~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ubifs/lprops.c

Version: ~ [ linux-5.5-rc6 ] ~ [ linux-5.4.11 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.95 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.164 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.209 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.209 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.81 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * This file is part of UBIFS.
  3  *
  4  * Copyright (C) 2006-2008 Nokia Corporation.
  5  *
  6  * This program is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License version 2 as published by
  8  * the Free Software Foundation.
  9  *
 10  * This program is distributed in the hope that it will be useful, but WITHOUT
 11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13  * more details.
 14  *
 15  * You should have received a copy of the GNU General Public License along with
 16  * this program; if not, write to the Free Software Foundation, Inc., 51
 17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 18  *
 19  * Authors: Adrian Hunter
 20  *          Artem Bityutskiy (Битюцкий Артём)
 21  */
 22 
 23 /*
 24  * This file implements the functions that access LEB properties and their
 25  * categories. LEBs are categorized based on the needs of UBIFS, and the
 26  * categories are stored as either heaps or lists to provide a fast way of
 27  * finding a LEB in a particular category. For example, UBIFS may need to find
 28  * an empty LEB for the journal, or a very dirty LEB for garbage collection.
 29  */
 30 
 31 #include "ubifs.h"
 32 
 33 /**
 34  * get_heap_comp_val - get the LEB properties value for heap comparisons.
 35  * @lprops: LEB properties
 36  * @cat: LEB category
 37  */
 38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
 39 {
 40         switch (cat) {
 41         case LPROPS_FREE:
 42                 return lprops->free;
 43         case LPROPS_DIRTY_IDX:
 44                 return lprops->free + lprops->dirty;
 45         default:
 46                 return lprops->dirty;
 47         }
 48 }
 49 
 50 /**
 51  * move_up_lpt_heap - move a new heap entry up as far as possible.
 52  * @c: UBIFS file-system description object
 53  * @heap: LEB category heap
 54  * @lprops: LEB properties to move
 55  * @cat: LEB category
 56  *
 57  * New entries to a heap are added at the bottom and then moved up until the
 58  * parent's value is greater.  In the case of LPT's category heaps, the value
 59  * is either the amount of free space or the amount of dirty space, depending
 60  * on the category.
 61  */
 62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
 63                              struct ubifs_lprops *lprops, int cat)
 64 {
 65         int val1, val2, hpos;
 66 
 67         hpos = lprops->hpos;
 68         if (!hpos)
 69                 return; /* Already top of the heap */
 70         val1 = get_heap_comp_val(lprops, cat);
 71         /* Compare to parent and, if greater, move up the heap */
 72         do {
 73                 int ppos = (hpos - 1) / 2;
 74 
 75                 val2 = get_heap_comp_val(heap->arr[ppos], cat);
 76                 if (val2 >= val1)
 77                         return;
 78                 /* Greater than parent so move up */
 79                 heap->arr[ppos]->hpos = hpos;
 80                 heap->arr[hpos] = heap->arr[ppos];
 81                 heap->arr[ppos] = lprops;
 82                 lprops->hpos = ppos;
 83                 hpos = ppos;
 84         } while (hpos);
 85 }
 86 
 87 /**
 88  * adjust_lpt_heap - move a changed heap entry up or down the heap.
 89  * @c: UBIFS file-system description object
 90  * @heap: LEB category heap
 91  * @lprops: LEB properties to move
 92  * @hpos: heap position of @lprops
 93  * @cat: LEB category
 94  *
 95  * Changed entries in a heap are moved up or down until the parent's value is
 96  * greater.  In the case of LPT's category heaps, the value is either the amount
 97  * of free space or the amount of dirty space, depending on the category.
 98  */
 99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
100                             struct ubifs_lprops *lprops, int hpos, int cat)
101 {
102         int val1, val2, val3, cpos;
103 
104         val1 = get_heap_comp_val(lprops, cat);
105         /* Compare to parent and, if greater than parent, move up the heap */
106         if (hpos) {
107                 int ppos = (hpos - 1) / 2;
108 
109                 val2 = get_heap_comp_val(heap->arr[ppos], cat);
110                 if (val1 > val2) {
111                         /* Greater than parent so move up */
112                         while (1) {
113                                 heap->arr[ppos]->hpos = hpos;
114                                 heap->arr[hpos] = heap->arr[ppos];
115                                 heap->arr[ppos] = lprops;
116                                 lprops->hpos = ppos;
117                                 hpos = ppos;
118                                 if (!hpos)
119                                         return;
120                                 ppos = (hpos - 1) / 2;
121                                 val2 = get_heap_comp_val(heap->arr[ppos], cat);
122                                 if (val1 <= val2)
123                                         return;
124                                 /* Still greater than parent so keep going */
125                         }
126                 }
127         }
128 
129         /* Not greater than parent, so compare to children */
130         while (1) {
131                 /* Compare to left child */
132                 cpos = hpos * 2 + 1;
133                 if (cpos >= heap->cnt)
134                         return;
135                 val2 = get_heap_comp_val(heap->arr[cpos], cat);
136                 if (val1 < val2) {
137                         /* Less than left child, so promote biggest child */
138                         if (cpos + 1 < heap->cnt) {
139                                 val3 = get_heap_comp_val(heap->arr[cpos + 1],
140                                                          cat);
141                                 if (val3 > val2)
142                                         cpos += 1; /* Right child is bigger */
143                         }
144                         heap->arr[cpos]->hpos = hpos;
145                         heap->arr[hpos] = heap->arr[cpos];
146                         heap->arr[cpos] = lprops;
147                         lprops->hpos = cpos;
148                         hpos = cpos;
149                         continue;
150                 }
151                 /* Compare to right child */
152                 cpos += 1;
153                 if (cpos >= heap->cnt)
154                         return;
155                 val3 = get_heap_comp_val(heap->arr[cpos], cat);
156                 if (val1 < val3) {
157                         /* Less than right child, so promote right child */
158                         heap->arr[cpos]->hpos = hpos;
159                         heap->arr[hpos] = heap->arr[cpos];
160                         heap->arr[cpos] = lprops;
161                         lprops->hpos = cpos;
162                         hpos = cpos;
163                         continue;
164                 }
165                 return;
166         }
167 }
168 
169 /**
170  * add_to_lpt_heap - add LEB properties to a LEB category heap.
171  * @c: UBIFS file-system description object
172  * @lprops: LEB properties to add
173  * @cat: LEB category
174  *
175  * This function returns %1 if @lprops is added to the heap for LEB category
176  * @cat, otherwise %0 is returned because the heap is full.
177  */
178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
179                            int cat)
180 {
181         struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
182 
183         if (heap->cnt >= heap->max_cnt) {
184                 const int b = LPT_HEAP_SZ / 2 - 1;
185                 int cpos, val1, val2;
186 
187                 /* Compare to some other LEB on the bottom of heap */
188                 /* Pick a position kind of randomly */
189                 cpos = (((size_t)lprops >> 4) & b) + b;
190                 ubifs_assert(c, cpos >= b);
191                 ubifs_assert(c, cpos < LPT_HEAP_SZ);
192                 ubifs_assert(c, cpos < heap->cnt);
193 
194                 val1 = get_heap_comp_val(lprops, cat);
195                 val2 = get_heap_comp_val(heap->arr[cpos], cat);
196                 if (val1 > val2) {
197                         struct ubifs_lprops *lp;
198 
199                         lp = heap->arr[cpos];
200                         lp->flags &= ~LPROPS_CAT_MASK;
201                         lp->flags |= LPROPS_UNCAT;
202                         list_add(&lp->list, &c->uncat_list);
203                         lprops->hpos = cpos;
204                         heap->arr[cpos] = lprops;
205                         move_up_lpt_heap(c, heap, lprops, cat);
206                         dbg_check_heap(c, heap, cat, lprops->hpos);
207                         return 1; /* Added to heap */
208                 }
209                 dbg_check_heap(c, heap, cat, -1);
210                 return 0; /* Not added to heap */
211         } else {
212                 lprops->hpos = heap->cnt++;
213                 heap->arr[lprops->hpos] = lprops;
214                 move_up_lpt_heap(c, heap, lprops, cat);
215                 dbg_check_heap(c, heap, cat, lprops->hpos);
216                 return 1; /* Added to heap */
217         }
218 }
219 
220 /**
221  * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
222  * @c: UBIFS file-system description object
223  * @lprops: LEB properties to remove
224  * @cat: LEB category
225  */
226 static void remove_from_lpt_heap(struct ubifs_info *c,
227                                  struct ubifs_lprops *lprops, int cat)
228 {
229         struct ubifs_lpt_heap *heap;
230         int hpos = lprops->hpos;
231 
232         heap = &c->lpt_heap[cat - 1];
233         ubifs_assert(c, hpos >= 0 && hpos < heap->cnt);
234         ubifs_assert(c, heap->arr[hpos] == lprops);
235         heap->cnt -= 1;
236         if (hpos < heap->cnt) {
237                 heap->arr[hpos] = heap->arr[heap->cnt];
238                 heap->arr[hpos]->hpos = hpos;
239                 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
240         }
241         dbg_check_heap(c, heap, cat, -1);
242 }
243 
244 /**
245  * lpt_heap_replace - replace lprops in a category heap.
246  * @c: UBIFS file-system description object
247  * @new_lprops: LEB properties with which to replace
248  * @cat: LEB category
249  *
250  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
251  * and the lprops that the pnode contains.  When that happens, references in
252  * the category heaps to those lprops must be updated to point to the new
253  * lprops.  This function does that.
254  */
255 static void lpt_heap_replace(struct ubifs_info *c,
256                              struct ubifs_lprops *new_lprops, int cat)
257 {
258         struct ubifs_lpt_heap *heap;
259         int hpos = new_lprops->hpos;
260 
261         heap = &c->lpt_heap[cat - 1];
262         heap->arr[hpos] = new_lprops;
263 }
264 
265 /**
266  * ubifs_add_to_cat - add LEB properties to a category list or heap.
267  * @c: UBIFS file-system description object
268  * @lprops: LEB properties to add
269  * @cat: LEB category to which to add
270  *
271  * LEB properties are categorized to enable fast find operations.
272  */
273 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
274                       int cat)
275 {
276         switch (cat) {
277         case LPROPS_DIRTY:
278         case LPROPS_DIRTY_IDX:
279         case LPROPS_FREE:
280                 if (add_to_lpt_heap(c, lprops, cat))
281                         break;
282                 /* No more room on heap so make it un-categorized */
283                 cat = LPROPS_UNCAT;
284                 /* Fall through */
285         case LPROPS_UNCAT:
286                 list_add(&lprops->list, &c->uncat_list);
287                 break;
288         case LPROPS_EMPTY:
289                 list_add(&lprops->list, &c->empty_list);
290                 break;
291         case LPROPS_FREEABLE:
292                 list_add(&lprops->list, &c->freeable_list);
293                 c->freeable_cnt += 1;
294                 break;
295         case LPROPS_FRDI_IDX:
296                 list_add(&lprops->list, &c->frdi_idx_list);
297                 break;
298         default:
299                 ubifs_assert(c, 0);
300         }
301 
302         lprops->flags &= ~LPROPS_CAT_MASK;
303         lprops->flags |= cat;
304         c->in_a_category_cnt += 1;
305         ubifs_assert(c, c->in_a_category_cnt <= c->main_lebs);
306 }
307 
308 /**
309  * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
310  * @c: UBIFS file-system description object
311  * @lprops: LEB properties to remove
312  * @cat: LEB category from which to remove
313  *
314  * LEB properties are categorized to enable fast find operations.
315  */
316 static void ubifs_remove_from_cat(struct ubifs_info *c,
317                                   struct ubifs_lprops *lprops, int cat)
318 {
319         switch (cat) {
320         case LPROPS_DIRTY:
321         case LPROPS_DIRTY_IDX:
322         case LPROPS_FREE:
323                 remove_from_lpt_heap(c, lprops, cat);
324                 break;
325         case LPROPS_FREEABLE:
326                 c->freeable_cnt -= 1;
327                 ubifs_assert(c, c->freeable_cnt >= 0);
328                 /* Fall through */
329         case LPROPS_UNCAT:
330         case LPROPS_EMPTY:
331         case LPROPS_FRDI_IDX:
332                 ubifs_assert(c, !list_empty(&lprops->list));
333                 list_del(&lprops->list);
334                 break;
335         default:
336                 ubifs_assert(c, 0);
337         }
338 
339         c->in_a_category_cnt -= 1;
340         ubifs_assert(c, c->in_a_category_cnt >= 0);
341 }
342 
343 /**
344  * ubifs_replace_cat - replace lprops in a category list or heap.
345  * @c: UBIFS file-system description object
346  * @old_lprops: LEB properties to replace
347  * @new_lprops: LEB properties with which to replace
348  *
349  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
350  * and the lprops that the pnode contains. When that happens, references in
351  * category lists and heaps must be replaced. This function does that.
352  */
353 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
354                        struct ubifs_lprops *new_lprops)
355 {
356         int cat;
357 
358         cat = new_lprops->flags & LPROPS_CAT_MASK;
359         switch (cat) {
360         case LPROPS_DIRTY:
361         case LPROPS_DIRTY_IDX:
362         case LPROPS_FREE:
363                 lpt_heap_replace(c, new_lprops, cat);
364                 break;
365         case LPROPS_UNCAT:
366         case LPROPS_EMPTY:
367         case LPROPS_FREEABLE:
368         case LPROPS_FRDI_IDX:
369                 list_replace(&old_lprops->list, &new_lprops->list);
370                 break;
371         default:
372                 ubifs_assert(c, 0);
373         }
374 }
375 
376 /**
377  * ubifs_ensure_cat - ensure LEB properties are categorized.
378  * @c: UBIFS file-system description object
379  * @lprops: LEB properties
380  *
381  * A LEB may have fallen off of the bottom of a heap, and ended up as
382  * un-categorized even though it has enough space for us now. If that is the
383  * case this function will put the LEB back onto a heap.
384  */
385 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
386 {
387         int cat = lprops->flags & LPROPS_CAT_MASK;
388 
389         if (cat != LPROPS_UNCAT)
390                 return;
391         cat = ubifs_categorize_lprops(c, lprops);
392         if (cat == LPROPS_UNCAT)
393                 return;
394         ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
395         ubifs_add_to_cat(c, lprops, cat);
396 }
397 
398 /**
399  * ubifs_categorize_lprops - categorize LEB properties.
400  * @c: UBIFS file-system description object
401  * @lprops: LEB properties to categorize
402  *
403  * LEB properties are categorized to enable fast find operations. This function
404  * returns the LEB category to which the LEB properties belong. Note however
405  * that if the LEB category is stored as a heap and the heap is full, the
406  * LEB properties may have their category changed to %LPROPS_UNCAT.
407  */
408 int ubifs_categorize_lprops(const struct ubifs_info *c,
409                             const struct ubifs_lprops *lprops)
410 {
411         if (lprops->flags & LPROPS_TAKEN)
412                 return LPROPS_UNCAT;
413 
414         if (lprops->free == c->leb_size) {
415                 ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
416                 return LPROPS_EMPTY;
417         }
418 
419         if (lprops->free + lprops->dirty == c->leb_size) {
420                 if (lprops->flags & LPROPS_INDEX)
421                         return LPROPS_FRDI_IDX;
422                 else
423                         return LPROPS_FREEABLE;
424         }
425 
426         if (lprops->flags & LPROPS_INDEX) {
427                 if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
428                         return LPROPS_DIRTY_IDX;
429         } else {
430                 if (lprops->dirty >= c->dead_wm &&
431                     lprops->dirty > lprops->free)
432                         return LPROPS_DIRTY;
433                 if (lprops->free > 0)
434                         return LPROPS_FREE;
435         }
436 
437         return LPROPS_UNCAT;
438 }
439 
440 /**
441  * change_category - change LEB properties category.
442  * @c: UBIFS file-system description object
443  * @lprops: LEB properties to re-categorize
444  *
445  * LEB properties are categorized to enable fast find operations. When the LEB
446  * properties change they must be re-categorized.
447  */
448 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
449 {
450         int old_cat = lprops->flags & LPROPS_CAT_MASK;
451         int new_cat = ubifs_categorize_lprops(c, lprops);
452 
453         if (old_cat == new_cat) {
454                 struct ubifs_lpt_heap *heap;
455 
456                 /* lprops on a heap now must be moved up or down */
457                 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
458                         return; /* Not on a heap */
459                 heap = &c->lpt_heap[new_cat - 1];
460                 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
461         } else {
462                 ubifs_remove_from_cat(c, lprops, old_cat);
463                 ubifs_add_to_cat(c, lprops, new_cat);
464         }
465 }
466 
467 /**
468  * ubifs_calc_dark - calculate LEB dark space size.
469  * @c: the UBIFS file-system description object
470  * @spc: amount of free and dirty space in the LEB
471  *
472  * This function calculates and returns amount of dark space in an LEB which
473  * has @spc bytes of free and dirty space.
474  *
475  * UBIFS is trying to account the space which might not be usable, and this
476  * space is called "dark space". For example, if an LEB has only %512 free
477  * bytes, it is dark space, because it cannot fit a large data node.
478  */
479 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
480 {
481         ubifs_assert(c, !(spc & 7));
482 
483         if (spc < c->dark_wm)
484                 return spc;
485 
486         /*
487          * If we have slightly more space then the dark space watermark, we can
488          * anyway safely assume it we'll be able to write a node of the
489          * smallest size there.
490          */
491         if (spc - c->dark_wm < MIN_WRITE_SZ)
492                 return spc - MIN_WRITE_SZ;
493 
494         return c->dark_wm;
495 }
496 
497 /**
498  * is_lprops_dirty - determine if LEB properties are dirty.
499  * @c: the UBIFS file-system description object
500  * @lprops: LEB properties to test
501  */
502 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
503 {
504         struct ubifs_pnode *pnode;
505         int pos;
506 
507         pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
508         pnode = (struct ubifs_pnode *)container_of(lprops - pos,
509                                                    struct ubifs_pnode,
510                                                    lprops[0]);
511         return !test_bit(COW_CNODE, &pnode->flags) &&
512                test_bit(DIRTY_CNODE, &pnode->flags);
513 }
514 
515 /**
516  * ubifs_change_lp - change LEB properties.
517  * @c: the UBIFS file-system description object
518  * @lp: LEB properties to change
519  * @free: new free space amount
520  * @dirty: new dirty space amount
521  * @flags: new flags
522  * @idx_gc_cnt: change to the count of @idx_gc list
523  *
524  * This function changes LEB properties (@free, @dirty or @flag). However, the
525  * property which has the %LPROPS_NC value is not changed. Returns a pointer to
526  * the updated LEB properties on success and a negative error code on failure.
527  *
528  * Note, the LEB properties may have had to be copied (due to COW) and
529  * consequently the pointer returned may not be the same as the pointer
530  * passed.
531  */
532 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
533                                            const struct ubifs_lprops *lp,
534                                            int free, int dirty, int flags,
535                                            int idx_gc_cnt)
536 {
537         /*
538          * This is the only function that is allowed to change lprops, so we
539          * discard the "const" qualifier.
540          */
541         struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
542 
543         dbg_lp("LEB %d, free %d, dirty %d, flags %d",
544                lprops->lnum, free, dirty, flags);
545 
546         ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
547         ubifs_assert(c, c->lst.empty_lebs >= 0 &&
548                      c->lst.empty_lebs <= c->main_lebs);
549         ubifs_assert(c, c->freeable_cnt >= 0);
550         ubifs_assert(c, c->freeable_cnt <= c->main_lebs);
551         ubifs_assert(c, c->lst.taken_empty_lebs >= 0);
552         ubifs_assert(c, c->lst.taken_empty_lebs <= c->lst.empty_lebs);
553         ubifs_assert(c, !(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
554         ubifs_assert(c, !(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
555         ubifs_assert(c, !(c->lst.total_used & 7));
556         ubifs_assert(c, free == LPROPS_NC || free >= 0);
557         ubifs_assert(c, dirty == LPROPS_NC || dirty >= 0);
558 
559         if (!is_lprops_dirty(c, lprops)) {
560                 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
561                 if (IS_ERR(lprops))
562                         return lprops;
563         } else
564                 ubifs_assert(c, lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
565 
566         ubifs_assert(c, !(lprops->free & 7) && !(lprops->dirty & 7));
567 
568         spin_lock(&c->space_lock);
569         if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
570                 c->lst.taken_empty_lebs -= 1;
571 
572         if (!(lprops->flags & LPROPS_INDEX)) {
573                 int old_spc;
574 
575                 old_spc = lprops->free + lprops->dirty;
576                 if (old_spc < c->dead_wm)
577                         c->lst.total_dead -= old_spc;
578                 else
579                         c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
580 
581                 c->lst.total_used -= c->leb_size - old_spc;
582         }
583 
584         if (free != LPROPS_NC) {
585                 free = ALIGN(free, 8);
586                 c->lst.total_free += free - lprops->free;
587 
588                 /* Increase or decrease empty LEBs counter if needed */
589                 if (free == c->leb_size) {
590                         if (lprops->free != c->leb_size)
591                                 c->lst.empty_lebs += 1;
592                 } else if (lprops->free == c->leb_size)
593                         c->lst.empty_lebs -= 1;
594                 lprops->free = free;
595         }
596 
597         if (dirty != LPROPS_NC) {
598                 dirty = ALIGN(dirty, 8);
599                 c->lst.total_dirty += dirty - lprops->dirty;
600                 lprops->dirty = dirty;
601         }
602 
603         if (flags != LPROPS_NC) {
604                 /* Take care about indexing LEBs counter if needed */
605                 if ((lprops->flags & LPROPS_INDEX)) {
606                         if (!(flags & LPROPS_INDEX))
607                                 c->lst.idx_lebs -= 1;
608                 } else if (flags & LPROPS_INDEX)
609                         c->lst.idx_lebs += 1;
610                 lprops->flags = flags;
611         }
612 
613         if (!(lprops->flags & LPROPS_INDEX)) {
614                 int new_spc;
615 
616                 new_spc = lprops->free + lprops->dirty;
617                 if (new_spc < c->dead_wm)
618                         c->lst.total_dead += new_spc;
619                 else
620                         c->lst.total_dark += ubifs_calc_dark(c, new_spc);
621 
622                 c->lst.total_used += c->leb_size - new_spc;
623         }
624 
625         if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
626                 c->lst.taken_empty_lebs += 1;
627 
628         change_category(c, lprops);
629         c->idx_gc_cnt += idx_gc_cnt;
630         spin_unlock(&c->space_lock);
631         return lprops;
632 }
633 
634 /**
635  * ubifs_get_lp_stats - get lprops statistics.
636  * @c: UBIFS file-system description object
637  * @lst: return statistics
638  */
639 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
640 {
641         spin_lock(&c->space_lock);
642         memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
643         spin_unlock(&c->space_lock);
644 }
645 
646 /**
647  * ubifs_change_one_lp - change LEB properties.
648  * @c: the UBIFS file-system description object
649  * @lnum: LEB to change properties for
650  * @free: amount of free space
651  * @dirty: amount of dirty space
652  * @flags_set: flags to set
653  * @flags_clean: flags to clean
654  * @idx_gc_cnt: change to the count of idx_gc list
655  *
656  * This function changes properties of LEB @lnum. It is a helper wrapper over
657  * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
658  * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
659  * a negative error code in case of failure.
660  */
661 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
662                         int flags_set, int flags_clean, int idx_gc_cnt)
663 {
664         int err = 0, flags;
665         const struct ubifs_lprops *lp;
666 
667         ubifs_get_lprops(c);
668 
669         lp = ubifs_lpt_lookup_dirty(c, lnum);
670         if (IS_ERR(lp)) {
671                 err = PTR_ERR(lp);
672                 goto out;
673         }
674 
675         flags = (lp->flags | flags_set) & ~flags_clean;
676         lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
677         if (IS_ERR(lp))
678                 err = PTR_ERR(lp);
679 
680 out:
681         ubifs_release_lprops(c);
682         if (err)
683                 ubifs_err(c, "cannot change properties of LEB %d, error %d",
684                           lnum, err);
685         return err;
686 }
687 
688 /**
689  * ubifs_update_one_lp - update LEB properties.
690  * @c: the UBIFS file-system description object
691  * @lnum: LEB to change properties for
692  * @free: amount of free space
693  * @dirty: amount of dirty space to add
694  * @flags_set: flags to set
695  * @flags_clean: flags to clean
696  *
697  * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
698  * current dirty space, not substitutes it.
699  */
700 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
701                         int flags_set, int flags_clean)
702 {
703         int err = 0, flags;
704         const struct ubifs_lprops *lp;
705 
706         ubifs_get_lprops(c);
707 
708         lp = ubifs_lpt_lookup_dirty(c, lnum);
709         if (IS_ERR(lp)) {
710                 err = PTR_ERR(lp);
711                 goto out;
712         }
713 
714         flags = (lp->flags | flags_set) & ~flags_clean;
715         lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
716         if (IS_ERR(lp))
717                 err = PTR_ERR(lp);
718 
719 out:
720         ubifs_release_lprops(c);
721         if (err)
722                 ubifs_err(c, "cannot update properties of LEB %d, error %d",
723                           lnum, err);
724         return err;
725 }
726 
727 /**
728  * ubifs_read_one_lp - read LEB properties.
729  * @c: the UBIFS file-system description object
730  * @lnum: LEB to read properties for
731  * @lp: where to store read properties
732  *
733  * This helper function reads properties of a LEB @lnum and stores them in @lp.
734  * Returns zero in case of success and a negative error code in case of
735  * failure.
736  */
737 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
738 {
739         int err = 0;
740         const struct ubifs_lprops *lpp;
741 
742         ubifs_get_lprops(c);
743 
744         lpp = ubifs_lpt_lookup(c, lnum);
745         if (IS_ERR(lpp)) {
746                 err = PTR_ERR(lpp);
747                 ubifs_err(c, "cannot read properties of LEB %d, error %d",
748                           lnum, err);
749                 goto out;
750         }
751 
752         memcpy(lp, lpp, sizeof(struct ubifs_lprops));
753 
754 out:
755         ubifs_release_lprops(c);
756         return err;
757 }
758 
759 /**
760  * ubifs_fast_find_free - try to find a LEB with free space quickly.
761  * @c: the UBIFS file-system description object
762  *
763  * This function returns LEB properties for a LEB with free space or %NULL if
764  * the function is unable to find a LEB quickly.
765  */
766 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
767 {
768         struct ubifs_lprops *lprops;
769         struct ubifs_lpt_heap *heap;
770 
771         ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
772 
773         heap = &c->lpt_heap[LPROPS_FREE - 1];
774         if (heap->cnt == 0)
775                 return NULL;
776 
777         lprops = heap->arr[0];
778         ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
779         ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
780         return lprops;
781 }
782 
783 /**
784  * ubifs_fast_find_empty - try to find an empty LEB quickly.
785  * @c: the UBIFS file-system description object
786  *
787  * This function returns LEB properties for an empty LEB or %NULL if the
788  * function is unable to find an empty LEB quickly.
789  */
790 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
791 {
792         struct ubifs_lprops *lprops;
793 
794         ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
795 
796         if (list_empty(&c->empty_list))
797                 return NULL;
798 
799         lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
800         ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
801         ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
802         ubifs_assert(c, lprops->free == c->leb_size);
803         return lprops;
804 }
805 
806 /**
807  * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
808  * @c: the UBIFS file-system description object
809  *
810  * This function returns LEB properties for a freeable LEB or %NULL if the
811  * function is unable to find a freeable LEB quickly.
812  */
813 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
814 {
815         struct ubifs_lprops *lprops;
816 
817         ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
818 
819         if (list_empty(&c->freeable_list))
820                 return NULL;
821 
822         lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
823         ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
824         ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
825         ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
826         ubifs_assert(c, c->freeable_cnt > 0);
827         return lprops;
828 }
829 
830 /**
831  * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
832  * @c: the UBIFS file-system description object
833  *
834  * This function returns LEB properties for a freeable index LEB or %NULL if the
835  * function is unable to find a freeable index LEB quickly.
836  */
837 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
838 {
839         struct ubifs_lprops *lprops;
840 
841         ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
842 
843         if (list_empty(&c->frdi_idx_list))
844                 return NULL;
845 
846         lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
847         ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
848         ubifs_assert(c, (lprops->flags & LPROPS_INDEX));
849         ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
850         return lprops;
851 }
852 
853 /*
854  * Everything below is related to debugging.
855  */
856 
857 /**
858  * dbg_check_cats - check category heaps and lists.
859  * @c: UBIFS file-system description object
860  *
861  * This function returns %0 on success and a negative error code on failure.
862  */
863 int dbg_check_cats(struct ubifs_info *c)
864 {
865         struct ubifs_lprops *lprops;
866         struct list_head *pos;
867         int i, cat;
868 
869         if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
870                 return 0;
871 
872         list_for_each_entry(lprops, &c->empty_list, list) {
873                 if (lprops->free != c->leb_size) {
874                         ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
875                                   lprops->lnum, lprops->free, lprops->dirty,
876                                   lprops->flags);
877                         return -EINVAL;
878                 }
879                 if (lprops->flags & LPROPS_TAKEN) {
880                         ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
881                                   lprops->lnum, lprops->free, lprops->dirty,
882                                   lprops->flags);
883                         return -EINVAL;
884                 }
885         }
886 
887         i = 0;
888         list_for_each_entry(lprops, &c->freeable_list, list) {
889                 if (lprops->free + lprops->dirty != c->leb_size) {
890                         ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
891                                   lprops->lnum, lprops->free, lprops->dirty,
892                                   lprops->flags);
893                         return -EINVAL;
894                 }
895                 if (lprops->flags & LPROPS_TAKEN) {
896                         ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
897                                   lprops->lnum, lprops->free, lprops->dirty,
898                                   lprops->flags);
899                         return -EINVAL;
900                 }
901                 i += 1;
902         }
903         if (i != c->freeable_cnt) {
904                 ubifs_err(c, "freeable list count %d expected %d", i,
905                           c->freeable_cnt);
906                 return -EINVAL;
907         }
908 
909         i = 0;
910         list_for_each(pos, &c->idx_gc)
911                 i += 1;
912         if (i != c->idx_gc_cnt) {
913                 ubifs_err(c, "idx_gc list count %d expected %d", i,
914                           c->idx_gc_cnt);
915                 return -EINVAL;
916         }
917 
918         list_for_each_entry(lprops, &c->frdi_idx_list, list) {
919                 if (lprops->free + lprops->dirty != c->leb_size) {
920                         ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
921                                   lprops->lnum, lprops->free, lprops->dirty,
922                                   lprops->flags);
923                         return -EINVAL;
924                 }
925                 if (lprops->flags & LPROPS_TAKEN) {
926                         ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
927                                   lprops->lnum, lprops->free, lprops->dirty,
928                                   lprops->flags);
929                         return -EINVAL;
930                 }
931                 if (!(lprops->flags & LPROPS_INDEX)) {
932                         ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
933                                   lprops->lnum, lprops->free, lprops->dirty,
934                                   lprops->flags);
935                         return -EINVAL;
936                 }
937         }
938 
939         for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
940                 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
941 
942                 for (i = 0; i < heap->cnt; i++) {
943                         lprops = heap->arr[i];
944                         if (!lprops) {
945                                 ubifs_err(c, "null ptr in LPT heap cat %d", cat);
946                                 return -EINVAL;
947                         }
948                         if (lprops->hpos != i) {
949                                 ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
950                                 return -EINVAL;
951                         }
952                         if (lprops->flags & LPROPS_TAKEN) {
953                                 ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
954                                 return -EINVAL;
955                         }
956                 }
957         }
958 
959         return 0;
960 }
961 
962 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
963                     int add_pos)
964 {
965         int i = 0, j, err = 0;
966 
967         if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
968                 return;
969 
970         for (i = 0; i < heap->cnt; i++) {
971                 struct ubifs_lprops *lprops = heap->arr[i];
972                 struct ubifs_lprops *lp;
973 
974                 if (i != add_pos)
975                         if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
976                                 err = 1;
977                                 goto out;
978                         }
979                 if (lprops->hpos != i) {
980                         err = 2;
981                         goto out;
982                 }
983                 lp = ubifs_lpt_lookup(c, lprops->lnum);
984                 if (IS_ERR(lp)) {
985                         err = 3;
986                         goto out;
987                 }
988                 if (lprops != lp) {
989                         ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
990                                   (size_t)lprops, (size_t)lp, lprops->lnum,
991                                   lp->lnum);
992                         err = 4;
993                         goto out;
994                 }
995                 for (j = 0; j < i; j++) {
996                         lp = heap->arr[j];
997                         if (lp == lprops) {
998                                 err = 5;
999                                 goto out;
1000                         }
1001                         if (lp->lnum == lprops->lnum) {
1002                                 err = 6;
1003                                 goto out;
1004                         }
1005                 }
1006         }
1007 out:
1008         if (err) {
1009                 ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
1010                 dump_stack();
1011                 ubifs_dump_heap(c, heap, cat);
1012         }
1013 }
1014 
1015 /**
1016  * scan_check_cb - scan callback.
1017  * @c: the UBIFS file-system description object
1018  * @lp: LEB properties to scan
1019  * @in_tree: whether the LEB properties are in main memory
1020  * @lst: lprops statistics to update
1021  *
1022  * This function returns a code that indicates whether the scan should continue
1023  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1024  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1025  * (%LPT_SCAN_STOP).
1026  */
1027 static int scan_check_cb(struct ubifs_info *c,
1028                          const struct ubifs_lprops *lp, int in_tree,
1029                          struct ubifs_lp_stats *lst)
1030 {
1031         struct ubifs_scan_leb *sleb;
1032         struct ubifs_scan_node *snod;
1033         int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1034         void *buf = NULL;
1035 
1036         cat = lp->flags & LPROPS_CAT_MASK;
1037         if (cat != LPROPS_UNCAT) {
1038                 cat = ubifs_categorize_lprops(c, lp);
1039                 if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1040                         ubifs_err(c, "bad LEB category %d expected %d",
1041                                   (lp->flags & LPROPS_CAT_MASK), cat);
1042                         return -EINVAL;
1043                 }
1044         }
1045 
1046         /* Check lp is on its category list (if it has one) */
1047         if (in_tree) {
1048                 struct list_head *list = NULL;
1049 
1050                 switch (cat) {
1051                 case LPROPS_EMPTY:
1052                         list = &c->empty_list;
1053                         break;
1054                 case LPROPS_FREEABLE:
1055                         list = &c->freeable_list;
1056                         break;
1057                 case LPROPS_FRDI_IDX:
1058                         list = &c->frdi_idx_list;
1059                         break;
1060                 case LPROPS_UNCAT:
1061                         list = &c->uncat_list;
1062                         break;
1063                 }
1064                 if (list) {
1065                         struct ubifs_lprops *lprops;
1066                         int found = 0;
1067 
1068                         list_for_each_entry(lprops, list, list) {
1069                                 if (lprops == lp) {
1070                                         found = 1;
1071                                         break;
1072                                 }
1073                         }
1074                         if (!found) {
1075                                 ubifs_err(c, "bad LPT list (category %d)", cat);
1076                                 return -EINVAL;
1077                         }
1078                 }
1079         }
1080 
1081         /* Check lp is on its category heap (if it has one) */
1082         if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1083                 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1084 
1085                 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1086                     lp != heap->arr[lp->hpos]) {
1087                         ubifs_err(c, "bad LPT heap (category %d)", cat);
1088                         return -EINVAL;
1089                 }
1090         }
1091 
1092         /*
1093          * After an unclean unmount, empty and freeable LEBs
1094          * may contain garbage - do not scan them.
1095          */
1096         if (lp->free == c->leb_size) {
1097                 lst->empty_lebs += 1;
1098                 lst->total_free += c->leb_size;
1099                 lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1100                 return LPT_SCAN_CONTINUE;
1101         }
1102         if (lp->free + lp->dirty == c->leb_size &&
1103             !(lp->flags & LPROPS_INDEX)) {
1104                 lst->total_free  += lp->free;
1105                 lst->total_dirty += lp->dirty;
1106                 lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1107                 return LPT_SCAN_CONTINUE;
1108         }
1109 
1110         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1111         if (!buf)
1112                 return -ENOMEM;
1113 
1114         sleb = ubifs_scan(c, lnum, 0, buf, 0);
1115         if (IS_ERR(sleb)) {
1116                 ret = PTR_ERR(sleb);
1117                 if (ret == -EUCLEAN) {
1118                         ubifs_dump_lprops(c);
1119                         ubifs_dump_budg(c, &c->bi);
1120                 }
1121                 goto out;
1122         }
1123 
1124         is_idx = -1;
1125         list_for_each_entry(snod, &sleb->nodes, list) {
1126                 int found, level = 0;
1127 
1128                 cond_resched();
1129 
1130                 if (is_idx == -1)
1131                         is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1132 
1133                 if (is_idx && snod->type != UBIFS_IDX_NODE) {
1134                         ubifs_err(c, "indexing node in data LEB %d:%d",
1135                                   lnum, snod->offs);
1136                         goto out_destroy;
1137                 }
1138 
1139                 if (snod->type == UBIFS_IDX_NODE) {
1140                         struct ubifs_idx_node *idx = snod->node;
1141 
1142                         key_read(c, ubifs_idx_key(c, idx), &snod->key);
1143                         level = le16_to_cpu(idx->level);
1144                 }
1145 
1146                 found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1147                                            snod->offs, is_idx);
1148                 if (found) {
1149                         if (found < 0)
1150                                 goto out_destroy;
1151                         used += ALIGN(snod->len, 8);
1152                 }
1153         }
1154 
1155         free = c->leb_size - sleb->endpt;
1156         dirty = sleb->endpt - used;
1157 
1158         if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1159             dirty < 0) {
1160                 ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
1161                           lnum, free, dirty);
1162                 goto out_destroy;
1163         }
1164 
1165         if (lp->free + lp->dirty == c->leb_size &&
1166             free + dirty == c->leb_size)
1167                 if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1168                     (!is_idx && free == c->leb_size) ||
1169                     lp->free == c->leb_size) {
1170                         /*
1171                          * Empty or freeable LEBs could contain index
1172                          * nodes from an uncompleted commit due to an
1173                          * unclean unmount. Or they could be empty for
1174                          * the same reason. Or it may simply not have been
1175                          * unmapped.
1176                          */
1177                         free = lp->free;
1178                         dirty = lp->dirty;
1179                         is_idx = 0;
1180                     }
1181 
1182         if (is_idx && lp->free + lp->dirty == free + dirty &&
1183             lnum != c->ihead_lnum) {
1184                 /*
1185                  * After an unclean unmount, an index LEB could have a different
1186                  * amount of free space than the value recorded by lprops. That
1187                  * is because the in-the-gaps method may use free space or
1188                  * create free space (as a side-effect of using ubi_leb_change
1189                  * and not writing the whole LEB). The incorrect free space
1190                  * value is not a problem because the index is only ever
1191                  * allocated empty LEBs, so there will never be an attempt to
1192                  * write to the free space at the end of an index LEB - except
1193                  * by the in-the-gaps method for which it is not a problem.
1194                  */
1195                 free = lp->free;
1196                 dirty = lp->dirty;
1197         }
1198 
1199         if (lp->free != free || lp->dirty != dirty)
1200                 goto out_print;
1201 
1202         if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1203                 if (free == c->leb_size)
1204                         /* Free but not unmapped LEB, it's fine */
1205                         is_idx = 0;
1206                 else {
1207                         ubifs_err(c, "indexing node without indexing flag");
1208                         goto out_print;
1209                 }
1210         }
1211 
1212         if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1213                 ubifs_err(c, "data node with indexing flag");
1214                 goto out_print;
1215         }
1216 
1217         if (free == c->leb_size)
1218                 lst->empty_lebs += 1;
1219 
1220         if (is_idx)
1221                 lst->idx_lebs += 1;
1222 
1223         if (!(lp->flags & LPROPS_INDEX))
1224                 lst->total_used += c->leb_size - free - dirty;
1225         lst->total_free += free;
1226         lst->total_dirty += dirty;
1227 
1228         if (!(lp->flags & LPROPS_INDEX)) {
1229                 int spc = free + dirty;
1230 
1231                 if (spc < c->dead_wm)
1232                         lst->total_dead += spc;
1233                 else
1234                         lst->total_dark += ubifs_calc_dark(c, spc);
1235         }
1236 
1237         ubifs_scan_destroy(sleb);
1238         vfree(buf);
1239         return LPT_SCAN_CONTINUE;
1240 
1241 out_print:
1242         ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1243                   lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1244         ubifs_dump_leb(c, lnum);
1245 out_destroy:
1246         ubifs_scan_destroy(sleb);
1247         ret = -EINVAL;
1248 out:
1249         vfree(buf);
1250         return ret;
1251 }
1252 
1253 /**
1254  * dbg_check_lprops - check all LEB properties.
1255  * @c: UBIFS file-system description object
1256  *
1257  * This function checks all LEB properties and makes sure they are all correct.
1258  * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1259  * and other negative error codes in case of other errors. This function is
1260  * called while the file system is locked (because of commit start), so no
1261  * additional locking is required. Note that locking the LPT mutex would cause
1262  * a circular lock dependency with the TNC mutex.
1263  */
1264 int dbg_check_lprops(struct ubifs_info *c)
1265 {
1266         int i, err;
1267         struct ubifs_lp_stats lst;
1268 
1269         if (!dbg_is_chk_lprops(c))
1270                 return 0;
1271 
1272         /*
1273          * As we are going to scan the media, the write buffers have to be
1274          * synchronized.
1275          */
1276         for (i = 0; i < c->jhead_cnt; i++) {
1277                 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1278                 if (err)
1279                         return err;
1280         }
1281 
1282         memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1283         err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1284                                     (ubifs_lpt_scan_callback)scan_check_cb,
1285                                     &lst);
1286         if (err && err != -ENOSPC)
1287                 goto out;
1288 
1289         if (lst.empty_lebs != c->lst.empty_lebs ||
1290             lst.idx_lebs != c->lst.idx_lebs ||
1291             lst.total_free != c->lst.total_free ||
1292             lst.total_dirty != c->lst.total_dirty ||
1293             lst.total_used != c->lst.total_used) {
1294                 ubifs_err(c, "bad overall accounting");
1295                 ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1296                           lst.empty_lebs, lst.idx_lebs, lst.total_free,
1297                           lst.total_dirty, lst.total_used);
1298                 ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1299                           c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1300                           c->lst.total_dirty, c->lst.total_used);
1301                 err = -EINVAL;
1302                 goto out;
1303         }
1304 
1305         if (lst.total_dead != c->lst.total_dead ||
1306             lst.total_dark != c->lst.total_dark) {
1307                 ubifs_err(c, "bad dead/dark space accounting");
1308                 ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
1309                           lst.total_dead, lst.total_dark);
1310                 ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
1311                           c->lst.total_dead, c->lst.total_dark);
1312                 err = -EINVAL;
1313                 goto out;
1314         }
1315 
1316         err = dbg_check_cats(c);
1317 out:
1318         return err;
1319 }
1320 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp