~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/proc/task_mmu.c

Version: ~ [ linux-5.4-rc3 ] ~ [ linux-5.3.6 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.79 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.149 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.196 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.196 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.75 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #include <linux/mm.h>
  2 #include <linux/vmacache.h>
  3 #include <linux/hugetlb.h>
  4 #include <linux/huge_mm.h>
  5 #include <linux/mount.h>
  6 #include <linux/seq_file.h>
  7 #include <linux/highmem.h>
  8 #include <linux/ptrace.h>
  9 #include <linux/slab.h>
 10 #include <linux/pagemap.h>
 11 #include <linux/mempolicy.h>
 12 #include <linux/rmap.h>
 13 #include <linux/swap.h>
 14 #include <linux/swapops.h>
 15 #include <linux/mmu_notifier.h>
 16 #include <linux/page_idle.h>
 17 
 18 #include <asm/elf.h>
 19 #include <asm/uaccess.h>
 20 #include <asm/tlbflush.h>
 21 #include "internal.h"
 22 
 23 void task_mem(struct seq_file *m, struct mm_struct *mm)
 24 {
 25         unsigned long data, text, lib, swap, ptes, pmds;
 26         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
 27 
 28         /*
 29          * Note: to minimize their overhead, mm maintains hiwater_vm and
 30          * hiwater_rss only when about to *lower* total_vm or rss.  Any
 31          * collector of these hiwater stats must therefore get total_vm
 32          * and rss too, which will usually be the higher.  Barriers? not
 33          * worth the effort, such snapshots can always be inconsistent.
 34          */
 35         hiwater_vm = total_vm = mm->total_vm;
 36         if (hiwater_vm < mm->hiwater_vm)
 37                 hiwater_vm = mm->hiwater_vm;
 38         hiwater_rss = total_rss = get_mm_rss(mm);
 39         if (hiwater_rss < mm->hiwater_rss)
 40                 hiwater_rss = mm->hiwater_rss;
 41 
 42         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
 43         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
 44         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
 45         swap = get_mm_counter(mm, MM_SWAPENTS);
 46         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
 47         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
 48         seq_printf(m,
 49                 "VmPeak:\t%8lu kB\n"
 50                 "VmSize:\t%8lu kB\n"
 51                 "VmLck:\t%8lu kB\n"
 52                 "VmPin:\t%8lu kB\n"
 53                 "VmHWM:\t%8lu kB\n"
 54                 "VmRSS:\t%8lu kB\n"
 55                 "VmData:\t%8lu kB\n"
 56                 "VmStk:\t%8lu kB\n"
 57                 "VmExe:\t%8lu kB\n"
 58                 "VmLib:\t%8lu kB\n"
 59                 "VmPTE:\t%8lu kB\n"
 60                 "VmPMD:\t%8lu kB\n"
 61                 "VmSwap:\t%8lu kB\n",
 62                 hiwater_vm << (PAGE_SHIFT-10),
 63                 total_vm << (PAGE_SHIFT-10),
 64                 mm->locked_vm << (PAGE_SHIFT-10),
 65                 mm->pinned_vm << (PAGE_SHIFT-10),
 66                 hiwater_rss << (PAGE_SHIFT-10),
 67                 total_rss << (PAGE_SHIFT-10),
 68                 data << (PAGE_SHIFT-10),
 69                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
 70                 ptes >> 10,
 71                 pmds >> 10,
 72                 swap << (PAGE_SHIFT-10));
 73 }
 74 
 75 unsigned long task_vsize(struct mm_struct *mm)
 76 {
 77         return PAGE_SIZE * mm->total_vm;
 78 }
 79 
 80 unsigned long task_statm(struct mm_struct *mm,
 81                          unsigned long *shared, unsigned long *text,
 82                          unsigned long *data, unsigned long *resident)
 83 {
 84         *shared = get_mm_counter(mm, MM_FILEPAGES);
 85         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
 86                                                                 >> PAGE_SHIFT;
 87         *data = mm->total_vm - mm->shared_vm;
 88         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
 89         return mm->total_vm;
 90 }
 91 
 92 #ifdef CONFIG_NUMA
 93 /*
 94  * Save get_task_policy() for show_numa_map().
 95  */
 96 static void hold_task_mempolicy(struct proc_maps_private *priv)
 97 {
 98         struct task_struct *task = priv->task;
 99 
100         task_lock(task);
101         priv->task_mempolicy = get_task_policy(task);
102         mpol_get(priv->task_mempolicy);
103         task_unlock(task);
104 }
105 static void release_task_mempolicy(struct proc_maps_private *priv)
106 {
107         mpol_put(priv->task_mempolicy);
108 }
109 #else
110 static void hold_task_mempolicy(struct proc_maps_private *priv)
111 {
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 }
116 #endif
117 
118 static void vma_stop(struct proc_maps_private *priv)
119 {
120         struct mm_struct *mm = priv->mm;
121 
122         release_task_mempolicy(priv);
123         up_read(&mm->mmap_sem);
124         mmput(mm);
125 }
126 
127 static struct vm_area_struct *
128 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
129 {
130         if (vma == priv->tail_vma)
131                 return NULL;
132         return vma->vm_next ?: priv->tail_vma;
133 }
134 
135 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
136 {
137         if (m->count < m->size) /* vma is copied successfully */
138                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
139 }
140 
141 static void *m_start(struct seq_file *m, loff_t *ppos)
142 {
143         struct proc_maps_private *priv = m->private;
144         unsigned long last_addr = m->version;
145         struct mm_struct *mm;
146         struct vm_area_struct *vma;
147         unsigned int pos = *ppos;
148 
149         /* See m_cache_vma(). Zero at the start or after lseek. */
150         if (last_addr == -1UL)
151                 return NULL;
152 
153         priv->task = get_proc_task(priv->inode);
154         if (!priv->task)
155                 return ERR_PTR(-ESRCH);
156 
157         mm = priv->mm;
158         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
159                 return NULL;
160 
161         down_read(&mm->mmap_sem);
162         hold_task_mempolicy(priv);
163         priv->tail_vma = get_gate_vma(mm);
164 
165         if (last_addr) {
166                 vma = find_vma(mm, last_addr);
167                 if (vma && (vma = m_next_vma(priv, vma)))
168                         return vma;
169         }
170 
171         m->version = 0;
172         if (pos < mm->map_count) {
173                 for (vma = mm->mmap; pos; pos--) {
174                         m->version = vma->vm_start;
175                         vma = vma->vm_next;
176                 }
177                 return vma;
178         }
179 
180         /* we do not bother to update m->version in this case */
181         if (pos == mm->map_count && priv->tail_vma)
182                 return priv->tail_vma;
183 
184         vma_stop(priv);
185         return NULL;
186 }
187 
188 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
189 {
190         struct proc_maps_private *priv = m->private;
191         struct vm_area_struct *next;
192 
193         (*pos)++;
194         next = m_next_vma(priv, v);
195         if (!next)
196                 vma_stop(priv);
197         return next;
198 }
199 
200 static void m_stop(struct seq_file *m, void *v)
201 {
202         struct proc_maps_private *priv = m->private;
203 
204         if (!IS_ERR_OR_NULL(v))
205                 vma_stop(priv);
206         if (priv->task) {
207                 put_task_struct(priv->task);
208                 priv->task = NULL;
209         }
210 }
211 
212 static int proc_maps_open(struct inode *inode, struct file *file,
213                         const struct seq_operations *ops, int psize)
214 {
215         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
216 
217         if (!priv)
218                 return -ENOMEM;
219 
220         priv->inode = inode;
221         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
222         if (IS_ERR(priv->mm)) {
223                 int err = PTR_ERR(priv->mm);
224 
225                 seq_release_private(inode, file);
226                 return err;
227         }
228 
229         return 0;
230 }
231 
232 static int proc_map_release(struct inode *inode, struct file *file)
233 {
234         struct seq_file *seq = file->private_data;
235         struct proc_maps_private *priv = seq->private;
236 
237         if (priv->mm)
238                 mmdrop(priv->mm);
239 
240         return seq_release_private(inode, file);
241 }
242 
243 static int do_maps_open(struct inode *inode, struct file *file,
244                         const struct seq_operations *ops)
245 {
246         return proc_maps_open(inode, file, ops,
247                                 sizeof(struct proc_maps_private));
248 }
249 
250 static pid_t pid_of_stack(struct proc_maps_private *priv,
251                                 struct vm_area_struct *vma, bool is_pid)
252 {
253         struct inode *inode = priv->inode;
254         struct task_struct *task;
255         pid_t ret = 0;
256 
257         rcu_read_lock();
258         task = pid_task(proc_pid(inode), PIDTYPE_PID);
259         if (task) {
260                 task = task_of_stack(task, vma, is_pid);
261                 if (task)
262                         ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
263         }
264         rcu_read_unlock();
265 
266         return ret;
267 }
268 
269 static void
270 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
271 {
272         struct mm_struct *mm = vma->vm_mm;
273         struct file *file = vma->vm_file;
274         struct proc_maps_private *priv = m->private;
275         vm_flags_t flags = vma->vm_flags;
276         unsigned long ino = 0;
277         unsigned long long pgoff = 0;
278         unsigned long start, end;
279         dev_t dev = 0;
280         const char *name = NULL;
281 
282         if (file) {
283                 struct inode *inode = file_inode(vma->vm_file);
284                 dev = inode->i_sb->s_dev;
285                 ino = inode->i_ino;
286                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287         }
288 
289         /* We don't show the stack guard page in /proc/maps */
290         start = vma->vm_start;
291         if (stack_guard_page_start(vma, start))
292                 start += PAGE_SIZE;
293         end = vma->vm_end;
294         if (stack_guard_page_end(vma, end))
295                 end -= PAGE_SIZE;
296 
297         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
298         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
299                         start,
300                         end,
301                         flags & VM_READ ? 'r' : '-',
302                         flags & VM_WRITE ? 'w' : '-',
303                         flags & VM_EXEC ? 'x' : '-',
304                         flags & VM_MAYSHARE ? 's' : 'p',
305                         pgoff,
306                         MAJOR(dev), MINOR(dev), ino);
307 
308         /*
309          * Print the dentry name for named mappings, and a
310          * special [heap] marker for the heap:
311          */
312         if (file) {
313                 seq_pad(m, ' ');
314                 seq_file_path(m, file, "\n");
315                 goto done;
316         }
317 
318         if (vma->vm_ops && vma->vm_ops->name) {
319                 name = vma->vm_ops->name(vma);
320                 if (name)
321                         goto done;
322         }
323 
324         name = arch_vma_name(vma);
325         if (!name) {
326                 pid_t tid;
327 
328                 if (!mm) {
329                         name = "[vdso]";
330                         goto done;
331                 }
332 
333                 if (vma->vm_start <= mm->brk &&
334                     vma->vm_end >= mm->start_brk) {
335                         name = "[heap]";
336                         goto done;
337                 }
338 
339                 tid = pid_of_stack(priv, vma, is_pid);
340                 if (tid != 0) {
341                         /*
342                          * Thread stack in /proc/PID/task/TID/maps or
343                          * the main process stack.
344                          */
345                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
346                             vma->vm_end >= mm->start_stack)) {
347                                 name = "[stack]";
348                         } else {
349                                 /* Thread stack in /proc/PID/maps */
350                                 seq_pad(m, ' ');
351                                 seq_printf(m, "[stack:%d]", tid);
352                         }
353                 }
354         }
355 
356 done:
357         if (name) {
358                 seq_pad(m, ' ');
359                 seq_puts(m, name);
360         }
361         seq_putc(m, '\n');
362 }
363 
364 static int show_map(struct seq_file *m, void *v, int is_pid)
365 {
366         show_map_vma(m, v, is_pid);
367         m_cache_vma(m, v);
368         return 0;
369 }
370 
371 static int show_pid_map(struct seq_file *m, void *v)
372 {
373         return show_map(m, v, 1);
374 }
375 
376 static int show_tid_map(struct seq_file *m, void *v)
377 {
378         return show_map(m, v, 0);
379 }
380 
381 static const struct seq_operations proc_pid_maps_op = {
382         .start  = m_start,
383         .next   = m_next,
384         .stop   = m_stop,
385         .show   = show_pid_map
386 };
387 
388 static const struct seq_operations proc_tid_maps_op = {
389         .start  = m_start,
390         .next   = m_next,
391         .stop   = m_stop,
392         .show   = show_tid_map
393 };
394 
395 static int pid_maps_open(struct inode *inode, struct file *file)
396 {
397         return do_maps_open(inode, file, &proc_pid_maps_op);
398 }
399 
400 static int tid_maps_open(struct inode *inode, struct file *file)
401 {
402         return do_maps_open(inode, file, &proc_tid_maps_op);
403 }
404 
405 const struct file_operations proc_pid_maps_operations = {
406         .open           = pid_maps_open,
407         .read           = seq_read,
408         .llseek         = seq_lseek,
409         .release        = proc_map_release,
410 };
411 
412 const struct file_operations proc_tid_maps_operations = {
413         .open           = tid_maps_open,
414         .read           = seq_read,
415         .llseek         = seq_lseek,
416         .release        = proc_map_release,
417 };
418 
419 /*
420  * Proportional Set Size(PSS): my share of RSS.
421  *
422  * PSS of a process is the count of pages it has in memory, where each
423  * page is divided by the number of processes sharing it.  So if a
424  * process has 1000 pages all to itself, and 1000 shared with one other
425  * process, its PSS will be 1500.
426  *
427  * To keep (accumulated) division errors low, we adopt a 64bit
428  * fixed-point pss counter to minimize division errors. So (pss >>
429  * PSS_SHIFT) would be the real byte count.
430  *
431  * A shift of 12 before division means (assuming 4K page size):
432  *      - 1M 3-user-pages add up to 8KB errors;
433  *      - supports mapcount up to 2^24, or 16M;
434  *      - supports PSS up to 2^52 bytes, or 4PB.
435  */
436 #define PSS_SHIFT 12
437 
438 #ifdef CONFIG_PROC_PAGE_MONITOR
439 struct mem_size_stats {
440         unsigned long resident;
441         unsigned long shared_clean;
442         unsigned long shared_dirty;
443         unsigned long private_clean;
444         unsigned long private_dirty;
445         unsigned long referenced;
446         unsigned long anonymous;
447         unsigned long anonymous_thp;
448         unsigned long swap;
449         u64 pss;
450         u64 swap_pss;
451 };
452 
453 static void smaps_account(struct mem_size_stats *mss, struct page *page,
454                 unsigned long size, bool young, bool dirty)
455 {
456         int mapcount;
457 
458         if (PageAnon(page))
459                 mss->anonymous += size;
460 
461         mss->resident += size;
462         /* Accumulate the size in pages that have been accessed. */
463         if (young || page_is_young(page) || PageReferenced(page))
464                 mss->referenced += size;
465         mapcount = page_mapcount(page);
466         if (mapcount >= 2) {
467                 u64 pss_delta;
468 
469                 if (dirty || PageDirty(page))
470                         mss->shared_dirty += size;
471                 else
472                         mss->shared_clean += size;
473                 pss_delta = (u64)size << PSS_SHIFT;
474                 do_div(pss_delta, mapcount);
475                 mss->pss += pss_delta;
476         } else {
477                 if (dirty || PageDirty(page))
478                         mss->private_dirty += size;
479                 else
480                         mss->private_clean += size;
481                 mss->pss += (u64)size << PSS_SHIFT;
482         }
483 }
484 
485 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
486                 struct mm_walk *walk)
487 {
488         struct mem_size_stats *mss = walk->private;
489         struct vm_area_struct *vma = walk->vma;
490         struct page *page = NULL;
491 
492         if (pte_present(*pte)) {
493                 page = vm_normal_page(vma, addr, *pte);
494         } else if (is_swap_pte(*pte)) {
495                 swp_entry_t swpent = pte_to_swp_entry(*pte);
496 
497                 if (!non_swap_entry(swpent)) {
498                         int mapcount;
499 
500                         mss->swap += PAGE_SIZE;
501                         mapcount = swp_swapcount(swpent);
502                         if (mapcount >= 2) {
503                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
504 
505                                 do_div(pss_delta, mapcount);
506                                 mss->swap_pss += pss_delta;
507                         } else {
508                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
509                         }
510                 } else if (is_migration_entry(swpent))
511                         page = migration_entry_to_page(swpent);
512         }
513 
514         if (!page)
515                 return;
516         smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
517 }
518 
519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
520 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
521                 struct mm_walk *walk)
522 {
523         struct mem_size_stats *mss = walk->private;
524         struct vm_area_struct *vma = walk->vma;
525         struct page *page;
526 
527         /* FOLL_DUMP will return -EFAULT on huge zero page */
528         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
529         if (IS_ERR_OR_NULL(page))
530                 return;
531         mss->anonymous_thp += HPAGE_PMD_SIZE;
532         smaps_account(mss, page, HPAGE_PMD_SIZE,
533                         pmd_young(*pmd), pmd_dirty(*pmd));
534 }
535 #else
536 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
537                 struct mm_walk *walk)
538 {
539 }
540 #endif
541 
542 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
543                            struct mm_walk *walk)
544 {
545         struct vm_area_struct *vma = walk->vma;
546         pte_t *pte;
547         spinlock_t *ptl;
548 
549         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
550                 smaps_pmd_entry(pmd, addr, walk);
551                 spin_unlock(ptl);
552                 return 0;
553         }
554 
555         if (pmd_trans_unstable(pmd))
556                 return 0;
557         /*
558          * The mmap_sem held all the way back in m_start() is what
559          * keeps khugepaged out of here and from collapsing things
560          * in here.
561          */
562         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
563         for (; addr != end; pte++, addr += PAGE_SIZE)
564                 smaps_pte_entry(pte, addr, walk);
565         pte_unmap_unlock(pte - 1, ptl);
566         cond_resched();
567         return 0;
568 }
569 
570 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
571 {
572         /*
573          * Don't forget to update Documentation/ on changes.
574          */
575         static const char mnemonics[BITS_PER_LONG][2] = {
576                 /*
577                  * In case if we meet a flag we don't know about.
578                  */
579                 [0 ... (BITS_PER_LONG-1)] = "??",
580 
581                 [ilog2(VM_READ)]        = "rd",
582                 [ilog2(VM_WRITE)]       = "wr",
583                 [ilog2(VM_EXEC)]        = "ex",
584                 [ilog2(VM_SHARED)]      = "sh",
585                 [ilog2(VM_MAYREAD)]     = "mr",
586                 [ilog2(VM_MAYWRITE)]    = "mw",
587                 [ilog2(VM_MAYEXEC)]     = "me",
588                 [ilog2(VM_MAYSHARE)]    = "ms",
589                 [ilog2(VM_GROWSDOWN)]   = "gd",
590                 [ilog2(VM_PFNMAP)]      = "pf",
591                 [ilog2(VM_DENYWRITE)]   = "dw",
592 #ifdef CONFIG_X86_INTEL_MPX
593                 [ilog2(VM_MPX)]         = "mp",
594 #endif
595                 [ilog2(VM_LOCKED)]      = "lo",
596                 [ilog2(VM_IO)]          = "io",
597                 [ilog2(VM_SEQ_READ)]    = "sr",
598                 [ilog2(VM_RAND_READ)]   = "rr",
599                 [ilog2(VM_DONTCOPY)]    = "dc",
600                 [ilog2(VM_DONTEXPAND)]  = "de",
601                 [ilog2(VM_ACCOUNT)]     = "ac",
602                 [ilog2(VM_NORESERVE)]   = "nr",
603                 [ilog2(VM_HUGETLB)]     = "ht",
604                 [ilog2(VM_ARCH_1)]      = "ar",
605                 [ilog2(VM_DONTDUMP)]    = "dd",
606 #ifdef CONFIG_MEM_SOFT_DIRTY
607                 [ilog2(VM_SOFTDIRTY)]   = "sd",
608 #endif
609                 [ilog2(VM_MIXEDMAP)]    = "mm",
610                 [ilog2(VM_HUGEPAGE)]    = "hg",
611                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
612                 [ilog2(VM_MERGEABLE)]   = "mg",
613                 [ilog2(VM_UFFD_MISSING)]= "um",
614                 [ilog2(VM_UFFD_WP)]     = "uw",
615         };
616         size_t i;
617 
618         seq_puts(m, "VmFlags: ");
619         for (i = 0; i < BITS_PER_LONG; i++) {
620                 if (vma->vm_flags & (1UL << i)) {
621                         seq_printf(m, "%c%c ",
622                                    mnemonics[i][0], mnemonics[i][1]);
623                 }
624         }
625         seq_putc(m, '\n');
626 }
627 
628 static int show_smap(struct seq_file *m, void *v, int is_pid)
629 {
630         struct vm_area_struct *vma = v;
631         struct mem_size_stats mss;
632         struct mm_walk smaps_walk = {
633                 .pmd_entry = smaps_pte_range,
634                 .mm = vma->vm_mm,
635                 .private = &mss,
636         };
637 
638         memset(&mss, 0, sizeof mss);
639         /* mmap_sem is held in m_start */
640         walk_page_vma(vma, &smaps_walk);
641 
642         show_map_vma(m, vma, is_pid);
643 
644         seq_printf(m,
645                    "Size:           %8lu kB\n"
646                    "Rss:            %8lu kB\n"
647                    "Pss:            %8lu kB\n"
648                    "Shared_Clean:   %8lu kB\n"
649                    "Shared_Dirty:   %8lu kB\n"
650                    "Private_Clean:  %8lu kB\n"
651                    "Private_Dirty:  %8lu kB\n"
652                    "Referenced:     %8lu kB\n"
653                    "Anonymous:      %8lu kB\n"
654                    "AnonHugePages:  %8lu kB\n"
655                    "Swap:           %8lu kB\n"
656                    "SwapPss:        %8lu kB\n"
657                    "KernelPageSize: %8lu kB\n"
658                    "MMUPageSize:    %8lu kB\n"
659                    "Locked:         %8lu kB\n",
660                    (vma->vm_end - vma->vm_start) >> 10,
661                    mss.resident >> 10,
662                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
663                    mss.shared_clean  >> 10,
664                    mss.shared_dirty  >> 10,
665                    mss.private_clean >> 10,
666                    mss.private_dirty >> 10,
667                    mss.referenced >> 10,
668                    mss.anonymous >> 10,
669                    mss.anonymous_thp >> 10,
670                    mss.swap >> 10,
671                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
672                    vma_kernel_pagesize(vma) >> 10,
673                    vma_mmu_pagesize(vma) >> 10,
674                    (vma->vm_flags & VM_LOCKED) ?
675                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
676 
677         show_smap_vma_flags(m, vma);
678         m_cache_vma(m, vma);
679         return 0;
680 }
681 
682 static int show_pid_smap(struct seq_file *m, void *v)
683 {
684         return show_smap(m, v, 1);
685 }
686 
687 static int show_tid_smap(struct seq_file *m, void *v)
688 {
689         return show_smap(m, v, 0);
690 }
691 
692 static const struct seq_operations proc_pid_smaps_op = {
693         .start  = m_start,
694         .next   = m_next,
695         .stop   = m_stop,
696         .show   = show_pid_smap
697 };
698 
699 static const struct seq_operations proc_tid_smaps_op = {
700         .start  = m_start,
701         .next   = m_next,
702         .stop   = m_stop,
703         .show   = show_tid_smap
704 };
705 
706 static int pid_smaps_open(struct inode *inode, struct file *file)
707 {
708         return do_maps_open(inode, file, &proc_pid_smaps_op);
709 }
710 
711 static int tid_smaps_open(struct inode *inode, struct file *file)
712 {
713         return do_maps_open(inode, file, &proc_tid_smaps_op);
714 }
715 
716 const struct file_operations proc_pid_smaps_operations = {
717         .open           = pid_smaps_open,
718         .read           = seq_read,
719         .llseek         = seq_lseek,
720         .release        = proc_map_release,
721 };
722 
723 const struct file_operations proc_tid_smaps_operations = {
724         .open           = tid_smaps_open,
725         .read           = seq_read,
726         .llseek         = seq_lseek,
727         .release        = proc_map_release,
728 };
729 
730 enum clear_refs_types {
731         CLEAR_REFS_ALL = 1,
732         CLEAR_REFS_ANON,
733         CLEAR_REFS_MAPPED,
734         CLEAR_REFS_SOFT_DIRTY,
735         CLEAR_REFS_MM_HIWATER_RSS,
736         CLEAR_REFS_LAST,
737 };
738 
739 struct clear_refs_private {
740         enum clear_refs_types type;
741 };
742 
743 #ifdef CONFIG_MEM_SOFT_DIRTY
744 static inline void clear_soft_dirty(struct vm_area_struct *vma,
745                 unsigned long addr, pte_t *pte)
746 {
747         /*
748          * The soft-dirty tracker uses #PF-s to catch writes
749          * to pages, so write-protect the pte as well. See the
750          * Documentation/vm/soft-dirty.txt for full description
751          * of how soft-dirty works.
752          */
753         pte_t ptent = *pte;
754 
755         if (pte_present(ptent)) {
756                 ptent = pte_wrprotect(ptent);
757                 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
758         } else if (is_swap_pte(ptent)) {
759                 ptent = pte_swp_clear_soft_dirty(ptent);
760         }
761 
762         set_pte_at(vma->vm_mm, addr, pte, ptent);
763 }
764 
765 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
766                 unsigned long addr, pmd_t *pmdp)
767 {
768         pmd_t pmd = *pmdp;
769 
770         pmd = pmd_wrprotect(pmd);
771         pmd = pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
772 
773         if (vma->vm_flags & VM_SOFTDIRTY)
774                 vma->vm_flags &= ~VM_SOFTDIRTY;
775 
776         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
777 }
778 
779 #else
780 
781 static inline void clear_soft_dirty(struct vm_area_struct *vma,
782                 unsigned long addr, pte_t *pte)
783 {
784 }
785 
786 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
787                 unsigned long addr, pmd_t *pmdp)
788 {
789 }
790 #endif
791 
792 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
793                                 unsigned long end, struct mm_walk *walk)
794 {
795         struct clear_refs_private *cp = walk->private;
796         struct vm_area_struct *vma = walk->vma;
797         pte_t *pte, ptent;
798         spinlock_t *ptl;
799         struct page *page;
800 
801         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
802                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
803                         clear_soft_dirty_pmd(vma, addr, pmd);
804                         goto out;
805                 }
806 
807                 page = pmd_page(*pmd);
808 
809                 /* Clear accessed and referenced bits. */
810                 pmdp_test_and_clear_young(vma, addr, pmd);
811                 test_and_clear_page_young(page);
812                 ClearPageReferenced(page);
813 out:
814                 spin_unlock(ptl);
815                 return 0;
816         }
817 
818         if (pmd_trans_unstable(pmd))
819                 return 0;
820 
821         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
822         for (; addr != end; pte++, addr += PAGE_SIZE) {
823                 ptent = *pte;
824 
825                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
826                         clear_soft_dirty(vma, addr, pte);
827                         continue;
828                 }
829 
830                 if (!pte_present(ptent))
831                         continue;
832 
833                 page = vm_normal_page(vma, addr, ptent);
834                 if (!page)
835                         continue;
836 
837                 /* Clear accessed and referenced bits. */
838                 ptep_test_and_clear_young(vma, addr, pte);
839                 test_and_clear_page_young(page);
840                 ClearPageReferenced(page);
841         }
842         pte_unmap_unlock(pte - 1, ptl);
843         cond_resched();
844         return 0;
845 }
846 
847 static int clear_refs_test_walk(unsigned long start, unsigned long end,
848                                 struct mm_walk *walk)
849 {
850         struct clear_refs_private *cp = walk->private;
851         struct vm_area_struct *vma = walk->vma;
852 
853         if (vma->vm_flags & VM_PFNMAP)
854                 return 1;
855 
856         /*
857          * Writing 1 to /proc/pid/clear_refs affects all pages.
858          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
859          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
860          * Writing 4 to /proc/pid/clear_refs affects all pages.
861          */
862         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
863                 return 1;
864         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
865                 return 1;
866         return 0;
867 }
868 
869 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
870                                 size_t count, loff_t *ppos)
871 {
872         struct task_struct *task;
873         char buffer[PROC_NUMBUF];
874         struct mm_struct *mm;
875         struct vm_area_struct *vma;
876         enum clear_refs_types type;
877         int itype;
878         int rv;
879 
880         memset(buffer, 0, sizeof(buffer));
881         if (count > sizeof(buffer) - 1)
882                 count = sizeof(buffer) - 1;
883         if (copy_from_user(buffer, buf, count))
884                 return -EFAULT;
885         rv = kstrtoint(strstrip(buffer), 10, &itype);
886         if (rv < 0)
887                 return rv;
888         type = (enum clear_refs_types)itype;
889         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
890                 return -EINVAL;
891 
892         task = get_proc_task(file_inode(file));
893         if (!task)
894                 return -ESRCH;
895         mm = get_task_mm(task);
896         if (mm) {
897                 struct clear_refs_private cp = {
898                         .type = type,
899                 };
900                 struct mm_walk clear_refs_walk = {
901                         .pmd_entry = clear_refs_pte_range,
902                         .test_walk = clear_refs_test_walk,
903                         .mm = mm,
904                         .private = &cp,
905                 };
906 
907                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
908                         /*
909                          * Writing 5 to /proc/pid/clear_refs resets the peak
910                          * resident set size to this mm's current rss value.
911                          */
912                         down_write(&mm->mmap_sem);
913                         reset_mm_hiwater_rss(mm);
914                         up_write(&mm->mmap_sem);
915                         goto out_mm;
916                 }
917 
918                 down_read(&mm->mmap_sem);
919                 if (type == CLEAR_REFS_SOFT_DIRTY) {
920                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
921                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
922                                         continue;
923                                 up_read(&mm->mmap_sem);
924                                 down_write(&mm->mmap_sem);
925                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
926                                         vma->vm_flags &= ~VM_SOFTDIRTY;
927                                         vma_set_page_prot(vma);
928                                 }
929                                 downgrade_write(&mm->mmap_sem);
930                                 break;
931                         }
932                         mmu_notifier_invalidate_range_start(mm, 0, -1);
933                 }
934                 walk_page_range(0, ~0UL, &clear_refs_walk);
935                 if (type == CLEAR_REFS_SOFT_DIRTY)
936                         mmu_notifier_invalidate_range_end(mm, 0, -1);
937                 flush_tlb_mm(mm);
938                 up_read(&mm->mmap_sem);
939 out_mm:
940                 mmput(mm);
941         }
942         put_task_struct(task);
943 
944         return count;
945 }
946 
947 const struct file_operations proc_clear_refs_operations = {
948         .write          = clear_refs_write,
949         .llseek         = noop_llseek,
950 };
951 
952 typedef struct {
953         u64 pme;
954 } pagemap_entry_t;
955 
956 struct pagemapread {
957         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
958         pagemap_entry_t *buffer;
959         bool show_pfn;
960 };
961 
962 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
963 #define PAGEMAP_WALK_MASK       (PMD_MASK)
964 
965 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
966 #define PM_PFRAME_BITS          55
967 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
968 #define PM_SOFT_DIRTY           BIT_ULL(55)
969 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
970 #define PM_FILE                 BIT_ULL(61)
971 #define PM_SWAP                 BIT_ULL(62)
972 #define PM_PRESENT              BIT_ULL(63)
973 
974 #define PM_END_OF_BUFFER    1
975 
976 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
977 {
978         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
979 }
980 
981 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
982                           struct pagemapread *pm)
983 {
984         pm->buffer[pm->pos++] = *pme;
985         if (pm->pos >= pm->len)
986                 return PM_END_OF_BUFFER;
987         return 0;
988 }
989 
990 static int pagemap_pte_hole(unsigned long start, unsigned long end,
991                                 struct mm_walk *walk)
992 {
993         struct pagemapread *pm = walk->private;
994         unsigned long addr = start;
995         int err = 0;
996 
997         while (addr < end) {
998                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
999                 pagemap_entry_t pme = make_pme(0, 0);
1000                 /* End of address space hole, which we mark as non-present. */
1001                 unsigned long hole_end;
1002 
1003                 if (vma)
1004                         hole_end = min(end, vma->vm_start);
1005                 else
1006                         hole_end = end;
1007 
1008                 for (; addr < hole_end; addr += PAGE_SIZE) {
1009                         err = add_to_pagemap(addr, &pme, pm);
1010                         if (err)
1011                                 goto out;
1012                 }
1013 
1014                 if (!vma)
1015                         break;
1016 
1017                 /* Addresses in the VMA. */
1018                 if (vma->vm_flags & VM_SOFTDIRTY)
1019                         pme = make_pme(0, PM_SOFT_DIRTY);
1020                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1021                         err = add_to_pagemap(addr, &pme, pm);
1022                         if (err)
1023                                 goto out;
1024                 }
1025         }
1026 out:
1027         return err;
1028 }
1029 
1030 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1031                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1032 {
1033         u64 frame = 0, flags = 0;
1034         struct page *page = NULL;
1035 
1036         if (pte_present(pte)) {
1037                 if (pm->show_pfn)
1038                         frame = pte_pfn(pte);
1039                 flags |= PM_PRESENT;
1040                 page = vm_normal_page(vma, addr, pte);
1041                 if (pte_soft_dirty(pte))
1042                         flags |= PM_SOFT_DIRTY;
1043         } else if (is_swap_pte(pte)) {
1044                 swp_entry_t entry;
1045                 if (pte_swp_soft_dirty(pte))
1046                         flags |= PM_SOFT_DIRTY;
1047                 entry = pte_to_swp_entry(pte);
1048                 frame = swp_type(entry) |
1049                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1050                 flags |= PM_SWAP;
1051                 if (is_migration_entry(entry))
1052                         page = migration_entry_to_page(entry);
1053         }
1054 
1055         if (page && !PageAnon(page))
1056                 flags |= PM_FILE;
1057         if (page && page_mapcount(page) == 1)
1058                 flags |= PM_MMAP_EXCLUSIVE;
1059         if (vma->vm_flags & VM_SOFTDIRTY)
1060                 flags |= PM_SOFT_DIRTY;
1061 
1062         return make_pme(frame, flags);
1063 }
1064 
1065 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1066                              struct mm_walk *walk)
1067 {
1068         struct vm_area_struct *vma = walk->vma;
1069         struct pagemapread *pm = walk->private;
1070         spinlock_t *ptl;
1071         pte_t *pte, *orig_pte;
1072         int err = 0;
1073 
1074 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1075         if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1076                 u64 flags = 0, frame = 0;
1077                 pmd_t pmd = *pmdp;
1078 
1079                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1080                         flags |= PM_SOFT_DIRTY;
1081 
1082                 /*
1083                  * Currently pmd for thp is always present because thp
1084                  * can not be swapped-out, migrated, or HWPOISONed
1085                  * (split in such cases instead.)
1086                  * This if-check is just to prepare for future implementation.
1087                  */
1088                 if (pmd_present(pmd)) {
1089                         struct page *page = pmd_page(pmd);
1090 
1091                         if (page_mapcount(page) == 1)
1092                                 flags |= PM_MMAP_EXCLUSIVE;
1093 
1094                         flags |= PM_PRESENT;
1095                         if (pm->show_pfn)
1096                                 frame = pmd_pfn(pmd) +
1097                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1098                 }
1099 
1100                 for (; addr != end; addr += PAGE_SIZE) {
1101                         pagemap_entry_t pme = make_pme(frame, flags);
1102 
1103                         err = add_to_pagemap(addr, &pme, pm);
1104                         if (err)
1105                                 break;
1106                         if (pm->show_pfn && (flags & PM_PRESENT))
1107                                 frame++;
1108                 }
1109                 spin_unlock(ptl);
1110                 return err;
1111         }
1112 
1113         if (pmd_trans_unstable(pmdp))
1114                 return 0;
1115 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1116 
1117         /*
1118          * We can assume that @vma always points to a valid one and @end never
1119          * goes beyond vma->vm_end.
1120          */
1121         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1122         for (; addr < end; pte++, addr += PAGE_SIZE) {
1123                 pagemap_entry_t pme;
1124 
1125                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1126                 err = add_to_pagemap(addr, &pme, pm);
1127                 if (err)
1128                         break;
1129         }
1130         pte_unmap_unlock(orig_pte, ptl);
1131 
1132         cond_resched();
1133 
1134         return err;
1135 }
1136 
1137 #ifdef CONFIG_HUGETLB_PAGE
1138 /* This function walks within one hugetlb entry in the single call */
1139 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1140                                  unsigned long addr, unsigned long end,
1141                                  struct mm_walk *walk)
1142 {
1143         struct pagemapread *pm = walk->private;
1144         struct vm_area_struct *vma = walk->vma;
1145         u64 flags = 0, frame = 0;
1146         int err = 0;
1147         pte_t pte;
1148 
1149         if (vma->vm_flags & VM_SOFTDIRTY)
1150                 flags |= PM_SOFT_DIRTY;
1151 
1152         pte = huge_ptep_get(ptep);
1153         if (pte_present(pte)) {
1154                 struct page *page = pte_page(pte);
1155 
1156                 if (!PageAnon(page))
1157                         flags |= PM_FILE;
1158 
1159                 if (page_mapcount(page) == 1)
1160                         flags |= PM_MMAP_EXCLUSIVE;
1161 
1162                 flags |= PM_PRESENT;
1163                 if (pm->show_pfn)
1164                         frame = pte_pfn(pte) +
1165                                 ((addr & ~hmask) >> PAGE_SHIFT);
1166         }
1167 
1168         for (; addr != end; addr += PAGE_SIZE) {
1169                 pagemap_entry_t pme = make_pme(frame, flags);
1170 
1171                 err = add_to_pagemap(addr, &pme, pm);
1172                 if (err)
1173                         return err;
1174                 if (pm->show_pfn && (flags & PM_PRESENT))
1175                         frame++;
1176         }
1177 
1178         cond_resched();
1179 
1180         return err;
1181 }
1182 #endif /* HUGETLB_PAGE */
1183 
1184 /*
1185  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1186  *
1187  * For each page in the address space, this file contains one 64-bit entry
1188  * consisting of the following:
1189  *
1190  * Bits 0-54  page frame number (PFN) if present
1191  * Bits 0-4   swap type if swapped
1192  * Bits 5-54  swap offset if swapped
1193  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1194  * Bit  56    page exclusively mapped
1195  * Bits 57-60 zero
1196  * Bit  61    page is file-page or shared-anon
1197  * Bit  62    page swapped
1198  * Bit  63    page present
1199  *
1200  * If the page is not present but in swap, then the PFN contains an
1201  * encoding of the swap file number and the page's offset into the
1202  * swap. Unmapped pages return a null PFN. This allows determining
1203  * precisely which pages are mapped (or in swap) and comparing mapped
1204  * pages between processes.
1205  *
1206  * Efficient users of this interface will use /proc/pid/maps to
1207  * determine which areas of memory are actually mapped and llseek to
1208  * skip over unmapped regions.
1209  */
1210 static ssize_t pagemap_read(struct file *file, char __user *buf,
1211                             size_t count, loff_t *ppos)
1212 {
1213         struct mm_struct *mm = file->private_data;
1214         struct pagemapread pm;
1215         struct mm_walk pagemap_walk = {};
1216         unsigned long src;
1217         unsigned long svpfn;
1218         unsigned long start_vaddr;
1219         unsigned long end_vaddr;
1220         int ret = 0, copied = 0;
1221 
1222         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1223                 goto out;
1224 
1225         ret = -EINVAL;
1226         /* file position must be aligned */
1227         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1228                 goto out_mm;
1229 
1230         ret = 0;
1231         if (!count)
1232                 goto out_mm;
1233 
1234         /* do not disclose physical addresses: attack vector */
1235         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1236 
1237         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1238         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1239         ret = -ENOMEM;
1240         if (!pm.buffer)
1241                 goto out_mm;
1242 
1243         pagemap_walk.pmd_entry = pagemap_pmd_range;
1244         pagemap_walk.pte_hole = pagemap_pte_hole;
1245 #ifdef CONFIG_HUGETLB_PAGE
1246         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1247 #endif
1248         pagemap_walk.mm = mm;
1249         pagemap_walk.private = &pm;
1250 
1251         src = *ppos;
1252         svpfn = src / PM_ENTRY_BYTES;
1253         start_vaddr = svpfn << PAGE_SHIFT;
1254         end_vaddr = mm->task_size;
1255 
1256         /* watch out for wraparound */
1257         if (svpfn > mm->task_size >> PAGE_SHIFT)
1258                 start_vaddr = end_vaddr;
1259 
1260         /*
1261          * The odds are that this will stop walking way
1262          * before end_vaddr, because the length of the
1263          * user buffer is tracked in "pm", and the walk
1264          * will stop when we hit the end of the buffer.
1265          */
1266         ret = 0;
1267         while (count && (start_vaddr < end_vaddr)) {
1268                 int len;
1269                 unsigned long end;
1270 
1271                 pm.pos = 0;
1272                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1273                 /* overflow ? */
1274                 if (end < start_vaddr || end > end_vaddr)
1275                         end = end_vaddr;
1276                 down_read(&mm->mmap_sem);
1277                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1278                 up_read(&mm->mmap_sem);
1279                 start_vaddr = end;
1280 
1281                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1282                 if (copy_to_user(buf, pm.buffer, len)) {
1283                         ret = -EFAULT;
1284                         goto out_free;
1285                 }
1286                 copied += len;
1287                 buf += len;
1288                 count -= len;
1289         }
1290         *ppos += copied;
1291         if (!ret || ret == PM_END_OF_BUFFER)
1292                 ret = copied;
1293 
1294 out_free:
1295         kfree(pm.buffer);
1296 out_mm:
1297         mmput(mm);
1298 out:
1299         return ret;
1300 }
1301 
1302 static int pagemap_open(struct inode *inode, struct file *file)
1303 {
1304         struct mm_struct *mm;
1305 
1306         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1307         if (IS_ERR(mm))
1308                 return PTR_ERR(mm);
1309         file->private_data = mm;
1310         return 0;
1311 }
1312 
1313 static int pagemap_release(struct inode *inode, struct file *file)
1314 {
1315         struct mm_struct *mm = file->private_data;
1316 
1317         if (mm)
1318                 mmdrop(mm);
1319         return 0;
1320 }
1321 
1322 const struct file_operations proc_pagemap_operations = {
1323         .llseek         = mem_lseek, /* borrow this */
1324         .read           = pagemap_read,
1325         .open           = pagemap_open,
1326         .release        = pagemap_release,
1327 };
1328 #endif /* CONFIG_PROC_PAGE_MONITOR */
1329 
1330 #ifdef CONFIG_NUMA
1331 
1332 struct numa_maps {
1333         unsigned long pages;
1334         unsigned long anon;
1335         unsigned long active;
1336         unsigned long writeback;
1337         unsigned long mapcount_max;
1338         unsigned long dirty;
1339         unsigned long swapcache;
1340         unsigned long node[MAX_NUMNODES];
1341 };
1342 
1343 struct numa_maps_private {
1344         struct proc_maps_private proc_maps;
1345         struct numa_maps md;
1346 };
1347 
1348 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1349                         unsigned long nr_pages)
1350 {
1351         int count = page_mapcount(page);
1352 
1353         md->pages += nr_pages;
1354         if (pte_dirty || PageDirty(page))
1355                 md->dirty += nr_pages;
1356 
1357         if (PageSwapCache(page))
1358                 md->swapcache += nr_pages;
1359 
1360         if (PageActive(page) || PageUnevictable(page))
1361                 md->active += nr_pages;
1362 
1363         if (PageWriteback(page))
1364                 md->writeback += nr_pages;
1365 
1366         if (PageAnon(page))
1367                 md->anon += nr_pages;
1368 
1369         if (count > md->mapcount_max)
1370                 md->mapcount_max = count;
1371 
1372         md->node[page_to_nid(page)] += nr_pages;
1373 }
1374 
1375 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1376                 unsigned long addr)
1377 {
1378         struct page *page;
1379         int nid;
1380 
1381         if (!pte_present(pte))
1382                 return NULL;
1383 
1384         page = vm_normal_page(vma, addr, pte);
1385         if (!page)
1386                 return NULL;
1387 
1388         if (PageReserved(page))
1389                 return NULL;
1390 
1391         nid = page_to_nid(page);
1392         if (!node_isset(nid, node_states[N_MEMORY]))
1393                 return NULL;
1394 
1395         return page;
1396 }
1397 
1398 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1399                 unsigned long end, struct mm_walk *walk)
1400 {
1401         struct numa_maps *md = walk->private;
1402         struct vm_area_struct *vma = walk->vma;
1403         spinlock_t *ptl;
1404         pte_t *orig_pte;
1405         pte_t *pte;
1406 
1407         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1408                 pte_t huge_pte = *(pte_t *)pmd;
1409                 struct page *page;
1410 
1411                 page = can_gather_numa_stats(huge_pte, vma, addr);
1412                 if (page)
1413                         gather_stats(page, md, pte_dirty(huge_pte),
1414                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1415                 spin_unlock(ptl);
1416                 return 0;
1417         }
1418 
1419         if (pmd_trans_unstable(pmd))
1420                 return 0;
1421         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1422         do {
1423                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1424                 if (!page)
1425                         continue;
1426                 gather_stats(page, md, pte_dirty(*pte), 1);
1427 
1428         } while (pte++, addr += PAGE_SIZE, addr != end);
1429         pte_unmap_unlock(orig_pte, ptl);
1430         return 0;
1431 }
1432 #ifdef CONFIG_HUGETLB_PAGE
1433 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1434                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1435 {
1436         struct numa_maps *md;
1437         struct page *page;
1438 
1439         if (!pte_present(*pte))
1440                 return 0;
1441 
1442         page = pte_page(*pte);
1443         if (!page)
1444                 return 0;
1445 
1446         md = walk->private;
1447         gather_stats(page, md, pte_dirty(*pte), 1);
1448         return 0;
1449 }
1450 
1451 #else
1452 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1453                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1454 {
1455         return 0;
1456 }
1457 #endif
1458 
1459 /*
1460  * Display pages allocated per node and memory policy via /proc.
1461  */
1462 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1463 {
1464         struct numa_maps_private *numa_priv = m->private;
1465         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1466         struct vm_area_struct *vma = v;
1467         struct numa_maps *md = &numa_priv->md;
1468         struct file *file = vma->vm_file;
1469         struct mm_struct *mm = vma->vm_mm;
1470         struct mm_walk walk = {
1471                 .hugetlb_entry = gather_hugetlb_stats,
1472                 .pmd_entry = gather_pte_stats,
1473                 .private = md,
1474                 .mm = mm,
1475         };
1476         struct mempolicy *pol;
1477         char buffer[64];
1478         int nid;
1479 
1480         if (!mm)
1481                 return 0;
1482 
1483         /* Ensure we start with an empty set of numa_maps statistics. */
1484         memset(md, 0, sizeof(*md));
1485 
1486         pol = __get_vma_policy(vma, vma->vm_start);
1487         if (pol) {
1488                 mpol_to_str(buffer, sizeof(buffer), pol);
1489                 mpol_cond_put(pol);
1490         } else {
1491                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1492         }
1493 
1494         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1495 
1496         if (file) {
1497                 seq_puts(m, " file=");
1498                 seq_file_path(m, file, "\n\t= ");
1499         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1500                 seq_puts(m, " heap");
1501         } else {
1502                 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1503                 if (tid != 0) {
1504                         /*
1505                          * Thread stack in /proc/PID/task/TID/maps or
1506                          * the main process stack.
1507                          */
1508                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
1509                             vma->vm_end >= mm->start_stack))
1510                                 seq_puts(m, " stack");
1511                         else
1512                                 seq_printf(m, " stack:%d", tid);
1513                 }
1514         }
1515 
1516         if (is_vm_hugetlb_page(vma))
1517                 seq_puts(m, " huge");
1518 
1519         /* mmap_sem is held by m_start */
1520         walk_page_vma(vma, &walk);
1521 
1522         if (!md->pages)
1523                 goto out;
1524 
1525         if (md->anon)
1526                 seq_printf(m, " anon=%lu", md->anon);
1527 
1528         if (md->dirty)
1529                 seq_printf(m, " dirty=%lu", md->dirty);
1530 
1531         if (md->pages != md->anon && md->pages != md->dirty)
1532                 seq_printf(m, " mapped=%lu", md->pages);
1533 
1534         if (md->mapcount_max > 1)
1535                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1536 
1537         if (md->swapcache)
1538                 seq_printf(m, " swapcache=%lu", md->swapcache);
1539 
1540         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1541                 seq_printf(m, " active=%lu", md->active);
1542 
1543         if (md->writeback)
1544                 seq_printf(m, " writeback=%lu", md->writeback);
1545 
1546         for_each_node_state(nid, N_MEMORY)
1547                 if (md->node[nid])
1548                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1549 
1550         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1551 out:
1552         seq_putc(m, '\n');
1553         m_cache_vma(m, vma);
1554         return 0;
1555 }
1556 
1557 static int show_pid_numa_map(struct seq_file *m, void *v)
1558 {
1559         return show_numa_map(m, v, 1);
1560 }
1561 
1562 static int show_tid_numa_map(struct seq_file *m, void *v)
1563 {
1564         return show_numa_map(m, v, 0);
1565 }
1566 
1567 static const struct seq_operations proc_pid_numa_maps_op = {
1568         .start  = m_start,
1569         .next   = m_next,
1570         .stop   = m_stop,
1571         .show   = show_pid_numa_map,
1572 };
1573 
1574 static const struct seq_operations proc_tid_numa_maps_op = {
1575         .start  = m_start,
1576         .next   = m_next,
1577         .stop   = m_stop,
1578         .show   = show_tid_numa_map,
1579 };
1580 
1581 static int numa_maps_open(struct inode *inode, struct file *file,
1582                           const struct seq_operations *ops)
1583 {
1584         return proc_maps_open(inode, file, ops,
1585                                 sizeof(struct numa_maps_private));
1586 }
1587 
1588 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1589 {
1590         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1591 }
1592 
1593 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1594 {
1595         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1596 }
1597 
1598 const struct file_operations proc_pid_numa_maps_operations = {
1599         .open           = pid_numa_maps_open,
1600         .read           = seq_read,
1601         .llseek         = seq_lseek,
1602         .release        = proc_map_release,
1603 };
1604 
1605 const struct file_operations proc_tid_numa_maps_operations = {
1606         .open           = tid_numa_maps_open,
1607         .read           = seq_read,
1608         .llseek         = seq_lseek,
1609         .release        = proc_map_release,
1610 };
1611 #endif /* CONFIG_NUMA */
1612 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp