~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ubifs/debug.c

Version: ~ [ linux-5.3-rc5 ] ~ [ linux-5.2.9 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.67 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.139 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.189 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.189 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.72 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * This file is part of UBIFS.
  3  *
  4  * Copyright (C) 2006-2008 Nokia Corporation
  5  *
  6  * This program is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License version 2 as published by
  8  * the Free Software Foundation.
  9  *
 10  * This program is distributed in the hope that it will be useful, but WITHOUT
 11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13  * more details.
 14  *
 15  * You should have received a copy of the GNU General Public License along with
 16  * this program; if not, write to the Free Software Foundation, Inc., 51
 17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 18  *
 19  * Authors: Artem Bityutskiy (Битюцкий Артём)
 20  *          Adrian Hunter
 21  */
 22 
 23 /*
 24  * This file implements most of the debugging stuff which is compiled in only
 25  * when it is enabled. But some debugging check functions are implemented in
 26  * corresponding subsystem, just because they are closely related and utilize
 27  * various local functions of those subsystems.
 28  */
 29 
 30 #include <linux/module.h>
 31 #include <linux/debugfs.h>
 32 #include <linux/math64.h>
 33 #include <linux/uaccess.h>
 34 #include <linux/random.h>
 35 #include "ubifs.h"
 36 
 37 static DEFINE_SPINLOCK(dbg_lock);
 38 
 39 static const char *get_key_fmt(int fmt)
 40 {
 41         switch (fmt) {
 42         case UBIFS_SIMPLE_KEY_FMT:
 43                 return "simple";
 44         default:
 45                 return "unknown/invalid format";
 46         }
 47 }
 48 
 49 static const char *get_key_hash(int hash)
 50 {
 51         switch (hash) {
 52         case UBIFS_KEY_HASH_R5:
 53                 return "R5";
 54         case UBIFS_KEY_HASH_TEST:
 55                 return "test";
 56         default:
 57                 return "unknown/invalid name hash";
 58         }
 59 }
 60 
 61 static const char *get_key_type(int type)
 62 {
 63         switch (type) {
 64         case UBIFS_INO_KEY:
 65                 return "inode";
 66         case UBIFS_DENT_KEY:
 67                 return "direntry";
 68         case UBIFS_XENT_KEY:
 69                 return "xentry";
 70         case UBIFS_DATA_KEY:
 71                 return "data";
 72         case UBIFS_TRUN_KEY:
 73                 return "truncate";
 74         default:
 75                 return "unknown/invalid key";
 76         }
 77 }
 78 
 79 static const char *get_dent_type(int type)
 80 {
 81         switch (type) {
 82         case UBIFS_ITYPE_REG:
 83                 return "file";
 84         case UBIFS_ITYPE_DIR:
 85                 return "dir";
 86         case UBIFS_ITYPE_LNK:
 87                 return "symlink";
 88         case UBIFS_ITYPE_BLK:
 89                 return "blkdev";
 90         case UBIFS_ITYPE_CHR:
 91                 return "char dev";
 92         case UBIFS_ITYPE_FIFO:
 93                 return "fifo";
 94         case UBIFS_ITYPE_SOCK:
 95                 return "socket";
 96         default:
 97                 return "unknown/invalid type";
 98         }
 99 }
100 
101 const char *dbg_snprintf_key(const struct ubifs_info *c,
102                              const union ubifs_key *key, char *buffer, int len)
103 {
104         char *p = buffer;
105         int type = key_type(c, key);
106 
107         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108                 switch (type) {
109                 case UBIFS_INO_KEY:
110                         len -= snprintf(p, len, "(%lu, %s)",
111                                         (unsigned long)key_inum(c, key),
112                                         get_key_type(type));
113                         break;
114                 case UBIFS_DENT_KEY:
115                 case UBIFS_XENT_KEY:
116                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
117                                         (unsigned long)key_inum(c, key),
118                                         get_key_type(type), key_hash(c, key));
119                         break;
120                 case UBIFS_DATA_KEY:
121                         len -= snprintf(p, len, "(%lu, %s, %u)",
122                                         (unsigned long)key_inum(c, key),
123                                         get_key_type(type), key_block(c, key));
124                         break;
125                 case UBIFS_TRUN_KEY:
126                         len -= snprintf(p, len, "(%lu, %s)",
127                                         (unsigned long)key_inum(c, key),
128                                         get_key_type(type));
129                         break;
130                 default:
131                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132                                         key->u32[0], key->u32[1]);
133                 }
134         } else
135                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136         ubifs_assert(len > 0);
137         return p;
138 }
139 
140 const char *dbg_ntype(int type)
141 {
142         switch (type) {
143         case UBIFS_PAD_NODE:
144                 return "padding node";
145         case UBIFS_SB_NODE:
146                 return "superblock node";
147         case UBIFS_MST_NODE:
148                 return "master node";
149         case UBIFS_REF_NODE:
150                 return "reference node";
151         case UBIFS_INO_NODE:
152                 return "inode node";
153         case UBIFS_DENT_NODE:
154                 return "direntry node";
155         case UBIFS_XENT_NODE:
156                 return "xentry node";
157         case UBIFS_DATA_NODE:
158                 return "data node";
159         case UBIFS_TRUN_NODE:
160                 return "truncate node";
161         case UBIFS_IDX_NODE:
162                 return "indexing node";
163         case UBIFS_CS_NODE:
164                 return "commit start node";
165         case UBIFS_ORPH_NODE:
166                 return "orphan node";
167         default:
168                 return "unknown node";
169         }
170 }
171 
172 static const char *dbg_gtype(int type)
173 {
174         switch (type) {
175         case UBIFS_NO_NODE_GROUP:
176                 return "no node group";
177         case UBIFS_IN_NODE_GROUP:
178                 return "in node group";
179         case UBIFS_LAST_OF_NODE_GROUP:
180                 return "last of node group";
181         default:
182                 return "unknown";
183         }
184 }
185 
186 const char *dbg_cstate(int cmt_state)
187 {
188         switch (cmt_state) {
189         case COMMIT_RESTING:
190                 return "commit resting";
191         case COMMIT_BACKGROUND:
192                 return "background commit requested";
193         case COMMIT_REQUIRED:
194                 return "commit required";
195         case COMMIT_RUNNING_BACKGROUND:
196                 return "BACKGROUND commit running";
197         case COMMIT_RUNNING_REQUIRED:
198                 return "commit running and required";
199         case COMMIT_BROKEN:
200                 return "broken commit";
201         default:
202                 return "unknown commit state";
203         }
204 }
205 
206 const char *dbg_jhead(int jhead)
207 {
208         switch (jhead) {
209         case GCHD:
210                 return "0 (GC)";
211         case BASEHD:
212                 return "1 (base)";
213         case DATAHD:
214                 return "2 (data)";
215         default:
216                 return "unknown journal head";
217         }
218 }
219 
220 static void dump_ch(const struct ubifs_ch *ch)
221 {
222         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
223         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
224         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
225                dbg_ntype(ch->node_type));
226         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
227                dbg_gtype(ch->group_type));
228         pr_err("\tsqnum          %llu\n",
229                (unsigned long long)le64_to_cpu(ch->sqnum));
230         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
231 }
232 
233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234 {
235         const struct ubifs_inode *ui = ubifs_inode(inode);
236         struct fscrypt_name nm = {0};
237         union ubifs_key key;
238         struct ubifs_dent_node *dent, *pdent = NULL;
239         int count = 2;
240 
241         pr_err("Dump in-memory inode:");
242         pr_err("\tinode          %lu\n", inode->i_ino);
243         pr_err("\tsize           %llu\n",
244                (unsigned long long)i_size_read(inode));
245         pr_err("\tnlink          %u\n", inode->i_nlink);
246         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
247         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
248         pr_err("\tatime          %u.%u\n",
249                (unsigned int)inode->i_atime.tv_sec,
250                (unsigned int)inode->i_atime.tv_nsec);
251         pr_err("\tmtime          %u.%u\n",
252                (unsigned int)inode->i_mtime.tv_sec,
253                (unsigned int)inode->i_mtime.tv_nsec);
254         pr_err("\tctime          %u.%u\n",
255                (unsigned int)inode->i_ctime.tv_sec,
256                (unsigned int)inode->i_ctime.tv_nsec);
257         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
258         pr_err("\txattr_size     %u\n", ui->xattr_size);
259         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
260         pr_err("\txattr_names    %u\n", ui->xattr_names);
261         pr_err("\tdirty          %u\n", ui->dirty);
262         pr_err("\txattr          %u\n", ui->xattr);
263         pr_err("\tbulk_read      %u\n", ui->bulk_read);
264         pr_err("\tsynced_i_size  %llu\n",
265                (unsigned long long)ui->synced_i_size);
266         pr_err("\tui_size        %llu\n",
267                (unsigned long long)ui->ui_size);
268         pr_err("\tflags          %d\n", ui->flags);
269         pr_err("\tcompr_type     %d\n", ui->compr_type);
270         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
272         pr_err("\tdata_len       %d\n", ui->data_len);
273 
274         if (!S_ISDIR(inode->i_mode))
275                 return;
276 
277         pr_err("List of directory entries:\n");
278         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279 
280         lowest_dent_key(c, &key, inode->i_ino);
281         while (1) {
282                 dent = ubifs_tnc_next_ent(c, &key, &nm);
283                 if (IS_ERR(dent)) {
284                         if (PTR_ERR(dent) != -ENOENT)
285                                 pr_err("error %ld\n", PTR_ERR(dent));
286                         break;
287                 }
288 
289                 pr_err("\t%d: %s (%s)\n",
290                        count++, dent->name, get_dent_type(dent->type));
291 
292                 fname_name(&nm) = dent->name;
293                 fname_len(&nm) = le16_to_cpu(dent->nlen);
294                 kfree(pdent);
295                 pdent = dent;
296                 key_read(c, &dent->key, &key);
297         }
298         kfree(pdent);
299 }
300 
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302 {
303         int i, n;
304         union ubifs_key key;
305         const struct ubifs_ch *ch = node;
306         char key_buf[DBG_KEY_BUF_LEN];
307 
308         /* If the magic is incorrect, just hexdump the first bytes */
309         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312                                (void *)node, UBIFS_CH_SZ, 1);
313                 return;
314         }
315 
316         spin_lock(&dbg_lock);
317         dump_ch(node);
318 
319         switch (ch->node_type) {
320         case UBIFS_PAD_NODE:
321         {
322                 const struct ubifs_pad_node *pad = node;
323 
324                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
325                 break;
326         }
327         case UBIFS_SB_NODE:
328         {
329                 const struct ubifs_sb_node *sup = node;
330                 unsigned int sup_flags = le32_to_cpu(sup->flags);
331 
332                 pr_err("\tkey_hash       %d (%s)\n",
333                        (int)sup->key_hash, get_key_hash(sup->key_hash));
334                 pr_err("\tkey_fmt        %d (%s)\n",
335                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336                 pr_err("\tflags          %#x\n", sup_flags);
337                 pr_err("\tbig_lpt        %u\n",
338                        !!(sup_flags & UBIFS_FLG_BIGLPT));
339                 pr_err("\tspace_fixup    %u\n",
340                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
342                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
343                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
344                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
345                 pr_err("\tmax_bud_bytes  %llu\n",
346                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
348                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
349                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
350                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
351                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
352                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
353                 pr_err("\tdefault_compr  %u\n",
354                        (int)le16_to_cpu(sup->default_compr));
355                 pr_err("\trp_size        %llu\n",
356                        (unsigned long long)le64_to_cpu(sup->rp_size));
357                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
358                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
359                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
360                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
361                 pr_err("\tUUID           %pUB\n", sup->uuid);
362                 break;
363         }
364         case UBIFS_MST_NODE:
365         {
366                 const struct ubifs_mst_node *mst = node;
367 
368                 pr_err("\thighest_inum   %llu\n",
369                        (unsigned long long)le64_to_cpu(mst->highest_inum));
370                 pr_err("\tcommit number  %llu\n",
371                        (unsigned long long)le64_to_cpu(mst->cmt_no));
372                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
373                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
374                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
375                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
376                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
377                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
378                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
379                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
380                 pr_err("\tindex_size     %llu\n",
381                        (unsigned long long)le64_to_cpu(mst->index_size));
382                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
383                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
384                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
385                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
386                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
387                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
388                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
389                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
390                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
391                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
392                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
393                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
394                 pr_err("\ttotal_free     %llu\n",
395                        (unsigned long long)le64_to_cpu(mst->total_free));
396                 pr_err("\ttotal_dirty    %llu\n",
397                        (unsigned long long)le64_to_cpu(mst->total_dirty));
398                 pr_err("\ttotal_used     %llu\n",
399                        (unsigned long long)le64_to_cpu(mst->total_used));
400                 pr_err("\ttotal_dead     %llu\n",
401                        (unsigned long long)le64_to_cpu(mst->total_dead));
402                 pr_err("\ttotal_dark     %llu\n",
403                        (unsigned long long)le64_to_cpu(mst->total_dark));
404                 break;
405         }
406         case UBIFS_REF_NODE:
407         {
408                 const struct ubifs_ref_node *ref = node;
409 
410                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
411                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
412                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
413                 break;
414         }
415         case UBIFS_INO_NODE:
416         {
417                 const struct ubifs_ino_node *ino = node;
418 
419                 key_read(c, &ino->key, &key);
420                 pr_err("\tkey            %s\n",
421                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422                 pr_err("\tcreat_sqnum    %llu\n",
423                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424                 pr_err("\tsize           %llu\n",
425                        (unsigned long long)le64_to_cpu(ino->size));
426                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
427                 pr_err("\tatime          %lld.%u\n",
428                        (long long)le64_to_cpu(ino->atime_sec),
429                        le32_to_cpu(ino->atime_nsec));
430                 pr_err("\tmtime          %lld.%u\n",
431                        (long long)le64_to_cpu(ino->mtime_sec),
432                        le32_to_cpu(ino->mtime_nsec));
433                 pr_err("\tctime          %lld.%u\n",
434                        (long long)le64_to_cpu(ino->ctime_sec),
435                        le32_to_cpu(ino->ctime_nsec));
436                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
437                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
438                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
439                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
440                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
441                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
442                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
443                 pr_err("\tcompr_type     %#x\n",
444                        (int)le16_to_cpu(ino->compr_type));
445                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
446                 break;
447         }
448         case UBIFS_DENT_NODE:
449         case UBIFS_XENT_NODE:
450         {
451                 const struct ubifs_dent_node *dent = node;
452                 int nlen = le16_to_cpu(dent->nlen);
453 
454                 key_read(c, &dent->key, &key);
455                 pr_err("\tkey            %s\n",
456                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457                 pr_err("\tinum           %llu\n",
458                        (unsigned long long)le64_to_cpu(dent->inum));
459                 pr_err("\ttype           %d\n", (int)dent->type);
460                 pr_err("\tnlen           %d\n", nlen);
461                 pr_err("\tname           ");
462 
463                 if (nlen > UBIFS_MAX_NLEN)
464                         pr_err("(bad name length, not printing, bad or corrupted node)");
465                 else {
466                         for (i = 0; i < nlen && dent->name[i]; i++)
467                                 pr_cont("%c", dent->name[i]);
468                 }
469                 pr_cont("\n");
470 
471                 break;
472         }
473         case UBIFS_DATA_NODE:
474         {
475                 const struct ubifs_data_node *dn = node;
476                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477 
478                 key_read(c, &dn->key, &key);
479                 pr_err("\tkey            %s\n",
480                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
482                 pr_err("\tcompr_typ      %d\n",
483                        (int)le16_to_cpu(dn->compr_type));
484                 pr_err("\tdata size      %d\n", dlen);
485                 pr_err("\tdata:\n");
486                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487                                (void *)&dn->data, dlen, 0);
488                 break;
489         }
490         case UBIFS_TRUN_NODE:
491         {
492                 const struct ubifs_trun_node *trun = node;
493 
494                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
495                 pr_err("\told_size       %llu\n",
496                        (unsigned long long)le64_to_cpu(trun->old_size));
497                 pr_err("\tnew_size       %llu\n",
498                        (unsigned long long)le64_to_cpu(trun->new_size));
499                 break;
500         }
501         case UBIFS_IDX_NODE:
502         {
503                 const struct ubifs_idx_node *idx = node;
504 
505                 n = le16_to_cpu(idx->child_cnt);
506                 pr_err("\tchild_cnt      %d\n", n);
507                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
508                 pr_err("\tBranches:\n");
509 
510                 for (i = 0; i < n && i < c->fanout - 1; i++) {
511                         const struct ubifs_branch *br;
512 
513                         br = ubifs_idx_branch(c, idx, i);
514                         key_read(c, &br->key, &key);
515                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
516                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517                                le32_to_cpu(br->len),
518                                dbg_snprintf_key(c, &key, key_buf,
519                                                 DBG_KEY_BUF_LEN));
520                 }
521                 break;
522         }
523         case UBIFS_CS_NODE:
524                 break;
525         case UBIFS_ORPH_NODE:
526         {
527                 const struct ubifs_orph_node *orph = node;
528 
529                 pr_err("\tcommit number  %llu\n",
530                        (unsigned long long)
531                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532                 pr_err("\tlast node flag %llu\n",
533                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535                 pr_err("\t%d orphan inode numbers:\n", n);
536                 for (i = 0; i < n; i++)
537                         pr_err("\t  ino %llu\n",
538                                (unsigned long long)le64_to_cpu(orph->inos[i]));
539                 break;
540         }
541         default:
542                 pr_err("node type %d was not recognized\n",
543                        (int)ch->node_type);
544         }
545         spin_unlock(&dbg_lock);
546 }
547 
548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549 {
550         spin_lock(&dbg_lock);
551         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552                req->new_ino, req->dirtied_ino);
553         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
554                req->new_ino_d, req->dirtied_ino_d);
555         pr_err("\tnew_page    %d, dirtied_page %d\n",
556                req->new_page, req->dirtied_page);
557         pr_err("\tnew_dent    %d, mod_dent     %d\n",
558                req->new_dent, req->mod_dent);
559         pr_err("\tidx_growth  %d\n", req->idx_growth);
560         pr_err("\tdata_growth %d dd_growth     %d\n",
561                req->data_growth, req->dd_growth);
562         spin_unlock(&dbg_lock);
563 }
564 
565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566 {
567         spin_lock(&dbg_lock);
568         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
569                current->pid, lst->empty_lebs, lst->idx_lebs);
570         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573                lst->total_used, lst->total_dark, lst->total_dead);
574         spin_unlock(&dbg_lock);
575 }
576 
577 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
578 {
579         int i;
580         struct rb_node *rb;
581         struct ubifs_bud *bud;
582         struct ubifs_gced_idx_leb *idx_gc;
583         long long available, outstanding, free;
584 
585         spin_lock(&c->space_lock);
586         spin_lock(&dbg_lock);
587         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
588                current->pid, bi->data_growth + bi->dd_growth,
589                bi->data_growth + bi->dd_growth + bi->idx_growth);
590         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
591                bi->data_growth, bi->dd_growth, bi->idx_growth);
592         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
593                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
594         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
595                bi->page_budget, bi->inode_budget, bi->dent_budget);
596         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
597         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
598                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
599 
600         if (bi != &c->bi)
601                 /*
602                  * If we are dumping saved budgeting data, do not print
603                  * additional information which is about the current state, not
604                  * the old one which corresponded to the saved budgeting data.
605                  */
606                 goto out_unlock;
607 
608         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
609                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
610         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
611                atomic_long_read(&c->dirty_pg_cnt),
612                atomic_long_read(&c->dirty_zn_cnt),
613                atomic_long_read(&c->clean_zn_cnt));
614         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
615 
616         /* If we are in R/O mode, journal heads do not exist */
617         if (c->jheads)
618                 for (i = 0; i < c->jhead_cnt; i++)
619                         pr_err("\tjhead %s\t LEB %d\n",
620                                dbg_jhead(c->jheads[i].wbuf.jhead),
621                                c->jheads[i].wbuf.lnum);
622         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623                 bud = rb_entry(rb, struct ubifs_bud, rb);
624                 pr_err("\tbud LEB %d\n", bud->lnum);
625         }
626         list_for_each_entry(bud, &c->old_buds, list)
627                 pr_err("\told bud LEB %d\n", bud->lnum);
628         list_for_each_entry(idx_gc, &c->idx_gc, list)
629                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
630                        idx_gc->lnum, idx_gc->unmap);
631         pr_err("\tcommit state %d\n", c->cmt_state);
632 
633         /* Print budgeting predictions */
634         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
635         outstanding = c->bi.data_growth + c->bi.dd_growth;
636         free = ubifs_get_free_space_nolock(c);
637         pr_err("Budgeting predictions:\n");
638         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
639                available, outstanding, free);
640 out_unlock:
641         spin_unlock(&dbg_lock);
642         spin_unlock(&c->space_lock);
643 }
644 
645 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
646 {
647         int i, spc, dark = 0, dead = 0;
648         struct rb_node *rb;
649         struct ubifs_bud *bud;
650 
651         spc = lp->free + lp->dirty;
652         if (spc < c->dead_wm)
653                 dead = spc;
654         else
655                 dark = ubifs_calc_dark(c, spc);
656 
657         if (lp->flags & LPROPS_INDEX)
658                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
659                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
660                        lp->flags);
661         else
662                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
663                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
665 
666         if (lp->flags & LPROPS_TAKEN) {
667                 if (lp->flags & LPROPS_INDEX)
668                         pr_cont("index, taken");
669                 else
670                         pr_cont("taken");
671         } else {
672                 const char *s;
673 
674                 if (lp->flags & LPROPS_INDEX) {
675                         switch (lp->flags & LPROPS_CAT_MASK) {
676                         case LPROPS_DIRTY_IDX:
677                                 s = "dirty index";
678                                 break;
679                         case LPROPS_FRDI_IDX:
680                                 s = "freeable index";
681                                 break;
682                         default:
683                                 s = "index";
684                         }
685                 } else {
686                         switch (lp->flags & LPROPS_CAT_MASK) {
687                         case LPROPS_UNCAT:
688                                 s = "not categorized";
689                                 break;
690                         case LPROPS_DIRTY:
691                                 s = "dirty";
692                                 break;
693                         case LPROPS_FREE:
694                                 s = "free";
695                                 break;
696                         case LPROPS_EMPTY:
697                                 s = "empty";
698                                 break;
699                         case LPROPS_FREEABLE:
700                                 s = "freeable";
701                                 break;
702                         default:
703                                 s = NULL;
704                                 break;
705                         }
706                 }
707                 pr_cont("%s", s);
708         }
709 
710         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
711                 bud = rb_entry(rb, struct ubifs_bud, rb);
712                 if (bud->lnum == lp->lnum) {
713                         int head = 0;
714                         for (i = 0; i < c->jhead_cnt; i++) {
715                                 /*
716                                  * Note, if we are in R/O mode or in the middle
717                                  * of mounting/re-mounting, the write-buffers do
718                                  * not exist.
719                                  */
720                                 if (c->jheads &&
721                                     lp->lnum == c->jheads[i].wbuf.lnum) {
722                                         pr_cont(", jhead %s", dbg_jhead(i));
723                                         head = 1;
724                                 }
725                         }
726                         if (!head)
727                                 pr_cont(", bud of jhead %s",
728                                        dbg_jhead(bud->jhead));
729                 }
730         }
731         if (lp->lnum == c->gc_lnum)
732                 pr_cont(", GC LEB");
733         pr_cont(")\n");
734 }
735 
736 void ubifs_dump_lprops(struct ubifs_info *c)
737 {
738         int lnum, err;
739         struct ubifs_lprops lp;
740         struct ubifs_lp_stats lst;
741 
742         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
743         ubifs_get_lp_stats(c, &lst);
744         ubifs_dump_lstats(&lst);
745 
746         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
747                 err = ubifs_read_one_lp(c, lnum, &lp);
748                 if (err) {
749                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
750                         continue;
751                 }
752 
753                 ubifs_dump_lprop(c, &lp);
754         }
755         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
756 }
757 
758 void ubifs_dump_lpt_info(struct ubifs_info *c)
759 {
760         int i;
761 
762         spin_lock(&dbg_lock);
763         pr_err("(pid %d) dumping LPT information\n", current->pid);
764         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
765         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
766         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
767         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
768         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
769         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
770         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
771         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
772         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
773         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
774         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
775         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
776         pr_err("\tspace_bits:    %d\n", c->space_bits);
777         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
778         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
779         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
780         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
781         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
782         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
783         pr_err("\tLPT head is at %d:%d\n",
784                c->nhead_lnum, c->nhead_offs);
785         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
786         if (c->big_lpt)
787                 pr_err("\tLPT lsave is at %d:%d\n",
788                        c->lsave_lnum, c->lsave_offs);
789         for (i = 0; i < c->lpt_lebs; i++)
790                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
791                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
792                        c->ltab[i].tgc, c->ltab[i].cmt);
793         spin_unlock(&dbg_lock);
794 }
795 
796 void ubifs_dump_sleb(const struct ubifs_info *c,
797                      const struct ubifs_scan_leb *sleb, int offs)
798 {
799         struct ubifs_scan_node *snod;
800 
801         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
802                current->pid, sleb->lnum, offs);
803 
804         list_for_each_entry(snod, &sleb->nodes, list) {
805                 cond_resched();
806                 pr_err("Dumping node at LEB %d:%d len %d\n",
807                        sleb->lnum, snod->offs, snod->len);
808                 ubifs_dump_node(c, snod->node);
809         }
810 }
811 
812 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
813 {
814         struct ubifs_scan_leb *sleb;
815         struct ubifs_scan_node *snod;
816         void *buf;
817 
818         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
819 
820         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
821         if (!buf) {
822                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
823                 return;
824         }
825 
826         sleb = ubifs_scan(c, lnum, 0, buf, 0);
827         if (IS_ERR(sleb)) {
828                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
829                 goto out;
830         }
831 
832         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
833                sleb->nodes_cnt, sleb->endpt);
834 
835         list_for_each_entry(snod, &sleb->nodes, list) {
836                 cond_resched();
837                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
838                        snod->offs, snod->len);
839                 ubifs_dump_node(c, snod->node);
840         }
841 
842         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
843         ubifs_scan_destroy(sleb);
844 
845 out:
846         vfree(buf);
847         return;
848 }
849 
850 void ubifs_dump_znode(const struct ubifs_info *c,
851                       const struct ubifs_znode *znode)
852 {
853         int n;
854         const struct ubifs_zbranch *zbr;
855         char key_buf[DBG_KEY_BUF_LEN];
856 
857         spin_lock(&dbg_lock);
858         if (znode->parent)
859                 zbr = &znode->parent->zbranch[znode->iip];
860         else
861                 zbr = &c->zroot;
862 
863         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
864                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
865                znode->level, znode->child_cnt, znode->flags);
866 
867         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
868                 spin_unlock(&dbg_lock);
869                 return;
870         }
871 
872         pr_err("zbranches:\n");
873         for (n = 0; n < znode->child_cnt; n++) {
874                 zbr = &znode->zbranch[n];
875                 if (znode->level > 0)
876                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
877                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
878                                dbg_snprintf_key(c, &zbr->key, key_buf,
879                                                 DBG_KEY_BUF_LEN));
880                 else
881                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
882                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
883                                dbg_snprintf_key(c, &zbr->key, key_buf,
884                                                 DBG_KEY_BUF_LEN));
885         }
886         spin_unlock(&dbg_lock);
887 }
888 
889 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
890 {
891         int i;
892 
893         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
894                current->pid, cat, heap->cnt);
895         for (i = 0; i < heap->cnt; i++) {
896                 struct ubifs_lprops *lprops = heap->arr[i];
897 
898                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
899                        i, lprops->lnum, lprops->hpos, lprops->free,
900                        lprops->dirty, lprops->flags);
901         }
902         pr_err("(pid %d) finish dumping heap\n", current->pid);
903 }
904 
905 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
906                       struct ubifs_nnode *parent, int iip)
907 {
908         int i;
909 
910         pr_err("(pid %d) dumping pnode:\n", current->pid);
911         pr_err("\taddress %zx parent %zx cnext %zx\n",
912                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
913         pr_err("\tflags %lu iip %d level %d num %d\n",
914                pnode->flags, iip, pnode->level, pnode->num);
915         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
916                 struct ubifs_lprops *lp = &pnode->lprops[i];
917 
918                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
919                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
920         }
921 }
922 
923 void ubifs_dump_tnc(struct ubifs_info *c)
924 {
925         struct ubifs_znode *znode;
926         int level;
927 
928         pr_err("\n");
929         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
930         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
931         level = znode->level;
932         pr_err("== Level %d ==\n", level);
933         while (znode) {
934                 if (level != znode->level) {
935                         level = znode->level;
936                         pr_err("== Level %d ==\n", level);
937                 }
938                 ubifs_dump_znode(c, znode);
939                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
940         }
941         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
942 }
943 
944 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
945                       void *priv)
946 {
947         ubifs_dump_znode(c, znode);
948         return 0;
949 }
950 
951 /**
952  * ubifs_dump_index - dump the on-flash index.
953  * @c: UBIFS file-system description object
954  *
955  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
956  * which dumps only in-memory znodes and does not read znodes which from flash.
957  */
958 void ubifs_dump_index(struct ubifs_info *c)
959 {
960         dbg_walk_index(c, NULL, dump_znode, NULL);
961 }
962 
963 /**
964  * dbg_save_space_info - save information about flash space.
965  * @c: UBIFS file-system description object
966  *
967  * This function saves information about UBIFS free space, dirty space, etc, in
968  * order to check it later.
969  */
970 void dbg_save_space_info(struct ubifs_info *c)
971 {
972         struct ubifs_debug_info *d = c->dbg;
973         int freeable_cnt;
974 
975         spin_lock(&c->space_lock);
976         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
977         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
978         d->saved_idx_gc_cnt = c->idx_gc_cnt;
979 
980         /*
981          * We use a dirty hack here and zero out @c->freeable_cnt, because it
982          * affects the free space calculations, and UBIFS might not know about
983          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
984          * only when we read their lprops, and we do this only lazily, upon the
985          * need. So at any given point of time @c->freeable_cnt might be not
986          * exactly accurate.
987          *
988          * Just one example about the issue we hit when we did not zero
989          * @c->freeable_cnt.
990          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
991          *    amount of free space in @d->saved_free
992          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
993          *    information from flash, where we cache LEBs from various
994          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
995          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
996          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
997          *    -> 'ubifs_add_to_cat()').
998          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
999          *    becomes %1.
1000          * 4. We calculate the amount of free space when the re-mount is
1001          *    finished in 'dbg_check_space_info()' and it does not match
1002          *    @d->saved_free.
1003          */
1004         freeable_cnt = c->freeable_cnt;
1005         c->freeable_cnt = 0;
1006         d->saved_free = ubifs_get_free_space_nolock(c);
1007         c->freeable_cnt = freeable_cnt;
1008         spin_unlock(&c->space_lock);
1009 }
1010 
1011 /**
1012  * dbg_check_space_info - check flash space information.
1013  * @c: UBIFS file-system description object
1014  *
1015  * This function compares current flash space information with the information
1016  * which was saved when the 'dbg_save_space_info()' function was called.
1017  * Returns zero if the information has not changed, and %-EINVAL it it has
1018  * changed.
1019  */
1020 int dbg_check_space_info(struct ubifs_info *c)
1021 {
1022         struct ubifs_debug_info *d = c->dbg;
1023         struct ubifs_lp_stats lst;
1024         long long free;
1025         int freeable_cnt;
1026 
1027         spin_lock(&c->space_lock);
1028         freeable_cnt = c->freeable_cnt;
1029         c->freeable_cnt = 0;
1030         free = ubifs_get_free_space_nolock(c);
1031         c->freeable_cnt = freeable_cnt;
1032         spin_unlock(&c->space_lock);
1033 
1034         if (free != d->saved_free) {
1035                 ubifs_err(c, "free space changed from %lld to %lld",
1036                           d->saved_free, free);
1037                 goto out;
1038         }
1039 
1040         return 0;
1041 
1042 out:
1043         ubifs_msg(c, "saved lprops statistics dump");
1044         ubifs_dump_lstats(&d->saved_lst);
1045         ubifs_msg(c, "saved budgeting info dump");
1046         ubifs_dump_budg(c, &d->saved_bi);
1047         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1048         ubifs_msg(c, "current lprops statistics dump");
1049         ubifs_get_lp_stats(c, &lst);
1050         ubifs_dump_lstats(&lst);
1051         ubifs_msg(c, "current budgeting info dump");
1052         ubifs_dump_budg(c, &c->bi);
1053         dump_stack();
1054         return -EINVAL;
1055 }
1056 
1057 /**
1058  * dbg_check_synced_i_size - check synchronized inode size.
1059  * @c: UBIFS file-system description object
1060  * @inode: inode to check
1061  *
1062  * If inode is clean, synchronized inode size has to be equivalent to current
1063  * inode size. This function has to be called only for locked inodes (@i_mutex
1064  * has to be locked). Returns %0 if synchronized inode size if correct, and
1065  * %-EINVAL if not.
1066  */
1067 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1068 {
1069         int err = 0;
1070         struct ubifs_inode *ui = ubifs_inode(inode);
1071 
1072         if (!dbg_is_chk_gen(c))
1073                 return 0;
1074         if (!S_ISREG(inode->i_mode))
1075                 return 0;
1076 
1077         mutex_lock(&ui->ui_mutex);
1078         spin_lock(&ui->ui_lock);
1079         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1080                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1081                           ui->ui_size, ui->synced_i_size);
1082                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1083                           inode->i_mode, i_size_read(inode));
1084                 dump_stack();
1085                 err = -EINVAL;
1086         }
1087         spin_unlock(&ui->ui_lock);
1088         mutex_unlock(&ui->ui_mutex);
1089         return err;
1090 }
1091 
1092 /*
1093  * dbg_check_dir - check directory inode size and link count.
1094  * @c: UBIFS file-system description object
1095  * @dir: the directory to calculate size for
1096  * @size: the result is returned here
1097  *
1098  * This function makes sure that directory size and link count are correct.
1099  * Returns zero in case of success and a negative error code in case of
1100  * failure.
1101  *
1102  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1103  * calling this function.
1104  */
1105 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1106 {
1107         unsigned int nlink = 2;
1108         union ubifs_key key;
1109         struct ubifs_dent_node *dent, *pdent = NULL;
1110         struct fscrypt_name nm = {0};
1111         loff_t size = UBIFS_INO_NODE_SZ;
1112 
1113         if (!dbg_is_chk_gen(c))
1114                 return 0;
1115 
1116         if (!S_ISDIR(dir->i_mode))
1117                 return 0;
1118 
1119         lowest_dent_key(c, &key, dir->i_ino);
1120         while (1) {
1121                 int err;
1122 
1123                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1124                 if (IS_ERR(dent)) {
1125                         err = PTR_ERR(dent);
1126                         if (err == -ENOENT)
1127                                 break;
1128                         return err;
1129                 }
1130 
1131                 fname_name(&nm) = dent->name;
1132                 fname_len(&nm) = le16_to_cpu(dent->nlen);
1133                 size += CALC_DENT_SIZE(fname_len(&nm));
1134                 if (dent->type == UBIFS_ITYPE_DIR)
1135                         nlink += 1;
1136                 kfree(pdent);
1137                 pdent = dent;
1138                 key_read(c, &dent->key, &key);
1139         }
1140         kfree(pdent);
1141 
1142         if (i_size_read(dir) != size) {
1143                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1144                           dir->i_ino, (unsigned long long)i_size_read(dir),
1145                           (unsigned long long)size);
1146                 ubifs_dump_inode(c, dir);
1147                 dump_stack();
1148                 return -EINVAL;
1149         }
1150         if (dir->i_nlink != nlink) {
1151                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1152                           dir->i_ino, dir->i_nlink, nlink);
1153                 ubifs_dump_inode(c, dir);
1154                 dump_stack();
1155                 return -EINVAL;
1156         }
1157 
1158         return 0;
1159 }
1160 
1161 /**
1162  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1163  * @c: UBIFS file-system description object
1164  * @zbr1: first zbranch
1165  * @zbr2: following zbranch
1166  *
1167  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1168  * names of the direntries/xentries which are referred by the keys. This
1169  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1170  * sure the name of direntry/xentry referred by @zbr1 is less than
1171  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1172  * and a negative error code in case of failure.
1173  */
1174 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1175                                struct ubifs_zbranch *zbr2)
1176 {
1177         int err, nlen1, nlen2, cmp;
1178         struct ubifs_dent_node *dent1, *dent2;
1179         union ubifs_key key;
1180         char key_buf[DBG_KEY_BUF_LEN];
1181 
1182         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1183         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1184         if (!dent1)
1185                 return -ENOMEM;
1186         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1187         if (!dent2) {
1188                 err = -ENOMEM;
1189                 goto out_free;
1190         }
1191 
1192         err = ubifs_tnc_read_node(c, zbr1, dent1);
1193         if (err)
1194                 goto out_free;
1195         err = ubifs_validate_entry(c, dent1);
1196         if (err)
1197                 goto out_free;
1198 
1199         err = ubifs_tnc_read_node(c, zbr2, dent2);
1200         if (err)
1201                 goto out_free;
1202         err = ubifs_validate_entry(c, dent2);
1203         if (err)
1204                 goto out_free;
1205 
1206         /* Make sure node keys are the same as in zbranch */
1207         err = 1;
1208         key_read(c, &dent1->key, &key);
1209         if (keys_cmp(c, &zbr1->key, &key)) {
1210                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1211                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1212                                                        DBG_KEY_BUF_LEN));
1213                 ubifs_err(c, "but it should have key %s according to tnc",
1214                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1215                                            DBG_KEY_BUF_LEN));
1216                 ubifs_dump_node(c, dent1);
1217                 goto out_free;
1218         }
1219 
1220         key_read(c, &dent2->key, &key);
1221         if (keys_cmp(c, &zbr2->key, &key)) {
1222                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1223                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1224                                                        DBG_KEY_BUF_LEN));
1225                 ubifs_err(c, "but it should have key %s according to tnc",
1226                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1227                                            DBG_KEY_BUF_LEN));
1228                 ubifs_dump_node(c, dent2);
1229                 goto out_free;
1230         }
1231 
1232         nlen1 = le16_to_cpu(dent1->nlen);
1233         nlen2 = le16_to_cpu(dent2->nlen);
1234 
1235         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1236         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1237                 err = 0;
1238                 goto out_free;
1239         }
1240         if (cmp == 0 && nlen1 == nlen2)
1241                 ubifs_err(c, "2 xent/dent nodes with the same name");
1242         else
1243                 ubifs_err(c, "bad order of colliding key %s",
1244                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1245 
1246         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1247         ubifs_dump_node(c, dent1);
1248         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1249         ubifs_dump_node(c, dent2);
1250 
1251 out_free:
1252         kfree(dent2);
1253         kfree(dent1);
1254         return err;
1255 }
1256 
1257 /**
1258  * dbg_check_znode - check if znode is all right.
1259  * @c: UBIFS file-system description object
1260  * @zbr: zbranch which points to this znode
1261  *
1262  * This function makes sure that znode referred to by @zbr is all right.
1263  * Returns zero if it is, and %-EINVAL if it is not.
1264  */
1265 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1266 {
1267         struct ubifs_znode *znode = zbr->znode;
1268         struct ubifs_znode *zp = znode->parent;
1269         int n, err, cmp;
1270 
1271         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1272                 err = 1;
1273                 goto out;
1274         }
1275         if (znode->level < 0) {
1276                 err = 2;
1277                 goto out;
1278         }
1279         if (znode->iip < 0 || znode->iip >= c->fanout) {
1280                 err = 3;
1281                 goto out;
1282         }
1283 
1284         if (zbr->len == 0)
1285                 /* Only dirty zbranch may have no on-flash nodes */
1286                 if (!ubifs_zn_dirty(znode)) {
1287                         err = 4;
1288                         goto out;
1289                 }
1290 
1291         if (ubifs_zn_dirty(znode)) {
1292                 /*
1293                  * If znode is dirty, its parent has to be dirty as well. The
1294                  * order of the operation is important, so we have to have
1295                  * memory barriers.
1296                  */
1297                 smp_mb();
1298                 if (zp && !ubifs_zn_dirty(zp)) {
1299                         /*
1300                          * The dirty flag is atomic and is cleared outside the
1301                          * TNC mutex, so znode's dirty flag may now have
1302                          * been cleared. The child is always cleared before the
1303                          * parent, so we just need to check again.
1304                          */
1305                         smp_mb();
1306                         if (ubifs_zn_dirty(znode)) {
1307                                 err = 5;
1308                                 goto out;
1309                         }
1310                 }
1311         }
1312 
1313         if (zp) {
1314                 const union ubifs_key *min, *max;
1315 
1316                 if (znode->level != zp->level - 1) {
1317                         err = 6;
1318                         goto out;
1319                 }
1320 
1321                 /* Make sure the 'parent' pointer in our znode is correct */
1322                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1323                 if (!err) {
1324                         /* This zbranch does not exist in the parent */
1325                         err = 7;
1326                         goto out;
1327                 }
1328 
1329                 if (znode->iip >= zp->child_cnt) {
1330                         err = 8;
1331                         goto out;
1332                 }
1333 
1334                 if (znode->iip != n) {
1335                         /* This may happen only in case of collisions */
1336                         if (keys_cmp(c, &zp->zbranch[n].key,
1337                                      &zp->zbranch[znode->iip].key)) {
1338                                 err = 9;
1339                                 goto out;
1340                         }
1341                         n = znode->iip;
1342                 }
1343 
1344                 /*
1345                  * Make sure that the first key in our znode is greater than or
1346                  * equal to the key in the pointing zbranch.
1347                  */
1348                 min = &zbr->key;
1349                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1350                 if (cmp == 1) {
1351                         err = 10;
1352                         goto out;
1353                 }
1354 
1355                 if (n + 1 < zp->child_cnt) {
1356                         max = &zp->zbranch[n + 1].key;
1357 
1358                         /*
1359                          * Make sure the last key in our znode is less or
1360                          * equivalent than the key in the zbranch which goes
1361                          * after our pointing zbranch.
1362                          */
1363                         cmp = keys_cmp(c, max,
1364                                 &znode->zbranch[znode->child_cnt - 1].key);
1365                         if (cmp == -1) {
1366                                 err = 11;
1367                                 goto out;
1368                         }
1369                 }
1370         } else {
1371                 /* This may only be root znode */
1372                 if (zbr != &c->zroot) {
1373                         err = 12;
1374                         goto out;
1375                 }
1376         }
1377 
1378         /*
1379          * Make sure that next key is greater or equivalent then the previous
1380          * one.
1381          */
1382         for (n = 1; n < znode->child_cnt; n++) {
1383                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1384                                &znode->zbranch[n].key);
1385                 if (cmp > 0) {
1386                         err = 13;
1387                         goto out;
1388                 }
1389                 if (cmp == 0) {
1390                         /* This can only be keys with colliding hash */
1391                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1392                                 err = 14;
1393                                 goto out;
1394                         }
1395 
1396                         if (znode->level != 0 || c->replaying)
1397                                 continue;
1398 
1399                         /*
1400                          * Colliding keys should follow binary order of
1401                          * corresponding xentry/dentry names.
1402                          */
1403                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1404                                                   &znode->zbranch[n]);
1405                         if (err < 0)
1406                                 return err;
1407                         if (err) {
1408                                 err = 15;
1409                                 goto out;
1410                         }
1411                 }
1412         }
1413 
1414         for (n = 0; n < znode->child_cnt; n++) {
1415                 if (!znode->zbranch[n].znode &&
1416                     (znode->zbranch[n].lnum == 0 ||
1417                      znode->zbranch[n].len == 0)) {
1418                         err = 16;
1419                         goto out;
1420                 }
1421 
1422                 if (znode->zbranch[n].lnum != 0 &&
1423                     znode->zbranch[n].len == 0) {
1424                         err = 17;
1425                         goto out;
1426                 }
1427 
1428                 if (znode->zbranch[n].lnum == 0 &&
1429                     znode->zbranch[n].len != 0) {
1430                         err = 18;
1431                         goto out;
1432                 }
1433 
1434                 if (znode->zbranch[n].lnum == 0 &&
1435                     znode->zbranch[n].offs != 0) {
1436                         err = 19;
1437                         goto out;
1438                 }
1439 
1440                 if (znode->level != 0 && znode->zbranch[n].znode)
1441                         if (znode->zbranch[n].znode->parent != znode) {
1442                                 err = 20;
1443                                 goto out;
1444                         }
1445         }
1446 
1447         return 0;
1448 
1449 out:
1450         ubifs_err(c, "failed, error %d", err);
1451         ubifs_msg(c, "dump of the znode");
1452         ubifs_dump_znode(c, znode);
1453         if (zp) {
1454                 ubifs_msg(c, "dump of the parent znode");
1455                 ubifs_dump_znode(c, zp);
1456         }
1457         dump_stack();
1458         return -EINVAL;
1459 }
1460 
1461 /**
1462  * dbg_check_tnc - check TNC tree.
1463  * @c: UBIFS file-system description object
1464  * @extra: do extra checks that are possible at start commit
1465  *
1466  * This function traverses whole TNC tree and checks every znode. Returns zero
1467  * if everything is all right and %-EINVAL if something is wrong with TNC.
1468  */
1469 int dbg_check_tnc(struct ubifs_info *c, int extra)
1470 {
1471         struct ubifs_znode *znode;
1472         long clean_cnt = 0, dirty_cnt = 0;
1473         int err, last;
1474 
1475         if (!dbg_is_chk_index(c))
1476                 return 0;
1477 
1478         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1479         if (!c->zroot.znode)
1480                 return 0;
1481 
1482         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1483         while (1) {
1484                 struct ubifs_znode *prev;
1485                 struct ubifs_zbranch *zbr;
1486 
1487                 if (!znode->parent)
1488                         zbr = &c->zroot;
1489                 else
1490                         zbr = &znode->parent->zbranch[znode->iip];
1491 
1492                 err = dbg_check_znode(c, zbr);
1493                 if (err)
1494                         return err;
1495 
1496                 if (extra) {
1497                         if (ubifs_zn_dirty(znode))
1498                                 dirty_cnt += 1;
1499                         else
1500                                 clean_cnt += 1;
1501                 }
1502 
1503                 prev = znode;
1504                 znode = ubifs_tnc_postorder_next(znode);
1505                 if (!znode)
1506                         break;
1507 
1508                 /*
1509                  * If the last key of this znode is equivalent to the first key
1510                  * of the next znode (collision), then check order of the keys.
1511                  */
1512                 last = prev->child_cnt - 1;
1513                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1514                     !keys_cmp(c, &prev->zbranch[last].key,
1515                               &znode->zbranch[0].key)) {
1516                         err = dbg_check_key_order(c, &prev->zbranch[last],
1517                                                   &znode->zbranch[0]);
1518                         if (err < 0)
1519                                 return err;
1520                         if (err) {
1521                                 ubifs_msg(c, "first znode");
1522                                 ubifs_dump_znode(c, prev);
1523                                 ubifs_msg(c, "second znode");
1524                                 ubifs_dump_znode(c, znode);
1525                                 return -EINVAL;
1526                         }
1527                 }
1528         }
1529 
1530         if (extra) {
1531                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1532                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1533                                   atomic_long_read(&c->clean_zn_cnt),
1534                                   clean_cnt);
1535                         return -EINVAL;
1536                 }
1537                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1538                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1539                                   atomic_long_read(&c->dirty_zn_cnt),
1540                                   dirty_cnt);
1541                         return -EINVAL;
1542                 }
1543         }
1544 
1545         return 0;
1546 }
1547 
1548 /**
1549  * dbg_walk_index - walk the on-flash index.
1550  * @c: UBIFS file-system description object
1551  * @leaf_cb: called for each leaf node
1552  * @znode_cb: called for each indexing node
1553  * @priv: private data which is passed to callbacks
1554  *
1555  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1556  * node and @znode_cb for each indexing node. Returns zero in case of success
1557  * and a negative error code in case of failure.
1558  *
1559  * It would be better if this function removed every znode it pulled to into
1560  * the TNC, so that the behavior more closely matched the non-debugging
1561  * behavior.
1562  */
1563 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1564                    dbg_znode_callback znode_cb, void *priv)
1565 {
1566         int err;
1567         struct ubifs_zbranch *zbr;
1568         struct ubifs_znode *znode, *child;
1569 
1570         mutex_lock(&c->tnc_mutex);
1571         /* If the root indexing node is not in TNC - pull it */
1572         if (!c->zroot.znode) {
1573                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1574                 if (IS_ERR(c->zroot.znode)) {
1575                         err = PTR_ERR(c->zroot.znode);
1576                         c->zroot.znode = NULL;
1577                         goto out_unlock;
1578                 }
1579         }
1580 
1581         /*
1582          * We are going to traverse the indexing tree in the postorder manner.
1583          * Go down and find the leftmost indexing node where we are going to
1584          * start from.
1585          */
1586         znode = c->zroot.znode;
1587         while (znode->level > 0) {
1588                 zbr = &znode->zbranch[0];
1589                 child = zbr->znode;
1590                 if (!child) {
1591                         child = ubifs_load_znode(c, zbr, znode, 0);
1592                         if (IS_ERR(child)) {
1593                                 err = PTR_ERR(child);
1594                                 goto out_unlock;
1595                         }
1596                         zbr->znode = child;
1597                 }
1598 
1599                 znode = child;
1600         }
1601 
1602         /* Iterate over all indexing nodes */
1603         while (1) {
1604                 int idx;
1605 
1606                 cond_resched();
1607 
1608                 if (znode_cb) {
1609                         err = znode_cb(c, znode, priv);
1610                         if (err) {
1611                                 ubifs_err(c, "znode checking function returned error %d",
1612                                           err);
1613                                 ubifs_dump_znode(c, znode);
1614                                 goto out_dump;
1615                         }
1616                 }
1617                 if (leaf_cb && znode->level == 0) {
1618                         for (idx = 0; idx < znode->child_cnt; idx++) {
1619                                 zbr = &znode->zbranch[idx];
1620                                 err = leaf_cb(c, zbr, priv);
1621                                 if (err) {
1622                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1623                                                   err, zbr->lnum, zbr->offs);
1624                                         goto out_dump;
1625                                 }
1626                         }
1627                 }
1628 
1629                 if (!znode->parent)
1630                         break;
1631 
1632                 idx = znode->iip + 1;
1633                 znode = znode->parent;
1634                 if (idx < znode->child_cnt) {
1635                         /* Switch to the next index in the parent */
1636                         zbr = &znode->zbranch[idx];
1637                         child = zbr->znode;
1638                         if (!child) {
1639                                 child = ubifs_load_znode(c, zbr, znode, idx);
1640                                 if (IS_ERR(child)) {
1641                                         err = PTR_ERR(child);
1642                                         goto out_unlock;
1643                                 }
1644                                 zbr->znode = child;
1645                         }
1646                         znode = child;
1647                 } else
1648                         /*
1649                          * This is the last child, switch to the parent and
1650                          * continue.
1651                          */
1652                         continue;
1653 
1654                 /* Go to the lowest leftmost znode in the new sub-tree */
1655                 while (znode->level > 0) {
1656                         zbr = &znode->zbranch[0];
1657                         child = zbr->znode;
1658                         if (!child) {
1659                                 child = ubifs_load_znode(c, zbr, znode, 0);
1660                                 if (IS_ERR(child)) {
1661                                         err = PTR_ERR(child);
1662                                         goto out_unlock;
1663                                 }
1664                                 zbr->znode = child;
1665                         }
1666                         znode = child;
1667                 }
1668         }
1669 
1670         mutex_unlock(&c->tnc_mutex);
1671         return 0;
1672 
1673 out_dump:
1674         if (znode->parent)
1675                 zbr = &znode->parent->zbranch[znode->iip];
1676         else
1677                 zbr = &c->zroot;
1678         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1679         ubifs_dump_znode(c, znode);
1680 out_unlock:
1681         mutex_unlock(&c->tnc_mutex);
1682         return err;
1683 }
1684 
1685 /**
1686  * add_size - add znode size to partially calculated index size.
1687  * @c: UBIFS file-system description object
1688  * @znode: znode to add size for
1689  * @priv: partially calculated index size
1690  *
1691  * This is a helper function for 'dbg_check_idx_size()' which is called for
1692  * every indexing node and adds its size to the 'long long' variable pointed to
1693  * by @priv.
1694  */
1695 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1696 {
1697         long long *idx_size = priv;
1698         int add;
1699 
1700         add = ubifs_idx_node_sz(c, znode->child_cnt);
1701         add = ALIGN(add, 8);
1702         *idx_size += add;
1703         return 0;
1704 }
1705 
1706 /**
1707  * dbg_check_idx_size - check index size.
1708  * @c: UBIFS file-system description object
1709  * @idx_size: size to check
1710  *
1711  * This function walks the UBIFS index, calculates its size and checks that the
1712  * size is equivalent to @idx_size. Returns zero in case of success and a
1713  * negative error code in case of failure.
1714  */
1715 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1716 {
1717         int err;
1718         long long calc = 0;
1719 
1720         if (!dbg_is_chk_index(c))
1721                 return 0;
1722 
1723         err = dbg_walk_index(c, NULL, add_size, &calc);
1724         if (err) {
1725                 ubifs_err(c, "error %d while walking the index", err);
1726                 return err;
1727         }
1728 
1729         if (calc != idx_size) {
1730                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1731                           calc, idx_size);
1732                 dump_stack();
1733                 return -EINVAL;
1734         }
1735 
1736         return 0;
1737 }
1738 
1739 /**
1740  * struct fsck_inode - information about an inode used when checking the file-system.
1741  * @rb: link in the RB-tree of inodes
1742  * @inum: inode number
1743  * @mode: inode type, permissions, etc
1744  * @nlink: inode link count
1745  * @xattr_cnt: count of extended attributes
1746  * @references: how many directory/xattr entries refer this inode (calculated
1747  *              while walking the index)
1748  * @calc_cnt: for directory inode count of child directories
1749  * @size: inode size (read from on-flash inode)
1750  * @xattr_sz: summary size of all extended attributes (read from on-flash
1751  *            inode)
1752  * @calc_sz: for directories calculated directory size
1753  * @calc_xcnt: count of extended attributes
1754  * @calc_xsz: calculated summary size of all extended attributes
1755  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1756  *             inode (read from on-flash inode)
1757  * @calc_xnms: calculated sum of lengths of all extended attribute names
1758  */
1759 struct fsck_inode {
1760         struct rb_node rb;
1761         ino_t inum;
1762         umode_t mode;
1763         unsigned int nlink;
1764         unsigned int xattr_cnt;
1765         int references;
1766         int calc_cnt;
1767         long long size;
1768         unsigned int xattr_sz;
1769         long long calc_sz;
1770         long long calc_xcnt;
1771         long long calc_xsz;
1772         unsigned int xattr_nms;
1773         long long calc_xnms;
1774 };
1775 
1776 /**
1777  * struct fsck_data - private FS checking information.
1778  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1779  */
1780 struct fsck_data {
1781         struct rb_root inodes;
1782 };
1783 
1784 /**
1785  * add_inode - add inode information to RB-tree of inodes.
1786  * @c: UBIFS file-system description object
1787  * @fsckd: FS checking information
1788  * @ino: raw UBIFS inode to add
1789  *
1790  * This is a helper function for 'check_leaf()' which adds information about
1791  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1792  * case of success and a negative error code in case of failure.
1793  */
1794 static struct fsck_inode *add_inode(struct ubifs_info *c,
1795                                     struct fsck_data *fsckd,
1796                                     struct ubifs_ino_node *ino)
1797 {
1798         struct rb_node **p, *parent = NULL;
1799         struct fsck_inode *fscki;
1800         ino_t inum = key_inum_flash(c, &ino->key);
1801         struct inode *inode;
1802         struct ubifs_inode *ui;
1803 
1804         p = &fsckd->inodes.rb_node;
1805         while (*p) {
1806                 parent = *p;
1807                 fscki = rb_entry(parent, struct fsck_inode, rb);
1808                 if (inum < fscki->inum)
1809                         p = &(*p)->rb_left;
1810                 else if (inum > fscki->inum)
1811                         p = &(*p)->rb_right;
1812                 else
1813                         return fscki;
1814         }
1815 
1816         if (inum > c->highest_inum) {
1817                 ubifs_err(c, "too high inode number, max. is %lu",
1818                           (unsigned long)c->highest_inum);
1819                 return ERR_PTR(-EINVAL);
1820         }
1821 
1822         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1823         if (!fscki)
1824                 return ERR_PTR(-ENOMEM);
1825 
1826         inode = ilookup(c->vfs_sb, inum);
1827 
1828         fscki->inum = inum;
1829         /*
1830          * If the inode is present in the VFS inode cache, use it instead of
1831          * the on-flash inode which might be out-of-date. E.g., the size might
1832          * be out-of-date. If we do not do this, the following may happen, for
1833          * example:
1834          *   1. A power cut happens
1835          *   2. We mount the file-system R/O, the replay process fixes up the
1836          *      inode size in the VFS cache, but on on-flash.
1837          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1838          *      size.
1839          */
1840         if (!inode) {
1841                 fscki->nlink = le32_to_cpu(ino->nlink);
1842                 fscki->size = le64_to_cpu(ino->size);
1843                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1844                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1845                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1846                 fscki->mode = le32_to_cpu(ino->mode);
1847         } else {
1848                 ui = ubifs_inode(inode);
1849                 fscki->nlink = inode->i_nlink;
1850                 fscki->size = inode->i_size;
1851                 fscki->xattr_cnt = ui->xattr_cnt;
1852                 fscki->xattr_sz = ui->xattr_size;
1853                 fscki->xattr_nms = ui->xattr_names;
1854                 fscki->mode = inode->i_mode;
1855                 iput(inode);
1856         }
1857 
1858         if (S_ISDIR(fscki->mode)) {
1859                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1860                 fscki->calc_cnt = 2;
1861         }
1862 
1863         rb_link_node(&fscki->rb, parent, p);
1864         rb_insert_color(&fscki->rb, &fsckd->inodes);
1865 
1866         return fscki;
1867 }
1868 
1869 /**
1870  * search_inode - search inode in the RB-tree of inodes.
1871  * @fsckd: FS checking information
1872  * @inum: inode number to search
1873  *
1874  * This is a helper function for 'check_leaf()' which searches inode @inum in
1875  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1876  * the inode was not found.
1877  */
1878 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1879 {
1880         struct rb_node *p;
1881         struct fsck_inode *fscki;
1882 
1883         p = fsckd->inodes.rb_node;
1884         while (p) {
1885                 fscki = rb_entry(p, struct fsck_inode, rb);
1886                 if (inum < fscki->inum)
1887                         p = p->rb_left;
1888                 else if (inum > fscki->inum)
1889                         p = p->rb_right;
1890                 else
1891                         return fscki;
1892         }
1893         return NULL;
1894 }
1895 
1896 /**
1897  * read_add_inode - read inode node and add it to RB-tree of inodes.
1898  * @c: UBIFS file-system description object
1899  * @fsckd: FS checking information
1900  * @inum: inode number to read
1901  *
1902  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1903  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1904  * information pointer in case of success and a negative error code in case of
1905  * failure.
1906  */
1907 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1908                                          struct fsck_data *fsckd, ino_t inum)
1909 {
1910         int n, err;
1911         union ubifs_key key;
1912         struct ubifs_znode *znode;
1913         struct ubifs_zbranch *zbr;
1914         struct ubifs_ino_node *ino;
1915         struct fsck_inode *fscki;
1916 
1917         fscki = search_inode(fsckd, inum);
1918         if (fscki)
1919                 return fscki;
1920 
1921         ino_key_init(c, &key, inum);
1922         err = ubifs_lookup_level0(c, &key, &znode, &n);
1923         if (!err) {
1924                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1925                 return ERR_PTR(-ENOENT);
1926         } else if (err < 0) {
1927                 ubifs_err(c, "error %d while looking up inode %lu",
1928                           err, (unsigned long)inum);
1929                 return ERR_PTR(err);
1930         }
1931 
1932         zbr = &znode->zbranch[n];
1933         if (zbr->len < UBIFS_INO_NODE_SZ) {
1934                 ubifs_err(c, "bad node %lu node length %d",
1935                           (unsigned long)inum, zbr->len);
1936                 return ERR_PTR(-EINVAL);
1937         }
1938 
1939         ino = kmalloc(zbr->len, GFP_NOFS);
1940         if (!ino)
1941                 return ERR_PTR(-ENOMEM);
1942 
1943         err = ubifs_tnc_read_node(c, zbr, ino);
1944         if (err) {
1945                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1946                           zbr->lnum, zbr->offs, err);
1947                 kfree(ino);
1948                 return ERR_PTR(err);
1949         }
1950 
1951         fscki = add_inode(c, fsckd, ino);
1952         kfree(ino);
1953         if (IS_ERR(fscki)) {
1954                 ubifs_err(c, "error %ld while adding inode %lu node",
1955                           PTR_ERR(fscki), (unsigned long)inum);
1956                 return fscki;
1957         }
1958 
1959         return fscki;
1960 }
1961 
1962 /**
1963  * check_leaf - check leaf node.
1964  * @c: UBIFS file-system description object
1965  * @zbr: zbranch of the leaf node to check
1966  * @priv: FS checking information
1967  *
1968  * This is a helper function for 'dbg_check_filesystem()' which is called for
1969  * every single leaf node while walking the indexing tree. It checks that the
1970  * leaf node referred from the indexing tree exists, has correct CRC, and does
1971  * some other basic validation. This function is also responsible for building
1972  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1973  * calculates reference count, size, etc for each inode in order to later
1974  * compare them to the information stored inside the inodes and detect possible
1975  * inconsistencies. Returns zero in case of success and a negative error code
1976  * in case of failure.
1977  */
1978 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1979                       void *priv)
1980 {
1981         ino_t inum;
1982         void *node;
1983         struct ubifs_ch *ch;
1984         int err, type = key_type(c, &zbr->key);
1985         struct fsck_inode *fscki;
1986 
1987         if (zbr->len < UBIFS_CH_SZ) {
1988                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1989                           zbr->len, zbr->lnum, zbr->offs);
1990                 return -EINVAL;
1991         }
1992 
1993         node = kmalloc(zbr->len, GFP_NOFS);
1994         if (!node)
1995                 return -ENOMEM;
1996 
1997         err = ubifs_tnc_read_node(c, zbr, node);
1998         if (err) {
1999                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2000                           zbr->lnum, zbr->offs, err);
2001                 goto out_free;
2002         }
2003 
2004         /* If this is an inode node, add it to RB-tree of inodes */
2005         if (type == UBIFS_INO_KEY) {
2006                 fscki = add_inode(c, priv, node);
2007                 if (IS_ERR(fscki)) {
2008                         err = PTR_ERR(fscki);
2009                         ubifs_err(c, "error %d while adding inode node", err);
2010                         goto out_dump;
2011                 }
2012                 goto out;
2013         }
2014 
2015         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2016             type != UBIFS_DATA_KEY) {
2017                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2018                           type, zbr->lnum, zbr->offs);
2019                 err = -EINVAL;
2020                 goto out_free;
2021         }
2022 
2023         ch = node;
2024         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2025                 ubifs_err(c, "too high sequence number, max. is %llu",
2026                           c->max_sqnum);
2027                 err = -EINVAL;
2028                 goto out_dump;
2029         }
2030 
2031         if (type == UBIFS_DATA_KEY) {
2032                 long long blk_offs;
2033                 struct ubifs_data_node *dn = node;
2034 
2035                 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2036 
2037                 /*
2038                  * Search the inode node this data node belongs to and insert
2039                  * it to the RB-tree of inodes.
2040                  */
2041                 inum = key_inum_flash(c, &dn->key);
2042                 fscki = read_add_inode(c, priv, inum);
2043                 if (IS_ERR(fscki)) {
2044                         err = PTR_ERR(fscki);
2045                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2046                                   err, (unsigned long)inum);
2047                         goto out_dump;
2048                 }
2049 
2050                 /* Make sure the data node is within inode size */
2051                 blk_offs = key_block_flash(c, &dn->key);
2052                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2053                 blk_offs += le32_to_cpu(dn->size);
2054                 if (blk_offs > fscki->size) {
2055                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2056                                   zbr->lnum, zbr->offs, fscki->size);
2057                         err = -EINVAL;
2058                         goto out_dump;
2059                 }
2060         } else {
2061                 int nlen;
2062                 struct ubifs_dent_node *dent = node;
2063                 struct fsck_inode *fscki1;
2064 
2065                 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2066 
2067                 err = ubifs_validate_entry(c, dent);
2068                 if (err)
2069                         goto out_dump;
2070 
2071                 /*
2072                  * Search the inode node this entry refers to and the parent
2073                  * inode node and insert them to the RB-tree of inodes.
2074                  */
2075                 inum = le64_to_cpu(dent->inum);
2076                 fscki = read_add_inode(c, priv, inum);
2077                 if (IS_ERR(fscki)) {
2078                         err = PTR_ERR(fscki);
2079                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2080                                   err, (unsigned long)inum);
2081                         goto out_dump;
2082                 }
2083 
2084                 /* Count how many direntries or xentries refers this inode */
2085                 fscki->references += 1;
2086 
2087                 inum = key_inum_flash(c, &dent->key);
2088                 fscki1 = read_add_inode(c, priv, inum);
2089                 if (IS_ERR(fscki1)) {
2090                         err = PTR_ERR(fscki1);
2091                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2092                                   err, (unsigned long)inum);
2093                         goto out_dump;
2094                 }
2095 
2096                 nlen = le16_to_cpu(dent->nlen);
2097                 if (type == UBIFS_XENT_KEY) {
2098                         fscki1->calc_xcnt += 1;
2099                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2100                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2101                         fscki1->calc_xnms += nlen;
2102                 } else {
2103                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2104                         if (dent->type == UBIFS_ITYPE_DIR)
2105                                 fscki1->calc_cnt += 1;
2106                 }
2107         }
2108 
2109 out:
2110         kfree(node);
2111         return 0;
2112 
2113 out_dump:
2114         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2115         ubifs_dump_node(c, node);
2116 out_free:
2117         kfree(node);
2118         return err;
2119 }
2120 
2121 /**
2122  * free_inodes - free RB-tree of inodes.
2123  * @fsckd: FS checking information
2124  */
2125 static void free_inodes(struct fsck_data *fsckd)
2126 {
2127         struct fsck_inode *fscki, *n;
2128 
2129         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2130                 kfree(fscki);
2131 }
2132 
2133 /**
2134  * check_inodes - checks all inodes.
2135  * @c: UBIFS file-system description object
2136  * @fsckd: FS checking information
2137  *
2138  * This is a helper function for 'dbg_check_filesystem()' which walks the
2139  * RB-tree of inodes after the index scan has been finished, and checks that
2140  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2141  * %-EINVAL if not, and a negative error code in case of failure.
2142  */
2143 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2144 {
2145         int n, err;
2146         union ubifs_key key;
2147         struct ubifs_znode *znode;
2148         struct ubifs_zbranch *zbr;
2149         struct ubifs_ino_node *ino;
2150         struct fsck_inode *fscki;
2151         struct rb_node *this = rb_first(&fsckd->inodes);
2152 
2153         while (this) {
2154                 fscki = rb_entry(this, struct fsck_inode, rb);
2155                 this = rb_next(this);
2156 
2157                 if (S_ISDIR(fscki->mode)) {
2158                         /*
2159                          * Directories have to have exactly one reference (they
2160                          * cannot have hardlinks), although root inode is an
2161                          * exception.
2162                          */
2163                         if (fscki->inum != UBIFS_ROOT_INO &&
2164                             fscki->references != 1) {
2165                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2166                                           (unsigned long)fscki->inum,
2167                                           fscki->references);
2168                                 goto out_dump;
2169                         }
2170                         if (fscki->inum == UBIFS_ROOT_INO &&
2171                             fscki->references != 0) {
2172                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2173                                           (unsigned long)fscki->inum,
2174                                           fscki->references);
2175                                 goto out_dump;
2176                         }
2177                         if (fscki->calc_sz != fscki->size) {
2178                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2179                                           (unsigned long)fscki->inum,
2180                                           fscki->size, fscki->calc_sz);
2181                                 goto out_dump;
2182                         }
2183                         if (fscki->calc_cnt != fscki->nlink) {
2184                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2185                                           (unsigned long)fscki->inum,
2186                                           fscki->nlink, fscki->calc_cnt);
2187                                 goto out_dump;
2188                         }
2189                 } else {
2190                         if (fscki->references != fscki->nlink) {
2191                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2192                                           (unsigned long)fscki->inum,
2193                                           fscki->nlink, fscki->references);
2194                                 goto out_dump;
2195                         }
2196                 }
2197                 if (fscki->xattr_sz != fscki->calc_xsz) {
2198                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2199                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2200                                   fscki->calc_xsz);
2201                         goto out_dump;
2202                 }
2203                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2204                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2205                                   (unsigned long)fscki->inum,
2206                                   fscki->xattr_cnt, fscki->calc_xcnt);
2207                         goto out_dump;
2208                 }
2209                 if (fscki->xattr_nms != fscki->calc_xnms) {
2210                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2211                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2212                                   fscki->calc_xnms);
2213                         goto out_dump;
2214                 }
2215         }
2216 
2217         return 0;
2218 
2219 out_dump:
2220         /* Read the bad inode and dump it */
2221         ino_key_init(c, &key, fscki->inum);
2222         err = ubifs_lookup_level0(c, &key, &znode, &n);
2223         if (!err) {
2224                 ubifs_err(c, "inode %lu not found in index",
2225                           (unsigned long)fscki->inum);
2226                 return -ENOENT;
2227         } else if (err < 0) {
2228                 ubifs_err(c, "error %d while looking up inode %lu",
2229                           err, (unsigned long)fscki->inum);
2230                 return err;
2231         }
2232 
2233         zbr = &znode->zbranch[n];
2234         ino = kmalloc(zbr->len, GFP_NOFS);
2235         if (!ino)
2236                 return -ENOMEM;
2237 
2238         err = ubifs_tnc_read_node(c, zbr, ino);
2239         if (err) {
2240                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2241                           zbr->lnum, zbr->offs, err);
2242                 kfree(ino);
2243                 return err;
2244         }
2245 
2246         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2247                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2248         ubifs_dump_node(c, ino);
2249         kfree(ino);
2250         return -EINVAL;
2251 }
2252 
2253 /**
2254  * dbg_check_filesystem - check the file-system.
2255  * @c: UBIFS file-system description object
2256  *
2257  * This function checks the file system, namely:
2258  * o makes sure that all leaf nodes exist and their CRCs are correct;
2259  * o makes sure inode nlink, size, xattr size/count are correct (for all
2260  *   inodes).
2261  *
2262  * The function reads whole indexing tree and all nodes, so it is pretty
2263  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2264  * not, and a negative error code in case of failure.
2265  */
2266 int dbg_check_filesystem(struct ubifs_info *c)
2267 {
2268         int err;
2269         struct fsck_data fsckd;
2270 
2271         if (!dbg_is_chk_fs(c))
2272                 return 0;
2273 
2274         fsckd.inodes = RB_ROOT;
2275         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2276         if (err)
2277                 goto out_free;
2278 
2279         err = check_inodes(c, &fsckd);
2280         if (err)
2281                 goto out_free;
2282 
2283         free_inodes(&fsckd);
2284         return 0;
2285 
2286 out_free:
2287         ubifs_err(c, "file-system check failed with error %d", err);
2288         dump_stack();
2289         free_inodes(&fsckd);
2290         return err;
2291 }
2292 
2293 /**
2294  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2295  * @c: UBIFS file-system description object
2296  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2297  *
2298  * This function returns zero if the list of data nodes is sorted correctly,
2299  * and %-EINVAL if not.
2300  */
2301 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2302 {
2303         struct list_head *cur;
2304         struct ubifs_scan_node *sa, *sb;
2305 
2306         if (!dbg_is_chk_gen(c))
2307                 return 0;
2308 
2309         for (cur = head->next; cur->next != head; cur = cur->next) {
2310                 ino_t inuma, inumb;
2311                 uint32_t blka, blkb;
2312 
2313                 cond_resched();
2314                 sa = container_of(cur, struct ubifs_scan_node, list);
2315                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2316 
2317                 if (sa->type != UBIFS_DATA_NODE) {
2318                         ubifs_err(c, "bad node type %d", sa->type);
2319                         ubifs_dump_node(c, sa->node);
2320                         return -EINVAL;
2321                 }
2322                 if (sb->type != UBIFS_DATA_NODE) {
2323                         ubifs_err(c, "bad node type %d", sb->type);
2324                         ubifs_dump_node(c, sb->node);
2325                         return -EINVAL;
2326                 }
2327 
2328                 inuma = key_inum(c, &sa->key);
2329                 inumb = key_inum(c, &sb->key);
2330 
2331                 if (inuma < inumb)
2332                         continue;
2333                 if (inuma > inumb) {
2334                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2335                                   (unsigned long)inuma, (unsigned long)inumb);
2336                         goto error_dump;
2337                 }
2338 
2339                 blka = key_block(c, &sa->key);
2340                 blkb = key_block(c, &sb->key);
2341 
2342                 if (blka > blkb) {
2343                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2344                         goto error_dump;
2345                 }
2346                 if (blka == blkb) {
2347                         ubifs_err(c, "two data nodes for the same block");
2348                         goto error_dump;
2349                 }
2350         }
2351 
2352         return 0;
2353 
2354 error_dump:
2355         ubifs_dump_node(c, sa->node);
2356         ubifs_dump_node(c, sb->node);
2357         return -EINVAL;
2358 }
2359 
2360 /**
2361  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2362  * @c: UBIFS file-system description object
2363  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2364  *
2365  * This function returns zero if the list of non-data nodes is sorted correctly,
2366  * and %-EINVAL if not.
2367  */
2368 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2369 {
2370         struct list_head *cur;
2371         struct ubifs_scan_node *sa, *sb;
2372 
2373         if (!dbg_is_chk_gen(c))
2374                 return 0;
2375 
2376         for (cur = head->next; cur->next != head; cur = cur->next) {
2377                 ino_t inuma, inumb;
2378                 uint32_t hasha, hashb;
2379 
2380                 cond_resched();
2381                 sa = container_of(cur, struct ubifs_scan_node, list);
2382                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2383 
2384                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2385                     sa->type != UBIFS_XENT_NODE) {
2386                         ubifs_err(c, "bad node type %d", sa->type);
2387                         ubifs_dump_node(c, sa->node);
2388                         return -EINVAL;
2389                 }
2390                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2391                     sa->type != UBIFS_XENT_NODE) {
2392                         ubifs_err(c, "bad node type %d", sb->type);
2393                         ubifs_dump_node(c, sb->node);
2394                         return -EINVAL;
2395                 }
2396 
2397                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2398                         ubifs_err(c, "non-inode node goes before inode node");
2399                         goto error_dump;
2400                 }
2401 
2402                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2403                         continue;
2404 
2405                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2406                         /* Inode nodes are sorted in descending size order */
2407                         if (sa->len < sb->len) {
2408                                 ubifs_err(c, "smaller inode node goes first");
2409                                 goto error_dump;
2410                         }
2411                         continue;
2412                 }
2413 
2414                 /*
2415                  * This is either a dentry or xentry, which should be sorted in
2416                  * ascending (parent ino, hash) order.
2417                  */
2418                 inuma = key_inum(c, &sa->key);
2419                 inumb = key_inum(c, &sb->key);
2420 
2421                 if (inuma < inumb)
2422                         continue;
2423                 if (inuma > inumb) {
2424                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2425                                   (unsigned long)inuma, (unsigned long)inumb);
2426                         goto error_dump;
2427                 }
2428 
2429                 hasha = key_block(c, &sa->key);
2430                 hashb = key_block(c, &sb->key);
2431 
2432                 if (hasha > hashb) {
2433                         ubifs_err(c, "larger hash %u goes before %u",
2434                                   hasha, hashb);
2435                         goto error_dump;
2436                 }
2437         }
2438 
2439         return 0;
2440 
2441 error_dump:
2442         ubifs_msg(c, "dumping first node");
2443         ubifs_dump_node(c, sa->node);
2444         ubifs_msg(c, "dumping second node");
2445         ubifs_dump_node(c, sb->node);
2446         return -EINVAL;
2447         return 0;
2448 }
2449 
2450 static inline int chance(unsigned int n, unsigned int out_of)
2451 {
2452         return !!((prandom_u32() % out_of) + 1 <= n);
2453 
2454 }
2455 
2456 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2457 {
2458         struct ubifs_debug_info *d = c->dbg;
2459 
2460         ubifs_assert(dbg_is_tst_rcvry(c));
2461 
2462         if (!d->pc_cnt) {
2463                 /* First call - decide delay to the power cut */
2464                 if (chance(1, 2)) {
2465                         unsigned long delay;
2466 
2467                         if (chance(1, 2)) {
2468                                 d->pc_delay = 1;
2469                                 /* Fail within 1 minute */
2470                                 delay = prandom_u32() % 60000;
2471                                 d->pc_timeout = jiffies;
2472                                 d->pc_timeout += msecs_to_jiffies(delay);
2473                                 ubifs_warn(c, "failing after %lums", delay);
2474                         } else {
2475                                 d->pc_delay = 2;
2476                                 delay = prandom_u32() % 10000;
2477                                 /* Fail within 10000 operations */
2478                                 d->pc_cnt_max = delay;
2479                                 ubifs_warn(c, "failing after %lu calls", delay);
2480                         }
2481                 }
2482 
2483                 d->pc_cnt += 1;
2484         }
2485 
2486         /* Determine if failure delay has expired */
2487         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2488                         return 0;
2489         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2490                         return 0;
2491 
2492         if (lnum == UBIFS_SB_LNUM) {
2493                 if (write && chance(1, 2))
2494                         return 0;
2495                 if (chance(19, 20))
2496                         return 0;
2497                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2498         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2499                 if (chance(19, 20))
2500                         return 0;
2501                 ubifs_warn(c, "failing in master LEB %d", lnum);
2502         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2503                 if (write && chance(99, 100))
2504                         return 0;
2505                 if (chance(399, 400))
2506                         return 0;
2507                 ubifs_warn(c, "failing in log LEB %d", lnum);
2508         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2509                 if (write && chance(7, 8))
2510                         return 0;
2511                 if (chance(19, 20))
2512                         return 0;
2513                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2514         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2515                 if (write && chance(1, 2))
2516                         return 0;
2517                 if (chance(9, 10))
2518                         return 0;
2519                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2520         } else if (lnum == c->ihead_lnum) {
2521                 if (chance(99, 100))
2522                         return 0;
2523                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2524         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2525                 if (chance(9, 10))
2526                         return 0;
2527                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2528         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2529                    !ubifs_search_bud(c, lnum)) {
2530                 if (chance(19, 20))
2531                         return 0;
2532                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2533         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2534                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2535                 if (chance(999, 1000))
2536                         return 0;
2537                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2538         } else {
2539                 if (chance(9999, 10000))
2540                         return 0;
2541                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2542         }
2543 
2544         d->pc_happened = 1;
2545         ubifs_warn(c, "========== Power cut emulated ==========");
2546         dump_stack();
2547         return 1;
2548 }
2549 
2550 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2551                         unsigned int len)
2552 {
2553         unsigned int from, to, ffs = chance(1, 2);
2554         unsigned char *p = (void *)buf;
2555 
2556         from = prandom_u32() % len;
2557         /* Corruption span max to end of write unit */
2558         to = min(len, ALIGN(from + 1, c->max_write_size));
2559 
2560         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2561                    ffs ? "0xFFs" : "random data");
2562 
2563         if (ffs)
2564                 memset(p + from, 0xFF, to - from);
2565         else
2566                 prandom_bytes(p + from, to - from);
2567 
2568         return to;
2569 }
2570 
2571 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2572                   int offs, int len)
2573 {
2574         int err, failing;
2575 
2576         if (dbg_is_power_cut(c))
2577                 return -EROFS;
2578 
2579         failing = power_cut_emulated(c, lnum, 1);
2580         if (failing) {
2581                 len = corrupt_data(c, buf, len);
2582                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2583                            len, lnum, offs);
2584         }
2585         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2586         if (err)
2587                 return err;
2588         if (failing)
2589                 return -EROFS;
2590         return 0;
2591 }
2592 
2593 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2594                    int len)
2595 {
2596         int err;
2597 
2598         if (dbg_is_power_cut(c))
2599                 return -EROFS;
2600         if (power_cut_emulated(c, lnum, 1))
2601                 return -EROFS;
2602         err = ubi_leb_change(c->ubi, lnum, buf, len);
2603         if (err)
2604                 return err;
2605         if (power_cut_emulated(c, lnum, 1))
2606                 return -EROFS;
2607         return 0;
2608 }
2609 
2610 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2611 {
2612         int err;
2613 
2614         if (dbg_is_power_cut(c))
2615                 return -EROFS;
2616         if (power_cut_emulated(c, lnum, 0))
2617                 return -EROFS;
2618         err = ubi_leb_unmap(c->ubi, lnum);
2619         if (err)
2620                 return err;
2621         if (power_cut_emulated(c, lnum, 0))
2622                 return -EROFS;
2623         return 0;
2624 }
2625 
2626 int dbg_leb_map(struct ubifs_info *c, int lnum)
2627 {
2628         int err;
2629 
2630         if (dbg_is_power_cut(c))
2631                 return -EROFS;
2632         if (power_cut_emulated(c, lnum, 0))
2633                 return -EROFS;
2634         err = ubi_leb_map(c->ubi, lnum);
2635         if (err)
2636                 return err;
2637         if (power_cut_emulated(c, lnum, 0))
2638                 return -EROFS;
2639         return 0;
2640 }
2641 
2642 /*
2643  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2644  * contain the stuff specific to particular file-system mounts.
2645  */
2646 static struct dentry *dfs_rootdir;
2647 
2648 static int dfs_file_open(struct inode *inode, struct file *file)
2649 {
2650         file->private_data = inode->i_private;
2651         return nonseekable_open(inode, file);
2652 }
2653 
2654 /**
2655  * provide_user_output - provide output to the user reading a debugfs file.
2656  * @val: boolean value for the answer
2657  * @u: the buffer to store the answer at
2658  * @count: size of the buffer
2659  * @ppos: position in the @u output buffer
2660  *
2661  * This is a simple helper function which stores @val boolean value in the user
2662  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2663  * bytes written to @u in case of success and a negative error code in case of
2664  * failure.
2665  */
2666 static int provide_user_output(int val, char __user *u, size_t count,
2667                                loff_t *ppos)
2668 {
2669         char buf[3];
2670 
2671         if (val)
2672                 buf[0] = '1';
2673         else
2674                 buf[0] = '';
2675         buf[1] = '\n';
2676         buf[2] = 0x00;
2677 
2678         return simple_read_from_buffer(u, count, ppos, buf, 2);
2679 }
2680 
2681 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2682                              loff_t *ppos)
2683 {
2684         struct dentry *dent = file->f_path.dentry;
2685         struct ubifs_info *c = file->private_data;
2686         struct ubifs_debug_info *d = c->dbg;
2687         int val;
2688 
2689         if (dent == d->dfs_chk_gen)
2690                 val = d->chk_gen;
2691         else if (dent == d->dfs_chk_index)
2692                 val = d->chk_index;
2693         else if (dent == d->dfs_chk_orph)
2694                 val = d->chk_orph;
2695         else if (dent == d->dfs_chk_lprops)
2696                 val = d->chk_lprops;
2697         else if (dent == d->dfs_chk_fs)
2698                 val = d->chk_fs;
2699         else if (dent == d->dfs_tst_rcvry)
2700                 val = d->tst_rcvry;
2701         else if (dent == d->dfs_ro_error)
2702                 val = c->ro_error;
2703         else
2704                 return -EINVAL;
2705 
2706         return provide_user_output(val, u, count, ppos);
2707 }
2708 
2709 /**
2710  * interpret_user_input - interpret user debugfs file input.
2711  * @u: user-provided buffer with the input
2712  * @count: buffer size
2713  *
2714  * This is a helper function which interpret user input to a boolean UBIFS
2715  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2716  * in case of failure.
2717  */
2718 static int interpret_user_input(const char __user *u, size_t count)
2719 {
2720         size_t buf_size;
2721         char buf[8];
2722 
2723         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2724         if (copy_from_user(buf, u, buf_size))
2725                 return -EFAULT;
2726 
2727         if (buf[0] == '1')
2728                 return 1;
2729         else if (buf[0] == '')
2730                 return 0;
2731 
2732         return -EINVAL;
2733 }
2734 
2735 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2736                               size_t count, loff_t *ppos)
2737 {
2738         struct ubifs_info *c = file->private_data;
2739         struct ubifs_debug_info *d = c->dbg;
2740         struct dentry *dent = file->f_path.dentry;
2741         int val;
2742 
2743         /*
2744          * TODO: this is racy - the file-system might have already been
2745          * unmounted and we'd oops in this case. The plan is to fix it with
2746          * help of 'iterate_supers_type()' which we should have in v3.0: when
2747          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2748          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2749          * superblocks and fine the one with the same UUID, and take the
2750          * locking right.
2751          *
2752          * The other way to go suggested by Al Viro is to create a separate
2753          * 'ubifs-debug' file-system instead.
2754          */
2755         if (file->f_path.dentry == d->dfs_dump_lprops) {
2756                 ubifs_dump_lprops(c);
2757                 return count;
2758         }
2759         if (file->f_path.dentry == d->dfs_dump_budg) {
2760                 ubifs_dump_budg(c, &c->bi);
2761                 return count;
2762         }
2763         if (file->f_path.dentry == d->dfs_dump_tnc) {
2764                 mutex_lock(&c->tnc_mutex);
2765                 ubifs_dump_tnc(c);
2766                 mutex_unlock(&c->tnc_mutex);
2767                 return count;
2768         }
2769 
2770         val = interpret_user_input(u, count);
2771         if (val < 0)
2772                 return val;
2773 
2774         if (dent == d->dfs_chk_gen)
2775                 d->chk_gen = val;
2776         else if (dent == d->dfs_chk_index)
2777                 d->chk_index = val;
2778         else if (dent == d->dfs_chk_orph)
2779                 d->chk_orph = val;
2780         else if (dent == d->dfs_chk_lprops)
2781                 d->chk_lprops = val;
2782         else if (dent == d->dfs_chk_fs)
2783                 d->chk_fs = val;
2784         else if (dent == d->dfs_tst_rcvry)
2785                 d->tst_rcvry = val;
2786         else if (dent == d->dfs_ro_error)
2787                 c->ro_error = !!val;
2788         else
2789                 return -EINVAL;
2790 
2791         return count;
2792 }
2793 
2794 static const struct file_operations dfs_fops = {
2795         .open = dfs_file_open,
2796         .read = dfs_file_read,
2797         .write = dfs_file_write,
2798         .owner = THIS_MODULE,
2799         .llseek = no_llseek,
2800 };
2801 
2802 /**
2803  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2804  * @c: UBIFS file-system description object
2805  *
2806  * This function creates all debugfs files for this instance of UBIFS. Returns
2807  * zero in case of success and a negative error code in case of failure.
2808  *
2809  * Note, the only reason we have not merged this function with the
2810  * 'ubifs_debugging_init()' function is because it is better to initialize
2811  * debugfs interfaces at the very end of the mount process, and remove them at
2812  * the very beginning of the mount process.
2813  */
2814 int dbg_debugfs_init_fs(struct ubifs_info *c)
2815 {
2816         int err, n;
2817         const char *fname;
2818         struct dentry *dent;
2819         struct ubifs_debug_info *d = c->dbg;
2820 
2821         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2822                 return 0;
2823 
2824         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2825                      c->vi.ubi_num, c->vi.vol_id);
2826         if (n == UBIFS_DFS_DIR_LEN) {
2827                 /* The array size is too small */
2828                 fname = UBIFS_DFS_DIR_NAME;
2829                 dent = ERR_PTR(-EINVAL);
2830                 goto out;
2831         }
2832 
2833         fname = d->dfs_dir_name;
2834         dent = debugfs_create_dir(fname, dfs_rootdir);
2835         if (IS_ERR_OR_NULL(dent))
2836                 goto out;
2837         d->dfs_dir = dent;
2838 
2839         fname = "dump_lprops";
2840         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2841         if (IS_ERR_OR_NULL(dent))
2842                 goto out_remove;
2843         d->dfs_dump_lprops = dent;
2844 
2845         fname = "dump_budg";
2846         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2847         if (IS_ERR_OR_NULL(dent))
2848                 goto out_remove;
2849         d->dfs_dump_budg = dent;
2850 
2851         fname = "dump_tnc";
2852         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2853         if (IS_ERR_OR_NULL(dent))
2854                 goto out_remove;
2855         d->dfs_dump_tnc = dent;
2856 
2857         fname = "chk_general";
2858         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2859                                    &dfs_fops);
2860         if (IS_ERR_OR_NULL(dent))
2861                 goto out_remove;
2862         d->dfs_chk_gen = dent;
2863 
2864         fname = "chk_index";
2865         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2866                                    &dfs_fops);
2867         if (IS_ERR_OR_NULL(dent))
2868                 goto out_remove;
2869         d->dfs_chk_index = dent;
2870 
2871         fname = "chk_orphans";
2872         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2873                                    &dfs_fops);
2874         if (IS_ERR_OR_NULL(dent))
2875                 goto out_remove;
2876         d->dfs_chk_orph = dent;
2877 
2878         fname = "chk_lprops";
2879         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2880                                    &dfs_fops);
2881         if (IS_ERR_OR_NULL(dent))
2882                 goto out_remove;
2883         d->dfs_chk_lprops = dent;
2884 
2885         fname = "chk_fs";
2886         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2887                                    &dfs_fops);
2888         if (IS_ERR_OR_NULL(dent))
2889                 goto out_remove;
2890         d->dfs_chk_fs = dent;
2891 
2892         fname = "tst_recovery";
2893         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2894                                    &dfs_fops);
2895         if (IS_ERR_OR_NULL(dent))
2896                 goto out_remove;
2897         d->dfs_tst_rcvry = dent;
2898 
2899         fname = "ro_error";
2900         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2901                                    &dfs_fops);
2902         if (IS_ERR_OR_NULL(dent))
2903                 goto out_remove;
2904         d->dfs_ro_error = dent;
2905 
2906         return 0;
2907 
2908 out_remove:
2909         debugfs_remove_recursive(d->dfs_dir);
2910 out:
2911         err = dent ? PTR_ERR(dent) : -ENODEV;
2912         ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2913                   fname, err);
2914         return err;
2915 }
2916 
2917 /**
2918  * dbg_debugfs_exit_fs - remove all debugfs files.
2919  * @c: UBIFS file-system description object
2920  */
2921 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2922 {
2923         if (IS_ENABLED(CONFIG_DEBUG_FS))
2924                 debugfs_remove_recursive(c->dbg->dfs_dir);
2925 }
2926 
2927 struct ubifs_global_debug_info ubifs_dbg;
2928 
2929 static struct dentry *dfs_chk_gen;
2930 static struct dentry *dfs_chk_index;
2931 static struct dentry *dfs_chk_orph;
2932 static struct dentry *dfs_chk_lprops;
2933 static struct dentry *dfs_chk_fs;
2934 static struct dentry *dfs_tst_rcvry;
2935 
2936 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2937                                     size_t count, loff_t *ppos)
2938 {
2939         struct dentry *dent = file->f_path.dentry;
2940         int val;
2941 
2942         if (dent == dfs_chk_gen)
2943                 val = ubifs_dbg.chk_gen;
2944         else if (dent == dfs_chk_index)
2945                 val = ubifs_dbg.chk_index;
2946         else if (dent == dfs_chk_orph)
2947                 val = ubifs_dbg.chk_orph;
2948         else if (dent == dfs_chk_lprops)
2949                 val = ubifs_dbg.chk_lprops;
2950         else if (dent == dfs_chk_fs)
2951                 val = ubifs_dbg.chk_fs;
2952         else if (dent == dfs_tst_rcvry)
2953                 val = ubifs_dbg.tst_rcvry;
2954         else
2955                 return -EINVAL;
2956 
2957         return provide_user_output(val, u, count, ppos);
2958 }
2959 
2960 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2961                                      size_t count, loff_t *ppos)
2962 {
2963         struct dentry *dent = file->f_path.dentry;
2964         int val;
2965 
2966         val = interpret_user_input(u, count);
2967         if (val < 0)
2968                 return val;
2969 
2970         if (dent == dfs_chk_gen)
2971                 ubifs_dbg.chk_gen = val;
2972         else if (dent == dfs_chk_index)
2973                 ubifs_dbg.chk_index = val;
2974         else if (dent == dfs_chk_orph)
2975                 ubifs_dbg.chk_orph = val;
2976         else if (dent == dfs_chk_lprops)
2977                 ubifs_dbg.chk_lprops = val;
2978         else if (dent == dfs_chk_fs)
2979                 ubifs_dbg.chk_fs = val;
2980         else if (dent == dfs_tst_rcvry)
2981                 ubifs_dbg.tst_rcvry = val;
2982         else
2983                 return -EINVAL;
2984 
2985         return count;
2986 }
2987 
2988 static const struct file_operations dfs_global_fops = {
2989         .read = dfs_global_file_read,
2990         .write = dfs_global_file_write,
2991         .owner = THIS_MODULE,
2992         .llseek = no_llseek,
2993 };
2994 
2995 /**
2996  * dbg_debugfs_init - initialize debugfs file-system.
2997  *
2998  * UBIFS uses debugfs file-system to expose various debugging knobs to
2999  * user-space. This function creates "ubifs" directory in the debugfs
3000  * file-system. Returns zero in case of success and a negative error code in
3001  * case of failure.
3002  */
3003 int dbg_debugfs_init(void)
3004 {
3005         int err;
3006         const char *fname;
3007         struct dentry *dent;
3008 
3009         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3010                 return 0;
3011 
3012         fname = "ubifs";
3013         dent = debugfs_create_dir(fname, NULL);
3014         if (IS_ERR_OR_NULL(dent))
3015                 goto out;
3016         dfs_rootdir = dent;
3017 
3018         fname = "chk_general";
3019         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3020                                    &dfs_global_fops);
3021         if (IS_ERR_OR_NULL(dent))
3022                 goto out_remove;
3023         dfs_chk_gen = dent;
3024 
3025         fname = "chk_index";
3026         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3027                                    &dfs_global_fops);
3028         if (IS_ERR_OR_NULL(dent))
3029                 goto out_remove;
3030         dfs_chk_index = dent;
3031 
3032         fname = "chk_orphans";
3033         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3034                                    &dfs_global_fops);
3035         if (IS_ERR_OR_NULL(dent))
3036                 goto out_remove;
3037         dfs_chk_orph = dent;
3038 
3039         fname = "chk_lprops";
3040         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3041                                    &dfs_global_fops);
3042         if (IS_ERR_OR_NULL(dent))
3043                 goto out_remove;
3044         dfs_chk_lprops = dent;
3045 
3046         fname = "chk_fs";
3047         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3048                                    &dfs_global_fops);
3049         if (IS_ERR_OR_NULL(dent))
3050                 goto out_remove;
3051         dfs_chk_fs = dent;
3052 
3053         fname = "tst_recovery";
3054         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3055                                    &dfs_global_fops);
3056         if (IS_ERR_OR_NULL(dent))
3057                 goto out_remove;
3058         dfs_tst_rcvry = dent;
3059 
3060         return 0;
3061 
3062 out_remove:
3063         debugfs_remove_recursive(dfs_rootdir);
3064 out:
3065         err = dent ? PTR_ERR(dent) : -ENODEV;
3066         pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3067                current->pid, fname, err);
3068         return err;
3069 }
3070 
3071 /**
3072  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3073  */
3074 void dbg_debugfs_exit(void)
3075 {
3076         if (IS_ENABLED(CONFIG_DEBUG_FS))
3077                 debugfs_remove_recursive(dfs_rootdir);
3078 }
3079 
3080 /**
3081  * ubifs_debugging_init - initialize UBIFS debugging.
3082  * @c: UBIFS file-system description object
3083  *
3084  * This function initializes debugging-related data for the file system.
3085  * Returns zero in case of success and a negative error code in case of
3086  * failure.
3087  */
3088 int ubifs_debugging_init(struct ubifs_info *c)
3089 {
3090         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3091         if (!c->dbg)
3092                 return -ENOMEM;
3093 
3094         return 0;
3095 }
3096 
3097 /**
3098  * ubifs_debugging_exit - free debugging data.
3099  * @c: UBIFS file-system description object
3100  */
3101 void ubifs_debugging_exit(struct ubifs_info *c)
3102 {
3103         kfree(c->dbg);
3104 }
3105 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp