~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ubifs/super.c

Version: ~ [ linux-5.12-rc1 ] ~ [ linux-5.11.2 ] ~ [ linux-5.10.19 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.101 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.177 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.222 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.258 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.258 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * This file is part of UBIFS.
  4  *
  5  * Copyright (C) 2006-2008 Nokia Corporation.
  6  *
  7  * Authors: Artem Bityutskiy (Битюцкий Артём)
  8  *          Adrian Hunter
  9  */
 10 
 11 /*
 12  * This file implements UBIFS initialization and VFS superblock operations. Some
 13  * initialization stuff which is rather large and complex is placed at
 14  * corresponding subsystems, but most of it is here.
 15  */
 16 
 17 #include <linux/init.h>
 18 #include <linux/slab.h>
 19 #include <linux/module.h>
 20 #include <linux/ctype.h>
 21 #include <linux/kthread.h>
 22 #include <linux/parser.h>
 23 #include <linux/seq_file.h>
 24 #include <linux/mount.h>
 25 #include <linux/math64.h>
 26 #include <linux/writeback.h>
 27 #include "ubifs.h"
 28 
 29 /*
 30  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
 31  * allocating too much.
 32  */
 33 #define UBIFS_KMALLOC_OK (128*1024)
 34 
 35 /* Slab cache for UBIFS inodes */
 36 static struct kmem_cache *ubifs_inode_slab;
 37 
 38 /* UBIFS TNC shrinker description */
 39 static struct shrinker ubifs_shrinker_info = {
 40         .scan_objects = ubifs_shrink_scan,
 41         .count_objects = ubifs_shrink_count,
 42         .seeks = DEFAULT_SEEKS,
 43 };
 44 
 45 /**
 46  * validate_inode - validate inode.
 47  * @c: UBIFS file-system description object
 48  * @inode: the inode to validate
 49  *
 50  * This is a helper function for 'ubifs_iget()' which validates various fields
 51  * of a newly built inode to make sure they contain sane values and prevent
 52  * possible vulnerabilities. Returns zero if the inode is all right and
 53  * a non-zero error code if not.
 54  */
 55 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
 56 {
 57         int err;
 58         const struct ubifs_inode *ui = ubifs_inode(inode);
 59 
 60         if (inode->i_size > c->max_inode_sz) {
 61                 ubifs_err(c, "inode is too large (%lld)",
 62                           (long long)inode->i_size);
 63                 return 1;
 64         }
 65 
 66         if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
 67                 ubifs_err(c, "unknown compression type %d", ui->compr_type);
 68                 return 2;
 69         }
 70 
 71         if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
 72                 return 3;
 73 
 74         if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
 75                 return 4;
 76 
 77         if (ui->xattr && !S_ISREG(inode->i_mode))
 78                 return 5;
 79 
 80         if (!ubifs_compr_present(c, ui->compr_type)) {
 81                 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
 82                            inode->i_ino, ubifs_compr_name(c, ui->compr_type));
 83         }
 84 
 85         err = dbg_check_dir(c, inode);
 86         return err;
 87 }
 88 
 89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
 90 {
 91         int err;
 92         union ubifs_key key;
 93         struct ubifs_ino_node *ino;
 94         struct ubifs_info *c = sb->s_fs_info;
 95         struct inode *inode;
 96         struct ubifs_inode *ui;
 97 
 98         dbg_gen("inode %lu", inum);
 99 
100         inode = iget_locked(sb, inum);
101         if (!inode)
102                 return ERR_PTR(-ENOMEM);
103         if (!(inode->i_state & I_NEW))
104                 return inode;
105         ui = ubifs_inode(inode);
106 
107         ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
108         if (!ino) {
109                 err = -ENOMEM;
110                 goto out;
111         }
112 
113         ino_key_init(c, &key, inode->i_ino);
114 
115         err = ubifs_tnc_lookup(c, &key, ino);
116         if (err)
117                 goto out_ino;
118 
119         inode->i_flags |= S_NOCMTIME;
120 
121         if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
122                 inode->i_flags |= S_NOATIME;
123 
124         set_nlink(inode, le32_to_cpu(ino->nlink));
125         i_uid_write(inode, le32_to_cpu(ino->uid));
126         i_gid_write(inode, le32_to_cpu(ino->gid));
127         inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
128         inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129         inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
130         inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131         inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
132         inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133         inode->i_mode = le32_to_cpu(ino->mode);
134         inode->i_size = le64_to_cpu(ino->size);
135 
136         ui->data_len    = le32_to_cpu(ino->data_len);
137         ui->flags       = le32_to_cpu(ino->flags);
138         ui->compr_type  = le16_to_cpu(ino->compr_type);
139         ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140         ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
141         ui->xattr_size  = le32_to_cpu(ino->xattr_size);
142         ui->xattr_names = le32_to_cpu(ino->xattr_names);
143         ui->synced_i_size = ui->ui_size = inode->i_size;
144 
145         ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146 
147         err = validate_inode(c, inode);
148         if (err)
149                 goto out_invalid;
150 
151         switch (inode->i_mode & S_IFMT) {
152         case S_IFREG:
153                 inode->i_mapping->a_ops = &ubifs_file_address_operations;
154                 inode->i_op = &ubifs_file_inode_operations;
155                 inode->i_fop = &ubifs_file_operations;
156                 if (ui->xattr) {
157                         ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
158                         if (!ui->data) {
159                                 err = -ENOMEM;
160                                 goto out_ino;
161                         }
162                         memcpy(ui->data, ino->data, ui->data_len);
163                         ((char *)ui->data)[ui->data_len] = '\0';
164                 } else if (ui->data_len != 0) {
165                         err = 10;
166                         goto out_invalid;
167                 }
168                 break;
169         case S_IFDIR:
170                 inode->i_op  = &ubifs_dir_inode_operations;
171                 inode->i_fop = &ubifs_dir_operations;
172                 if (ui->data_len != 0) {
173                         err = 11;
174                         goto out_invalid;
175                 }
176                 break;
177         case S_IFLNK:
178                 inode->i_op = &ubifs_symlink_inode_operations;
179                 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
180                         err = 12;
181                         goto out_invalid;
182                 }
183                 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
184                 if (!ui->data) {
185                         err = -ENOMEM;
186                         goto out_ino;
187                 }
188                 memcpy(ui->data, ino->data, ui->data_len);
189                 ((char *)ui->data)[ui->data_len] = '\0';
190                 break;
191         case S_IFBLK:
192         case S_IFCHR:
193         {
194                 dev_t rdev;
195                 union ubifs_dev_desc *dev;
196 
197                 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
198                 if (!ui->data) {
199                         err = -ENOMEM;
200                         goto out_ino;
201                 }
202 
203                 dev = (union ubifs_dev_desc *)ino->data;
204                 if (ui->data_len == sizeof(dev->new))
205                         rdev = new_decode_dev(le32_to_cpu(dev->new));
206                 else if (ui->data_len == sizeof(dev->huge))
207                         rdev = huge_decode_dev(le64_to_cpu(dev->huge));
208                 else {
209                         err = 13;
210                         goto out_invalid;
211                 }
212                 memcpy(ui->data, ino->data, ui->data_len);
213                 inode->i_op = &ubifs_file_inode_operations;
214                 init_special_inode(inode, inode->i_mode, rdev);
215                 break;
216         }
217         case S_IFSOCK:
218         case S_IFIFO:
219                 inode->i_op = &ubifs_file_inode_operations;
220                 init_special_inode(inode, inode->i_mode, 0);
221                 if (ui->data_len != 0) {
222                         err = 14;
223                         goto out_invalid;
224                 }
225                 break;
226         default:
227                 err = 15;
228                 goto out_invalid;
229         }
230 
231         kfree(ino);
232         ubifs_set_inode_flags(inode);
233         unlock_new_inode(inode);
234         return inode;
235 
236 out_invalid:
237         ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
238         ubifs_dump_node(c, ino);
239         ubifs_dump_inode(c, inode);
240         err = -EINVAL;
241 out_ino:
242         kfree(ino);
243 out:
244         ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
245         iget_failed(inode);
246         return ERR_PTR(err);
247 }
248 
249 static struct inode *ubifs_alloc_inode(struct super_block *sb)
250 {
251         struct ubifs_inode *ui;
252 
253         ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
254         if (!ui)
255                 return NULL;
256 
257         memset((void *)ui + sizeof(struct inode), 0,
258                sizeof(struct ubifs_inode) - sizeof(struct inode));
259         mutex_init(&ui->ui_mutex);
260         spin_lock_init(&ui->ui_lock);
261         return &ui->vfs_inode;
262 };
263 
264 static void ubifs_free_inode(struct inode *inode)
265 {
266         struct ubifs_inode *ui = ubifs_inode(inode);
267 
268         kfree(ui->data);
269         fscrypt_free_inode(inode);
270 
271         kmem_cache_free(ubifs_inode_slab, ui);
272 }
273 
274 /*
275  * Note, Linux write-back code calls this without 'i_mutex'.
276  */
277 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
278 {
279         int err = 0;
280         struct ubifs_info *c = inode->i_sb->s_fs_info;
281         struct ubifs_inode *ui = ubifs_inode(inode);
282 
283         ubifs_assert(c, !ui->xattr);
284         if (is_bad_inode(inode))
285                 return 0;
286 
287         mutex_lock(&ui->ui_mutex);
288         /*
289          * Due to races between write-back forced by budgeting
290          * (see 'sync_some_inodes()') and background write-back, the inode may
291          * have already been synchronized, do not do this again. This might
292          * also happen if it was synchronized in an VFS operation, e.g.
293          * 'ubifs_link()'.
294          */
295         if (!ui->dirty) {
296                 mutex_unlock(&ui->ui_mutex);
297                 return 0;
298         }
299 
300         /*
301          * As an optimization, do not write orphan inodes to the media just
302          * because this is not needed.
303          */
304         dbg_gen("inode %lu, mode %#x, nlink %u",
305                 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
306         if (inode->i_nlink) {
307                 err = ubifs_jnl_write_inode(c, inode);
308                 if (err)
309                         ubifs_err(c, "can't write inode %lu, error %d",
310                                   inode->i_ino, err);
311                 else
312                         err = dbg_check_inode_size(c, inode, ui->ui_size);
313         }
314 
315         ui->dirty = 0;
316         mutex_unlock(&ui->ui_mutex);
317         ubifs_release_dirty_inode_budget(c, ui);
318         return err;
319 }
320 
321 static void ubifs_evict_inode(struct inode *inode)
322 {
323         int err;
324         struct ubifs_info *c = inode->i_sb->s_fs_info;
325         struct ubifs_inode *ui = ubifs_inode(inode);
326 
327         if (ui->xattr)
328                 /*
329                  * Extended attribute inode deletions are fully handled in
330                  * 'ubifs_removexattr()'. These inodes are special and have
331                  * limited usage, so there is nothing to do here.
332                  */
333                 goto out;
334 
335         dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
336         ubifs_assert(c, !atomic_read(&inode->i_count));
337 
338         truncate_inode_pages_final(&inode->i_data);
339 
340         if (inode->i_nlink)
341                 goto done;
342 
343         if (is_bad_inode(inode))
344                 goto out;
345 
346         ui->ui_size = inode->i_size = 0;
347         err = ubifs_jnl_delete_inode(c, inode);
348         if (err)
349                 /*
350                  * Worst case we have a lost orphan inode wasting space, so a
351                  * simple error message is OK here.
352                  */
353                 ubifs_err(c, "can't delete inode %lu, error %d",
354                           inode->i_ino, err);
355 
356 out:
357         if (ui->dirty)
358                 ubifs_release_dirty_inode_budget(c, ui);
359         else {
360                 /* We've deleted something - clean the "no space" flags */
361                 c->bi.nospace = c->bi.nospace_rp = 0;
362                 smp_wmb();
363         }
364 done:
365         clear_inode(inode);
366         fscrypt_put_encryption_info(inode);
367 }
368 
369 static void ubifs_dirty_inode(struct inode *inode, int flags)
370 {
371         struct ubifs_info *c = inode->i_sb->s_fs_info;
372         struct ubifs_inode *ui = ubifs_inode(inode);
373 
374         ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
375         if (!ui->dirty) {
376                 ui->dirty = 1;
377                 dbg_gen("inode %lu",  inode->i_ino);
378         }
379 }
380 
381 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
382 {
383         struct ubifs_info *c = dentry->d_sb->s_fs_info;
384         unsigned long long free;
385         __le32 *uuid = (__le32 *)c->uuid;
386 
387         free = ubifs_get_free_space(c);
388         dbg_gen("free space %lld bytes (%lld blocks)",
389                 free, free >> UBIFS_BLOCK_SHIFT);
390 
391         buf->f_type = UBIFS_SUPER_MAGIC;
392         buf->f_bsize = UBIFS_BLOCK_SIZE;
393         buf->f_blocks = c->block_cnt;
394         buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
395         if (free > c->report_rp_size)
396                 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
397         else
398                 buf->f_bavail = 0;
399         buf->f_files = 0;
400         buf->f_ffree = 0;
401         buf->f_namelen = UBIFS_MAX_NLEN;
402         buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
403         buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
404         ubifs_assert(c, buf->f_bfree <= c->block_cnt);
405         return 0;
406 }
407 
408 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
409 {
410         struct ubifs_info *c = root->d_sb->s_fs_info;
411 
412         if (c->mount_opts.unmount_mode == 2)
413                 seq_puts(s, ",fast_unmount");
414         else if (c->mount_opts.unmount_mode == 1)
415                 seq_puts(s, ",norm_unmount");
416 
417         if (c->mount_opts.bulk_read == 2)
418                 seq_puts(s, ",bulk_read");
419         else if (c->mount_opts.bulk_read == 1)
420                 seq_puts(s, ",no_bulk_read");
421 
422         if (c->mount_opts.chk_data_crc == 2)
423                 seq_puts(s, ",chk_data_crc");
424         else if (c->mount_opts.chk_data_crc == 1)
425                 seq_puts(s, ",no_chk_data_crc");
426 
427         if (c->mount_opts.override_compr) {
428                 seq_printf(s, ",compr=%s",
429                            ubifs_compr_name(c, c->mount_opts.compr_type));
430         }
431 
432         seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
433         seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
434 
435         return 0;
436 }
437 
438 static int ubifs_sync_fs(struct super_block *sb, int wait)
439 {
440         int i, err;
441         struct ubifs_info *c = sb->s_fs_info;
442 
443         /*
444          * Zero @wait is just an advisory thing to help the file system shove
445          * lots of data into the queues, and there will be the second
446          * '->sync_fs()' call, with non-zero @wait.
447          */
448         if (!wait)
449                 return 0;
450 
451         /*
452          * Synchronize write buffers, because 'ubifs_run_commit()' does not
453          * do this if it waits for an already running commit.
454          */
455         for (i = 0; i < c->jhead_cnt; i++) {
456                 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
457                 if (err)
458                         return err;
459         }
460 
461         /*
462          * Strictly speaking, it is not necessary to commit the journal here,
463          * synchronizing write-buffers would be enough. But committing makes
464          * UBIFS free space predictions much more accurate, so we want to let
465          * the user be able to get more accurate results of 'statfs()' after
466          * they synchronize the file system.
467          */
468         err = ubifs_run_commit(c);
469         if (err)
470                 return err;
471 
472         return ubi_sync(c->vi.ubi_num);
473 }
474 
475 /**
476  * init_constants_early - initialize UBIFS constants.
477  * @c: UBIFS file-system description object
478  *
479  * This function initialize UBIFS constants which do not need the superblock to
480  * be read. It also checks that the UBI volume satisfies basic UBIFS
481  * requirements. Returns zero in case of success and a negative error code in
482  * case of failure.
483  */
484 static int init_constants_early(struct ubifs_info *c)
485 {
486         if (c->vi.corrupted) {
487                 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
488                 c->ro_media = 1;
489         }
490 
491         if (c->di.ro_mode) {
492                 ubifs_msg(c, "read-only UBI device");
493                 c->ro_media = 1;
494         }
495 
496         if (c->vi.vol_type == UBI_STATIC_VOLUME) {
497                 ubifs_msg(c, "static UBI volume - read-only mode");
498                 c->ro_media = 1;
499         }
500 
501         c->leb_cnt = c->vi.size;
502         c->leb_size = c->vi.usable_leb_size;
503         c->leb_start = c->di.leb_start;
504         c->half_leb_size = c->leb_size / 2;
505         c->min_io_size = c->di.min_io_size;
506         c->min_io_shift = fls(c->min_io_size) - 1;
507         c->max_write_size = c->di.max_write_size;
508         c->max_write_shift = fls(c->max_write_size) - 1;
509 
510         if (c->leb_size < UBIFS_MIN_LEB_SZ) {
511                 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
512                            c->leb_size, UBIFS_MIN_LEB_SZ);
513                 return -EINVAL;
514         }
515 
516         if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
517                 ubifs_errc(c, "too few LEBs (%d), min. is %d",
518                            c->leb_cnt, UBIFS_MIN_LEB_CNT);
519                 return -EINVAL;
520         }
521 
522         if (!is_power_of_2(c->min_io_size)) {
523                 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
524                 return -EINVAL;
525         }
526 
527         /*
528          * Maximum write size has to be greater or equivalent to min. I/O
529          * size, and be multiple of min. I/O size.
530          */
531         if (c->max_write_size < c->min_io_size ||
532             c->max_write_size % c->min_io_size ||
533             !is_power_of_2(c->max_write_size)) {
534                 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
535                            c->max_write_size, c->min_io_size);
536                 return -EINVAL;
537         }
538 
539         /*
540          * UBIFS aligns all node to 8-byte boundary, so to make function in
541          * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
542          * less than 8.
543          */
544         if (c->min_io_size < 8) {
545                 c->min_io_size = 8;
546                 c->min_io_shift = 3;
547                 if (c->max_write_size < c->min_io_size) {
548                         c->max_write_size = c->min_io_size;
549                         c->max_write_shift = c->min_io_shift;
550                 }
551         }
552 
553         c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
554         c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
555 
556         /*
557          * Initialize node length ranges which are mostly needed for node
558          * length validation.
559          */
560         c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
561         c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
562         c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
563         c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
564         c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
565         c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
566         c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
567         c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
568                                 UBIFS_MAX_HMAC_LEN;
569         c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
570         c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
571 
572         c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
573         c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
574         c->ranges[UBIFS_ORPH_NODE].min_len =
575                                 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
576         c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
577         c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
578         c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
579         c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
580         c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
581         c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
582         c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
583         /*
584          * Minimum indexing node size is amended later when superblock is
585          * read and the key length is known.
586          */
587         c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
588         /*
589          * Maximum indexing node size is amended later when superblock is
590          * read and the fanout is known.
591          */
592         c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
593 
594         /*
595          * Initialize dead and dark LEB space watermarks. See gc.c for comments
596          * about these values.
597          */
598         c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
599         c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
600 
601         /*
602          * Calculate how many bytes would be wasted at the end of LEB if it was
603          * fully filled with data nodes of maximum size. This is used in
604          * calculations when reporting free space.
605          */
606         c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
607 
608         /* Buffer size for bulk-reads */
609         c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
610         if (c->max_bu_buf_len > c->leb_size)
611                 c->max_bu_buf_len = c->leb_size;
612 
613         /* Log is ready, preserve one LEB for commits. */
614         c->min_log_bytes = c->leb_size;
615 
616         return 0;
617 }
618 
619 /**
620  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
621  * @c: UBIFS file-system description object
622  * @lnum: LEB the write-buffer was synchronized to
623  * @free: how many free bytes left in this LEB
624  * @pad: how many bytes were padded
625  *
626  * This is a callback function which is called by the I/O unit when the
627  * write-buffer is synchronized. We need this to correctly maintain space
628  * accounting in bud logical eraseblocks. This function returns zero in case of
629  * success and a negative error code in case of failure.
630  *
631  * This function actually belongs to the journal, but we keep it here because
632  * we want to keep it static.
633  */
634 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
635 {
636         return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
637 }
638 
639 /*
640  * init_constants_sb - initialize UBIFS constants.
641  * @c: UBIFS file-system description object
642  *
643  * This is a helper function which initializes various UBIFS constants after
644  * the superblock has been read. It also checks various UBIFS parameters and
645  * makes sure they are all right. Returns zero in case of success and a
646  * negative error code in case of failure.
647  */
648 static int init_constants_sb(struct ubifs_info *c)
649 {
650         int tmp, err;
651         long long tmp64;
652 
653         c->main_bytes = (long long)c->main_lebs * c->leb_size;
654         c->max_znode_sz = sizeof(struct ubifs_znode) +
655                                 c->fanout * sizeof(struct ubifs_zbranch);
656 
657         tmp = ubifs_idx_node_sz(c, 1);
658         c->ranges[UBIFS_IDX_NODE].min_len = tmp;
659         c->min_idx_node_sz = ALIGN(tmp, 8);
660 
661         tmp = ubifs_idx_node_sz(c, c->fanout);
662         c->ranges[UBIFS_IDX_NODE].max_len = tmp;
663         c->max_idx_node_sz = ALIGN(tmp, 8);
664 
665         /* Make sure LEB size is large enough to fit full commit */
666         tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
667         tmp = ALIGN(tmp, c->min_io_size);
668         if (tmp > c->leb_size) {
669                 ubifs_err(c, "too small LEB size %d, at least %d needed",
670                           c->leb_size, tmp);
671                 return -EINVAL;
672         }
673 
674         /*
675          * Make sure that the log is large enough to fit reference nodes for
676          * all buds plus one reserved LEB.
677          */
678         tmp64 = c->max_bud_bytes + c->leb_size - 1;
679         c->max_bud_cnt = div_u64(tmp64, c->leb_size);
680         tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
681         tmp /= c->leb_size;
682         tmp += 1;
683         if (c->log_lebs < tmp) {
684                 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
685                           c->log_lebs, tmp);
686                 return -EINVAL;
687         }
688 
689         /*
690          * When budgeting we assume worst-case scenarios when the pages are not
691          * be compressed and direntries are of the maximum size.
692          *
693          * Note, data, which may be stored in inodes is budgeted separately, so
694          * it is not included into 'c->bi.inode_budget'.
695          */
696         c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
697         c->bi.inode_budget = UBIFS_INO_NODE_SZ;
698         c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
699 
700         /*
701          * When the amount of flash space used by buds becomes
702          * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
703          * The writers are unblocked when the commit is finished. To avoid
704          * writers to be blocked UBIFS initiates background commit in advance,
705          * when number of bud bytes becomes above the limit defined below.
706          */
707         c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
708 
709         /*
710          * Ensure minimum journal size. All the bytes in the journal heads are
711          * considered to be used, when calculating the current journal usage.
712          * Consequently, if the journal is too small, UBIFS will treat it as
713          * always full.
714          */
715         tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
716         if (c->bg_bud_bytes < tmp64)
717                 c->bg_bud_bytes = tmp64;
718         if (c->max_bud_bytes < tmp64 + c->leb_size)
719                 c->max_bud_bytes = tmp64 + c->leb_size;
720 
721         err = ubifs_calc_lpt_geom(c);
722         if (err)
723                 return err;
724 
725         /* Initialize effective LEB size used in budgeting calculations */
726         c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
727         return 0;
728 }
729 
730 /*
731  * init_constants_master - initialize UBIFS constants.
732  * @c: UBIFS file-system description object
733  *
734  * This is a helper function which initializes various UBIFS constants after
735  * the master node has been read. It also checks various UBIFS parameters and
736  * makes sure they are all right.
737  */
738 static void init_constants_master(struct ubifs_info *c)
739 {
740         long long tmp64;
741 
742         c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
743         c->report_rp_size = ubifs_reported_space(c, c->rp_size);
744 
745         /*
746          * Calculate total amount of FS blocks. This number is not used
747          * internally because it does not make much sense for UBIFS, but it is
748          * necessary to report something for the 'statfs()' call.
749          *
750          * Subtract the LEB reserved for GC, the LEB which is reserved for
751          * deletions, minimum LEBs for the index, and assume only one journal
752          * head is available.
753          */
754         tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
755         tmp64 *= (long long)c->leb_size - c->leb_overhead;
756         tmp64 = ubifs_reported_space(c, tmp64);
757         c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
758 }
759 
760 /**
761  * take_gc_lnum - reserve GC LEB.
762  * @c: UBIFS file-system description object
763  *
764  * This function ensures that the LEB reserved for garbage collection is marked
765  * as "taken" in lprops. We also have to set free space to LEB size and dirty
766  * space to zero, because lprops may contain out-of-date information if the
767  * file-system was un-mounted before it has been committed. This function
768  * returns zero in case of success and a negative error code in case of
769  * failure.
770  */
771 static int take_gc_lnum(struct ubifs_info *c)
772 {
773         int err;
774 
775         if (c->gc_lnum == -1) {
776                 ubifs_err(c, "no LEB for GC");
777                 return -EINVAL;
778         }
779 
780         /* And we have to tell lprops that this LEB is taken */
781         err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
782                                   LPROPS_TAKEN, 0, 0);
783         return err;
784 }
785 
786 /**
787  * alloc_wbufs - allocate write-buffers.
788  * @c: UBIFS file-system description object
789  *
790  * This helper function allocates and initializes UBIFS write-buffers. Returns
791  * zero in case of success and %-ENOMEM in case of failure.
792  */
793 static int alloc_wbufs(struct ubifs_info *c)
794 {
795         int i, err;
796 
797         c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
798                             GFP_KERNEL);
799         if (!c->jheads)
800                 return -ENOMEM;
801 
802         /* Initialize journal heads */
803         for (i = 0; i < c->jhead_cnt; i++) {
804                 INIT_LIST_HEAD(&c->jheads[i].buds_list);
805                 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
806                 if (err)
807                         return err;
808 
809                 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
810                 c->jheads[i].wbuf.jhead = i;
811                 c->jheads[i].grouped = 1;
812                 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
813                 if (IS_ERR(c->jheads[i].log_hash))
814                         goto out;
815         }
816 
817         /*
818          * Garbage Collector head does not need to be synchronized by timer.
819          * Also GC head nodes are not grouped.
820          */
821         c->jheads[GCHD].wbuf.no_timer = 1;
822         c->jheads[GCHD].grouped = 0;
823 
824         return 0;
825 
826 out:
827         while (i--)
828                 kfree(c->jheads[i].log_hash);
829 
830         return err;
831 }
832 
833 /**
834  * free_wbufs - free write-buffers.
835  * @c: UBIFS file-system description object
836  */
837 static void free_wbufs(struct ubifs_info *c)
838 {
839         int i;
840 
841         if (c->jheads) {
842                 for (i = 0; i < c->jhead_cnt; i++) {
843                         kfree(c->jheads[i].wbuf.buf);
844                         kfree(c->jheads[i].wbuf.inodes);
845                         kfree(c->jheads[i].log_hash);
846                 }
847                 kfree(c->jheads);
848                 c->jheads = NULL;
849         }
850 }
851 
852 /**
853  * free_orphans - free orphans.
854  * @c: UBIFS file-system description object
855  */
856 static void free_orphans(struct ubifs_info *c)
857 {
858         struct ubifs_orphan *orph;
859 
860         while (c->orph_dnext) {
861                 orph = c->orph_dnext;
862                 c->orph_dnext = orph->dnext;
863                 list_del(&orph->list);
864                 kfree(orph);
865         }
866 
867         while (!list_empty(&c->orph_list)) {
868                 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
869                 list_del(&orph->list);
870                 kfree(orph);
871                 ubifs_err(c, "orphan list not empty at unmount");
872         }
873 
874         vfree(c->orph_buf);
875         c->orph_buf = NULL;
876 }
877 
878 /**
879  * free_buds - free per-bud objects.
880  * @c: UBIFS file-system description object
881  */
882 static void free_buds(struct ubifs_info *c)
883 {
884         struct ubifs_bud *bud, *n;
885 
886         rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
887                 kfree(bud);
888 }
889 
890 /**
891  * check_volume_empty - check if the UBI volume is empty.
892  * @c: UBIFS file-system description object
893  *
894  * This function checks if the UBIFS volume is empty by looking if its LEBs are
895  * mapped or not. The result of checking is stored in the @c->empty variable.
896  * Returns zero in case of success and a negative error code in case of
897  * failure.
898  */
899 static int check_volume_empty(struct ubifs_info *c)
900 {
901         int lnum, err;
902 
903         c->empty = 1;
904         for (lnum = 0; lnum < c->leb_cnt; lnum++) {
905                 err = ubifs_is_mapped(c, lnum);
906                 if (unlikely(err < 0))
907                         return err;
908                 if (err == 1) {
909                         c->empty = 0;
910                         break;
911                 }
912 
913                 cond_resched();
914         }
915 
916         return 0;
917 }
918 
919 /*
920  * UBIFS mount options.
921  *
922  * Opt_fast_unmount: do not run a journal commit before un-mounting
923  * Opt_norm_unmount: run a journal commit before un-mounting
924  * Opt_bulk_read: enable bulk-reads
925  * Opt_no_bulk_read: disable bulk-reads
926  * Opt_chk_data_crc: check CRCs when reading data nodes
927  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
928  * Opt_override_compr: override default compressor
929  * Opt_assert: set ubifs_assert() action
930  * Opt_auth_key: The key name used for authentication
931  * Opt_auth_hash_name: The hash type used for authentication
932  * Opt_err: just end of array marker
933  */
934 enum {
935         Opt_fast_unmount,
936         Opt_norm_unmount,
937         Opt_bulk_read,
938         Opt_no_bulk_read,
939         Opt_chk_data_crc,
940         Opt_no_chk_data_crc,
941         Opt_override_compr,
942         Opt_assert,
943         Opt_auth_key,
944         Opt_auth_hash_name,
945         Opt_ignore,
946         Opt_err,
947 };
948 
949 static const match_table_t tokens = {
950         {Opt_fast_unmount, "fast_unmount"},
951         {Opt_norm_unmount, "norm_unmount"},
952         {Opt_bulk_read, "bulk_read"},
953         {Opt_no_bulk_read, "no_bulk_read"},
954         {Opt_chk_data_crc, "chk_data_crc"},
955         {Opt_no_chk_data_crc, "no_chk_data_crc"},
956         {Opt_override_compr, "compr=%s"},
957         {Opt_auth_key, "auth_key=%s"},
958         {Opt_auth_hash_name, "auth_hash_name=%s"},
959         {Opt_ignore, "ubi=%s"},
960         {Opt_ignore, "vol=%s"},
961         {Opt_assert, "assert=%s"},
962         {Opt_err, NULL},
963 };
964 
965 /**
966  * parse_standard_option - parse a standard mount option.
967  * @option: the option to parse
968  *
969  * Normally, standard mount options like "sync" are passed to file-systems as
970  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
971  * be present in the options string. This function tries to deal with this
972  * situation and parse standard options. Returns 0 if the option was not
973  * recognized, and the corresponding integer flag if it was.
974  *
975  * UBIFS is only interested in the "sync" option, so do not check for anything
976  * else.
977  */
978 static int parse_standard_option(const char *option)
979 {
980 
981         pr_notice("UBIFS: parse %s\n", option);
982         if (!strcmp(option, "sync"))
983                 return SB_SYNCHRONOUS;
984         return 0;
985 }
986 
987 /**
988  * ubifs_parse_options - parse mount parameters.
989  * @c: UBIFS file-system description object
990  * @options: parameters to parse
991  * @is_remount: non-zero if this is FS re-mount
992  *
993  * This function parses UBIFS mount options and returns zero in case success
994  * and a negative error code in case of failure.
995  */
996 static int ubifs_parse_options(struct ubifs_info *c, char *options,
997                                int is_remount)
998 {
999         char *p;
1000         substring_t args[MAX_OPT_ARGS];
1001 
1002         if (!options)
1003                 return 0;
1004 
1005         while ((p = strsep(&options, ","))) {
1006                 int token;
1007 
1008                 if (!*p)
1009                         continue;
1010 
1011                 token = match_token(p, tokens, args);
1012                 switch (token) {
1013                 /*
1014                  * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1015                  * We accept them in order to be backward-compatible. But this
1016                  * should be removed at some point.
1017                  */
1018                 case Opt_fast_unmount:
1019                         c->mount_opts.unmount_mode = 2;
1020                         break;
1021                 case Opt_norm_unmount:
1022                         c->mount_opts.unmount_mode = 1;
1023                         break;
1024                 case Opt_bulk_read:
1025                         c->mount_opts.bulk_read = 2;
1026                         c->bulk_read = 1;
1027                         break;
1028                 case Opt_no_bulk_read:
1029                         c->mount_opts.bulk_read = 1;
1030                         c->bulk_read = 0;
1031                         break;
1032                 case Opt_chk_data_crc:
1033                         c->mount_opts.chk_data_crc = 2;
1034                         c->no_chk_data_crc = 0;
1035                         break;
1036                 case Opt_no_chk_data_crc:
1037                         c->mount_opts.chk_data_crc = 1;
1038                         c->no_chk_data_crc = 1;
1039                         break;
1040                 case Opt_override_compr:
1041                 {
1042                         char *name = match_strdup(&args[0]);
1043 
1044                         if (!name)
1045                                 return -ENOMEM;
1046                         if (!strcmp(name, "none"))
1047                                 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1048                         else if (!strcmp(name, "lzo"))
1049                                 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1050                         else if (!strcmp(name, "zlib"))
1051                                 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1052                         else if (!strcmp(name, "zstd"))
1053                                 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1054                         else {
1055                                 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1056                                 kfree(name);
1057                                 return -EINVAL;
1058                         }
1059                         kfree(name);
1060                         c->mount_opts.override_compr = 1;
1061                         c->default_compr = c->mount_opts.compr_type;
1062                         break;
1063                 }
1064                 case Opt_assert:
1065                 {
1066                         char *act = match_strdup(&args[0]);
1067 
1068                         if (!act)
1069                                 return -ENOMEM;
1070                         if (!strcmp(act, "report"))
1071                                 c->assert_action = ASSACT_REPORT;
1072                         else if (!strcmp(act, "read-only"))
1073                                 c->assert_action = ASSACT_RO;
1074                         else if (!strcmp(act, "panic"))
1075                                 c->assert_action = ASSACT_PANIC;
1076                         else {
1077                                 ubifs_err(c, "unknown assert action \"%s\"", act);
1078                                 kfree(act);
1079                                 return -EINVAL;
1080                         }
1081                         kfree(act);
1082                         break;
1083                 }
1084                 case Opt_auth_key:
1085                         c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1086                         if (!c->auth_key_name)
1087                                 return -ENOMEM;
1088                         break;
1089                 case Opt_auth_hash_name:
1090                         c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1091                         if (!c->auth_hash_name)
1092                                 return -ENOMEM;
1093                         break;
1094                 case Opt_ignore:
1095                         break;
1096                 default:
1097                 {
1098                         unsigned long flag;
1099                         struct super_block *sb = c->vfs_sb;
1100 
1101                         flag = parse_standard_option(p);
1102                         if (!flag) {
1103                                 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1104                                           p);
1105                                 return -EINVAL;
1106                         }
1107                         sb->s_flags |= flag;
1108                         break;
1109                 }
1110                 }
1111         }
1112 
1113         return 0;
1114 }
1115 
1116 /**
1117  * destroy_journal - destroy journal data structures.
1118  * @c: UBIFS file-system description object
1119  *
1120  * This function destroys journal data structures including those that may have
1121  * been created by recovery functions.
1122  */
1123 static void destroy_journal(struct ubifs_info *c)
1124 {
1125         while (!list_empty(&c->unclean_leb_list)) {
1126                 struct ubifs_unclean_leb *ucleb;
1127 
1128                 ucleb = list_entry(c->unclean_leb_list.next,
1129                                    struct ubifs_unclean_leb, list);
1130                 list_del(&ucleb->list);
1131                 kfree(ucleb);
1132         }
1133         while (!list_empty(&c->old_buds)) {
1134                 struct ubifs_bud *bud;
1135 
1136                 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1137                 list_del(&bud->list);
1138                 kfree(bud);
1139         }
1140         ubifs_destroy_idx_gc(c);
1141         ubifs_destroy_size_tree(c);
1142         ubifs_tnc_close(c);
1143         free_buds(c);
1144 }
1145 
1146 /**
1147  * bu_init - initialize bulk-read information.
1148  * @c: UBIFS file-system description object
1149  */
1150 static void bu_init(struct ubifs_info *c)
1151 {
1152         ubifs_assert(c, c->bulk_read == 1);
1153 
1154         if (c->bu.buf)
1155                 return; /* Already initialized */
1156 
1157 again:
1158         c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1159         if (!c->bu.buf) {
1160                 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1161                         c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1162                         goto again;
1163                 }
1164 
1165                 /* Just disable bulk-read */
1166                 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1167                            c->max_bu_buf_len);
1168                 c->mount_opts.bulk_read = 1;
1169                 c->bulk_read = 0;
1170                 return;
1171         }
1172 }
1173 
1174 /**
1175  * check_free_space - check if there is enough free space to mount.
1176  * @c: UBIFS file-system description object
1177  *
1178  * This function makes sure UBIFS has enough free space to be mounted in
1179  * read/write mode. UBIFS must always have some free space to allow deletions.
1180  */
1181 static int check_free_space(struct ubifs_info *c)
1182 {
1183         ubifs_assert(c, c->dark_wm > 0);
1184         if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1185                 ubifs_err(c, "insufficient free space to mount in R/W mode");
1186                 ubifs_dump_budg(c, &c->bi);
1187                 ubifs_dump_lprops(c);
1188                 return -ENOSPC;
1189         }
1190         return 0;
1191 }
1192 
1193 /**
1194  * mount_ubifs - mount UBIFS file-system.
1195  * @c: UBIFS file-system description object
1196  *
1197  * This function mounts UBIFS file system. Returns zero in case of success and
1198  * a negative error code in case of failure.
1199  */
1200 static int mount_ubifs(struct ubifs_info *c)
1201 {
1202         int err;
1203         long long x, y;
1204         size_t sz;
1205 
1206         c->ro_mount = !!sb_rdonly(c->vfs_sb);
1207         /* Suppress error messages while probing if SB_SILENT is set */
1208         c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1209 
1210         err = init_constants_early(c);
1211         if (err)
1212                 return err;
1213 
1214         err = ubifs_debugging_init(c);
1215         if (err)
1216                 return err;
1217 
1218         err = check_volume_empty(c);
1219         if (err)
1220                 goto out_free;
1221 
1222         if (c->empty && (c->ro_mount || c->ro_media)) {
1223                 /*
1224                  * This UBI volume is empty, and read-only, or the file system
1225                  * is mounted read-only - we cannot format it.
1226                  */
1227                 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1228                           c->ro_media ? "UBI volume" : "mount");
1229                 err = -EROFS;
1230                 goto out_free;
1231         }
1232 
1233         if (c->ro_media && !c->ro_mount) {
1234                 ubifs_err(c, "cannot mount read-write - read-only media");
1235                 err = -EROFS;
1236                 goto out_free;
1237         }
1238 
1239         /*
1240          * The requirement for the buffer is that it should fit indexing B-tree
1241          * height amount of integers. We assume the height if the TNC tree will
1242          * never exceed 64.
1243          */
1244         err = -ENOMEM;
1245         c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1246                                          GFP_KERNEL);
1247         if (!c->bottom_up_buf)
1248                 goto out_free;
1249 
1250         c->sbuf = vmalloc(c->leb_size);
1251         if (!c->sbuf)
1252                 goto out_free;
1253 
1254         if (!c->ro_mount) {
1255                 c->ileb_buf = vmalloc(c->leb_size);
1256                 if (!c->ileb_buf)
1257                         goto out_free;
1258         }
1259 
1260         if (c->bulk_read == 1)
1261                 bu_init(c);
1262 
1263         if (!c->ro_mount) {
1264                 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1265                                                UBIFS_CIPHER_BLOCK_SIZE,
1266                                                GFP_KERNEL);
1267                 if (!c->write_reserve_buf)
1268                         goto out_free;
1269         }
1270 
1271         c->mounting = 1;
1272 
1273         if (c->auth_key_name) {
1274                 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1275                         err = ubifs_init_authentication(c);
1276                         if (err)
1277                                 goto out_free;
1278                 } else {
1279                         ubifs_err(c, "auth_key_name, but UBIFS is built without"
1280                                   " authentication support");
1281                         err = -EINVAL;
1282                         goto out_free;
1283                 }
1284         }
1285 
1286         err = ubifs_read_superblock(c);
1287         if (err)
1288                 goto out_free;
1289 
1290         c->probing = 0;
1291 
1292         /*
1293          * Make sure the compressor which is set as default in the superblock
1294          * or overridden by mount options is actually compiled in.
1295          */
1296         if (!ubifs_compr_present(c, c->default_compr)) {
1297                 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1298                           ubifs_compr_name(c, c->default_compr));
1299                 err = -ENOTSUPP;
1300                 goto out_free;
1301         }
1302 
1303         err = init_constants_sb(c);
1304         if (err)
1305                 goto out_free;
1306 
1307         sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1308         c->cbuf = kmalloc(sz, GFP_NOFS);
1309         if (!c->cbuf) {
1310                 err = -ENOMEM;
1311                 goto out_free;
1312         }
1313 
1314         err = alloc_wbufs(c);
1315         if (err)
1316                 goto out_cbuf;
1317 
1318         sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1319         if (!c->ro_mount) {
1320                 /* Create background thread */
1321                 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1322                 if (IS_ERR(c->bgt)) {
1323                         err = PTR_ERR(c->bgt);
1324                         c->bgt = NULL;
1325                         ubifs_err(c, "cannot spawn \"%s\", error %d",
1326                                   c->bgt_name, err);
1327                         goto out_wbufs;
1328                 }
1329                 wake_up_process(c->bgt);
1330         }
1331 
1332         err = ubifs_read_master(c);
1333         if (err)
1334                 goto out_master;
1335 
1336         init_constants_master(c);
1337 
1338         if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1339                 ubifs_msg(c, "recovery needed");
1340                 c->need_recovery = 1;
1341         }
1342 
1343         if (c->need_recovery && !c->ro_mount) {
1344                 err = ubifs_recover_inl_heads(c, c->sbuf);
1345                 if (err)
1346                         goto out_master;
1347         }
1348 
1349         err = ubifs_lpt_init(c, 1, !c->ro_mount);
1350         if (err)
1351                 goto out_master;
1352 
1353         if (!c->ro_mount && c->space_fixup) {
1354                 err = ubifs_fixup_free_space(c);
1355                 if (err)
1356                         goto out_lpt;
1357         }
1358 
1359         if (!c->ro_mount && !c->need_recovery) {
1360                 /*
1361                  * Set the "dirty" flag so that if we reboot uncleanly we
1362                  * will notice this immediately on the next mount.
1363                  */
1364                 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1365                 err = ubifs_write_master(c);
1366                 if (err)
1367                         goto out_lpt;
1368         }
1369 
1370         /*
1371          * Handle offline signed images: Now that the master node is
1372          * written and its validation no longer depends on the hash
1373          * in the superblock, we can update the offline signed
1374          * superblock with a HMAC version,
1375          */
1376         if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1377                 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1378                 if (err)
1379                         goto out_lpt;
1380                 c->superblock_need_write = 1;
1381         }
1382 
1383         if (!c->ro_mount && c->superblock_need_write) {
1384                 err = ubifs_write_sb_node(c, c->sup_node);
1385                 if (err)
1386                         goto out_lpt;
1387                 c->superblock_need_write = 0;
1388         }
1389 
1390         err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1391         if (err)
1392                 goto out_lpt;
1393 
1394         err = ubifs_replay_journal(c);
1395         if (err)
1396                 goto out_journal;
1397 
1398         /* Calculate 'min_idx_lebs' after journal replay */
1399         c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1400 
1401         err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1402         if (err)
1403                 goto out_orphans;
1404 
1405         if (!c->ro_mount) {
1406                 int lnum;
1407 
1408                 err = check_free_space(c);
1409                 if (err)
1410                         goto out_orphans;
1411 
1412                 /* Check for enough log space */
1413                 lnum = c->lhead_lnum + 1;
1414                 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1415                         lnum = UBIFS_LOG_LNUM;
1416                 if (lnum == c->ltail_lnum) {
1417                         err = ubifs_consolidate_log(c);
1418                         if (err)
1419                                 goto out_orphans;
1420                 }
1421 
1422                 if (c->need_recovery) {
1423                         if (!ubifs_authenticated(c)) {
1424                                 err = ubifs_recover_size(c, true);
1425                                 if (err)
1426                                         goto out_orphans;
1427                         }
1428 
1429                         err = ubifs_rcvry_gc_commit(c);
1430                         if (err)
1431                                 goto out_orphans;
1432 
1433                         if (ubifs_authenticated(c)) {
1434                                 err = ubifs_recover_size(c, false);
1435                                 if (err)
1436                                         goto out_orphans;
1437                         }
1438                 } else {
1439                         err = take_gc_lnum(c);
1440                         if (err)
1441                                 goto out_orphans;
1442 
1443                         /*
1444                          * GC LEB may contain garbage if there was an unclean
1445                          * reboot, and it should be un-mapped.
1446                          */
1447                         err = ubifs_leb_unmap(c, c->gc_lnum);
1448                         if (err)
1449                                 goto out_orphans;
1450                 }
1451 
1452                 err = dbg_check_lprops(c);
1453                 if (err)
1454                         goto out_orphans;
1455         } else if (c->need_recovery) {
1456                 err = ubifs_recover_size(c, false);
1457                 if (err)
1458                         goto out_orphans;
1459         } else {
1460                 /*
1461                  * Even if we mount read-only, we have to set space in GC LEB
1462                  * to proper value because this affects UBIFS free space
1463                  * reporting. We do not want to have a situation when
1464                  * re-mounting from R/O to R/W changes amount of free space.
1465                  */
1466                 err = take_gc_lnum(c);
1467                 if (err)
1468                         goto out_orphans;
1469         }
1470 
1471         spin_lock(&ubifs_infos_lock);
1472         list_add_tail(&c->infos_list, &ubifs_infos);
1473         spin_unlock(&ubifs_infos_lock);
1474 
1475         if (c->need_recovery) {
1476                 if (c->ro_mount)
1477                         ubifs_msg(c, "recovery deferred");
1478                 else {
1479                         c->need_recovery = 0;
1480                         ubifs_msg(c, "recovery completed");
1481                         /*
1482                          * GC LEB has to be empty and taken at this point. But
1483                          * the journal head LEBs may also be accounted as
1484                          * "empty taken" if they are empty.
1485                          */
1486                         ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1487                 }
1488         } else
1489                 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1490 
1491         err = dbg_check_filesystem(c);
1492         if (err)
1493                 goto out_infos;
1494 
1495         dbg_debugfs_init_fs(c);
1496 
1497         c->mounting = 0;
1498 
1499         ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1500                   c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1501                   c->ro_mount ? ", R/O mode" : "");
1502         x = (long long)c->main_lebs * c->leb_size;
1503         y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1504         ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1505                   c->leb_size, c->leb_size >> 10, c->min_io_size,
1506                   c->max_write_size);
1507         ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1508                   x, x >> 20, c->main_lebs,
1509                   y, y >> 20, c->log_lebs + c->max_bud_cnt);
1510         ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1511                   c->report_rp_size, c->report_rp_size >> 10);
1512         ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1513                   c->fmt_version, c->ro_compat_version,
1514                   UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1515                   c->big_lpt ? ", big LPT model" : ", small LPT model");
1516 
1517         dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1518         dbg_gen("data journal heads:  %d",
1519                 c->jhead_cnt - NONDATA_JHEADS_CNT);
1520         dbg_gen("log LEBs:            %d (%d - %d)",
1521                 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1522         dbg_gen("LPT area LEBs:       %d (%d - %d)",
1523                 c->lpt_lebs, c->lpt_first, c->lpt_last);
1524         dbg_gen("orphan area LEBs:    %d (%d - %d)",
1525                 c->orph_lebs, c->orph_first, c->orph_last);
1526         dbg_gen("main area LEBs:      %d (%d - %d)",
1527                 c->main_lebs, c->main_first, c->leb_cnt - 1);
1528         dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1529         dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1530                 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1531                 c->bi.old_idx_sz >> 20);
1532         dbg_gen("key hash type:       %d", c->key_hash_type);
1533         dbg_gen("tree fanout:         %d", c->fanout);
1534         dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1535         dbg_gen("max. znode size      %d", c->max_znode_sz);
1536         dbg_gen("max. index node size %d", c->max_idx_node_sz);
1537         dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1538                 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1539         dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1540                 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1541         dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1542                 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1543         dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1544                 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1545                 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1546         dbg_gen("dead watermark:      %d", c->dead_wm);
1547         dbg_gen("dark watermark:      %d", c->dark_wm);
1548         dbg_gen("LEB overhead:        %d", c->leb_overhead);
1549         x = (long long)c->main_lebs * c->dark_wm;
1550         dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1551                 x, x >> 10, x >> 20);
1552         dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1553                 c->max_bud_bytes, c->max_bud_bytes >> 10,
1554                 c->max_bud_bytes >> 20);
1555         dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1556                 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1557                 c->bg_bud_bytes >> 20);
1558         dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1559                 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1560         dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1561         dbg_gen("commit number:       %llu", c->cmt_no);
1562         dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1563         dbg_gen("max orphans:           %d", c->max_orphans);
1564 
1565         return 0;
1566 
1567 out_infos:
1568         spin_lock(&ubifs_infos_lock);
1569         list_del(&c->infos_list);
1570         spin_unlock(&ubifs_infos_lock);
1571 out_orphans:
1572         free_orphans(c);
1573 out_journal:
1574         destroy_journal(c);
1575 out_lpt:
1576         ubifs_lpt_free(c, 0);
1577 out_master:
1578         kfree(c->mst_node);
1579         kfree(c->rcvrd_mst_node);
1580         if (c->bgt)
1581                 kthread_stop(c->bgt);
1582 out_wbufs:
1583         free_wbufs(c);
1584 out_cbuf:
1585         kfree(c->cbuf);
1586 out_free:
1587         kfree(c->write_reserve_buf);
1588         kfree(c->bu.buf);
1589         vfree(c->ileb_buf);
1590         vfree(c->sbuf);
1591         kfree(c->bottom_up_buf);
1592         ubifs_debugging_exit(c);
1593         return err;
1594 }
1595 
1596 /**
1597  * ubifs_umount - un-mount UBIFS file-system.
1598  * @c: UBIFS file-system description object
1599  *
1600  * Note, this function is called to free allocated resourced when un-mounting,
1601  * as well as free resources when an error occurred while we were half way
1602  * through mounting (error path cleanup function). So it has to make sure the
1603  * resource was actually allocated before freeing it.
1604  */
1605 static void ubifs_umount(struct ubifs_info *c)
1606 {
1607         dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1608                 c->vi.vol_id);
1609 
1610         dbg_debugfs_exit_fs(c);
1611         spin_lock(&ubifs_infos_lock);
1612         list_del(&c->infos_list);
1613         spin_unlock(&ubifs_infos_lock);
1614 
1615         if (c->bgt)
1616                 kthread_stop(c->bgt);
1617 
1618         destroy_journal(c);
1619         free_wbufs(c);
1620         free_orphans(c);
1621         ubifs_lpt_free(c, 0);
1622         ubifs_exit_authentication(c);
1623 
1624         kfree(c->auth_key_name);
1625         kfree(c->auth_hash_name);
1626         kfree(c->cbuf);
1627         kfree(c->rcvrd_mst_node);
1628         kfree(c->mst_node);
1629         kfree(c->write_reserve_buf);
1630         kfree(c->bu.buf);
1631         vfree(c->ileb_buf);
1632         vfree(c->sbuf);
1633         kfree(c->bottom_up_buf);
1634         ubifs_debugging_exit(c);
1635 }
1636 
1637 /**
1638  * ubifs_remount_rw - re-mount in read-write mode.
1639  * @c: UBIFS file-system description object
1640  *
1641  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1642  * mode. This function allocates the needed resources and re-mounts UBIFS in
1643  * read-write mode.
1644  */
1645 static int ubifs_remount_rw(struct ubifs_info *c)
1646 {
1647         int err, lnum;
1648 
1649         if (c->rw_incompat) {
1650                 ubifs_err(c, "the file-system is not R/W-compatible");
1651                 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1652                           c->fmt_version, c->ro_compat_version,
1653                           UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1654                 return -EROFS;
1655         }
1656 
1657         mutex_lock(&c->umount_mutex);
1658         dbg_save_space_info(c);
1659         c->remounting_rw = 1;
1660         c->ro_mount = 0;
1661 
1662         if (c->space_fixup) {
1663                 err = ubifs_fixup_free_space(c);
1664                 if (err)
1665                         goto out;
1666         }
1667 
1668         err = check_free_space(c);
1669         if (err)
1670                 goto out;
1671 
1672         if (c->need_recovery) {
1673                 ubifs_msg(c, "completing deferred recovery");
1674                 err = ubifs_write_rcvrd_mst_node(c);
1675                 if (err)
1676                         goto out;
1677                 if (!ubifs_authenticated(c)) {
1678                         err = ubifs_recover_size(c, true);
1679                         if (err)
1680                                 goto out;
1681                 }
1682                 err = ubifs_clean_lebs(c, c->sbuf);
1683                 if (err)
1684                         goto out;
1685                 err = ubifs_recover_inl_heads(c, c->sbuf);
1686                 if (err)
1687                         goto out;
1688         } else {
1689                 /* A readonly mount is not allowed to have orphans */
1690                 ubifs_assert(c, c->tot_orphans == 0);
1691                 err = ubifs_clear_orphans(c);
1692                 if (err)
1693                         goto out;
1694         }
1695 
1696         if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1697                 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1698                 err = ubifs_write_master(c);
1699                 if (err)
1700                         goto out;
1701         }
1702 
1703         if (c->superblock_need_write) {
1704                 struct ubifs_sb_node *sup = c->sup_node;
1705 
1706                 err = ubifs_write_sb_node(c, sup);
1707                 if (err)
1708                         goto out;
1709 
1710                 c->superblock_need_write = 0;
1711         }
1712 
1713         c->ileb_buf = vmalloc(c->leb_size);
1714         if (!c->ileb_buf) {
1715                 err = -ENOMEM;
1716                 goto out;
1717         }
1718 
1719         c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1720                                        UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1721         if (!c->write_reserve_buf) {
1722                 err = -ENOMEM;
1723                 goto out;
1724         }
1725 
1726         err = ubifs_lpt_init(c, 0, 1);
1727         if (err)
1728                 goto out;
1729 
1730         /* Create background thread */
1731         c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1732         if (IS_ERR(c->bgt)) {
1733                 err = PTR_ERR(c->bgt);
1734                 c->bgt = NULL;
1735                 ubifs_err(c, "cannot spawn \"%s\", error %d",
1736                           c->bgt_name, err);
1737                 goto out;
1738         }
1739         wake_up_process(c->bgt);
1740 
1741         c->orph_buf = vmalloc(c->leb_size);
1742         if (!c->orph_buf) {
1743                 err = -ENOMEM;
1744                 goto out;
1745         }
1746 
1747         /* Check for enough log space */
1748         lnum = c->lhead_lnum + 1;
1749         if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1750                 lnum = UBIFS_LOG_LNUM;
1751         if (lnum == c->ltail_lnum) {
1752                 err = ubifs_consolidate_log(c);
1753                 if (err)
1754                         goto out;
1755         }
1756 
1757         if (c->need_recovery) {
1758                 err = ubifs_rcvry_gc_commit(c);
1759                 if (err)
1760                         goto out;
1761 
1762                 if (ubifs_authenticated(c)) {
1763                         err = ubifs_recover_size(c, false);
1764                         if (err)
1765                                 goto out;
1766                 }
1767         } else {
1768                 err = ubifs_leb_unmap(c, c->gc_lnum);
1769         }
1770         if (err)
1771                 goto out;
1772 
1773         dbg_gen("re-mounted read-write");
1774         c->remounting_rw = 0;
1775 
1776         if (c->need_recovery) {
1777                 c->need_recovery = 0;
1778                 ubifs_msg(c, "deferred recovery completed");
1779         } else {
1780                 /*
1781                  * Do not run the debugging space check if the were doing
1782                  * recovery, because when we saved the information we had the
1783                  * file-system in a state where the TNC and lprops has been
1784                  * modified in memory, but all the I/O operations (including a
1785                  * commit) were deferred. So the file-system was in
1786                  * "non-committed" state. Now the file-system is in committed
1787                  * state, and of course the amount of free space will change
1788                  * because, for example, the old index size was imprecise.
1789                  */
1790                 err = dbg_check_space_info(c);
1791         }
1792 
1793         mutex_unlock(&c->umount_mutex);
1794         return err;
1795 
1796 out:
1797         c->ro_mount = 1;
1798         vfree(c->orph_buf);
1799         c->orph_buf = NULL;
1800         if (c->bgt) {
1801                 kthread_stop(c->bgt);
1802                 c->bgt = NULL;
1803         }
1804         free_wbufs(c);
1805         kfree(c->write_reserve_buf);
1806         c->write_reserve_buf = NULL;
1807         vfree(c->ileb_buf);
1808         c->ileb_buf = NULL;
1809         ubifs_lpt_free(c, 1);
1810         c->remounting_rw = 0;
1811         mutex_unlock(&c->umount_mutex);
1812         return err;
1813 }
1814 
1815 /**
1816  * ubifs_remount_ro - re-mount in read-only mode.
1817  * @c: UBIFS file-system description object
1818  *
1819  * We assume VFS has stopped writing. Possibly the background thread could be
1820  * running a commit, however kthread_stop will wait in that case.
1821  */
1822 static void ubifs_remount_ro(struct ubifs_info *c)
1823 {
1824         int i, err;
1825 
1826         ubifs_assert(c, !c->need_recovery);
1827         ubifs_assert(c, !c->ro_mount);
1828 
1829         mutex_lock(&c->umount_mutex);
1830         if (c->bgt) {
1831                 kthread_stop(c->bgt);
1832                 c->bgt = NULL;
1833         }
1834 
1835         dbg_save_space_info(c);
1836 
1837         for (i = 0; i < c->jhead_cnt; i++) {
1838                 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1839                 if (err)
1840                         ubifs_ro_mode(c, err);
1841         }
1842 
1843         c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1844         c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1845         c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1846         err = ubifs_write_master(c);
1847         if (err)
1848                 ubifs_ro_mode(c, err);
1849 
1850         vfree(c->orph_buf);
1851         c->orph_buf = NULL;
1852         kfree(c->write_reserve_buf);
1853         c->write_reserve_buf = NULL;
1854         vfree(c->ileb_buf);
1855         c->ileb_buf = NULL;
1856         ubifs_lpt_free(c, 1);
1857         c->ro_mount = 1;
1858         err = dbg_check_space_info(c);
1859         if (err)
1860                 ubifs_ro_mode(c, err);
1861         mutex_unlock(&c->umount_mutex);
1862 }
1863 
1864 static void ubifs_put_super(struct super_block *sb)
1865 {
1866         int i;
1867         struct ubifs_info *c = sb->s_fs_info;
1868 
1869         ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1870 
1871         /*
1872          * The following asserts are only valid if there has not been a failure
1873          * of the media. For example, there will be dirty inodes if we failed
1874          * to write them back because of I/O errors.
1875          */
1876         if (!c->ro_error) {
1877                 ubifs_assert(c, c->bi.idx_growth == 0);
1878                 ubifs_assert(c, c->bi.dd_growth == 0);
1879                 ubifs_assert(c, c->bi.data_growth == 0);
1880         }
1881 
1882         /*
1883          * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1884          * and file system un-mount. Namely, it prevents the shrinker from
1885          * picking this superblock for shrinking - it will be just skipped if
1886          * the mutex is locked.
1887          */
1888         mutex_lock(&c->umount_mutex);
1889         if (!c->ro_mount) {
1890                 /*
1891                  * First of all kill the background thread to make sure it does
1892                  * not interfere with un-mounting and freeing resources.
1893                  */
1894                 if (c->bgt) {
1895                         kthread_stop(c->bgt);
1896                         c->bgt = NULL;
1897                 }
1898 
1899                 /*
1900                  * On fatal errors c->ro_error is set to 1, in which case we do
1901                  * not write the master node.
1902                  */
1903                 if (!c->ro_error) {
1904                         int err;
1905 
1906                         /* Synchronize write-buffers */
1907                         for (i = 0; i < c->jhead_cnt; i++) {
1908                                 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1909                                 if (err)
1910                                         ubifs_ro_mode(c, err);
1911                         }
1912 
1913                         /*
1914                          * We are being cleanly unmounted which means the
1915                          * orphans were killed - indicate this in the master
1916                          * node. Also save the reserved GC LEB number.
1917                          */
1918                         c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1919                         c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1920                         c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1921                         err = ubifs_write_master(c);
1922                         if (err)
1923                                 /*
1924                                  * Recovery will attempt to fix the master area
1925                                  * next mount, so we just print a message and
1926                                  * continue to unmount normally.
1927                                  */
1928                                 ubifs_err(c, "failed to write master node, error %d",
1929                                           err);
1930                 } else {
1931                         for (i = 0; i < c->jhead_cnt; i++)
1932                                 /* Make sure write-buffer timers are canceled */
1933                                 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1934                 }
1935         }
1936 
1937         ubifs_umount(c);
1938         ubi_close_volume(c->ubi);
1939         mutex_unlock(&c->umount_mutex);
1940 }
1941 
1942 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1943 {
1944         int err;
1945         struct ubifs_info *c = sb->s_fs_info;
1946 
1947         sync_filesystem(sb);
1948         dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1949 
1950         err = ubifs_parse_options(c, data, 1);
1951         if (err) {
1952                 ubifs_err(c, "invalid or unknown remount parameter");
1953                 return err;
1954         }
1955 
1956         if (c->ro_mount && !(*flags & SB_RDONLY)) {
1957                 if (c->ro_error) {
1958                         ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1959                         return -EROFS;
1960                 }
1961                 if (c->ro_media) {
1962                         ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1963                         return -EROFS;
1964                 }
1965                 err = ubifs_remount_rw(c);
1966                 if (err)
1967                         return err;
1968         } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1969                 if (c->ro_error) {
1970                         ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1971                         return -EROFS;
1972                 }
1973                 ubifs_remount_ro(c);
1974         }
1975 
1976         if (c->bulk_read == 1)
1977                 bu_init(c);
1978         else {
1979                 dbg_gen("disable bulk-read");
1980                 mutex_lock(&c->bu_mutex);
1981                 kfree(c->bu.buf);
1982                 c->bu.buf = NULL;
1983                 mutex_unlock(&c->bu_mutex);
1984         }
1985 
1986         if (!c->need_recovery)
1987                 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1988 
1989         return 0;
1990 }
1991 
1992 const struct super_operations ubifs_super_operations = {
1993         .alloc_inode   = ubifs_alloc_inode,
1994         .free_inode    = ubifs_free_inode,
1995         .put_super     = ubifs_put_super,
1996         .write_inode   = ubifs_write_inode,
1997         .evict_inode   = ubifs_evict_inode,
1998         .statfs        = ubifs_statfs,
1999         .dirty_inode   = ubifs_dirty_inode,
2000         .remount_fs    = ubifs_remount_fs,
2001         .show_options  = ubifs_show_options,
2002         .sync_fs       = ubifs_sync_fs,
2003 };
2004 
2005 /**
2006  * open_ubi - parse UBI device name string and open the UBI device.
2007  * @name: UBI volume name
2008  * @mode: UBI volume open mode
2009  *
2010  * The primary method of mounting UBIFS is by specifying the UBI volume
2011  * character device node path. However, UBIFS may also be mounted withoug any
2012  * character device node using one of the following methods:
2013  *
2014  * o ubiX_Y    - mount UBI device number X, volume Y;
2015  * o ubiY      - mount UBI device number 0, volume Y;
2016  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2017  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2018  *
2019  * Alternative '!' separator may be used instead of ':' (because some shells
2020  * like busybox may interpret ':' as an NFS host name separator). This function
2021  * returns UBI volume description object in case of success and a negative
2022  * error code in case of failure.
2023  */
2024 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2025 {
2026         struct ubi_volume_desc *ubi;
2027         int dev, vol;
2028         char *endptr;
2029 
2030         if (!name || !*name)
2031                 return ERR_PTR(-EINVAL);
2032 
2033         /* First, try to open using the device node path method */
2034         ubi = ubi_open_volume_path(name, mode);
2035         if (!IS_ERR(ubi))
2036                 return ubi;
2037 
2038         /* Try the "nodev" method */
2039         if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2040                 return ERR_PTR(-EINVAL);
2041 
2042         /* ubi:NAME method */
2043         if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2044                 return ubi_open_volume_nm(0, name + 4, mode);
2045 
2046         if (!isdigit(name[3]))
2047                 return ERR_PTR(-EINVAL);
2048 
2049         dev = simple_strtoul(name + 3, &endptr, 0);
2050 
2051         /* ubiY method */
2052         if (*endptr == '\0')
2053                 return ubi_open_volume(0, dev, mode);
2054 
2055         /* ubiX_Y method */
2056         if (*endptr == '_' && isdigit(endptr[1])) {
2057                 vol = simple_strtoul(endptr + 1, &endptr, 0);
2058                 if (*endptr != '\0')
2059                         return ERR_PTR(-EINVAL);
2060                 return ubi_open_volume(dev, vol, mode);
2061         }
2062 
2063         /* ubiX:NAME method */
2064         if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2065                 return ubi_open_volume_nm(dev, ++endptr, mode);
2066 
2067         return ERR_PTR(-EINVAL);
2068 }
2069 
2070 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2071 {
2072         struct ubifs_info *c;
2073 
2074         c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2075         if (c) {
2076                 spin_lock_init(&c->cnt_lock);
2077                 spin_lock_init(&c->cs_lock);
2078                 spin_lock_init(&c->buds_lock);
2079                 spin_lock_init(&c->space_lock);
2080                 spin_lock_init(&c->orphan_lock);
2081                 init_rwsem(&c->commit_sem);
2082                 mutex_init(&c->lp_mutex);
2083                 mutex_init(&c->tnc_mutex);
2084                 mutex_init(&c->log_mutex);
2085                 mutex_init(&c->umount_mutex);
2086                 mutex_init(&c->bu_mutex);
2087                 mutex_init(&c->write_reserve_mutex);
2088                 init_waitqueue_head(&c->cmt_wq);
2089                 c->buds = RB_ROOT;
2090                 c->old_idx = RB_ROOT;
2091                 c->size_tree = RB_ROOT;
2092                 c->orph_tree = RB_ROOT;
2093                 INIT_LIST_HEAD(&c->infos_list);
2094                 INIT_LIST_HEAD(&c->idx_gc);
2095                 INIT_LIST_HEAD(&c->replay_list);
2096                 INIT_LIST_HEAD(&c->replay_buds);
2097                 INIT_LIST_HEAD(&c->uncat_list);
2098                 INIT_LIST_HEAD(&c->empty_list);
2099                 INIT_LIST_HEAD(&c->freeable_list);
2100                 INIT_LIST_HEAD(&c->frdi_idx_list);
2101                 INIT_LIST_HEAD(&c->unclean_leb_list);
2102                 INIT_LIST_HEAD(&c->old_buds);
2103                 INIT_LIST_HEAD(&c->orph_list);
2104                 INIT_LIST_HEAD(&c->orph_new);
2105                 c->no_chk_data_crc = 1;
2106                 c->assert_action = ASSACT_RO;
2107 
2108                 c->highest_inum = UBIFS_FIRST_INO;
2109                 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2110 
2111                 ubi_get_volume_info(ubi, &c->vi);
2112                 ubi_get_device_info(c->vi.ubi_num, &c->di);
2113         }
2114         return c;
2115 }
2116 
2117 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2118 {
2119         struct ubifs_info *c = sb->s_fs_info;
2120         struct inode *root;
2121         int err;
2122 
2123         c->vfs_sb = sb;
2124         /* Re-open the UBI device in read-write mode */
2125         c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2126         if (IS_ERR(c->ubi)) {
2127                 err = PTR_ERR(c->ubi);
2128                 goto out;
2129         }
2130 
2131         err = ubifs_parse_options(c, data, 0);
2132         if (err)
2133                 goto out_close;
2134 
2135         /*
2136          * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2137          * UBIFS, I/O is not deferred, it is done immediately in readpage,
2138          * which means the user would have to wait not just for their own I/O
2139          * but the read-ahead I/O as well i.e. completely pointless.
2140          *
2141          * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2142          * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2143          * writeback happening.
2144          */
2145         err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2146                                    c->vi.vol_id);
2147         if (err)
2148                 goto out_close;
2149 
2150         sb->s_fs_info = c;
2151         sb->s_magic = UBIFS_SUPER_MAGIC;
2152         sb->s_blocksize = UBIFS_BLOCK_SIZE;
2153         sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2154         sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2155         if (c->max_inode_sz > MAX_LFS_FILESIZE)
2156                 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2157         sb->s_op = &ubifs_super_operations;
2158 #ifdef CONFIG_UBIFS_FS_XATTR
2159         sb->s_xattr = ubifs_xattr_handlers;
2160 #endif
2161         fscrypt_set_ops(sb, &ubifs_crypt_operations);
2162 
2163         mutex_lock(&c->umount_mutex);
2164         err = mount_ubifs(c);
2165         if (err) {
2166                 ubifs_assert(c, err < 0);
2167                 goto out_unlock;
2168         }
2169 
2170         /* Read the root inode */
2171         root = ubifs_iget(sb, UBIFS_ROOT_INO);
2172         if (IS_ERR(root)) {
2173                 err = PTR_ERR(root);
2174                 goto out_umount;
2175         }
2176 
2177         sb->s_root = d_make_root(root);
2178         if (!sb->s_root) {
2179                 err = -ENOMEM;
2180                 goto out_umount;
2181         }
2182 
2183         mutex_unlock(&c->umount_mutex);
2184         return 0;
2185 
2186 out_umount:
2187         ubifs_umount(c);
2188 out_unlock:
2189         mutex_unlock(&c->umount_mutex);
2190 out_close:
2191         ubi_close_volume(c->ubi);
2192 out:
2193         return err;
2194 }
2195 
2196 static int sb_test(struct super_block *sb, void *data)
2197 {
2198         struct ubifs_info *c1 = data;
2199         struct ubifs_info *c = sb->s_fs_info;
2200 
2201         return c->vi.cdev == c1->vi.cdev;
2202 }
2203 
2204 static int sb_set(struct super_block *sb, void *data)
2205 {
2206         sb->s_fs_info = data;
2207         return set_anon_super(sb, NULL);
2208 }
2209 
2210 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2211                         const char *name, void *data)
2212 {
2213         struct ubi_volume_desc *ubi;
2214         struct ubifs_info *c;
2215         struct super_block *sb;
2216         int err;
2217 
2218         dbg_gen("name %s, flags %#x", name, flags);
2219 
2220         /*
2221          * Get UBI device number and volume ID. Mount it read-only so far
2222          * because this might be a new mount point, and UBI allows only one
2223          * read-write user at a time.
2224          */
2225         ubi = open_ubi(name, UBI_READONLY);
2226         if (IS_ERR(ubi)) {
2227                 if (!(flags & SB_SILENT))
2228                         pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2229                                current->pid, name, (int)PTR_ERR(ubi));
2230                 return ERR_CAST(ubi);
2231         }
2232 
2233         c = alloc_ubifs_info(ubi);
2234         if (!c) {
2235                 err = -ENOMEM;
2236                 goto out_close;
2237         }
2238 
2239         dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2240 
2241         sb = sget(fs_type, sb_test, sb_set, flags, c);
2242         if (IS_ERR(sb)) {
2243                 err = PTR_ERR(sb);
2244                 kfree(c);
2245                 goto out_close;
2246         }
2247 
2248         if (sb->s_root) {
2249                 struct ubifs_info *c1 = sb->s_fs_info;
2250                 kfree(c);
2251                 /* A new mount point for already mounted UBIFS */
2252                 dbg_gen("this ubi volume is already mounted");
2253                 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2254                         err = -EBUSY;
2255                         goto out_deact;
2256                 }
2257         } else {
2258                 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2259                 if (err)
2260                         goto out_deact;
2261                 /* We do not support atime */
2262                 sb->s_flags |= SB_ACTIVE;
2263                 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2264                         ubifs_msg(c, "full atime support is enabled.");
2265                 else
2266                         sb->s_flags |= SB_NOATIME;
2267         }
2268 
2269         /* 'fill_super()' opens ubi again so we must close it here */
2270         ubi_close_volume(ubi);
2271 
2272         return dget(sb->s_root);
2273 
2274 out_deact:
2275         deactivate_locked_super(sb);
2276 out_close:
2277         ubi_close_volume(ubi);
2278         return ERR_PTR(err);
2279 }
2280 
2281 static void kill_ubifs_super(struct super_block *s)
2282 {
2283         struct ubifs_info *c = s->s_fs_info;
2284         kill_anon_super(s);
2285         kfree(c);
2286 }
2287 
2288 static struct file_system_type ubifs_fs_type = {
2289         .name    = "ubifs",
2290         .owner   = THIS_MODULE,
2291         .mount   = ubifs_mount,
2292         .kill_sb = kill_ubifs_super,
2293 };
2294 MODULE_ALIAS_FS("ubifs");
2295 
2296 /*
2297  * Inode slab cache constructor.
2298  */
2299 static void inode_slab_ctor(void *obj)
2300 {
2301         struct ubifs_inode *ui = obj;
2302         inode_init_once(&ui->vfs_inode);
2303 }
2304 
2305 static int __init ubifs_init(void)
2306 {
2307         int err;
2308 
2309         BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2310 
2311         /* Make sure node sizes are 8-byte aligned */
2312         BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2313         BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2314         BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2315         BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2316         BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2317         BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2318         BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2319         BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2320         BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2321         BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2322         BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2323 
2324         BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2325         BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2326         BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2327         BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2328         BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2329         BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2330 
2331         /* Check min. node size */
2332         BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2333         BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2334         BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2335         BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2336 
2337         BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2338         BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2339         BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2340         BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2341 
2342         /* Defined node sizes */
2343         BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2344         BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2345         BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2346         BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2347 
2348         /*
2349          * We use 2 bit wide bit-fields to store compression type, which should
2350          * be amended if more compressors are added. The bit-fields are:
2351          * @compr_type in 'struct ubifs_inode', @default_compr in
2352          * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2353          */
2354         BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2355 
2356         /*
2357          * We require that PAGE_SIZE is greater-than-or-equal-to
2358          * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2359          */
2360         if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2361                 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2362                        current->pid, (unsigned int)PAGE_SIZE);
2363                 return -EINVAL;
2364         }
2365 
2366         ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2367                                 sizeof(struct ubifs_inode), 0,
2368                                 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2369                                 SLAB_ACCOUNT, &inode_slab_ctor);
2370         if (!ubifs_inode_slab)
2371                 return -ENOMEM;
2372 
2373         err = register_shrinker(&ubifs_shrinker_info);
2374         if (err)
2375                 goto out_slab;
2376 
2377         err = ubifs_compressors_init();
2378         if (err)
2379                 goto out_shrinker;
2380 
2381         dbg_debugfs_init();
2382 
2383         err = register_filesystem(&ubifs_fs_type);
2384         if (err) {
2385                 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2386                        current->pid, err);
2387                 goto out_dbg;
2388         }
2389         return 0;
2390 
2391 out_dbg:
2392         dbg_debugfs_exit();
2393         ubifs_compressors_exit();
2394 out_shrinker:
2395         unregister_shrinker(&ubifs_shrinker_info);
2396 out_slab:
2397         kmem_cache_destroy(ubifs_inode_slab);
2398         return err;
2399 }
2400 /* late_initcall to let compressors initialize first */
2401 late_initcall(ubifs_init);
2402 
2403 static void __exit ubifs_exit(void)
2404 {
2405         WARN_ON(!list_empty(&ubifs_infos));
2406         WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2407 
2408         dbg_debugfs_exit();
2409         ubifs_compressors_exit();
2410         unregister_shrinker(&ubifs_shrinker_info);
2411 
2412         /*
2413          * Make sure all delayed rcu free inodes are flushed before we
2414          * destroy cache.
2415          */
2416         rcu_barrier();
2417         kmem_cache_destroy(ubifs_inode_slab);
2418         unregister_filesystem(&ubifs_fs_type);
2419 }
2420 module_exit(ubifs_exit);
2421 
2422 MODULE_LICENSE("GPL");
2423 MODULE_VERSION(__stringify(UBIFS_VERSION));
2424 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2425 MODULE_DESCRIPTION("UBIFS - UBI File System");
2426 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp