~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/udf/inode.c

Version: ~ [ linux-5.16 ] ~ [ linux-5.15.13 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.90 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.170 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.224 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.261 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.296 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.298 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * inode.c
  3  *
  4  * PURPOSE
  5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
  6  *
  7  * COPYRIGHT
  8  *  This file is distributed under the terms of the GNU General Public
  9  *  License (GPL). Copies of the GPL can be obtained from:
 10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 11  *  Each contributing author retains all rights to their own work.
 12  *
 13  *  (C) 1998 Dave Boynton
 14  *  (C) 1998-2004 Ben Fennema
 15  *  (C) 1999-2000 Stelias Computing Inc
 16  *
 17  * HISTORY
 18  *
 19  *  10/04/98 dgb  Added rudimentary directory functions
 20  *  10/07/98      Fully working udf_block_map! It works!
 21  *  11/25/98      bmap altered to better support extents
 22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
 23  *                and udf_read_inode
 24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
 25  *                block boundaries (which is not actually allowed)
 26  *  12/20/98      added support for strategy 4096
 27  *  03/07/99      rewrote udf_block_map (again)
 28  *                New funcs, inode_bmap, udf_next_aext
 29  *  04/19/99      Support for writing device EA's for major/minor #
 30  */
 31 
 32 #include "udfdecl.h"
 33 #include <linux/mm.h>
 34 #include <linux/module.h>
 35 #include <linux/pagemap.h>
 36 #include <linux/writeback.h>
 37 #include <linux/slab.h>
 38 #include <linux/crc-itu-t.h>
 39 #include <linux/mpage.h>
 40 #include <linux/uio.h>
 41 #include <linux/bio.h>
 42 
 43 #include "udf_i.h"
 44 #include "udf_sb.h"
 45 
 46 #define EXTENT_MERGE_SIZE 5
 47 
 48 static umode_t udf_convert_permissions(struct fileEntry *);
 49 static int udf_update_inode(struct inode *, int);
 50 static int udf_sync_inode(struct inode *inode);
 51 static int udf_alloc_i_data(struct inode *inode, size_t size);
 52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
 53 static int8_t udf_insert_aext(struct inode *, struct extent_position,
 54                               struct kernel_lb_addr, uint32_t);
 55 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
 56                               struct kernel_long_ad *, int *);
 57 static void udf_prealloc_extents(struct inode *, int, int,
 58                                  struct kernel_long_ad *, int *);
 59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
 60 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
 61                                int, struct extent_position *);
 62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
 63 
 64 static void __udf_clear_extent_cache(struct inode *inode)
 65 {
 66         struct udf_inode_info *iinfo = UDF_I(inode);
 67 
 68         if (iinfo->cached_extent.lstart != -1) {
 69                 brelse(iinfo->cached_extent.epos.bh);
 70                 iinfo->cached_extent.lstart = -1;
 71         }
 72 }
 73 
 74 /* Invalidate extent cache */
 75 static void udf_clear_extent_cache(struct inode *inode)
 76 {
 77         struct udf_inode_info *iinfo = UDF_I(inode);
 78 
 79         spin_lock(&iinfo->i_extent_cache_lock);
 80         __udf_clear_extent_cache(inode);
 81         spin_unlock(&iinfo->i_extent_cache_lock);
 82 }
 83 
 84 /* Return contents of extent cache */
 85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
 86                                  loff_t *lbcount, struct extent_position *pos)
 87 {
 88         struct udf_inode_info *iinfo = UDF_I(inode);
 89         int ret = 0;
 90 
 91         spin_lock(&iinfo->i_extent_cache_lock);
 92         if ((iinfo->cached_extent.lstart <= bcount) &&
 93             (iinfo->cached_extent.lstart != -1)) {
 94                 /* Cache hit */
 95                 *lbcount = iinfo->cached_extent.lstart;
 96                 memcpy(pos, &iinfo->cached_extent.epos,
 97                        sizeof(struct extent_position));
 98                 if (pos->bh)
 99                         get_bh(pos->bh);
100                 ret = 1;
101         }
102         spin_unlock(&iinfo->i_extent_cache_lock);
103         return ret;
104 }
105 
106 /* Add extent to extent cache */
107 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108                                     struct extent_position *pos)
109 {
110         struct udf_inode_info *iinfo = UDF_I(inode);
111 
112         spin_lock(&iinfo->i_extent_cache_lock);
113         /* Invalidate previously cached extent */
114         __udf_clear_extent_cache(inode);
115         if (pos->bh)
116                 get_bh(pos->bh);
117         memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118         iinfo->cached_extent.lstart = estart;
119         switch (iinfo->i_alloc_type) {
120         case ICBTAG_FLAG_AD_SHORT:
121                 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122                 break;
123         case ICBTAG_FLAG_AD_LONG:
124                 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125                 break;
126         }
127         spin_unlock(&iinfo->i_extent_cache_lock);
128 }
129 
130 void udf_evict_inode(struct inode *inode)
131 {
132         struct udf_inode_info *iinfo = UDF_I(inode);
133         int want_delete = 0;
134 
135         if (!inode->i_nlink && !is_bad_inode(inode)) {
136                 want_delete = 1;
137                 udf_setsize(inode, 0);
138                 udf_update_inode(inode, IS_SYNC(inode));
139         }
140         truncate_inode_pages_final(&inode->i_data);
141         invalidate_inode_buffers(inode);
142         clear_inode(inode);
143         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
144             inode->i_size != iinfo->i_lenExtents) {
145                 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
146                          inode->i_ino, inode->i_mode,
147                          (unsigned long long)inode->i_size,
148                          (unsigned long long)iinfo->i_lenExtents);
149         }
150         kfree(iinfo->i_ext.i_data);
151         iinfo->i_ext.i_data = NULL;
152         udf_clear_extent_cache(inode);
153         if (want_delete) {
154                 udf_free_inode(inode);
155         }
156 }
157 
158 static void udf_write_failed(struct address_space *mapping, loff_t to)
159 {
160         struct inode *inode = mapping->host;
161         struct udf_inode_info *iinfo = UDF_I(inode);
162         loff_t isize = inode->i_size;
163 
164         if (to > isize) {
165                 truncate_pagecache(inode, isize);
166                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
167                         down_write(&iinfo->i_data_sem);
168                         udf_clear_extent_cache(inode);
169                         udf_truncate_extents(inode);
170                         up_write(&iinfo->i_data_sem);
171                 }
172         }
173 }
174 
175 static int udf_writepage(struct page *page, struct writeback_control *wbc)
176 {
177         return block_write_full_page(page, udf_get_block, wbc);
178 }
179 
180 static int udf_writepages(struct address_space *mapping,
181                         struct writeback_control *wbc)
182 {
183         return mpage_writepages(mapping, wbc, udf_get_block);
184 }
185 
186 static int udf_readpage(struct file *file, struct page *page)
187 {
188         return mpage_readpage(page, udf_get_block);
189 }
190 
191 static int udf_readpages(struct file *file, struct address_space *mapping,
192                         struct list_head *pages, unsigned nr_pages)
193 {
194         return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
195 }
196 
197 static int udf_write_begin(struct file *file, struct address_space *mapping,
198                         loff_t pos, unsigned len, unsigned flags,
199                         struct page **pagep, void **fsdata)
200 {
201         int ret;
202 
203         ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
204         if (unlikely(ret))
205                 udf_write_failed(mapping, pos + len);
206         return ret;
207 }
208 
209 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
210 {
211         struct file *file = iocb->ki_filp;
212         struct address_space *mapping = file->f_mapping;
213         struct inode *inode = mapping->host;
214         size_t count = iov_iter_count(iter);
215         ssize_t ret;
216 
217         ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
218         if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
219                 udf_write_failed(mapping, iocb->ki_pos + count);
220         return ret;
221 }
222 
223 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
224 {
225         return generic_block_bmap(mapping, block, udf_get_block);
226 }
227 
228 const struct address_space_operations udf_aops = {
229         .readpage       = udf_readpage,
230         .readpages      = udf_readpages,
231         .writepage      = udf_writepage,
232         .writepages     = udf_writepages,
233         .write_begin    = udf_write_begin,
234         .write_end      = generic_write_end,
235         .direct_IO      = udf_direct_IO,
236         .bmap           = udf_bmap,
237 };
238 
239 /*
240  * Expand file stored in ICB to a normal one-block-file
241  *
242  * This function requires i_data_sem for writing and releases it.
243  * This function requires i_mutex held
244  */
245 int udf_expand_file_adinicb(struct inode *inode)
246 {
247         struct page *page;
248         char *kaddr;
249         struct udf_inode_info *iinfo = UDF_I(inode);
250         int err;
251         struct writeback_control udf_wbc = {
252                 .sync_mode = WB_SYNC_NONE,
253                 .nr_to_write = 1,
254         };
255 
256         WARN_ON_ONCE(!inode_is_locked(inode));
257         if (!iinfo->i_lenAlloc) {
258                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
259                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
260                 else
261                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
262                 /* from now on we have normal address_space methods */
263                 inode->i_data.a_ops = &udf_aops;
264                 up_write(&iinfo->i_data_sem);
265                 mark_inode_dirty(inode);
266                 return 0;
267         }
268         /*
269          * Release i_data_sem so that we can lock a page - page lock ranks
270          * above i_data_sem. i_mutex still protects us against file changes.
271          */
272         up_write(&iinfo->i_data_sem);
273 
274         page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
275         if (!page)
276                 return -ENOMEM;
277 
278         if (!PageUptodate(page)) {
279                 kaddr = kmap_atomic(page);
280                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
281                        PAGE_SIZE - iinfo->i_lenAlloc);
282                 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
283                         iinfo->i_lenAlloc);
284                 flush_dcache_page(page);
285                 SetPageUptodate(page);
286                 kunmap_atomic(kaddr);
287         }
288         down_write(&iinfo->i_data_sem);
289         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
290                iinfo->i_lenAlloc);
291         iinfo->i_lenAlloc = 0;
292         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
293                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
294         else
295                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
296         /* from now on we have normal address_space methods */
297         inode->i_data.a_ops = &udf_aops;
298         up_write(&iinfo->i_data_sem);
299         err = inode->i_data.a_ops->writepage(page, &udf_wbc);
300         if (err) {
301                 /* Restore everything back so that we don't lose data... */
302                 lock_page(page);
303                 down_write(&iinfo->i_data_sem);
304                 kaddr = kmap_atomic(page);
305                 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
306                        inode->i_size);
307                 kunmap_atomic(kaddr);
308                 unlock_page(page);
309                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310                 inode->i_data.a_ops = &udf_adinicb_aops;
311                 up_write(&iinfo->i_data_sem);
312         }
313         put_page(page);
314         mark_inode_dirty(inode);
315 
316         return err;
317 }
318 
319 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
320                                             udf_pblk_t *block, int *err)
321 {
322         udf_pblk_t newblock;
323         struct buffer_head *dbh = NULL;
324         struct kernel_lb_addr eloc;
325         uint8_t alloctype;
326         struct extent_position epos;
327 
328         struct udf_fileident_bh sfibh, dfibh;
329         loff_t f_pos = udf_ext0_offset(inode);
330         int size = udf_ext0_offset(inode) + inode->i_size;
331         struct fileIdentDesc cfi, *sfi, *dfi;
332         struct udf_inode_info *iinfo = UDF_I(inode);
333 
334         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
335                 alloctype = ICBTAG_FLAG_AD_SHORT;
336         else
337                 alloctype = ICBTAG_FLAG_AD_LONG;
338 
339         if (!inode->i_size) {
340                 iinfo->i_alloc_type = alloctype;
341                 mark_inode_dirty(inode);
342                 return NULL;
343         }
344 
345         /* alloc block, and copy data to it */
346         *block = udf_new_block(inode->i_sb, inode,
347                                iinfo->i_location.partitionReferenceNum,
348                                iinfo->i_location.logicalBlockNum, err);
349         if (!(*block))
350                 return NULL;
351         newblock = udf_get_pblock(inode->i_sb, *block,
352                                   iinfo->i_location.partitionReferenceNum,
353                                 0);
354         if (!newblock)
355                 return NULL;
356         dbh = udf_tgetblk(inode->i_sb, newblock);
357         if (!dbh)
358                 return NULL;
359         lock_buffer(dbh);
360         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
361         set_buffer_uptodate(dbh);
362         unlock_buffer(dbh);
363         mark_buffer_dirty_inode(dbh, inode);
364 
365         sfibh.soffset = sfibh.eoffset =
366                         f_pos & (inode->i_sb->s_blocksize - 1);
367         sfibh.sbh = sfibh.ebh = NULL;
368         dfibh.soffset = dfibh.eoffset = 0;
369         dfibh.sbh = dfibh.ebh = dbh;
370         while (f_pos < size) {
371                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
372                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
373                                          NULL, NULL, NULL);
374                 if (!sfi) {
375                         brelse(dbh);
376                         return NULL;
377                 }
378                 iinfo->i_alloc_type = alloctype;
379                 sfi->descTag.tagLocation = cpu_to_le32(*block);
380                 dfibh.soffset = dfibh.eoffset;
381                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
382                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
383                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
384                                  sfi->fileIdent +
385                                         le16_to_cpu(sfi->lengthOfImpUse))) {
386                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387                         brelse(dbh);
388                         return NULL;
389                 }
390         }
391         mark_buffer_dirty_inode(dbh, inode);
392 
393         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
394                 iinfo->i_lenAlloc);
395         iinfo->i_lenAlloc = 0;
396         eloc.logicalBlockNum = *block;
397         eloc.partitionReferenceNum =
398                                 iinfo->i_location.partitionReferenceNum;
399         iinfo->i_lenExtents = inode->i_size;
400         epos.bh = NULL;
401         epos.block = iinfo->i_location;
402         epos.offset = udf_file_entry_alloc_offset(inode);
403         udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
404         /* UniqueID stuff */
405 
406         brelse(epos.bh);
407         mark_inode_dirty(inode);
408         return dbh;
409 }
410 
411 static int udf_get_block(struct inode *inode, sector_t block,
412                          struct buffer_head *bh_result, int create)
413 {
414         int err, new;
415         sector_t phys = 0;
416         struct udf_inode_info *iinfo;
417 
418         if (!create) {
419                 phys = udf_block_map(inode, block);
420                 if (phys)
421                         map_bh(bh_result, inode->i_sb, phys);
422                 return 0;
423         }
424 
425         err = -EIO;
426         new = 0;
427         iinfo = UDF_I(inode);
428 
429         down_write(&iinfo->i_data_sem);
430         if (block == iinfo->i_next_alloc_block + 1) {
431                 iinfo->i_next_alloc_block++;
432                 iinfo->i_next_alloc_goal++;
433         }
434 
435         udf_clear_extent_cache(inode);
436         phys = inode_getblk(inode, block, &err, &new);
437         if (!phys)
438                 goto abort;
439 
440         if (new)
441                 set_buffer_new(bh_result);
442         map_bh(bh_result, inode->i_sb, phys);
443 
444 abort:
445         up_write(&iinfo->i_data_sem);
446         return err;
447 }
448 
449 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
450                                       int create, int *err)
451 {
452         struct buffer_head *bh;
453         struct buffer_head dummy;
454 
455         dummy.b_state = 0;
456         dummy.b_blocknr = -1000;
457         *err = udf_get_block(inode, block, &dummy, create);
458         if (!*err && buffer_mapped(&dummy)) {
459                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
460                 if (buffer_new(&dummy)) {
461                         lock_buffer(bh);
462                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
463                         set_buffer_uptodate(bh);
464                         unlock_buffer(bh);
465                         mark_buffer_dirty_inode(bh, inode);
466                 }
467                 return bh;
468         }
469 
470         return NULL;
471 }
472 
473 /* Extend the file by 'blocks' blocks, return the number of extents added */
474 static int udf_do_extend_file(struct inode *inode,
475                               struct extent_position *last_pos,
476                               struct kernel_long_ad *last_ext,
477                               sector_t blocks)
478 {
479         sector_t add;
480         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
481         struct super_block *sb = inode->i_sb;
482         struct kernel_lb_addr prealloc_loc = {};
483         uint32_t prealloc_len = 0;
484         struct udf_inode_info *iinfo;
485         int err;
486 
487         /* The previous extent is fake and we should not extend by anything
488          * - there's nothing to do... */
489         if (!blocks && fake)
490                 return 0;
491 
492         iinfo = UDF_I(inode);
493         /* Round the last extent up to a multiple of block size */
494         if (last_ext->extLength & (sb->s_blocksize - 1)) {
495                 last_ext->extLength =
496                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
497                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
498                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
499                 iinfo->i_lenExtents =
500                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
501                         ~(sb->s_blocksize - 1);
502         }
503 
504         /* Last extent are just preallocated blocks? */
505         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
506                                                 EXT_NOT_RECORDED_ALLOCATED) {
507                 /* Save the extent so that we can reattach it to the end */
508                 prealloc_loc = last_ext->extLocation;
509                 prealloc_len = last_ext->extLength;
510                 /* Mark the extent as a hole */
511                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
512                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
513                 last_ext->extLocation.logicalBlockNum = 0;
514                 last_ext->extLocation.partitionReferenceNum = 0;
515         }
516 
517         /* Can we merge with the previous extent? */
518         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
520                 add = ((1 << 30) - sb->s_blocksize -
521                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
522                         sb->s_blocksize_bits;
523                 if (add > blocks)
524                         add = blocks;
525                 blocks -= add;
526                 last_ext->extLength += add << sb->s_blocksize_bits;
527         }
528 
529         if (fake) {
530                 udf_add_aext(inode, last_pos, &last_ext->extLocation,
531                              last_ext->extLength, 1);
532                 count++;
533         } else {
534                 struct kernel_lb_addr tmploc;
535                 uint32_t tmplen;
536 
537                 udf_write_aext(inode, last_pos, &last_ext->extLocation,
538                                 last_ext->extLength, 1);
539                 /*
540                  * We've rewritten the last extent but there may be empty
541                  * indirect extent after it - enter it.
542                  */
543                 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
544         }
545 
546         /* Managed to do everything necessary? */
547         if (!blocks)
548                 goto out;
549 
550         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551         last_ext->extLocation.logicalBlockNum = 0;
552         last_ext->extLocation.partitionReferenceNum = 0;
553         add = (1 << (30-sb->s_blocksize_bits)) - 1;
554         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555                                 (add << sb->s_blocksize_bits);
556 
557         /* Create enough extents to cover the whole hole */
558         while (blocks > add) {
559                 blocks -= add;
560                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561                                    last_ext->extLength, 1);
562                 if (err)
563                         return err;
564                 count++;
565         }
566         if (blocks) {
567                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568                         (blocks << sb->s_blocksize_bits);
569                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570                                    last_ext->extLength, 1);
571                 if (err)
572                         return err;
573                 count++;
574         }
575 
576 out:
577         /* Do we have some preallocated blocks saved? */
578         if (prealloc_len) {
579                 err = udf_add_aext(inode, last_pos, &prealloc_loc,
580                                    prealloc_len, 1);
581                 if (err)
582                         return err;
583                 last_ext->extLocation = prealloc_loc;
584                 last_ext->extLength = prealloc_len;
585                 count++;
586         }
587 
588         /* last_pos should point to the last written extent... */
589         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590                 last_pos->offset -= sizeof(struct short_ad);
591         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592                 last_pos->offset -= sizeof(struct long_ad);
593         else
594                 return -EIO;
595 
596         return count;
597 }
598 
599 static int udf_extend_file(struct inode *inode, loff_t newsize)
600 {
601 
602         struct extent_position epos;
603         struct kernel_lb_addr eloc;
604         uint32_t elen;
605         int8_t etype;
606         struct super_block *sb = inode->i_sb;
607         sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
608         int adsize;
609         struct udf_inode_info *iinfo = UDF_I(inode);
610         struct kernel_long_ad extent;
611         int err;
612 
613         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614                 adsize = sizeof(struct short_ad);
615         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616                 adsize = sizeof(struct long_ad);
617         else
618                 BUG();
619 
620         etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
621 
622         /* File has extent covering the new size (could happen when extending
623          * inside a block)? */
624         if (etype != -1)
625                 return 0;
626         if (newsize & (sb->s_blocksize - 1))
627                 offset++;
628         /* Extended file just to the boundary of the last file block? */
629         if (offset == 0)
630                 return 0;
631 
632         /* Truncate is extending the file by 'offset' blocks */
633         if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634             (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635                 /* File has no extents at all or has empty last
636                  * indirect extent! Create a fake extent... */
637                 extent.extLocation.logicalBlockNum = 0;
638                 extent.extLocation.partitionReferenceNum = 0;
639                 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
640         } else {
641                 epos.offset -= adsize;
642                 etype = udf_next_aext(inode, &epos, &extent.extLocation,
643                                       &extent.extLength, 0);
644                 extent.extLength |= etype << 30;
645         }
646         err = udf_do_extend_file(inode, &epos, &extent, offset);
647         if (err < 0)
648                 goto out;
649         err = 0;
650         iinfo->i_lenExtents = newsize;
651 out:
652         brelse(epos.bh);
653         return err;
654 }
655 
656 static sector_t inode_getblk(struct inode *inode, sector_t block,
657                              int *err, int *new)
658 {
659         struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660         struct extent_position prev_epos, cur_epos, next_epos;
661         int count = 0, startnum = 0, endnum = 0;
662         uint32_t elen = 0, tmpelen;
663         struct kernel_lb_addr eloc, tmpeloc;
664         int c = 1;
665         loff_t lbcount = 0, b_off = 0;
666         udf_pblk_t newblocknum, newblock;
667         sector_t offset = 0;
668         int8_t etype;
669         struct udf_inode_info *iinfo = UDF_I(inode);
670         udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
671         int lastblock = 0;
672         bool isBeyondEOF;
673 
674         *err = 0;
675         *new = 0;
676         prev_epos.offset = udf_file_entry_alloc_offset(inode);
677         prev_epos.block = iinfo->i_location;
678         prev_epos.bh = NULL;
679         cur_epos = next_epos = prev_epos;
680         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
681 
682         /* find the extent which contains the block we are looking for.
683            alternate between laarr[0] and laarr[1] for locations of the
684            current extent, and the previous extent */
685         do {
686                 if (prev_epos.bh != cur_epos.bh) {
687                         brelse(prev_epos.bh);
688                         get_bh(cur_epos.bh);
689                         prev_epos.bh = cur_epos.bh;
690                 }
691                 if (cur_epos.bh != next_epos.bh) {
692                         brelse(cur_epos.bh);
693                         get_bh(next_epos.bh);
694                         cur_epos.bh = next_epos.bh;
695                 }
696 
697                 lbcount += elen;
698 
699                 prev_epos.block = cur_epos.block;
700                 cur_epos.block = next_epos.block;
701 
702                 prev_epos.offset = cur_epos.offset;
703                 cur_epos.offset = next_epos.offset;
704 
705                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
706                 if (etype == -1)
707                         break;
708 
709                 c = !c;
710 
711                 laarr[c].extLength = (etype << 30) | elen;
712                 laarr[c].extLocation = eloc;
713 
714                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715                         pgoal = eloc.logicalBlockNum +
716                                 ((elen + inode->i_sb->s_blocksize - 1) >>
717                                  inode->i_sb->s_blocksize_bits);
718 
719                 count++;
720         } while (lbcount + elen <= b_off);
721 
722         b_off -= lbcount;
723         offset = b_off >> inode->i_sb->s_blocksize_bits;
724         /*
725          * Move prev_epos and cur_epos into indirect extent if we are at
726          * the pointer to it
727          */
728         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
730 
731         /* if the extent is allocated and recorded, return the block
732            if the extent is not a multiple of the blocksize, round up */
733 
734         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735                 if (elen & (inode->i_sb->s_blocksize - 1)) {
736                         elen = EXT_RECORDED_ALLOCATED |
737                                 ((elen + inode->i_sb->s_blocksize - 1) &
738                                  ~(inode->i_sb->s_blocksize - 1));
739                         udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
740                 }
741                 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
742                 goto out_free;
743         }
744 
745         /* Are we beyond EOF? */
746         if (etype == -1) {
747                 int ret;
748                 isBeyondEOF = true;
749                 if (count) {
750                         if (c)
751                                 laarr[0] = laarr[1];
752                         startnum = 1;
753                 } else {
754                         /* Create a fake extent when there's not one */
755                         memset(&laarr[0].extLocation, 0x00,
756                                 sizeof(struct kernel_lb_addr));
757                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
758                         /* Will udf_do_extend_file() create real extent from
759                            a fake one? */
760                         startnum = (offset > 0);
761                 }
762                 /* Create extents for the hole between EOF and offset */
763                 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
764                 if (ret < 0) {
765                         *err = ret;
766                         newblock = 0;
767                         goto out_free;
768                 }
769                 c = 0;
770                 offset = 0;
771                 count += ret;
772                 /* We are not covered by a preallocated extent? */
773                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
774                                                 EXT_NOT_RECORDED_ALLOCATED) {
775                         /* Is there any real extent? - otherwise we overwrite
776                          * the fake one... */
777                         if (count)
778                                 c = !c;
779                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
780                                 inode->i_sb->s_blocksize;
781                         memset(&laarr[c].extLocation, 0x00,
782                                 sizeof(struct kernel_lb_addr));
783                         count++;
784                 }
785                 endnum = c + 1;
786                 lastblock = 1;
787         } else {
788                 isBeyondEOF = false;
789                 endnum = startnum = ((count > 2) ? 2 : count);
790 
791                 /* if the current extent is in position 0,
792                    swap it with the previous */
793                 if (!c && count != 1) {
794                         laarr[2] = laarr[0];
795                         laarr[0] = laarr[1];
796                         laarr[1] = laarr[2];
797                         c = 1;
798                 }
799 
800                 /* if the current block is located in an extent,
801                    read the next extent */
802                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
803                 if (etype != -1) {
804                         laarr[c + 1].extLength = (etype << 30) | elen;
805                         laarr[c + 1].extLocation = eloc;
806                         count++;
807                         startnum++;
808                         endnum++;
809                 } else
810                         lastblock = 1;
811         }
812 
813         /* if the current extent is not recorded but allocated, get the
814          * block in the extent corresponding to the requested block */
815         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
816                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
817         else { /* otherwise, allocate a new block */
818                 if (iinfo->i_next_alloc_block == block)
819                         goal = iinfo->i_next_alloc_goal;
820 
821                 if (!goal) {
822                         if (!(goal = pgoal)) /* XXX: what was intended here? */
823                                 goal = iinfo->i_location.logicalBlockNum + 1;
824                 }
825 
826                 newblocknum = udf_new_block(inode->i_sb, inode,
827                                 iinfo->i_location.partitionReferenceNum,
828                                 goal, err);
829                 if (!newblocknum) {
830                         *err = -ENOSPC;
831                         newblock = 0;
832                         goto out_free;
833                 }
834                 if (isBeyondEOF)
835                         iinfo->i_lenExtents += inode->i_sb->s_blocksize;
836         }
837 
838         /* if the extent the requsted block is located in contains multiple
839          * blocks, split the extent into at most three extents. blocks prior
840          * to requested block, requested block, and blocks after requested
841          * block */
842         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
843 
844         /* We preallocate blocks only for regular files. It also makes sense
845          * for directories but there's a problem when to drop the
846          * preallocation. We might use some delayed work for that but I feel
847          * it's overengineering for a filesystem like UDF. */
848         if (S_ISREG(inode->i_mode))
849                 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
850 
851         /* merge any continuous blocks in laarr */
852         udf_merge_extents(inode, laarr, &endnum);
853 
854         /* write back the new extents, inserting new extents if the new number
855          * of extents is greater than the old number, and deleting extents if
856          * the new number of extents is less than the old number */
857         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
858 
859         newblock = udf_get_pblock(inode->i_sb, newblocknum,
860                                 iinfo->i_location.partitionReferenceNum, 0);
861         if (!newblock) {
862                 *err = -EIO;
863                 goto out_free;
864         }
865         *new = 1;
866         iinfo->i_next_alloc_block = block;
867         iinfo->i_next_alloc_goal = newblocknum;
868         inode->i_ctime = current_time(inode);
869 
870         if (IS_SYNC(inode))
871                 udf_sync_inode(inode);
872         else
873                 mark_inode_dirty(inode);
874 out_free:
875         brelse(prev_epos.bh);
876         brelse(cur_epos.bh);
877         brelse(next_epos.bh);
878         return newblock;
879 }
880 
881 static void udf_split_extents(struct inode *inode, int *c, int offset,
882                                udf_pblk_t newblocknum,
883                                struct kernel_long_ad *laarr, int *endnum)
884 {
885         unsigned long blocksize = inode->i_sb->s_blocksize;
886         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
887 
888         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
889             (laarr[*c].extLength >> 30) ==
890                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
891                 int curr = *c;
892                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
893                             blocksize - 1) >> blocksize_bits;
894                 int8_t etype = (laarr[curr].extLength >> 30);
895 
896                 if (blen == 1)
897                         ;
898                 else if (!offset || blen == offset + 1) {
899                         laarr[curr + 2] = laarr[curr + 1];
900                         laarr[curr + 1] = laarr[curr];
901                 } else {
902                         laarr[curr + 3] = laarr[curr + 1];
903                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
904                 }
905 
906                 if (offset) {
907                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
908                                 udf_free_blocks(inode->i_sb, inode,
909                                                 &laarr[curr].extLocation,
910                                                 0, offset);
911                                 laarr[curr].extLength =
912                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
913                                         (offset << blocksize_bits);
914                                 laarr[curr].extLocation.logicalBlockNum = 0;
915                                 laarr[curr].extLocation.
916                                                 partitionReferenceNum = 0;
917                         } else
918                                 laarr[curr].extLength = (etype << 30) |
919                                         (offset << blocksize_bits);
920                         curr++;
921                         (*c)++;
922                         (*endnum)++;
923                 }
924 
925                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
926                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
927                         laarr[curr].extLocation.partitionReferenceNum =
928                                 UDF_I(inode)->i_location.partitionReferenceNum;
929                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
930                         blocksize;
931                 curr++;
932 
933                 if (blen != offset + 1) {
934                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
935                                 laarr[curr].extLocation.logicalBlockNum +=
936                                                                 offset + 1;
937                         laarr[curr].extLength = (etype << 30) |
938                                 ((blen - (offset + 1)) << blocksize_bits);
939                         curr++;
940                         (*endnum)++;
941                 }
942         }
943 }
944 
945 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
946                                  struct kernel_long_ad *laarr,
947                                  int *endnum)
948 {
949         int start, length = 0, currlength = 0, i;
950 
951         if (*endnum >= (c + 1)) {
952                 if (!lastblock)
953                         return;
954                 else
955                         start = c;
956         } else {
957                 if ((laarr[c + 1].extLength >> 30) ==
958                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
959                         start = c + 1;
960                         length = currlength =
961                                 (((laarr[c + 1].extLength &
962                                         UDF_EXTENT_LENGTH_MASK) +
963                                 inode->i_sb->s_blocksize - 1) >>
964                                 inode->i_sb->s_blocksize_bits);
965                 } else
966                         start = c;
967         }
968 
969         for (i = start + 1; i <= *endnum; i++) {
970                 if (i == *endnum) {
971                         if (lastblock)
972                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
973                 } else if ((laarr[i].extLength >> 30) ==
974                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
975                         length += (((laarr[i].extLength &
976                                                 UDF_EXTENT_LENGTH_MASK) +
977                                     inode->i_sb->s_blocksize - 1) >>
978                                     inode->i_sb->s_blocksize_bits);
979                 } else
980                         break;
981         }
982 
983         if (length) {
984                 int next = laarr[start].extLocation.logicalBlockNum +
985                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
986                           inode->i_sb->s_blocksize - 1) >>
987                           inode->i_sb->s_blocksize_bits);
988                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
989                                 laarr[start].extLocation.partitionReferenceNum,
990                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
991                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
992                                 currlength);
993                 if (numalloc)   {
994                         if (start == (c + 1))
995                                 laarr[start].extLength +=
996                                         (numalloc <<
997                                          inode->i_sb->s_blocksize_bits);
998                         else {
999                                 memmove(&laarr[c + 2], &laarr[c + 1],
1000                                         sizeof(struct long_ad) * (*endnum - (c + 1)));
1001                                 (*endnum)++;
1002                                 laarr[c + 1].extLocation.logicalBlockNum = next;
1003                                 laarr[c + 1].extLocation.partitionReferenceNum =
1004                                         laarr[c].extLocation.
1005                                                         partitionReferenceNum;
1006                                 laarr[c + 1].extLength =
1007                                         EXT_NOT_RECORDED_ALLOCATED |
1008                                         (numalloc <<
1009                                          inode->i_sb->s_blocksize_bits);
1010                                 start = c + 1;
1011                         }
1012 
1013                         for (i = start + 1; numalloc && i < *endnum; i++) {
1014                                 int elen = ((laarr[i].extLength &
1015                                                 UDF_EXTENT_LENGTH_MASK) +
1016                                             inode->i_sb->s_blocksize - 1) >>
1017                                             inode->i_sb->s_blocksize_bits;
1018 
1019                                 if (elen > numalloc) {
1020                                         laarr[i].extLength -=
1021                                                 (numalloc <<
1022                                                  inode->i_sb->s_blocksize_bits);
1023                                         numalloc = 0;
1024                                 } else {
1025                                         numalloc -= elen;
1026                                         if (*endnum > (i + 1))
1027                                                 memmove(&laarr[i],
1028                                                         &laarr[i + 1],
1029                                                         sizeof(struct long_ad) *
1030                                                         (*endnum - (i + 1)));
1031                                         i--;
1032                                         (*endnum)--;
1033                                 }
1034                         }
1035                         UDF_I(inode)->i_lenExtents +=
1036                                 numalloc << inode->i_sb->s_blocksize_bits;
1037                 }
1038         }
1039 }
1040 
1041 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1042                               int *endnum)
1043 {
1044         int i;
1045         unsigned long blocksize = inode->i_sb->s_blocksize;
1046         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1047 
1048         for (i = 0; i < (*endnum - 1); i++) {
1049                 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1050                 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1051 
1052                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1053                         (((li->extLength >> 30) ==
1054                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1055                         ((lip1->extLocation.logicalBlockNum -
1056                           li->extLocation.logicalBlockNum) ==
1057                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1058                         blocksize - 1) >> blocksize_bits)))) {
1059 
1060                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1061                                 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1062                                 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1063                                 lip1->extLength = (lip1->extLength -
1064                                                   (li->extLength &
1065                                                    UDF_EXTENT_LENGTH_MASK) +
1066                                                    UDF_EXTENT_LENGTH_MASK) &
1067                                                         ~(blocksize - 1);
1068                                 li->extLength = (li->extLength &
1069                                                  UDF_EXTENT_FLAG_MASK) +
1070                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1071                                                 blocksize;
1072                                 lip1->extLocation.logicalBlockNum =
1073                                         li->extLocation.logicalBlockNum +
1074                                         ((li->extLength &
1075                                                 UDF_EXTENT_LENGTH_MASK) >>
1076                                                 blocksize_bits);
1077                         } else {
1078                                 li->extLength = lip1->extLength +
1079                                         (((li->extLength &
1080                                                 UDF_EXTENT_LENGTH_MASK) +
1081                                          blocksize - 1) & ~(blocksize - 1));
1082                                 if (*endnum > (i + 2))
1083                                         memmove(&laarr[i + 1], &laarr[i + 2],
1084                                                 sizeof(struct long_ad) *
1085                                                 (*endnum - (i + 2)));
1086                                 i--;
1087                                 (*endnum)--;
1088                         }
1089                 } else if (((li->extLength >> 30) ==
1090                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1091                            ((lip1->extLength >> 30) ==
1092                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1093                         udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1094                                         ((li->extLength &
1095                                           UDF_EXTENT_LENGTH_MASK) +
1096                                          blocksize - 1) >> blocksize_bits);
1097                         li->extLocation.logicalBlockNum = 0;
1098                         li->extLocation.partitionReferenceNum = 0;
1099 
1100                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1102                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1103                                 lip1->extLength = (lip1->extLength -
1104                                                    (li->extLength &
1105                                                    UDF_EXTENT_LENGTH_MASK) +
1106                                                    UDF_EXTENT_LENGTH_MASK) &
1107                                                    ~(blocksize - 1);
1108                                 li->extLength = (li->extLength &
1109                                                  UDF_EXTENT_FLAG_MASK) +
1110                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1111                                                 blocksize;
1112                         } else {
1113                                 li->extLength = lip1->extLength +
1114                                         (((li->extLength &
1115                                                 UDF_EXTENT_LENGTH_MASK) +
1116                                           blocksize - 1) & ~(blocksize - 1));
1117                                 if (*endnum > (i + 2))
1118                                         memmove(&laarr[i + 1], &laarr[i + 2],
1119                                                 sizeof(struct long_ad) *
1120                                                 (*endnum - (i + 2)));
1121                                 i--;
1122                                 (*endnum)--;
1123                         }
1124                 } else if ((li->extLength >> 30) ==
1125                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1126                         udf_free_blocks(inode->i_sb, inode,
1127                                         &li->extLocation, 0,
1128                                         ((li->extLength &
1129                                                 UDF_EXTENT_LENGTH_MASK) +
1130                                          blocksize - 1) >> blocksize_bits);
1131                         li->extLocation.logicalBlockNum = 0;
1132                         li->extLocation.partitionReferenceNum = 0;
1133                         li->extLength = (li->extLength &
1134                                                 UDF_EXTENT_LENGTH_MASK) |
1135                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
1136                 }
1137         }
1138 }
1139 
1140 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1141                                int startnum, int endnum,
1142                                struct extent_position *epos)
1143 {
1144         int start = 0, i;
1145         struct kernel_lb_addr tmploc;
1146         uint32_t tmplen;
1147 
1148         if (startnum > endnum) {
1149                 for (i = 0; i < (startnum - endnum); i++)
1150                         udf_delete_aext(inode, *epos, laarr[i].extLocation,
1151                                         laarr[i].extLength);
1152         } else if (startnum < endnum) {
1153                 for (i = 0; i < (endnum - startnum); i++) {
1154                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
1155                                         laarr[i].extLength);
1156                         udf_next_aext(inode, epos, &laarr[i].extLocation,
1157                                       &laarr[i].extLength, 1);
1158                         start++;
1159                 }
1160         }
1161 
1162         for (i = start; i < endnum; i++) {
1163                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1164                 udf_write_aext(inode, epos, &laarr[i].extLocation,
1165                                laarr[i].extLength, 1);
1166         }
1167 }
1168 
1169 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1170                               int create, int *err)
1171 {
1172         struct buffer_head *bh = NULL;
1173 
1174         bh = udf_getblk(inode, block, create, err);
1175         if (!bh)
1176                 return NULL;
1177 
1178         if (buffer_uptodate(bh))
1179                 return bh;
1180 
1181         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1182 
1183         wait_on_buffer(bh);
1184         if (buffer_uptodate(bh))
1185                 return bh;
1186 
1187         brelse(bh);
1188         *err = -EIO;
1189         return NULL;
1190 }
1191 
1192 int udf_setsize(struct inode *inode, loff_t newsize)
1193 {
1194         int err;
1195         struct udf_inode_info *iinfo;
1196         unsigned int bsize = i_blocksize(inode);
1197 
1198         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1199               S_ISLNK(inode->i_mode)))
1200                 return -EINVAL;
1201         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1202                 return -EPERM;
1203 
1204         iinfo = UDF_I(inode);
1205         if (newsize > inode->i_size) {
1206                 down_write(&iinfo->i_data_sem);
1207                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1208                         if (bsize <
1209                             (udf_file_entry_alloc_offset(inode) + newsize)) {
1210                                 err = udf_expand_file_adinicb(inode);
1211                                 if (err)
1212                                         return err;
1213                                 down_write(&iinfo->i_data_sem);
1214                         } else {
1215                                 iinfo->i_lenAlloc = newsize;
1216                                 goto set_size;
1217                         }
1218                 }
1219                 err = udf_extend_file(inode, newsize);
1220                 if (err) {
1221                         up_write(&iinfo->i_data_sem);
1222                         return err;
1223                 }
1224 set_size:
1225                 up_write(&iinfo->i_data_sem);
1226                 truncate_setsize(inode, newsize);
1227         } else {
1228                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1229                         down_write(&iinfo->i_data_sem);
1230                         udf_clear_extent_cache(inode);
1231                         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1232                                0x00, bsize - newsize -
1233                                udf_file_entry_alloc_offset(inode));
1234                         iinfo->i_lenAlloc = newsize;
1235                         truncate_setsize(inode, newsize);
1236                         up_write(&iinfo->i_data_sem);
1237                         goto update_time;
1238                 }
1239                 err = block_truncate_page(inode->i_mapping, newsize,
1240                                           udf_get_block);
1241                 if (err)
1242                         return err;
1243                 truncate_setsize(inode, newsize);
1244                 down_write(&iinfo->i_data_sem);
1245                 udf_clear_extent_cache(inode);
1246                 udf_truncate_extents(inode);
1247                 up_write(&iinfo->i_data_sem);
1248         }
1249 update_time:
1250         inode->i_mtime = inode->i_ctime = current_time(inode);
1251         if (IS_SYNC(inode))
1252                 udf_sync_inode(inode);
1253         else
1254                 mark_inode_dirty(inode);
1255         return 0;
1256 }
1257 
1258 /*
1259  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1260  * arbitrary - just that we hopefully don't limit any real use of rewritten
1261  * inode on write-once media but avoid looping for too long on corrupted media.
1262  */
1263 #define UDF_MAX_ICB_NESTING 1024
1264 
1265 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1266 {
1267         struct buffer_head *bh = NULL;
1268         struct fileEntry *fe;
1269         struct extendedFileEntry *efe;
1270         uint16_t ident;
1271         struct udf_inode_info *iinfo = UDF_I(inode);
1272         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1273         struct kernel_lb_addr *iloc = &iinfo->i_location;
1274         unsigned int link_count;
1275         unsigned int indirections = 0;
1276         int bs = inode->i_sb->s_blocksize;
1277         int ret = -EIO;
1278 
1279 reread:
1280         if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1281                 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1282                           iloc->partitionReferenceNum, sbi->s_partitions);
1283                 return -EIO;
1284         }
1285 
1286         if (iloc->logicalBlockNum >=
1287             sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1288                 udf_debug("block=%u, partition=%u out of range\n",
1289                           iloc->logicalBlockNum, iloc->partitionReferenceNum);
1290                 return -EIO;
1291         }
1292 
1293         /*
1294          * Set defaults, but the inode is still incomplete!
1295          * Note: get_new_inode() sets the following on a new inode:
1296          *      i_sb = sb
1297          *      i_no = ino
1298          *      i_flags = sb->s_flags
1299          *      i_state = 0
1300          * clean_inode(): zero fills and sets
1301          *      i_count = 1
1302          *      i_nlink = 1
1303          *      i_op = NULL;
1304          */
1305         bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1306         if (!bh) {
1307                 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1308                 return -EIO;
1309         }
1310 
1311         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1312             ident != TAG_IDENT_USE) {
1313                 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1314                         inode->i_ino, ident);
1315                 goto out;
1316         }
1317 
1318         fe = (struct fileEntry *)bh->b_data;
1319         efe = (struct extendedFileEntry *)bh->b_data;
1320 
1321         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1322                 struct buffer_head *ibh;
1323 
1324                 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1325                 if (ident == TAG_IDENT_IE && ibh) {
1326                         struct kernel_lb_addr loc;
1327                         struct indirectEntry *ie;
1328 
1329                         ie = (struct indirectEntry *)ibh->b_data;
1330                         loc = lelb_to_cpu(ie->indirectICB.extLocation);
1331 
1332                         if (ie->indirectICB.extLength) {
1333                                 brelse(ibh);
1334                                 memcpy(&iinfo->i_location, &loc,
1335                                        sizeof(struct kernel_lb_addr));
1336                                 if (++indirections > UDF_MAX_ICB_NESTING) {
1337                                         udf_err(inode->i_sb,
1338                                                 "too many ICBs in ICB hierarchy"
1339                                                 " (max %d supported)\n",
1340                                                 UDF_MAX_ICB_NESTING);
1341                                         goto out;
1342                                 }
1343                                 brelse(bh);
1344                                 goto reread;
1345                         }
1346                 }
1347                 brelse(ibh);
1348         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1349                 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1350                         le16_to_cpu(fe->icbTag.strategyType));
1351                 goto out;
1352         }
1353         if (fe->icbTag.strategyType == cpu_to_le16(4))
1354                 iinfo->i_strat4096 = 0;
1355         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1356                 iinfo->i_strat4096 = 1;
1357 
1358         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1359                                                         ICBTAG_FLAG_AD_MASK;
1360         iinfo->i_unique = 0;
1361         iinfo->i_lenEAttr = 0;
1362         iinfo->i_lenExtents = 0;
1363         iinfo->i_lenAlloc = 0;
1364         iinfo->i_next_alloc_block = 0;
1365         iinfo->i_next_alloc_goal = 0;
1366         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1367                 iinfo->i_efe = 1;
1368                 iinfo->i_use = 0;
1369                 ret = udf_alloc_i_data(inode, bs -
1370                                         sizeof(struct extendedFileEntry));
1371                 if (ret)
1372                         goto out;
1373                 memcpy(iinfo->i_ext.i_data,
1374                        bh->b_data + sizeof(struct extendedFileEntry),
1375                        bs - sizeof(struct extendedFileEntry));
1376         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1377                 iinfo->i_efe = 0;
1378                 iinfo->i_use = 0;
1379                 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1380                 if (ret)
1381                         goto out;
1382                 memcpy(iinfo->i_ext.i_data,
1383                        bh->b_data + sizeof(struct fileEntry),
1384                        bs - sizeof(struct fileEntry));
1385         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1386                 iinfo->i_efe = 0;
1387                 iinfo->i_use = 1;
1388                 iinfo->i_lenAlloc = le32_to_cpu(
1389                                 ((struct unallocSpaceEntry *)bh->b_data)->
1390                                  lengthAllocDescs);
1391                 ret = udf_alloc_i_data(inode, bs -
1392                                         sizeof(struct unallocSpaceEntry));
1393                 if (ret)
1394                         goto out;
1395                 memcpy(iinfo->i_ext.i_data,
1396                        bh->b_data + sizeof(struct unallocSpaceEntry),
1397                        bs - sizeof(struct unallocSpaceEntry));
1398                 return 0;
1399         }
1400 
1401         ret = -EIO;
1402         read_lock(&sbi->s_cred_lock);
1403         i_uid_write(inode, le32_to_cpu(fe->uid));
1404         if (!uid_valid(inode->i_uid) ||
1405             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1406             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1407                 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1408 
1409         i_gid_write(inode, le32_to_cpu(fe->gid));
1410         if (!gid_valid(inode->i_gid) ||
1411             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1412             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1413                 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1414 
1415         if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1416                         sbi->s_fmode != UDF_INVALID_MODE)
1417                 inode->i_mode = sbi->s_fmode;
1418         else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1419                         sbi->s_dmode != UDF_INVALID_MODE)
1420                 inode->i_mode = sbi->s_dmode;
1421         else
1422                 inode->i_mode = udf_convert_permissions(fe);
1423         inode->i_mode &= ~sbi->s_umask;
1424         read_unlock(&sbi->s_cred_lock);
1425 
1426         link_count = le16_to_cpu(fe->fileLinkCount);
1427         if (!link_count) {
1428                 if (!hidden_inode) {
1429                         ret = -ESTALE;
1430                         goto out;
1431                 }
1432                 link_count = 1;
1433         }
1434         set_nlink(inode, link_count);
1435 
1436         inode->i_size = le64_to_cpu(fe->informationLength);
1437         iinfo->i_lenExtents = inode->i_size;
1438 
1439         if (iinfo->i_efe == 0) {
1440                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1441                         (inode->i_sb->s_blocksize_bits - 9);
1442 
1443                 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1444                         inode->i_atime = sbi->s_record_time;
1445 
1446                 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1447                                             fe->modificationTime))
1448                         inode->i_mtime = sbi->s_record_time;
1449 
1450                 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1451                         inode->i_ctime = sbi->s_record_time;
1452 
1453                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1454                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1455                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1456                 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1457         } else {
1458                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1459                     (inode->i_sb->s_blocksize_bits - 9);
1460 
1461                 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1462                         inode->i_atime = sbi->s_record_time;
1463 
1464                 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1465                                             efe->modificationTime))
1466                         inode->i_mtime = sbi->s_record_time;
1467 
1468                 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1469                         iinfo->i_crtime = sbi->s_record_time;
1470 
1471                 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1472                         inode->i_ctime = sbi->s_record_time;
1473 
1474                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1475                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1476                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1477                 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1478         }
1479         inode->i_generation = iinfo->i_unique;
1480 
1481         /*
1482          * Sanity check length of allocation descriptors and extended attrs to
1483          * avoid integer overflows
1484          */
1485         if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1486                 goto out;
1487         /* Now do exact checks */
1488         if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1489                 goto out;
1490         /* Sanity checks for files in ICB so that we don't get confused later */
1491         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1492                 /*
1493                  * For file in ICB data is stored in allocation descriptor
1494                  * so sizes should match
1495                  */
1496                 if (iinfo->i_lenAlloc != inode->i_size)
1497                         goto out;
1498                 /* File in ICB has to fit in there... */
1499                 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1500                         goto out;
1501         }
1502 
1503         switch (fe->icbTag.fileType) {
1504         case ICBTAG_FILE_TYPE_DIRECTORY:
1505                 inode->i_op = &udf_dir_inode_operations;
1506                 inode->i_fop = &udf_dir_operations;
1507                 inode->i_mode |= S_IFDIR;
1508                 inc_nlink(inode);
1509                 break;
1510         case ICBTAG_FILE_TYPE_REALTIME:
1511         case ICBTAG_FILE_TYPE_REGULAR:
1512         case ICBTAG_FILE_TYPE_UNDEF:
1513         case ICBTAG_FILE_TYPE_VAT20:
1514                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1515                         inode->i_data.a_ops = &udf_adinicb_aops;
1516                 else
1517                         inode->i_data.a_ops = &udf_aops;
1518                 inode->i_op = &udf_file_inode_operations;
1519                 inode->i_fop = &udf_file_operations;
1520                 inode->i_mode |= S_IFREG;
1521                 break;
1522         case ICBTAG_FILE_TYPE_BLOCK:
1523                 inode->i_mode |= S_IFBLK;
1524                 break;
1525         case ICBTAG_FILE_TYPE_CHAR:
1526                 inode->i_mode |= S_IFCHR;
1527                 break;
1528         case ICBTAG_FILE_TYPE_FIFO:
1529                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1530                 break;
1531         case ICBTAG_FILE_TYPE_SOCKET:
1532                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1533                 break;
1534         case ICBTAG_FILE_TYPE_SYMLINK:
1535                 inode->i_data.a_ops = &udf_symlink_aops;
1536                 inode->i_op = &udf_symlink_inode_operations;
1537                 inode_nohighmem(inode);
1538                 inode->i_mode = S_IFLNK | 0777;
1539                 break;
1540         case ICBTAG_FILE_TYPE_MAIN:
1541                 udf_debug("METADATA FILE-----\n");
1542                 break;
1543         case ICBTAG_FILE_TYPE_MIRROR:
1544                 udf_debug("METADATA MIRROR FILE-----\n");
1545                 break;
1546         case ICBTAG_FILE_TYPE_BITMAP:
1547                 udf_debug("METADATA BITMAP FILE-----\n");
1548                 break;
1549         default:
1550                 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1551                         inode->i_ino, fe->icbTag.fileType);
1552                 goto out;
1553         }
1554         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1555                 struct deviceSpec *dsea =
1556                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1557                 if (dsea) {
1558                         init_special_inode(inode, inode->i_mode,
1559                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1560                                       le32_to_cpu(dsea->minorDeviceIdent)));
1561                         /* Developer ID ??? */
1562                 } else
1563                         goto out;
1564         }
1565         ret = 0;
1566 out:
1567         brelse(bh);
1568         return ret;
1569 }
1570 
1571 static int udf_alloc_i_data(struct inode *inode, size_t size)
1572 {
1573         struct udf_inode_info *iinfo = UDF_I(inode);
1574         iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1575         if (!iinfo->i_ext.i_data)
1576                 return -ENOMEM;
1577         return 0;
1578 }
1579 
1580 static umode_t udf_convert_permissions(struct fileEntry *fe)
1581 {
1582         umode_t mode;
1583         uint32_t permissions;
1584         uint32_t flags;
1585 
1586         permissions = le32_to_cpu(fe->permissions);
1587         flags = le16_to_cpu(fe->icbTag.flags);
1588 
1589         mode =  ((permissions) & 0007) |
1590                 ((permissions >> 2) & 0070) |
1591                 ((permissions >> 4) & 0700) |
1592                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1593                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1594                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1595 
1596         return mode;
1597 }
1598 
1599 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1600 {
1601         return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1602 }
1603 
1604 static int udf_sync_inode(struct inode *inode)
1605 {
1606         return udf_update_inode(inode, 1);
1607 }
1608 
1609 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec time)
1610 {
1611         if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1612             (iinfo->i_crtime.tv_sec == time.tv_sec &&
1613              iinfo->i_crtime.tv_nsec > time.tv_nsec))
1614                 iinfo->i_crtime = time;
1615 }
1616 
1617 static int udf_update_inode(struct inode *inode, int do_sync)
1618 {
1619         struct buffer_head *bh = NULL;
1620         struct fileEntry *fe;
1621         struct extendedFileEntry *efe;
1622         uint64_t lb_recorded;
1623         uint32_t udfperms;
1624         uint16_t icbflags;
1625         uint16_t crclen;
1626         int err = 0;
1627         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1628         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1629         struct udf_inode_info *iinfo = UDF_I(inode);
1630 
1631         bh = udf_tgetblk(inode->i_sb,
1632                         udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1633         if (!bh) {
1634                 udf_debug("getblk failure\n");
1635                 return -EIO;
1636         }
1637 
1638         lock_buffer(bh);
1639         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1640         fe = (struct fileEntry *)bh->b_data;
1641         efe = (struct extendedFileEntry *)bh->b_data;
1642 
1643         if (iinfo->i_use) {
1644                 struct unallocSpaceEntry *use =
1645                         (struct unallocSpaceEntry *)bh->b_data;
1646 
1647                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1648                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1649                        iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1650                                         sizeof(struct unallocSpaceEntry));
1651                 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1652                 crclen = sizeof(struct unallocSpaceEntry);
1653 
1654                 goto finish;
1655         }
1656 
1657         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1658                 fe->uid = cpu_to_le32(-1);
1659         else
1660                 fe->uid = cpu_to_le32(i_uid_read(inode));
1661 
1662         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1663                 fe->gid = cpu_to_le32(-1);
1664         else
1665                 fe->gid = cpu_to_le32(i_gid_read(inode));
1666 
1667         udfperms = ((inode->i_mode & 0007)) |
1668                    ((inode->i_mode & 0070) << 2) |
1669                    ((inode->i_mode & 0700) << 4);
1670 
1671         udfperms |= (le32_to_cpu(fe->permissions) &
1672                     (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1673                      FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1674                      FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1675         fe->permissions = cpu_to_le32(udfperms);
1676 
1677         if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1678                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1679         else
1680                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1681 
1682         fe->informationLength = cpu_to_le64(inode->i_size);
1683 
1684         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1685                 struct regid *eid;
1686                 struct deviceSpec *dsea =
1687                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1688                 if (!dsea) {
1689                         dsea = (struct deviceSpec *)
1690                                 udf_add_extendedattr(inode,
1691                                                      sizeof(struct deviceSpec) +
1692                                                      sizeof(struct regid), 12, 0x3);
1693                         dsea->attrType = cpu_to_le32(12);
1694                         dsea->attrSubtype = 1;
1695                         dsea->attrLength = cpu_to_le32(
1696                                                 sizeof(struct deviceSpec) +
1697                                                 sizeof(struct regid));
1698                         dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1699                 }
1700                 eid = (struct regid *)dsea->impUse;
1701                 memset(eid, 0, sizeof(*eid));
1702                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1703                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1704                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1705                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1706                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1707         }
1708 
1709         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1710                 lb_recorded = 0; /* No extents => no blocks! */
1711         else
1712                 lb_recorded =
1713                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1714                         (blocksize_bits - 9);
1715 
1716         if (iinfo->i_efe == 0) {
1717                 memcpy(bh->b_data + sizeof(struct fileEntry),
1718                        iinfo->i_ext.i_data,
1719                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1720                 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1721 
1722                 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1723                 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1724                 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1725                 memset(&(fe->impIdent), 0, sizeof(struct regid));
1726                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1727                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1728                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1729                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1730                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1731                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1732                 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1733                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1734                 crclen = sizeof(struct fileEntry);
1735         } else {
1736                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1737                        iinfo->i_ext.i_data,
1738                        inode->i_sb->s_blocksize -
1739                                         sizeof(struct extendedFileEntry));
1740                 efe->objectSize = cpu_to_le64(inode->i_size);
1741                 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1742 
1743                 udf_adjust_time(iinfo, inode->i_atime);
1744                 udf_adjust_time(iinfo, inode->i_mtime);
1745                 udf_adjust_time(iinfo, inode->i_ctime);
1746 
1747                 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1748                 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1749                 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1750                 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1751 
1752                 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1753                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1754                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1755                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1756                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1757                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1758                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1759                 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1760                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1761                 crclen = sizeof(struct extendedFileEntry);
1762         }
1763 
1764 finish:
1765         if (iinfo->i_strat4096) {
1766                 fe->icbTag.strategyType = cpu_to_le16(4096);
1767                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1768                 fe->icbTag.numEntries = cpu_to_le16(2);
1769         } else {
1770                 fe->icbTag.strategyType = cpu_to_le16(4);
1771                 fe->icbTag.numEntries = cpu_to_le16(1);
1772         }
1773 
1774         if (iinfo->i_use)
1775                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1776         else if (S_ISDIR(inode->i_mode))
1777                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1778         else if (S_ISREG(inode->i_mode))
1779                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1780         else if (S_ISLNK(inode->i_mode))
1781                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1782         else if (S_ISBLK(inode->i_mode))
1783                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1784         else if (S_ISCHR(inode->i_mode))
1785                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1786         else if (S_ISFIFO(inode->i_mode))
1787                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1788         else if (S_ISSOCK(inode->i_mode))
1789                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1790 
1791         icbflags =      iinfo->i_alloc_type |
1792                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1793                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1794                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1795                         (le16_to_cpu(fe->icbTag.flags) &
1796                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1797                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1798 
1799         fe->icbTag.flags = cpu_to_le16(icbflags);
1800         if (sbi->s_udfrev >= 0x0200)
1801                 fe->descTag.descVersion = cpu_to_le16(3);
1802         else
1803                 fe->descTag.descVersion = cpu_to_le16(2);
1804         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1805         fe->descTag.tagLocation = cpu_to_le32(
1806                                         iinfo->i_location.logicalBlockNum);
1807         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1808         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1809         fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1810                                                   crclen));
1811         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1812 
1813         set_buffer_uptodate(bh);
1814         unlock_buffer(bh);
1815 
1816         /* write the data blocks */
1817         mark_buffer_dirty(bh);
1818         if (do_sync) {
1819                 sync_dirty_buffer(bh);
1820                 if (buffer_write_io_error(bh)) {
1821                         udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1822                                  inode->i_ino);
1823                         err = -EIO;
1824                 }
1825         }
1826         brelse(bh);
1827 
1828         return err;
1829 }
1830 
1831 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1832                          bool hidden_inode)
1833 {
1834         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1835         struct inode *inode = iget_locked(sb, block);
1836         int err;
1837 
1838         if (!inode)
1839                 return ERR_PTR(-ENOMEM);
1840 
1841         if (!(inode->i_state & I_NEW))
1842                 return inode;
1843 
1844         memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1845         err = udf_read_inode(inode, hidden_inode);
1846         if (err < 0) {
1847                 iget_failed(inode);
1848                 return ERR_PTR(err);
1849         }
1850         unlock_new_inode(inode);
1851 
1852         return inode;
1853 }
1854 
1855 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1856                             struct extent_position *epos)
1857 {
1858         struct super_block *sb = inode->i_sb;
1859         struct buffer_head *bh;
1860         struct allocExtDesc *aed;
1861         struct extent_position nepos;
1862         struct kernel_lb_addr neloc;
1863         int ver, adsize;
1864 
1865         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1866                 adsize = sizeof(struct short_ad);
1867         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1868                 adsize = sizeof(struct long_ad);
1869         else
1870                 return -EIO;
1871 
1872         neloc.logicalBlockNum = block;
1873         neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1874 
1875         bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1876         if (!bh)
1877                 return -EIO;
1878         lock_buffer(bh);
1879         memset(bh->b_data, 0x00, sb->s_blocksize);
1880         set_buffer_uptodate(bh);
1881         unlock_buffer(bh);
1882         mark_buffer_dirty_inode(bh, inode);
1883 
1884         aed = (struct allocExtDesc *)(bh->b_data);
1885         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1886                 aed->previousAllocExtLocation =
1887                                 cpu_to_le32(epos->block.logicalBlockNum);
1888         }
1889         aed->lengthAllocDescs = cpu_to_le32(0);
1890         if (UDF_SB(sb)->s_udfrev >= 0x0200)
1891                 ver = 3;
1892         else
1893                 ver = 2;
1894         udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1895                     sizeof(struct tag));
1896 
1897         nepos.block = neloc;
1898         nepos.offset = sizeof(struct allocExtDesc);
1899         nepos.bh = bh;
1900 
1901         /*
1902          * Do we have to copy current last extent to make space for indirect
1903          * one?
1904          */
1905         if (epos->offset + adsize > sb->s_blocksize) {
1906                 struct kernel_lb_addr cp_loc;
1907                 uint32_t cp_len;
1908                 int cp_type;
1909 
1910                 epos->offset -= adsize;
1911                 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1912                 cp_len |= ((uint32_t)cp_type) << 30;
1913 
1914                 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1915                 udf_write_aext(inode, epos, &nepos.block,
1916                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1917         } else {
1918                 __udf_add_aext(inode, epos, &nepos.block,
1919                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1920         }
1921 
1922         brelse(epos->bh);
1923         *epos = nepos;
1924 
1925         return 0;
1926 }
1927 
1928 /*
1929  * Append extent at the given position - should be the first free one in inode
1930  * / indirect extent. This function assumes there is enough space in the inode
1931  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1932  */
1933 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1934                    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1935 {
1936         struct udf_inode_info *iinfo = UDF_I(inode);
1937         struct allocExtDesc *aed;
1938         int adsize;
1939 
1940         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1941                 adsize = sizeof(struct short_ad);
1942         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1943                 adsize = sizeof(struct long_ad);
1944         else
1945                 return -EIO;
1946 
1947         if (!epos->bh) {
1948                 WARN_ON(iinfo->i_lenAlloc !=
1949                         epos->offset - udf_file_entry_alloc_offset(inode));
1950         } else {
1951                 aed = (struct allocExtDesc *)epos->bh->b_data;
1952                 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1953                         epos->offset - sizeof(struct allocExtDesc));
1954                 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1955         }
1956 
1957         udf_write_aext(inode, epos, eloc, elen, inc);
1958 
1959         if (!epos->bh) {
1960                 iinfo->i_lenAlloc += adsize;
1961                 mark_inode_dirty(inode);
1962         } else {
1963                 aed = (struct allocExtDesc *)epos->bh->b_data;
1964                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1965                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1966                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1967                         udf_update_tag(epos->bh->b_data,
1968                                         epos->offset + (inc ? 0 : adsize));
1969                 else
1970                         udf_update_tag(epos->bh->b_data,
1971                                         sizeof(struct allocExtDesc));
1972                 mark_buffer_dirty_inode(epos->bh, inode);
1973         }
1974 
1975         return 0;
1976 }
1977 
1978 /*
1979  * Append extent at given position - should be the first free one in inode
1980  * / indirect extent. Takes care of allocating and linking indirect blocks.
1981  */
1982 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1983                  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1984 {
1985         int adsize;
1986         struct super_block *sb = inode->i_sb;
1987 
1988         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1989                 adsize = sizeof(struct short_ad);
1990         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1991                 adsize = sizeof(struct long_ad);
1992         else
1993                 return -EIO;
1994 
1995         if (epos->offset + (2 * adsize) > sb->s_blocksize) {
1996                 int err;
1997                 udf_pblk_t new_block;
1998 
1999                 new_block = udf_new_block(sb, NULL,
2000                                           epos->block.partitionReferenceNum,
2001                                           epos->block.logicalBlockNum, &err);
2002                 if (!new_block)
2003                         return -ENOSPC;
2004 
2005                 err = udf_setup_indirect_aext(inode, new_block, epos);
2006                 if (err)
2007                         return err;
2008         }
2009 
2010         return __udf_add_aext(inode, epos, eloc, elen, inc);
2011 }
2012 
2013 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2014                     struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2015 {
2016         int adsize;
2017         uint8_t *ptr;
2018         struct short_ad *sad;
2019         struct long_ad *lad;
2020         struct udf_inode_info *iinfo = UDF_I(inode);
2021 
2022         if (!epos->bh)
2023                 ptr = iinfo->i_ext.i_data + epos->offset -
2024                         udf_file_entry_alloc_offset(inode) +
2025                         iinfo->i_lenEAttr;
2026         else
2027                 ptr = epos->bh->b_data + epos->offset;
2028 
2029         switch (iinfo->i_alloc_type) {
2030         case ICBTAG_FLAG_AD_SHORT:
2031                 sad = (struct short_ad *)ptr;
2032                 sad->extLength = cpu_to_le32(elen);
2033                 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2034                 adsize = sizeof(struct short_ad);
2035                 break;
2036         case ICBTAG_FLAG_AD_LONG:
2037                 lad = (struct long_ad *)ptr;
2038                 lad->extLength = cpu_to_le32(elen);
2039                 lad->extLocation = cpu_to_lelb(*eloc);
2040                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2041                 adsize = sizeof(struct long_ad);
2042                 break;
2043         default:
2044                 return;
2045         }
2046 
2047         if (epos->bh) {
2048                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2049                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2050                         struct allocExtDesc *aed =
2051                                 (struct allocExtDesc *)epos->bh->b_data;
2052                         udf_update_tag(epos->bh->b_data,
2053                                        le32_to_cpu(aed->lengthAllocDescs) +
2054                                        sizeof(struct allocExtDesc));
2055                 }
2056                 mark_buffer_dirty_inode(epos->bh, inode);
2057         } else {
2058                 mark_inode_dirty(inode);
2059         }
2060 
2061         if (inc)
2062                 epos->offset += adsize;
2063 }
2064 
2065 /*
2066  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2067  * someone does some weird stuff.
2068  */
2069 #define UDF_MAX_INDIR_EXTS 16
2070 
2071 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2072                      struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2073 {
2074         int8_t etype;
2075         unsigned int indirections = 0;
2076 
2077         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2078                (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2079                 udf_pblk_t block;
2080 
2081                 if (++indirections > UDF_MAX_INDIR_EXTS) {
2082                         udf_err(inode->i_sb,
2083                                 "too many indirect extents in inode %lu\n",
2084                                 inode->i_ino);
2085                         return -1;
2086                 }
2087 
2088                 epos->block = *eloc;
2089                 epos->offset = sizeof(struct allocExtDesc);
2090                 brelse(epos->bh);
2091                 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2092                 epos->bh = udf_tread(inode->i_sb, block);
2093                 if (!epos->bh) {
2094                         udf_debug("reading block %u failed!\n", block);
2095                         return -1;
2096                 }
2097         }
2098 
2099         return etype;
2100 }
2101 
2102 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2103                         struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2104 {
2105         int alen;
2106         int8_t etype;
2107         uint8_t *ptr;
2108         struct short_ad *sad;
2109         struct long_ad *lad;
2110         struct udf_inode_info *iinfo = UDF_I(inode);
2111 
2112         if (!epos->bh) {
2113                 if (!epos->offset)
2114                         epos->offset = udf_file_entry_alloc_offset(inode);
2115                 ptr = iinfo->i_ext.i_data + epos->offset -
2116                         udf_file_entry_alloc_offset(inode) +
2117                         iinfo->i_lenEAttr;
2118                 alen = udf_file_entry_alloc_offset(inode) +
2119                                                         iinfo->i_lenAlloc;
2120         } else {
2121                 if (!epos->offset)
2122                         epos->offset = sizeof(struct allocExtDesc);
2123                 ptr = epos->bh->b_data + epos->offset;
2124                 alen = sizeof(struct allocExtDesc) +
2125                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2126                                                         lengthAllocDescs);
2127         }
2128 
2129         switch (iinfo->i_alloc_type) {
2130         case ICBTAG_FLAG_AD_SHORT:
2131                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2132                 if (!sad)
2133                         return -1;
2134                 etype = le32_to_cpu(sad->extLength) >> 30;
2135                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2136                 eloc->partitionReferenceNum =
2137                                 iinfo->i_location.partitionReferenceNum;
2138                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2139                 break;
2140         case ICBTAG_FLAG_AD_LONG:
2141                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2142                 if (!lad)
2143                         return -1;
2144                 etype = le32_to_cpu(lad->extLength) >> 30;
2145                 *eloc = lelb_to_cpu(lad->extLocation);
2146                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2147                 break;
2148         default:
2149                 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2150                 return -1;
2151         }
2152 
2153         return etype;
2154 }
2155 
2156 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2157                               struct kernel_lb_addr neloc, uint32_t nelen)
2158 {
2159         struct kernel_lb_addr oeloc;
2160         uint32_t oelen;
2161         int8_t etype;
2162 
2163         if (epos.bh)
2164                 get_bh(epos.bh);
2165 
2166         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2167                 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2168                 neloc = oeloc;
2169                 nelen = (etype << 30) | oelen;
2170         }
2171         udf_add_aext(inode, &epos, &neloc, nelen, 1);
2172         brelse(epos.bh);
2173 
2174         return (nelen >> 30);
2175 }
2176 
2177 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2178                        struct kernel_lb_addr eloc, uint32_t elen)
2179 {
2180         struct extent_position oepos;
2181         int adsize;
2182         int8_t etype;
2183         struct allocExtDesc *aed;
2184         struct udf_inode_info *iinfo;
2185 
2186         if (epos.bh) {
2187                 get_bh(epos.bh);
2188                 get_bh(epos.bh);
2189         }
2190 
2191         iinfo = UDF_I(inode);
2192         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2193                 adsize = sizeof(struct short_ad);
2194         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2195                 adsize = sizeof(struct long_ad);
2196         else
2197                 adsize = 0;
2198 
2199         oepos = epos;
2200         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2201                 return -1;
2202 
2203         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2204                 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2205                 if (oepos.bh != epos.bh) {
2206                         oepos.block = epos.block;
2207                         brelse(oepos.bh);
2208                         get_bh(epos.bh);
2209                         oepos.bh = epos.bh;
2210                         oepos.offset = epos.offset - adsize;
2211                 }
2212         }
2213         memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2214         elen = 0;
2215 
2216         if (epos.bh != oepos.bh) {
2217                 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2218                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2219                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2220                 if (!oepos.bh) {
2221                         iinfo->i_lenAlloc -= (adsize * 2);
2222                         mark_inode_dirty(inode);
2223                 } else {
2224                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2225                         le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2226                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2227                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2228                                 udf_update_tag(oepos.bh->b_data,
2229                                                 oepos.offset - (2 * adsize));
2230                         else
2231                                 udf_update_tag(oepos.bh->b_data,
2232                                                 sizeof(struct allocExtDesc));
2233                         mark_buffer_dirty_inode(oepos.bh, inode);
2234                 }
2235         } else {
2236                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2237                 if (!oepos.bh) {
2238                         iinfo->i_lenAlloc -= adsize;
2239                         mark_inode_dirty(inode);
2240                 } else {
2241                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2242                         le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2243                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2244                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2245                                 udf_update_tag(oepos.bh->b_data,
2246                                                 epos.offset - adsize);
2247                         else
2248                                 udf_update_tag(oepos.bh->b_data,
2249                                                 sizeof(struct allocExtDesc));
2250                         mark_buffer_dirty_inode(oepos.bh, inode);
2251                 }
2252         }
2253 
2254         brelse(epos.bh);
2255         brelse(oepos.bh);
2256 
2257         return (elen >> 30);
2258 }
2259 
2260 int8_t inode_bmap(struct inode *inode, sector_t block,
2261                   struct extent_position *pos, struct kernel_lb_addr *eloc,
2262                   uint32_t *elen, sector_t *offset)
2263 {
2264         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2265         loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2266         int8_t etype;
2267         struct udf_inode_info *iinfo;
2268 
2269         iinfo = UDF_I(inode);
2270         if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2271                 pos->offset = 0;
2272                 pos->block = iinfo->i_location;
2273                 pos->bh = NULL;
2274         }
2275         *elen = 0;
2276         do {
2277                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2278                 if (etype == -1) {
2279                         *offset = (bcount - lbcount) >> blocksize_bits;
2280                         iinfo->i_lenExtents = lbcount;
2281                         return -1;
2282                 }
2283                 lbcount += *elen;
2284         } while (lbcount <= bcount);
2285         /* update extent cache */
2286         udf_update_extent_cache(inode, lbcount - *elen, pos);
2287         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2288 
2289         return etype;
2290 }
2291 
2292 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2293 {
2294         struct kernel_lb_addr eloc;
2295         uint32_t elen;
2296         sector_t offset;
2297         struct extent_position epos = {};
2298         udf_pblk_t ret;
2299 
2300         down_read(&UDF_I(inode)->i_data_sem);
2301 
2302         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2303                                                 (EXT_RECORDED_ALLOCATED >> 30))
2304                 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2305         else
2306                 ret = 0;
2307 
2308         up_read(&UDF_I(inode)->i_data_sem);
2309         brelse(epos.bh);
2310 
2311         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2312                 return udf_fixed_to_variable(ret);
2313         else
2314                 return ret;
2315 }
2316 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp