 return -ESRCH; 1655 1656 if (same_thread_group(current, p)) 1657 set_task_comm(p, buffer); 1658 else 1659 count = -EINVAL; 1660 1661 put_task_struct(p); 1662 1663 return count; 1664 } 1665 1666 static int comm_show(struct seq_file *m, void *v) 1667 { 1668 struct inode *inode = m->private; 1669 struct task_struct *p; 1670 1671 p = get_proc_task(inode); 1672 if (!p) 1673 return -ESRCH; 1674 1675 proc_task_name(m, p, false); 1676 seq_putc(m, '\n'); 1677 1678 put_task_struct(p); 1679 1680 return 0; 1681 } 1682 1683 static int comm_open(struct inode *inode, struct file *filp) 1684 { 1685 return single_open(filp, comm_show, inode); 1686 } 1687 1688 static const struct file_operations proc_pid_set_comm_operations = { 1689 .open = comm_open, 1690 .read = seq_read, 1691 .write = comm_write, 1692 .llseek = seq_lseek, 1693 .release = single_release, 1694 }; 1695 1696 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1697 { 1698 struct task_struct *task; 1699 struct file *exe_file; 1700 1701 task = get_proc_task(d_inode(dentry)); 1702 if (!task) 1703 return -ENOENT; 1704 exe_file = get_task_exe_file(task); 1705 put_task_struct(task); 1706 if (exe_file) { 1707 *exe_path = exe_file->f_path; 1708 path_get(&exe_file->f_path); 1709 fput(exe_file); 1710 return 0; 1711 } else 1712 return -ENOENT; 1713 } 1714 1715 static const char *proc_pid_get_link(struct dentry *dentry, 1716 struct inode *inode, 1717 struct delayed_call *done) 1718 { 1719 struct path path; 1720 int error = -EACCES; 1721 1722 if (!dentry) 1723 return ERR_PTR(-ECHILD); 1724 1725 /* Are we allowed to snoop on the tasks file descriptors? */ 1726 if (!proc_fd_access_allowed(inode)) 1727 goto out; 1728 1729 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1730 if (error) 1731 goto out; 1732 1733 error = nd_jump_link(&path); 1734 out: 1735 return ERR_PTR(error); 1736 } 1737 1738 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1739 { 1740 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1741 char *pathname; 1742 int len; 1743 1744 if (!tmp) 1745 return -ENOMEM; 1746 1747 pathname = d_path(path, tmp, PAGE_SIZE); 1748 len = PTR_ERR(pathname); 1749 if (IS_ERR(pathname)) 1750 goto out; 1751 len = tmp + PAGE_SIZE - 1 - pathname; 1752 1753 if (len > buflen) 1754 len = buflen; 1755 if (copy_to_user(buffer, pathname, len)) 1756 len = -EFAULT; 1757 out: 1758 free_page((unsigned long)tmp); 1759 return len; 1760 } 1761 1762 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1763 { 1764 int error = -EACCES; 1765 struct inode *inode = d_inode(dentry); 1766 struct path path; 1767 1768 /* Are we allowed to snoop on the tasks file descriptors? */ 1769 if (!proc_fd_access_allowed(inode)) 1770 goto out; 1771 1772 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1773 if (error) 1774 goto out; 1775 1776 error = do_proc_readlink(&path, buffer, buflen); 1777 path_put(&path); 1778 out: 1779 return error; 1780 } 1781 1782 const struct inode_operations proc_pid_link_inode_operations = { 1783 .readlink = proc_pid_readlink, 1784 .get_link = proc_pid_get_link, 1785 .setattr = proc_setattr, 1786 }; 1787 1788 1789 /* building an inode */ 1790 1791 void task_dump_owner(struct task_struct *task, umode_t mode, 1792 kuid_t *ruid, kgid_t *rgid) 1793 { 1794 /* Depending on the state of dumpable compute who should own a 1795 * proc file for a task. 1796 */ 1797 const struct cred *cred; 1798 kuid_t uid; 1799 kgid_t gid; 1800 1801 if (unlikely(task->flags & PF_KTHREAD)) { 1802 *ruid = GLOBAL_ROOT_UID; 1803 *rgid = GLOBAL_ROOT_GID; 1804 return; 1805 } 1806 1807 /* Default to the tasks effective ownership */ 1808 rcu_read_lock(); 1809 cred = __task_cred(task); 1810 uid = cred->euid; 1811 gid = cred->egid; 1812 rcu_read_unlock(); 1813 1814 /* 1815 * Before the /proc/pid/status file was created the only way to read 1816 * the effective uid of a /process was to stat /proc/pid. Reading 1817 * /proc/pid/status is slow enough that procps and other packages 1818 * kept stating /proc/pid. To keep the rules in /proc simple I have 1819 * made this apply to all per process world readable and executable 1820 * directories. 1821 */ 1822 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1823 struct mm_struct *mm; 1824 task_lock(task); 1825 mm = task->mm; 1826 /* Make non-dumpable tasks owned by some root */ 1827 if (mm) { 1828 if (get_dumpable(mm) != SUID_DUMP_USER) { 1829 struct user_namespace *user_ns = mm->user_ns; 1830 1831 uid = make_kuid(user_ns, 0); 1832 if (!uid_valid(uid)) 1833 uid = GLOBAL_ROOT_UID; 1834 1835 gid = make_kgid(user_ns, 0); 1836 if (!gid_valid(gid)) 1837 gid = GLOBAL_ROOT_GID; 1838 } 1839 } else { 1840 uid = GLOBAL_ROOT_UID; 1841 gid = GLOBAL_ROOT_GID; 1842 } 1843 task_unlock(task); 1844 } 1845 *ruid = uid; 1846 *rgid = gid; 1847 } 1848 1849 struct inode *proc_pid_make_inode(struct super_block * sb, 1850 struct task_struct *task, umode_t mode) 1851 { 1852 struct inode * inode; 1853 struct proc_inode *ei; 1854 1855 /* We need a new inode */ 1856 1857 inode = new_inode(sb); 1858 if (!inode) 1859 goto out; 1860 1861 /* Common stuff */ 1862 ei = PROC_I(inode); 1863 inode->i_mode = mode; 1864 inode->i_ino = get_next_ino(); 1865 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1866 inode->i_op = &proc_def_inode_operations; 1867 1868 /* 1869 * grab the reference to task. 1870 */ 1871 ei->pid = get_task_pid(task, PIDTYPE_PID); 1872 if (!ei->pid) 1873 goto out_unlock; 1874 1875 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1876 security_task_to_inode(task, inode); 1877 1878 out: 1879 return inode; 1880 1881 out_unlock: 1882 iput(inode); 1883 return NULL; 1884 } 1885 1886 int pid_getattr(const struct path *path, struct kstat *stat, 1887 u32 request_mask, unsigned int query_flags) 1888 { 1889 struct inode *inode = d_inode(path->dentry); 1890 struct pid_namespace *pid = proc_pid_ns(inode); 1891 struct task_struct *task; 1892 1893 generic_fillattr(inode, stat); 1894 1895 stat->uid = GLOBAL_ROOT_UID; 1896 stat->gid = GLOBAL_ROOT_GID; 1897 rcu_read_lock(); 1898 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1899 if (task) { 1900 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) { 1901 rcu_read_unlock(); 1902 /* 1903 * This doesn't prevent learning whether PID exists, 1904 * it only makes getattr() consistent with readdir(). 1905 */ 1906 return -ENOENT; 1907 } 1908 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1909 } 1910 rcu_read_unlock(); 1911 return 0; 1912 } 1913 1914 /* dentry stuff */ 1915 1916 /* 1917 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1918 */ 1919 void pid_update_inode(struct task_struct *task, struct inode *inode) 1920 { 1921 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1922 1923 inode->i_mode &= ~(S_ISUID | S_ISGID); 1924 security_task_to_inode(task, inode); 1925 } 1926 1927 /* 1928 * Rewrite the inode's ownerships here because the owning task may have 1929 * performed a setuid(), etc. 1930 * 1931 */ 1932 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1933 { 1934 struct inode *inode; 1935 struct task_struct *task; 1936 1937 if (flags & LOOKUP_RCU) 1938 return -ECHILD; 1939 1940 inode = d_inode(dentry); 1941 task = get_proc_task(inode); 1942 1943 if (task) { 1944 pid_update_inode(task, inode); 1945 put_task_struct(task); 1946 return 1; 1947 } 1948 return 0; 1949 } 1950 1951 static inline bool proc_inode_is_dead(struct inode *inode) 1952 { 1953 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1954 } 1955 1956 int pid_delete_dentry(const struct dentry *dentry) 1957 { 1958 /* Is the task we represent dead? 1959 * If so, then don't put the dentry on the lru list, 1960 * kill it immediately. 1961 */ 1962 return proc_inode_is_dead(d_inode(dentry)); 1963 } 1964 1965 const struct dentry_operations pid_dentry_operations = 1966 { 1967 .d_revalidate = pid_revalidate, 1968 .d_delete = pid_delete_dentry, 1969 }; 1970 1971 /* Lookups */ 1972 1973 /* 1974 * Fill a directory entry. 1975 * 1976 * If possible create the dcache entry and derive our inode number and 1977 * file type from dcache entry. 1978 * 1979 * Since all of the proc inode numbers are dynamically generated, the inode 1980 * numbers do not exist until the inode is cache. This means creating the 1981 * the dcache entry in readdir is necessary to keep the inode numbers 1982 * reported by readdir in sync with the inode numbers reported 1983 * by stat. 1984 */ 1985 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 1986 const char *name, unsigned int len, 1987 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1988 { 1989 struct dentry *child, *dir = file->f_path.dentry; 1990 struct qstr qname = QSTR_INIT(name, len); 1991 struct inode *inode; 1992 unsigned type = DT_UNKNOWN; 1993 ino_t ino = 1; 1994 1995 child = d_hash_and_lookup(dir, &qname); 1996 if (!child) { 1997 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1998 child = d_alloc_parallel(dir, &qname, &wq); 1999 if (IS_ERR(child)) 2000 goto end_instantiate; 2001 if (d_in_lookup(child)) { 2002 struct dentry *res; 2003 res = instantiate(child, task, ptr); 2004 d_lookup_done(child); 2005 if (unlikely(res)) { 2006 dput(child); 2007 child = res; 2008 if (IS_ERR(child)) 2009 goto end_instantiate; 2010 } 2011 } 2012 } 2013 inode = d_inode(child); 2014 ino = inode->i_ino; 2015 type = inode->i_mode >> 12; 2016 dput(child); 2017 end_instantiate: 2018 return dir_emit(ctx, name, len, ino, type); 2019 } 2020 2021 /* 2022 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2023 * which represent vma start and end addresses. 2024 */ 2025 static int dname_to_vma_addr(struct dentry *dentry, 2026 unsigned long *start, unsigned long *end) 2027 { 2028 const char *str = dentry->d_name.name; 2029 unsigned long long sval, eval; 2030 unsigned int len; 2031 2032 if (str[0] == '' && str[1] != '-') 2033 return -EINVAL; 2034 len = _parse_integer(str, 16, &sval); 2035 if (len & KSTRTOX_OVERFLOW) 2036 return -EINVAL; 2037 if (sval != (unsigned long)sval) 2038 return -EINVAL; 2039 str += len; 2040 2041 if (*str != '-') 2042 return -EINVAL; 2043 str++; 2044 2045 if (str[0] == '' && str[1]) 2046 return -EINVAL; 2047 len = _parse_integer(str, 16, &eval); 2048 if (len & KSTRTOX_OVERFLOW) 2049 return -EINVAL; 2050 if (eval != (unsigned long)eval) 2051 return -EINVAL; 2052 str += len; 2053 2054 if (*str != '\0') 2055 return -EINVAL; 2056 2057 *start = sval; 2058 *end = eval; 2059 2060 return 0; 2061 } 2062 2063 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2064 { 2065 unsigned long vm_start, vm_end; 2066 bool exact_vma_exists = false; 2067 struct mm_struct *mm = NULL; 2068 struct task_struct *task; 2069 struct inode *inode; 2070 int status = 0; 2071 2072 if (flags & LOOKUP_RCU) 2073 return -ECHILD; 2074 2075 inode = d_inode(dentry); 2076 task = get_proc_task(inode); 2077 if (!task) 2078 goto out_notask; 2079 2080 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2081 if (IS_ERR_OR_NULL(mm)) 2082 goto out; 2083 2084 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2085 status = down_read_killable(&mm->mmap_sem); 2086 if (!status) { 2087 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2088 vm_end); 2089 up_read(&mm->mmap_sem); 2090 } 2091 } 2092 2093 mmput(mm); 2094 2095 if (exact_vma_exists) { 2096 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2097 2098 security_task_to_inode(task, inode); 2099 status = 1; 2100 } 2101 2102 out: 2103 put_task_struct(task); 2104 2105 out_notask: 2106 return status; 2107 } 2108 2109 static const struct dentry_operations tid_map_files_dentry_operations = { 2110 .d_revalidate = map_files_d_revalidate, 2111 .d_delete = pid_delete_dentry, 2112 }; 2113 2114 static int map_files_get_link(struct dentry *dentry, struct path *path) 2115 { 2116 unsigned long vm_start, vm_end; 2117 struct vm_area_struct *vma; 2118 struct task_struct *task; 2119 struct mm_struct *mm; 2120 int rc; 2121 2122 rc = -ENOENT; 2123 task = get_proc_task(d_inode(dentry)); 2124 if (!task) 2125 goto out; 2126 2127 mm = get_task_mm(task); 2128 put_task_struct(task); 2129 if (!mm) 2130 goto out; 2131 2132 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2133 if (rc) 2134 goto out_mmput; 2135 2136 rc = down_read_killable(&mm->mmap_sem); 2137 if (rc) 2138 goto out_mmput; 2139 2140 rc = -ENOENT; 2141 vma = find_exact_vma(mm, vm_start, vm_end); 2142 if (vma && vma->vm_file) { 2143 *path = vma->vm_file->f_path; 2144 path_get(path); 2145 rc = 0; 2146 } 2147 up_read(&mm->mmap_sem); 2148 2149 out_mmput: 2150 mmput(mm); 2151 out: 2152 return rc; 2153 } 2154 2155 struct map_files_info { 2156 unsigned long start; 2157 unsigned long end; 2158 fmode_t mode; 2159 }; 2160 2161 /* 2162 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the 2163 * symlinks may be used to bypass permissions on ancestor directories in the 2164 * path to the file in question. 2165 */ 2166 static const char * 2167 proc_map_files_get_link(struct dentry *dentry, 2168 struct inode *inode, 2169 struct delayed_call *done) 2170 { 2171 if (!capable(CAP_SYS_ADMIN)) 2172 return ERR_PTR(-EPERM); 2173 2174 return proc_pid_get_link(dentry, inode, done); 2175 } 2176 2177 /* 2178 * Identical to proc_pid_link_inode_operations except for get_link() 2179 */ 2180 static const struct inode_operations proc_map_files_link_inode_operations = { 2181 .readlink = proc_pid_readlink, 2182 .get_link = proc_map_files_get_link, 2183 .setattr = proc_setattr, 2184 }; 2185 2186 static struct dentry * 2187 proc_map_files_instantiate(struct dentry *dentry, 2188 struct task_struct *task, const void *ptr) 2189 { 2190 fmode_t mode = (fmode_t)(unsigned long)ptr; 2191 struct proc_inode *ei; 2192 struct inode *inode; 2193 2194 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2195 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2196 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2197 if (!inode) 2198 return ERR_PTR(-ENOENT); 2199 2200 ei = PROC_I(inode); 2201 ei->op.proc_get_link = map_files_get_link; 2202 2203 inode->i_op = &proc_map_files_link_inode_operations; 2204 inode->i_size = 64; 2205 2206 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2207 return d_splice_alias(inode, dentry); 2208 } 2209 2210 static struct dentry *proc_map_files_lookup(struct inode *dir, 2211 struct dentry *dentry, unsigned int flags) 2212 { 2213 unsigned long vm_start, vm_end; 2214 struct vm_area_struct *vma; 2215 struct task_struct *task; 2216 struct dentry *result; 2217 struct mm_struct *mm; 2218 2219 result = ERR_PTR(-ENOENT); 2220 task = get_proc_task(dir); 2221 if (!task) 2222 goto out; 2223 2224 result = ERR_PTR(-EACCES); 2225 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2226 goto out_put_task; 2227 2228 result = ERR_PTR(-ENOENT); 2229 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2230 goto out_put_task; 2231 2232 mm = get_task_mm(task); 2233 if (!mm) 2234 goto out_put_task; 2235 2236 result = ERR_PTR(-EINTR); 2237 if (down_read_killable(&mm->mmap_sem)) 2238 goto out_put_mm; 2239 2240 result = ERR_PTR(-ENOENT); 2241 vma = find_exact_vma(mm, vm_start, vm_end); 2242 if (!vma) 2243 goto out_no_vma; 2244 2245 if (vma->vm_file) 2246 result = proc_map_files_instantiate(dentry, task, 2247 (void *)(unsigned long)vma->vm_file->f_mode); 2248 2249 out_no_vma: 2250 up_read(&mm->mmap_sem); 2251 out_put_mm: 2252 mmput(mm); 2253 out_put_task: 2254 put_task_struct(task); 2255 out: 2256 return result; 2257 } 2258 2259 static const struct inode_operations proc_map_files_inode_operations = { 2260 .lookup = proc_map_files_lookup, 2261 .permission = proc_fd_permission, 2262 .setattr = proc_setattr, 2263 }; 2264 2265 static int 2266 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2267 { 2268 struct vm_area_struct *vma; 2269 struct task_struct *task; 2270 struct mm_struct *mm; 2271 unsigned long nr_files, pos, i; 2272 GENRADIX(struct map_files_info) fa; 2273 struct map_files_info *p; 2274 int ret; 2275 2276 genradix_init(&fa); 2277 2278 ret = -ENOENT; 2279 task = get_proc_task(file_inode(file)); 2280 if (!task) 2281 goto out; 2282 2283 ret = -EACCES; 2284 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2285 goto out_put_task; 2286 2287 ret = 0; 2288 if (!dir_emit_dots(file, ctx)) 2289 goto out_put_task; 2290 2291 mm = get_task_mm(task); 2292 if (!mm) 2293 goto out_put_task; 2294 2295 ret = down_read_killable(&mm->mmap_sem); 2296 if (ret) { 2297 mmput(mm); 2298 goto out_put_task; 2299 } 2300 2301 nr_files = 0; 2302 2303 /* 2304 * We need two passes here: 2305 * 2306 * 1) Collect vmas of mapped files with mmap_sem taken 2307 * 2) Release mmap_sem and instantiate entries 2308 * 2309 * otherwise we get lockdep complained, since filldir() 2310 * routine might require mmap_sem taken in might_fault(). 2311 */ 2312 2313 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2314 if (!vma->vm_file) 2315 continue; 2316 if (++pos <= ctx->pos) 2317 continue; 2318 2319 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2320 if (!p) { 2321 ret = -ENOMEM; 2322 up_read(&mm->mmap_sem); 2323 mmput(mm); 2324 goto out_put_task; 2325 } 2326 2327 p->start = vma->vm_start; 2328 p->end = vma->vm_end; 2329 p->mode = vma->vm_file->f_mode; 2330 } 2331 up_read(&mm->mmap_sem); 2332 mmput(mm); 2333 2334 for (i = 0; i < nr_files; i++) { 2335 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2336 unsigned int len; 2337 2338 p = genradix_ptr(&fa, i); 2339 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2340 if (!proc_fill_cache(file, ctx, 2341 buf, len, 2342 proc_map_files_instantiate, 2343 task, 2344 (void *)(unsigned long)p->mode)) 2345 break; 2346 ctx->pos++; 2347 } 2348 2349 out_put_task: 2350 put_task_struct(task); 2351 out: 2352 genradix_free(&fa); 2353 return ret; 2354 } 2355 2356 static const struct file_operations proc_map_files_operations = { 2357 .read = generic_read_dir, 2358 .iterate_shared = proc_map_files_readdir, 2359 .llseek = generic_file_llseek, 2360 }; 2361 2362 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2363 struct timers_private { 2364 struct pid *pid; 2365 struct task_struct *task; 2366 struct sighand_struct *sighand; 2367 struct pid_namespace *ns; 2368 unsigned long flags; 2369 }; 2370 2371 static void *timers_start(struct seq_file *m, loff_t *pos) 2372 { 2373 struct timers_private *tp = m->private; 2374 2375 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2376 if (!tp->task) 2377 return ERR_PTR(-ESRCH); 2378 2379 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2380 if (!tp->sighand) 2381 return ERR_PTR(-ESRCH); 2382 2383 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2384 } 2385 2386 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2387 { 2388 struct timers_private *tp = m->private; 2389 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2390 } 2391 2392 static void timers_stop(struct seq_file *m, void *v) 2393 { 2394 struct timers_private *tp = m->private; 2395 2396 if (tp->sighand) { 2397 unlock_task_sighand(tp->task, &tp->flags); 2398 tp->sighand = NULL; 2399 } 2400 2401 if (tp->task) { 2402 put_task_struct(tp->task); 2403 tp->task = NULL; 2404 } 2405 } 2406 2407 static int show_timer(struct seq_file *m, void *v) 2408 { 2409 struct k_itimer *timer; 2410 struct timers_private *tp = m->private; 2411 int notify; 2412 static const char * const nstr[] = { 2413 [SIGEV_SIGNAL] = "signal", 2414 [SIGEV_NONE] = "none", 2415 [SIGEV_THREAD] = "thread", 2416 }; 2417 2418 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2419 notify = timer->it_sigev_notify; 2420 2421 seq_printf(m, "ID: %d\n", timer->it_id); 2422 seq_printf(m, "signal: %d/%px\n", 2423 timer->sigq->info.si_signo, 2424 timer->sigq->info.si_value.sival_ptr); 2425 seq_printf(m, "notify: %s/%s.%d\n", 2426 nstr[notify & ~SIGEV_THREAD_ID], 2427 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2428 pid_nr_ns(timer->it_pid, tp->ns)); 2429 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2430 2431 return 0; 2432 } 2433 2434 static const struct seq_operations proc_timers_seq_ops = { 2435 .start = timers_start, 2436 .next = timers_next, 2437 .stop = timers_stop, 2438 .show = show_timer, 2439 }; 2440 2441 static int proc_timers_open(struct inode *inode, struct file *file) 2442 { 2443 struct timers_private *tp; 2444 2445 tp = __seq_open_private(file, &proc_timers_seq_ops, 2446 sizeof(struct timers_private)); 2447 if (!tp) 2448 return -ENOMEM; 2449 2450 tp->pid = proc_pid(inode); 2451 tp->ns = proc_pid_ns(inode); 2452 return 0; 2453 } 2454 2455 static const struct file_operations proc_timers_operations = { 2456 .open = proc_timers_open, 2457 .read = seq_read, 2458 .llseek = seq_lseek, 2459 .release = seq_release_private, 2460 }; 2461 #endif 2462 2463 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2464 size_t count, loff_t *offset) 2465 { 2466 struct inode *inode = file_inode(file); 2467 struct task_struct *p; 2468 u64 slack_ns; 2469 int err; 2470 2471 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2472 if (err < 0) 2473 return err; 2474 2475 p = get_proc_task(inode); 2476 if (!p) 2477 return -ESRCH; 2478 2479 if (p != current) { 2480 rcu_read_lock(); 2481 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2482 rcu_read_unlock(); 2483 count = -EPERM; 2484 goto out; 2485 } 2486 rcu_read_unlock(); 2487 2488 err = security_task_setscheduler(p); 2489 if (err) { 2490 count = err; 2491 goto out; 2492 } 2493 } 2494 2495 task_lock(p); 2496 if (slack_ns == 0) 2497 p->timer_slack_ns = p->default_timer_slack_ns; 2498 else 2499 p->timer_slack_ns = slack_ns; 2500 task_unlock(p); 2501 2502 out: 2503 put_task_struct(p); 2504 2505 return count; 2506 } 2507 2508 static int timerslack_ns_show(struct seq_file *m, void *v) 2509 { 2510 struct inode *inode = m->private; 2511 struct task_struct *p; 2512 int err = 0; 2513 2514 p = get_proc_task(inode); 2515 if (!p) 2516 return -ESRCH; 2517 2518 if (p != current) { 2519 rcu_read_lock(); 2520 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2521 rcu_read_unlock(); 2522 err = -EPERM; 2523 goto out; 2524 } 2525 rcu_read_unlock(); 2526 2527 err = security_task_getscheduler(p); 2528 if (err) 2529 goto out; 2530 } 2531 2532 task_lock(p); 2533 seq_printf(m, "%llu\n", p->timer_slack_ns); 2534 task_unlock(p); 2535 2536 out: 2537 put_task_struct(p); 2538 2539 return err; 2540 } 2541 2542 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2543 { 2544 return single_open(filp, timerslack_ns_show, inode); 2545 } 2546 2547 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2548 .open = timerslack_ns_open, 2549 .read = seq_read, 2550 .write = timerslack_ns_write, 2551 .llseek = seq_lseek, 2552 .release = single_release, 2553 }; 2554 2555 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2556 struct task_struct *task, const void *ptr) 2557 { 2558 const struct pid_entry *p = ptr; 2559 struct inode *inode; 2560 struct proc_inode *ei; 2561 2562 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2563 if (!inode) 2564 return ERR_PTR(-ENOENT); 2565 2566 ei = PROC_I(inode); 2567 if (S_ISDIR(inode->i_mode)) 2568 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2569 if (p->iop) 2570 inode->i_op = p->iop; 2571 if (p->fop) 2572 inode->i_fop = p->fop; 2573 ei->op = p->op; 2574 pid_update_inode(task, inode); 2575 d_set_d_op(dentry, &pid_dentry_operations); 2576 return d_splice_alias(inode, dentry); 2577 } 2578 2579 static struct dentry *proc_pident_lookup(struct inode *dir, 2580 struct dentry *dentry, 2581 const struct pid_entry *p, 2582 const struct pid_entry *end) 2583 { 2584 struct task_struct *task = get_proc_task(dir); 2585 struct dentry *res = ERR_PTR(-ENOENT); 2586 2587 if (!task) 2588 goto out_no_task; 2589 2590 /* 2591 * Yes, it does not scale. And it should not. Don't add 2592 * new entries into /proc/<tgid>/ without very good reasons. 2593 */ 2594 for (; p < end; p++) { 2595 if (p->len != dentry->d_name.len) 2596 continue; 2597 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2598 res = proc_pident_instantiate(dentry, task, p); 2599 break; 2600 } 2601 } 2602 put_task_struct(task); 2603 out_no_task: 2604 return res; 2605 } 2606 2607 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2608 const struct pid_entry *ents, unsigned int nents) 2609 { 2610 struct task_struct *task = get_proc_task(file_inode(file)); 2611 const struct pid_entry *p; 2612 2613 if (!task) 2614 return -ENOENT; 2615 2616 if (!dir_emit_dots(file, ctx)) 2617 goto out; 2618 2619 if (ctx->pos >= nents + 2) 2620 goto out; 2621 2622 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2623 if (!proc_fill_cache(file, ctx, p->name, p->len, 2624 proc_pident_instantiate, task, p)) 2625 break; 2626 ctx->pos++; 2627 } 2628 out: 2629 put_task_struct(task); 2630 return 0; 2631 } 2632 2633 #ifdef CONFIG_SECURITY 2634 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2635 size_t count, loff_t *ppos) 2636 { 2637 struct inode * inode = file_inode(file); 2638 char *p = NULL; 2639 ssize_t length; 2640 struct task_struct *task = get_proc_task(inode); 2641 2642 if (!task) 2643 return -ESRCH; 2644 2645 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2646 (char*)file->f_path.dentry->d_name.name, 2647 &p); 2648 put_task_struct(task); 2649 if (length > 0) 2650 length = simple_read_from_buffer(buf, count, ppos, p, length); 2651 kfree(p); 2652 return length; 2653 } 2654 2655 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2656 size_t count, loff_t *ppos) 2657 { 2658 struct inode * inode = file_inode(file); 2659 struct task_struct *task; 2660 void *page; 2661 int rv; 2662 2663 rcu_read_lock(); 2664 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2665 if (!task) { 2666 rcu_read_unlock(); 2667 return -ESRCH; 2668 } 2669 /* A task may only write its own attributes. */ 2670 if (current != task) { 2671 rcu_read_unlock(); 2672 return -EACCES; 2673 } 2674 /* Prevent changes to overridden credentials. */ 2675 if (current_cred() != current_real_cred()) { 2676 rcu_read_unlock(); 2677 return -EBUSY; 2678 } 2679 rcu_read_unlock(); 2680 2681 if (count > PAGE_SIZE) 2682 count = PAGE_SIZE; 2683 2684 /* No partial writes. */ 2685 if (*ppos != 0) 2686 return -EINVAL; 2687 2688 page = memdup_user(buf, count); 2689 if (IS_ERR(page)) { 2690 rv = PTR_ERR(page); 2691 goto out; 2692 } 2693 2694 /* Guard against adverse ptrace interaction */ 2695 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2696 if (rv < 0) 2697 goto out_free; 2698 2699 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2700 file->f_path.dentry->d_name.name, page, 2701 count); 2702 mutex_unlock(¤t->signal->cred_guard_mutex); 2703 out_free: 2704 kfree(page); 2705 out: 2706 return rv; 2707 } 2708 2709 static const struct file_operations proc_pid_attr_operations = { 2710 .read = proc_pid_attr_read, 2711 .write = proc_pid_attr_write, 2712 .llseek = generic_file_llseek, 2713 }; 2714 2715 #define LSM_DIR_OPS(LSM) \ 2716 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2717 struct dir_context *ctx) \ 2718 { \ 2719 return proc_pident_readdir(filp, ctx, \ 2720 LSM##_attr_dir_stuff, \ 2721 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2722 } \ 2723 \ 2724 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2725 .read = generic_read_dir, \ 2726 .iterate = proc_##LSM##_attr_dir_iterate, \ 2727 .llseek = default_llseek, \ 2728 }; \ 2729 \ 2730 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2731 struct dentry *dentry, unsigned int flags) \ 2732 { \ 2733 return proc_pident_lookup(dir, dentry, \ 2734 LSM##_attr_dir_stuff, \ 2735 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2736 } \ 2737 \ 2738 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2739 .lookup = proc_##LSM##_attr_dir_lookup, \ 2740 .getattr = pid_getattr, \ 2741 .setattr = proc_setattr, \ 2742 } 2743 2744 #ifdef CONFIG_SECURITY_SMACK 2745 static const struct pid_entry smack_attr_dir_stuff[] = { 2746 ATTR("smack", "current", 0666), 2747 }; 2748 LSM_DIR_OPS(smack); 2749 #endif 2750 2751 static const struct pid_entry attr_dir_stuff[] = { 2752 ATTR(NULL, "current", 0666), 2753 ATTR(NULL, "prev", 0444), 2754 ATTR(NULL, "exec", 0666), 2755 ATTR(NULL, "fscreate", 0666), 2756 ATTR(NULL, "keycreate", 0666), 2757 ATTR(NULL, "sockcreate", 0666), 2758 #ifdef CONFIG_SECURITY_SMACK 2759 DIR("smack", 0555, 2760 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2761 #endif 2762 }; 2763 2764 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2765 { 2766 return proc_pident_readdir(file, ctx, 2767 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2768 } 2769 2770 static const struct file_operations proc_attr_dir_operations = { 2771 .read = generic_read_dir, 2772 .iterate_shared = proc_attr_dir_readdir, 2773 .llseek = generic_file_llseek, 2774 }; 2775 2776 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2777 struct dentry *dentry, unsigned int flags) 2778 { 2779 return proc_pident_lookup(dir, dentry, 2780 attr_dir_stuff, 2781 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2782 } 2783 2784 static const struct inode_operations proc_attr_dir_inode_operations = { 2785 .lookup = proc_attr_dir_lookup, 2786 .getattr = pid_getattr, 2787 .setattr = proc_setattr, 2788 }; 2789 2790 #endif 2791 2792 #ifdef CONFIG_ELF_CORE 2793 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2794 size_t count, loff_t *ppos) 2795 { 2796 struct task_struct *task = get_proc_task(file_inode(file)); 2797 struct mm_struct *mm; 2798 char buffer[PROC_NUMBUF]; 2799 size_t len; 2800 int ret; 2801 2802 if (!task) 2803 return -ESRCH; 2804 2805 ret = 0; 2806 mm = get_task_mm(task); 2807 if (mm) { 2808 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2809 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2810 MMF_DUMP_FILTER_SHIFT)); 2811 mmput(mm); 2812 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2813 } 2814 2815 put_task_struct(task); 2816 2817 return ret; 2818 } 2819 2820 static ssize_t proc_coredump_filter_write(struct file *file, 2821 const char __user *buf, 2822 size_t count, 2823 loff_t *ppos) 2824 { 2825 struct task_struct *task; 2826 struct mm_struct *mm; 2827 unsigned int val; 2828 int ret; 2829 int i; 2830 unsigned long mask; 2831 2832 ret = kstrtouint_from_user(buf, count, 0, &val); 2833 if (ret < 0) 2834 return ret; 2835 2836 ret = -ESRCH; 2837 task = get_proc_task(file_inode(file)); 2838 if (!task) 2839 goto out_no_task; 2840 2841 mm = get_task_mm(task); 2842 if (!mm) 2843 goto out_no_mm; 2844 ret = 0; 2845 2846 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2847 if (val & mask) 2848 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2849 else 2850 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2851 } 2852 2853 mmput(mm); 2854 out_no_mm: 2855 put_task_struct(task); 2856 out_no_task: 2857 if (ret < 0) 2858 return ret; 2859 return count; 2860 } 2861 2862 static const struct file_operations proc_coredump_filter_operations = { 2863 .read = proc_coredump_filter_read, 2864 .write = proc_coredump_filter_write, 2865 .llseek = generic_file_llseek, 2866 }; 2867 #endif 2868 2869 #ifdef CONFIG_TASK_IO_ACCOUNTING 2870 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2871 { 2872 struct task_io_accounting acct = task->ioac; 2873 unsigned long flags; 2874 int result; 2875 2876 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2877 if (result) 2878 return result; 2879 2880 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2881 result = -EACCES; 2882 goto out_unlock; 2883 } 2884 2885 if (whole && lock_task_sighand(task, &flags)) { 2886 struct task_struct *t = task; 2887 2888 task_io_accounting_add(&acct, &task->signal->ioac); 2889 while_each_thread(task, t) 2890 task_io_accounting_add(&acct, &t->ioac); 2891 2892 unlock_task_sighand(task, &flags); 2893 } 2894 seq_printf(m, 2895 "rchar: %llu\n" 2896 "wchar: %llu\n" 2897 "syscr: %llu\n" 2898 "syscw: %llu\n" 2899 "read_bytes: %llu\n" 2900 "write_bytes: %llu\n" 2901 "cancelled_write_bytes: %llu\n", 2902 (unsigned long long)acct.rchar, 2903 (unsigned long long)acct.wchar, 2904 (unsigned long long)acct.syscr, 2905 (unsigned long long)acct.syscw, 2906 (unsigned long long)acct.read_bytes, 2907 (unsigned long long)acct.write_bytes, 2908 (unsigned long long)acct.cancelled_write_bytes); 2909 result = 0; 2910 2911 out_unlock: 2912 mutex_unlock(&task->signal->cred_guard_mutex); 2913 return result; 2914 } 2915 2916 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2917 struct pid *pid, struct task_struct *task) 2918 { 2919 return do_io_accounting(task, m, 0); 2920 } 2921 2922 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2923 struct pid *pid, struct task_struct *task) 2924 { 2925 return do_io_accounting(task, m, 1); 2926 } 2927 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2928 2929 #ifdef CONFIG_USER_NS 2930 static int proc_id_map_open(struct inode *inode, struct file *file, 2931 const struct seq_operations *seq_ops) 2932 { 2933 struct user_namespace *ns = NULL; 2934 struct task_struct *task; 2935 struct seq_file *seq; 2936 int ret = -EINVAL; 2937 2938 task = get_proc_task(inode); 2939 if (task) { 2940 rcu_read_lock(); 2941 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2942 rcu_read_unlock(); 2943 put_task_struct(task); 2944 } 2945 if (!ns) 2946 goto err; 2947 2948 ret = seq_open(file, seq_ops); 2949 if (ret) 2950 goto err_put_ns; 2951 2952 seq = file->private_data; 2953 seq->private = ns; 2954 2955 return 0; 2956 err_put_ns: 2957 put_user_ns(ns); 2958 err: 2959 return ret; 2960 } 2961 2962 static int proc_id_map_release(struct inode *inode, struct file *file) 2963 { 2964 struct seq_file *seq = file->private_data; 2965 struct user_namespace *ns = seq->private; 2966 put_user_ns(ns); 2967 return seq_release(inode, file); 2968 } 2969 2970 static int proc_uid_map_open(struct inode *inode, struct file *file) 2971 { 2972 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2973 } 2974 2975 static int proc_gid_map_open(struct inode *inode, struct file *file) 2976 { 2977 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2978 } 2979 2980 static int proc_projid_map_open(struct inode *inode, struct file *file) 2981 { 2982 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 2983 } 2984 2985 static const struct file_operations proc_uid_map_operations = { 2986 .open = proc_uid_map_open, 2987 .write = proc_uid_map_write, 2988 .read = seq_read, 2989 .llseek = seq_lseek, 2990 .release = proc_id_map_release, 2991 }; 2992 2993 static const struct file_operations proc_gid_map_operations = { 2994 .open = proc_gid_map_open, 2995 .write = proc_gid_map_write, 2996 .read = seq_read, 2997 .llseek = seq_lseek, 2998 .release = proc_id_map_release, 2999 }; 3000 3001 static const struct file_operations proc_projid_map_operations = { 3002 .open = proc_projid_map_open, 3003 .write = proc_projid_map_write, 3004 .read = seq_read, 3005 .llseek = seq_lseek, 3006 .release = proc_id_map_release, 3007 }; 3008 3009 static int proc_setgroups_open(struct inode *inode, struct file *file) 3010 { 3011 struct user_namespace *ns = NULL; 3012 struct task_struct *task; 3013 int ret; 3014 3015 ret = -ESRCH; 3016 task = get_proc_task(inode); 3017 if (task) { 3018 rcu_read_lock(); 3019 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3020 rcu_read_unlock(); 3021 put_task_struct(task); 3022 } 3023 if (!ns) 3024 goto err; 3025 3026 if (file->f_mode & FMODE_WRITE) { 3027 ret = -EACCES; 3028 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3029 goto err_put_ns; 3030 } 3031 3032 ret = single_open(file, &proc_setgroups_show, ns); 3033 if (ret) 3034 goto err_put_ns; 3035 3036 return 0; 3037 err_put_ns: 3038 put_user_ns(ns); 3039 err: 3040 return ret; 3041 } 3042 3043 static int proc_setgroups_release(struct inode *inode, struct file *file) 3044 { 3045 struct seq_file *seq = file->private_data; 3046 struct user_namespace *ns = seq->private; 3047 int ret = single_release(inode, file); 3048 put_user_ns(ns); 3049 return ret; 3050 } 3051 3052 static const struct file_operations proc_setgroups_operations = { 3053 .open = proc_setgroups_open, 3054 .write = proc_setgroups_write, 3055 .read = seq_read, 3056 .llseek = seq_lseek, 3057 .release = proc_setgroups_release, 3058 }; 3059 #endif /* CONFIG_USER_NS */ 3060 3061 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3062 struct pid *pid, struct task_struct *task) 3063 { 3064 int err = lock_trace(task); 3065 if (!err) { 3066 seq_printf(m, "%08x\n", task->personality); 3067 unlock_trace(task); 3068 } 3069 return err; 3070 } 3071 3072 #ifdef CONFIG_LIVEPATCH 3073 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3074 struct pid *pid, struct task_struct *task) 3075 { 3076 seq_printf(m, "%d\n", task->patch_state); 3077 return 0; 3078 } 3079 #endif /* CONFIG_LIVEPATCH */ 3080 3081 #ifdef CONFIG_STACKLEAK_METRICS 3082 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3083 struct pid *pid, struct task_struct *task) 3084 { 3085 unsigned long prev_depth = THREAD_SIZE - 3086 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3087 unsigned long depth = THREAD_SIZE - 3088 (task->lowest_stack & (THREAD_SIZE - 1)); 3089 3090 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3091 prev_depth, depth); 3092 return 0; 3093 } 3094 #endif /* CONFIG_STACKLEAK_METRICS */ 3095 3096 /* 3097 * Thread groups 3098 */ 3099 static const struct file_operations proc_task_operations; 3100 static const struct inode_operations proc_task_inode_operations; 3101 3102 static const struct pid_entry tgid_base_stuff[] = { 3103 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3104 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3105 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3106 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3107 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3108 #ifdef CONFIG_NET 3109 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3110 #endif 3111 REG("environ", S_IRUSR, proc_environ_operations), 3112 REG("auxv", S_IRUSR, proc_auxv_operations), 3113 ONE("status", S_IRUGO, proc_pid_status), 3114 ONE("personality", S_IRUSR, proc_pid_personality), 3115 ONE("limits", S_IRUGO, proc_pid_limits), 3116 #ifdef CONFIG_SCHED_DEBUG 3117 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3118 #endif 3119 #ifdef CONFIG_SCHED_AUTOGROUP 3120 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3121 #endif 3122 #ifdef CONFIG_TIME_NS 3123 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3124 #endif 3125 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3126 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3127 ONE("syscall", S_IRUSR, proc_pid_syscall), 3128 #endif 3129 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3130 ONE("stat", S_IRUGO, proc_tgid_stat), 3131 ONE("statm", S_IRUGO, proc_pid_statm), 3132 REG("maps", S_IRUGO, proc_pid_maps_operations), 3133 #ifdef CONFIG_NUMA 3134 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3135 #endif 3136 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3137 LNK("cwd", proc_cwd_link), 3138 LNK("root", proc_root_link), 3139 LNK("exe", proc_exe_link), 3140 REG("mounts", S_IRUGO, proc_mounts_operations), 3141 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3142 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3143 #ifdef CONFIG_PROC_PAGE_MONITOR 3144 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3145 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3146 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3147 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3148 #endif 3149 #ifdef CONFIG_SECURITY 3150 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3151 #endif 3152 #ifdef CONFIG_KALLSYMS 3153 ONE("wchan", S_IRUGO, proc_pid_wchan), 3154 #endif 3155 #ifdef CONFIG_STACKTRACE 3156 ONE("stack", S_IRUSR, proc_pid_stack), 3157 #endif 3158 #ifdef CONFIG_SCHED_INFO 3159 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3160 #endif 3161 #ifdef CONFIG_LATENCYTOP 3162 REG("latency", S_IRUGO, proc_lstats_operations), 3163 #endif 3164 #ifdef CONFIG_PROC_PID_CPUSET 3165 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3166 #endif 3167 #ifdef CONFIG_CGROUPS 3168 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3169 #endif 3170 #ifdef CONFIG_PROC_CPU_RESCTRL 3171 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3172 #endif 3173 ONE("oom_score", S_IRUGO, proc_oom_score), 3174 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3175 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3176 #ifdef CONFIG_AUDIT 3177 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3178 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3179 #endif 3180 #ifdef CONFIG_FAULT_INJECTION 3181 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3182 REG("fail-nth", 0644, proc_fail_nth_operations), 3183 #endif 3184 #ifdef CONFIG_ELF_CORE 3185 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3186 #endif 3187 #ifdef CONFIG_TASK_IO_ACCOUNTING 3188 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3189 #endif 3190 #ifdef CONFIG_USER_NS 3191 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3192 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3193 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3194 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3195 #endif 3196 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3197 REG("timers", S_IRUGO, proc_timers_operations), 3198 #endif 3199 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3200 #ifdef CONFIG_LIVEPATCH 3201 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3202 #endif 3203 #ifdef CONFIG_STACKLEAK_METRICS 3204 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3205 #endif 3206 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3207 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3208 #endif 3209 }; 3210 3211 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3212 { 3213 return proc_pident_readdir(file, ctx, 3214 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3215 } 3216 3217 static const struct file_operations proc_tgid_base_operations = { 3218 .read = generic_read_dir, 3219 .iterate_shared = proc_tgid_base_readdir, 3220 .llseek = generic_file_llseek, 3221 }; 3222 3223 struct pid *tgid_pidfd_to_pid(const struct file *file) 3224 { 3225 if (file->f_op != &proc_tgid_base_operations) 3226 return ERR_PTR(-EBADF); 3227 3228 return proc_pid(file_inode(file)); 3229 } 3230 3231 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3232 { 3233 return proc_pident_lookup(dir, dentry, 3234 tgid_base_stuff, 3235 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3236 } 3237 3238 static const struct inode_operations proc_tgid_base_inode_operations = { 3239 .lookup = proc_tgid_base_lookup, 3240 .getattr = pid_getattr, 3241 .setattr = proc_setattr, 3242 .permission = proc_pid_permission, 3243 }; 3244 3245 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3246 { 3247 struct dentry *dentry, *leader, *dir; 3248 char buf[10 + 1]; 3249 struct qstr name; 3250 3251 name.name = buf; 3252 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3253 /* no ->d_hash() rejects on procfs */ 3254 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3255 if (dentry) { 3256 d_invalidate(dentry); 3257 dput(dentry); 3258 } 3259 3260 if (pid == tgid) 3261 return; 3262 3263 name.name = buf; 3264 name.len = snprintf(buf, sizeof(buf), "%u", tgid); 3265 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3266 if (!leader) 3267 goto out; 3268 3269 name.name = "task"; 3270 name.len = strlen(name.name); 3271 dir = d_hash_and_lookup(leader, &name); 3272 if (!dir) 3273 goto out_put_leader; 3274 3275 name.name = buf; 3276 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3277 dentry = d_hash_and_lookup(dir, &name); 3278 if (dentry) { 3279 d_invalidate(dentry); 3280 dput(dentry); 3281 } 3282 3283 dput(dir); 3284 out_put_leader: 3285 dput(leader); 3286 out: 3287 return; 3288 } 3289 3290 /** 3291 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3292 * @task: task that should be flushed. 3293 * 3294 * When flushing dentries from proc, one needs to flush them from global 3295 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3296 * in. This call is supposed to do all of this job. 3297 * 3298 * Looks in the dcache for 3299 * /proc/@pid 3300 * /proc/@tgid/task/@pid 3301 * if either directory is present flushes it and all of it'ts children 3302 * from the dcache. 3303 * 3304 * It is safe and reasonable to cache /proc entries for a task until 3305 * that task exits. After that they just clog up the dcache with 3306 * useless entries, possibly causing useful dcache entries to be 3307 * flushed instead. This routine is proved to flush those useless 3308 * dcache entries at process exit time. 3309 * 3310 * NOTE: This routine is just an optimization so it does not guarantee 3311 * that no dcache entries will exist at process exit time it 3312 * just makes it very unlikely that any will persist. 3313 */ 3314 3315 void proc_flush_task(struct task_struct *task) 3316 { 3317 int i; 3318 struct pid *pid, *tgid; 3319 struct upid *upid; 3320 3321 pid = task_pid(task); 3322 tgid = task_tgid(task); 3323 3324 for (i = 0; i <= pid->level; i++) { 3325 upid = &pid->numbers[i]; 3326 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3327 tgid->numbers[i].nr); 3328 } 3329 } 3330 3331 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3332 struct task_struct *task, const void *ptr) 3333 { 3334 struct inode *inode; 3335 3336 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3337 if (!inode) 3338 return ERR_PTR(-ENOENT); 3339 3340 inode->i_op = &proc_tgid_base_inode_operations; 3341 inode->i_fop = &proc_tgid_base_operations; 3342 inode->i_flags|=S_IMMUTABLE; 3343 3344 set_nlink(inode, nlink_tgid); 3345 pid_update_inode(task, inode); 3346 3347 d_set_d_op(dentry, &pid_dentry_operations); 3348 return d_splice_alias(inode, dentry); 3349 } 3350 3351 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3352 { 3353 struct task_struct *task; 3354 unsigned tgid; 3355 struct pid_namespace *ns; 3356 struct dentry *result = ERR_PTR(-ENOENT); 3357 3358 tgid = name_to_int(&dentry->d_name); 3359 if (tgid == ~0U) 3360 goto out; 3361 3362 ns = dentry->d_sb->s_fs_info; 3363 rcu_read_lock(); 3364 task = find_task_by_pid_ns(tgid, ns); 3365 if (task) 3366 get_task_struct(task); 3367 rcu_read_unlock(); 3368 if (!task) 3369 goto out; 3370 3371 result = proc_pid_instantiate(dentry, task, NULL); 3372 put_task_struct(task); 3373 out: 3374 return result; 3375 } 3376 3377 /* 3378 * Find the first task with tgid >= tgid 3379 * 3380 */ 3381 struct tgid_iter { 3382 unsigned int tgid; 3383 struct task_struct *task; 3384 }; 3385 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3386 { 3387 struct pid *pid; 3388 3389 if (iter.task) 3390 put_task_struct(iter.task); 3391 rcu_read_lock(); 3392 retry: 3393 iter.task = NULL; 3394 pid = find_ge_pid(iter.tgid, ns); 3395 if (pid) { 3396 iter.tgid = pid_nr_ns(pid, ns); 3397 iter.task = pid_task(pid, PIDTYPE_PID); 3398 /* What we to know is if the pid we have find is the 3399 * pid of a thread_group_leader. Testing for task 3400 * being a thread_group_leader is the obvious thing 3401 * todo but there is a window when it fails, due to 3402 * the pid transfer logic in de_thread. 3403 * 3404 * So we perform the straight forward test of seeing 3405 * if the pid we have found is the pid of a thread 3406 * group leader, and don't worry if the task we have 3407 * found doesn't happen to be a thread group leader. 3408 * As we don't care in the case of readdir. 3409 */ 3410 if (!iter.task || !has_group_leader_pid(iter.task)) { 3411 iter.tgid += 1; 3412 goto retry; 3413 } 3414 get_task_struct(iter.task); 3415 } 3416 rcu_read_unlock(); 3417 return iter; 3418 } 3419 3420 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3421 3422 /* for the /proc/ directory itself, after non-process stuff has been done */ 3423 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3424 { 3425 struct tgid_iter iter; 3426 struct pid_namespace *ns = proc_pid_ns(file_inode(file)); 3427 loff_t pos = ctx->pos; 3428 3429 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3430 return 0; 3431 3432 if (pos == TGID_OFFSET - 2) { 3433 struct inode *inode = d_inode(ns->proc_self); 3434 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3435 return 0; 3436 ctx->pos = pos = pos + 1; 3437 } 3438 if (pos == TGID_OFFSET - 1) { 3439 struct inode *inode = d_inode(ns->proc_thread_self); 3440 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3441 return 0; 3442 ctx->pos = pos = pos + 1; 3443 } 3444 iter.tgid = pos - TGID_OFFSET; 3445 iter.task = NULL; 3446 for (iter = next_tgid(ns, iter); 3447 iter.task; 3448 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3449 char name[10 + 1]; 3450 unsigned int len; 3451 3452 cond_resched(); 3453 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE)) 3454 continue; 3455 3456 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3457 ctx->pos = iter.tgid + TGID_OFFSET; 3458 if (!proc_fill_cache(file, ctx, name, len, 3459 proc_pid_instantiate, iter.task, NULL)) { 3460 put_task_struct(iter.task); 3461 return 0; 3462 } 3463 } 3464 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3465 return 0; 3466 } 3467 3468 /* 3469 * proc_tid_comm_permission is a special permission function exclusively 3470 * used for the node /proc/<pid>/task/<tid>/comm. 3471 * It bypasses generic permission checks in the case where a task of the same 3472 * task group attempts to access the node. 3473 * The rationale behind this is that glibc and bionic access this node for 3474 * cross thread naming (pthread_set/getname_np(!self)). However, if 3475 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3476 * which locks out the cross thread naming implementation. 3477 * This function makes sure that the node is always accessible for members of 3478 * same thread group. 3479 */ 3480 static int proc_tid_comm_permission(struct inode *inode, int mask) 3481 { 3482 bool is_same_tgroup; 3483 struct task_struct *task; 3484 3485 task = get_proc_task(inode); 3486 if (!task) 3487 return -ESRCH; 3488 is_same_tgroup = same_thread_group(current, task); 3489 put_task_struct(task); 3490 3491 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3492 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3493 * read or written by the members of the corresponding 3494 * thread group. 3495 */ 3496 return 0; 3497 } 3498 3499 return generic_permission(inode, mask); 3500 } 3501 3502 static const struct inode_operations proc_tid_comm_inode_operations = { 3503 .permission = proc_tid_comm_permission, 3504 }; 3505 3506 /* 3507 * Tasks 3508 */ 3509 static const struct pid_entry tid_base_stuff[] = { 3510 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3511 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3512 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3513 #ifdef CONFIG_NET 3514 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3515 #endif 3516 REG("environ", S_IRUSR, proc_environ_operations), 3517 REG("auxv", S_IRUSR, proc_auxv_operations), 3518 ONE("status", S_IRUGO, proc_pid_status), 3519 ONE("personality", S_IRUSR, proc_pid_personality), 3520 ONE("limits", S_IRUGO, proc_pid_limits), 3521 #ifdef CONFIG_SCHED_DEBUG 3522 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3523 #endif 3524 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3525 &proc_tid_comm_inode_operations, 3526 &proc_pid_set_comm_operations, {}), 3527 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3528 ONE("syscall", S_IRUSR, proc_pid_syscall), 3529 #endif 3530 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3531 ONE("stat", S_IRUGO, proc_tid_stat), 3532 ONE("statm", S_IRUGO, proc_pid_statm), 3533 REG("maps", S_IRUGO, proc_pid_maps_operations), 3534 #ifdef CONFIG_PROC_CHILDREN 3535 REG("children", S_IRUGO, proc_tid_children_operations), 3536 #endif 3537 #ifdef CONFIG_NUMA 3538 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3539 #endif 3540 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3541 LNK("cwd", proc_cwd_link), 3542 LNK("root", proc_root_link), 3543 LNK("exe", proc_exe_link), 3544 REG("mounts", S_IRUGO, proc_mounts_operations), 3545 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3546 #ifdef CONFIG_PROC_PAGE_MONITOR 3547 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3548 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3549 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3550 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3551 #endif 3552 #ifdef CONFIG_SECURITY 3553 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3554 #endif 3555 #ifdef CONFIG_KALLSYMS 3556 ONE("wchan", S_IRUGO, proc_pid_wchan), 3557 #endif 3558 #ifdef CONFIG_STACKTRACE 3559 ONE("stack", S_IRUSR, proc_pid_stack), 3560 #endif 3561 #ifdef CONFIG_SCHED_INFO 3562 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3563 #endif 3564 #ifdef CONFIG_LATENCYTOP 3565 REG("latency", S_IRUGO, proc_lstats_operations), 3566 #endif 3567 #ifdef CONFIG_PROC_PID_CPUSET 3568 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3569 #endif 3570 #ifdef CONFIG_CGROUPS 3571 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3572 #endif 3573 #ifdef CONFIG_PROC_CPU_RESCTRL 3574 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3575 #endif 3576 ONE("oom_score", S_IRUGO, proc_oom_score), 3577 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3578 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3579 #ifdef CONFIG_AUDIT 3580 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3581 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3582 #endif 3583 #ifdef CONFIG_FAULT_INJECTION 3584 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3585 REG("fail-nth", 0644, proc_fail_nth_operations), 3586 #endif 3587 #ifdef CONFIG_TASK_IO_ACCOUNTING 3588 ONE("io", S_IRUSR, proc_tid_io_accounting), 3589 #endif 3590 #ifdef CONFIG_USER_NS 3591 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3592 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3593 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3594 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3595 #endif 3596 #ifdef CONFIG_LIVEPATCH 3597 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3598 #endif 3599 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3600 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3601 #endif 3602 }; 3603 3604 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3605 { 3606 return proc_pident_readdir(file, ctx, 3607 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3608 } 3609 3610 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3611 { 3612 return proc_pident_lookup(dir, dentry, 3613 tid_base_stuff, 3614 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3615 } 3616 3617 static const struct file_operations proc_tid_base_operations = { 3618 .read = generic_read_dir, 3619 .iterate_shared = proc_tid_base_readdir, 3620 .llseek = generic_file_llseek, 3621 }; 3622 3623 static const struct inode_operations proc_tid_base_inode_operations = { 3624 .lookup = proc_tid_base_lookup, 3625 .getattr = pid_getattr, 3626 .setattr = proc_setattr, 3627 }; 3628 3629 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3630 struct task_struct *task, const void *ptr) 3631 { 3632 struct inode *inode; 3633 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3634 if (!inode) 3635 return ERR_PTR(-ENOENT); 3636 3637 inode->i_op = &proc_tid_base_inode_operations; 3638 inode->i_fop = &proc_tid_base_operations; 3639 inode->i_flags |= S_IMMUTABLE; 3640 3641 set_nlink(inode, nlink_tid); 3642 pid_update_inode(task, inode); 3643 3644 d_set_d_op(dentry, &pid_dentry_operations); 3645 return d_splice_alias(inode, dentry); 3646 } 3647 3648 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3649 { 3650 struct task_struct *task; 3651 struct task_struct *leader = get_proc_task(dir); 3652 unsigned tid; 3653 struct pid_namespace *ns; 3654 struct dentry *result = ERR_PTR(-ENOENT); 3655 3656 if (!leader) 3657 goto out_no_task; 3658 3659 tid = name_to_int(&dentry->d_name); 3660 if (tid == ~0U) 3661 goto out; 3662 3663 ns = dentry->d_sb->s_fs_info; 3664 rcu_read_lock(); 3665 task = find_task_by_pid_ns(tid, ns); 3666 if (task) 3667 get_task_struct(task); 3668 rcu_read_unlock(); 3669 if (!task) 3670 goto out; 3671 if (!same_thread_group(leader, task)) 3672 goto out_drop_task; 3673 3674 result = proc_task_instantiate(dentry, task, NULL); 3675 out_drop_task: 3676 put_task_struct(task); 3677 out: 3678 put_task_struct(leader); 3679 out_no_task: 3680 return result; 3681 } 3682 3683 /* 3684 * Find the first tid of a thread group to return to user space. 3685 * 3686 * Usually this is just the thread group leader, but if the users 3687 * buffer was too small or there was a seek into the middle of the 3688 * directory we have more work todo. 3689 * 3690 * In the case of a short read we start with find_task_by_pid. 3691 * 3692 * In the case of a seek we start with the leader and walk nr 3693 * threads past it. 3694 */ 3695 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3696 struct pid_namespace *ns) 3697 { 3698 struct task_struct *pos, *task; 3699 unsigned long nr = f_pos; 3700 3701 if (nr != f_pos) /* 32bit overflow? */ 3702 return NULL; 3703 3704 rcu_read_lock(); 3705 task = pid_task(pid, PIDTYPE_PID); 3706 if (!task) 3707 goto fail; 3708 3709 /* Attempt to start with the tid of a thread */ 3710 if (tid && nr) { 3711 pos = find_task_by_pid_ns(tid, ns); 3712 if (pos && same_thread_group(pos, task)) 3713 goto found; 3714 } 3715 3716 /* If nr exceeds the number of threads there is nothing todo */ 3717 if (nr >= get_nr_threads(task)) 3718 goto fail; 3719 3720 /* If we haven't found our starting place yet start 3721 * with the leader and walk nr threads forward. 3722 */ 3723 pos = task = task->group_leader; 3724 do { 3725 if (!nr--) 3726 goto found; 3727 } while_each_thread(task, pos); 3728 fail: 3729 pos = NULL; 3730 goto out; 3731 found: 3732 get_task_struct(pos); 3733 out: 3734 rcu_read_unlock(); 3735 return pos; 3736 } 3737 3738 /* 3739 * Find the next thread in the thread list. 3740 * Return NULL if there is an error or no next thread. 3741 * 3742 * The reference to the input task_struct is released. 3743 */ 3744 static struct task_struct *next_tid(struct task_struct *start) 3745 { 3746 struct task_struct *pos = NULL; 3747 rcu_read_lock(); 3748 if (pid_alive(start)) { 3749 pos = next_thread(start); 3750 if (thread_group_leader(pos)) 3751 pos = NULL; 3752 else 3753 get_task_struct(pos); 3754 } 3755 rcu_read_unlock(); 3756 put_task_struct(start); 3757 return pos; 3758 } 3759 3760 /* for the /proc/TGID/task/ directories */ 3761 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3762 { 3763 struct inode *inode = file_inode(file); 3764 struct task_struct *task; 3765 struct pid_namespace *ns; 3766 int tid; 3767 3768 if (proc_inode_is_dead(inode)) 3769 return -ENOENT; 3770 3771 if (!dir_emit_dots(file, ctx)) 3772 return 0; 3773 3774 /* f_version caches the tgid value that the last readdir call couldn't 3775 * return. lseek aka telldir automagically resets f_version to 0. 3776 */ 3777 ns = proc_pid_ns(inode); 3778 tid = (int)file->f_version; 3779 file->f_version = 0; 3780 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3781 task; 3782 task = next_tid(task), ctx->pos++) { 3783 char name[10 + 1]; 3784 unsigned int len; 3785 tid = task_pid_nr_ns(task, ns); 3786 len = snprintf(name, sizeof(name), "%u", tid); 3787 if (!proc_fill_cache(file, ctx, name, len, 3788 proc_task_instantiate, task, NULL)) { 3789 /* returning this tgid failed, save it as the first 3790 * pid for the next readir call */ 3791 file->f_version = (u64)tid; 3792 put_task_struct(task); 3793 break; 3794 } 3795 } 3796 3797 return 0; 3798 } 3799 3800 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3801 u32 request_mask, unsigned int query_flags) 3802 { 3803 struct inode *inode = d_inode(path->dentry); 3804 struct task_struct *p = get_proc_task(inode); 3805 generic_fillattr(inode, stat); 3806 3807 if (p) { 3808 stat->nlink += get_nr_threads(p); 3809 put_task_struct(p); 3810 } 3811 3812 return 0; 3813 } 3814 3815 static const struct inode_operations proc_task_inode_operations = { 3816 .lookup = proc_task_lookup, 3817 .getattr = proc_task_getattr, 3818 .setattr = proc_setattr, 3819 .permission = proc_pid_permission, 3820 }; 3821 3822 static const struct file_operations proc_task_operations = { 3823 .read = generic_read_dir, 3824 .iterate_shared = proc_task_readdir, 3825 .llseek = generic_file_llseek, 3826 }; 3827 3828 void __init set_proc_pid_nlink(void) 3829 { 3830 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3831 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3832 } 3833
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.