~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/udf/inode.c

Version: ~ [ linux-5.16 ] ~ [ linux-5.15.13 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.90 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.170 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.224 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.261 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.296 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.298 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * inode.c
  3  *
  4  * PURPOSE
  5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
  6  *
  7  * COPYRIGHT
  8  *  This file is distributed under the terms of the GNU General Public
  9  *  License (GPL). Copies of the GPL can be obtained from:
 10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 11  *  Each contributing author retains all rights to their own work.
 12  *
 13  *  (C) 1998 Dave Boynton
 14  *  (C) 1998-2004 Ben Fennema
 15  *  (C) 1999-2000 Stelias Computing Inc
 16  *
 17  * HISTORY
 18  *
 19  *  10/04/98 dgb  Added rudimentary directory functions
 20  *  10/07/98      Fully working udf_block_map! It works!
 21  *  11/25/98      bmap altered to better support extents
 22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
 23  *                and udf_read_inode
 24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
 25  *                block boundaries (which is not actually allowed)
 26  *  12/20/98      added support for strategy 4096
 27  *  03/07/99      rewrote udf_block_map (again)
 28  *                New funcs, inode_bmap, udf_next_aext
 29  *  04/19/99      Support for writing device EA's for major/minor #
 30  */
 31 
 32 #include "udfdecl.h"
 33 #include <linux/mm.h>
 34 #include <linux/module.h>
 35 #include <linux/pagemap.h>
 36 #include <linux/writeback.h>
 37 #include <linux/slab.h>
 38 #include <linux/crc-itu-t.h>
 39 #include <linux/mpage.h>
 40 #include <linux/uio.h>
 41 
 42 #include "udf_i.h"
 43 #include "udf_sb.h"
 44 
 45 MODULE_AUTHOR("Ben Fennema");
 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
 47 MODULE_LICENSE("GPL");
 48 
 49 #define EXTENT_MERGE_SIZE 5
 50 
 51 static umode_t udf_convert_permissions(struct fileEntry *);
 52 static int udf_update_inode(struct inode *, int);
 53 static int udf_sync_inode(struct inode *inode);
 54 static int udf_alloc_i_data(struct inode *inode, size_t size);
 55 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
 56 static int8_t udf_insert_aext(struct inode *, struct extent_position,
 57                               struct kernel_lb_addr, uint32_t);
 58 static void udf_split_extents(struct inode *, int *, int, int,
 59                               struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
 60 static void udf_prealloc_extents(struct inode *, int, int,
 61                                  struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
 62 static void udf_merge_extents(struct inode *,
 63                               struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
 64 static void udf_update_extents(struct inode *,
 65                                struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
 66                                struct extent_position *);
 67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
 68 
 69 static void __udf_clear_extent_cache(struct inode *inode)
 70 {
 71         struct udf_inode_info *iinfo = UDF_I(inode);
 72 
 73         if (iinfo->cached_extent.lstart != -1) {
 74                 brelse(iinfo->cached_extent.epos.bh);
 75                 iinfo->cached_extent.lstart = -1;
 76         }
 77 }
 78 
 79 /* Invalidate extent cache */
 80 static void udf_clear_extent_cache(struct inode *inode)
 81 {
 82         struct udf_inode_info *iinfo = UDF_I(inode);
 83 
 84         spin_lock(&iinfo->i_extent_cache_lock);
 85         __udf_clear_extent_cache(inode);
 86         spin_unlock(&iinfo->i_extent_cache_lock);
 87 }
 88 
 89 /* Return contents of extent cache */
 90 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
 91                                  loff_t *lbcount, struct extent_position *pos)
 92 {
 93         struct udf_inode_info *iinfo = UDF_I(inode);
 94         int ret = 0;
 95 
 96         spin_lock(&iinfo->i_extent_cache_lock);
 97         if ((iinfo->cached_extent.lstart <= bcount) &&
 98             (iinfo->cached_extent.lstart != -1)) {
 99                 /* Cache hit */
100                 *lbcount = iinfo->cached_extent.lstart;
101                 memcpy(pos, &iinfo->cached_extent.epos,
102                        sizeof(struct extent_position));
103                 if (pos->bh)
104                         get_bh(pos->bh);
105                 ret = 1;
106         }
107         spin_unlock(&iinfo->i_extent_cache_lock);
108         return ret;
109 }
110 
111 /* Add extent to extent cache */
112 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
113                                     struct extent_position *pos, int next_epos)
114 {
115         struct udf_inode_info *iinfo = UDF_I(inode);
116 
117         spin_lock(&iinfo->i_extent_cache_lock);
118         /* Invalidate previously cached extent */
119         __udf_clear_extent_cache(inode);
120         if (pos->bh)
121                 get_bh(pos->bh);
122         memcpy(&iinfo->cached_extent.epos, pos,
123                sizeof(struct extent_position));
124         iinfo->cached_extent.lstart = estart;
125         if (next_epos)
126                 switch (iinfo->i_alloc_type) {
127                 case ICBTAG_FLAG_AD_SHORT:
128                         iinfo->cached_extent.epos.offset -=
129                         sizeof(struct short_ad);
130                         break;
131                 case ICBTAG_FLAG_AD_LONG:
132                         iinfo->cached_extent.epos.offset -=
133                         sizeof(struct long_ad);
134                 }
135         spin_unlock(&iinfo->i_extent_cache_lock);
136 }
137 
138 void udf_evict_inode(struct inode *inode)
139 {
140         struct udf_inode_info *iinfo = UDF_I(inode);
141         int want_delete = 0;
142 
143         if (!inode->i_nlink && !is_bad_inode(inode)) {
144                 want_delete = 1;
145                 udf_setsize(inode, 0);
146                 udf_update_inode(inode, IS_SYNC(inode));
147         }
148         truncate_inode_pages_final(&inode->i_data);
149         invalidate_inode_buffers(inode);
150         clear_inode(inode);
151         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
152             inode->i_size != iinfo->i_lenExtents) {
153                 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
154                          inode->i_ino, inode->i_mode,
155                          (unsigned long long)inode->i_size,
156                          (unsigned long long)iinfo->i_lenExtents);
157         }
158         kfree(iinfo->i_ext.i_data);
159         iinfo->i_ext.i_data = NULL;
160         udf_clear_extent_cache(inode);
161         if (want_delete) {
162                 udf_free_inode(inode);
163         }
164 }
165 
166 static void udf_write_failed(struct address_space *mapping, loff_t to)
167 {
168         struct inode *inode = mapping->host;
169         struct udf_inode_info *iinfo = UDF_I(inode);
170         loff_t isize = inode->i_size;
171 
172         if (to > isize) {
173                 truncate_pagecache(inode, isize);
174                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
175                         down_write(&iinfo->i_data_sem);
176                         udf_clear_extent_cache(inode);
177                         udf_truncate_extents(inode);
178                         up_write(&iinfo->i_data_sem);
179                 }
180         }
181 }
182 
183 static int udf_writepage(struct page *page, struct writeback_control *wbc)
184 {
185         return block_write_full_page(page, udf_get_block, wbc);
186 }
187 
188 static int udf_writepages(struct address_space *mapping,
189                         struct writeback_control *wbc)
190 {
191         return mpage_writepages(mapping, wbc, udf_get_block);
192 }
193 
194 static int udf_readpage(struct file *file, struct page *page)
195 {
196         return mpage_readpage(page, udf_get_block);
197 }
198 
199 static int udf_readpages(struct file *file, struct address_space *mapping,
200                         struct list_head *pages, unsigned nr_pages)
201 {
202         return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
203 }
204 
205 static int udf_write_begin(struct file *file, struct address_space *mapping,
206                         loff_t pos, unsigned len, unsigned flags,
207                         struct page **pagep, void **fsdata)
208 {
209         int ret;
210 
211         ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
212         if (unlikely(ret))
213                 udf_write_failed(mapping, pos + len);
214         return ret;
215 }
216 
217 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
218                              loff_t offset)
219 {
220         struct file *file = iocb->ki_filp;
221         struct address_space *mapping = file->f_mapping;
222         struct inode *inode = mapping->host;
223         size_t count = iov_iter_count(iter);
224         ssize_t ret;
225 
226         ret = blockdev_direct_IO(iocb, inode, iter, offset, udf_get_block);
227         if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228                 udf_write_failed(mapping, offset + count);
229         return ret;
230 }
231 
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234         return generic_block_bmap(mapping, block, udf_get_block);
235 }
236 
237 const struct address_space_operations udf_aops = {
238         .readpage       = udf_readpage,
239         .readpages      = udf_readpages,
240         .writepage      = udf_writepage,
241         .writepages     = udf_writepages,
242         .write_begin    = udf_write_begin,
243         .write_end      = generic_write_end,
244         .direct_IO      = udf_direct_IO,
245         .bmap           = udf_bmap,
246 };
247 
248 /*
249  * Expand file stored in ICB to a normal one-block-file
250  *
251  * This function requires i_data_sem for writing and releases it.
252  * This function requires i_mutex held
253  */
254 int udf_expand_file_adinicb(struct inode *inode)
255 {
256         struct page *page;
257         char *kaddr;
258         struct udf_inode_info *iinfo = UDF_I(inode);
259         int err;
260         struct writeback_control udf_wbc = {
261                 .sync_mode = WB_SYNC_NONE,
262                 .nr_to_write = 1,
263         };
264 
265         WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex));
266         if (!iinfo->i_lenAlloc) {
267                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
268                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
269                 else
270                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
271                 /* from now on we have normal address_space methods */
272                 inode->i_data.a_ops = &udf_aops;
273                 up_write(&iinfo->i_data_sem);
274                 mark_inode_dirty(inode);
275                 return 0;
276         }
277         /*
278          * Release i_data_sem so that we can lock a page - page lock ranks
279          * above i_data_sem. i_mutex still protects us against file changes.
280          */
281         up_write(&iinfo->i_data_sem);
282 
283         page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
284         if (!page)
285                 return -ENOMEM;
286 
287         if (!PageUptodate(page)) {
288                 kaddr = kmap(page);
289                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
290                        PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
291                 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
292                         iinfo->i_lenAlloc);
293                 flush_dcache_page(page);
294                 SetPageUptodate(page);
295                 kunmap(page);
296         }
297         down_write(&iinfo->i_data_sem);
298         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
299                iinfo->i_lenAlloc);
300         iinfo->i_lenAlloc = 0;
301         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
302                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
303         else
304                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
305         /* from now on we have normal address_space methods */
306         inode->i_data.a_ops = &udf_aops;
307         up_write(&iinfo->i_data_sem);
308         err = inode->i_data.a_ops->writepage(page, &udf_wbc);
309         if (err) {
310                 /* Restore everything back so that we don't lose data... */
311                 lock_page(page);
312                 kaddr = kmap(page);
313                 down_write(&iinfo->i_data_sem);
314                 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
315                        inode->i_size);
316                 kunmap(page);
317                 unlock_page(page);
318                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319                 inode->i_data.a_ops = &udf_adinicb_aops;
320                 up_write(&iinfo->i_data_sem);
321         }
322         page_cache_release(page);
323         mark_inode_dirty(inode);
324 
325         return err;
326 }
327 
328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
329                                            int *err)
330 {
331         int newblock;
332         struct buffer_head *dbh = NULL;
333         struct kernel_lb_addr eloc;
334         uint8_t alloctype;
335         struct extent_position epos;
336 
337         struct udf_fileident_bh sfibh, dfibh;
338         loff_t f_pos = udf_ext0_offset(inode);
339         int size = udf_ext0_offset(inode) + inode->i_size;
340         struct fileIdentDesc cfi, *sfi, *dfi;
341         struct udf_inode_info *iinfo = UDF_I(inode);
342 
343         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344                 alloctype = ICBTAG_FLAG_AD_SHORT;
345         else
346                 alloctype = ICBTAG_FLAG_AD_LONG;
347 
348         if (!inode->i_size) {
349                 iinfo->i_alloc_type = alloctype;
350                 mark_inode_dirty(inode);
351                 return NULL;
352         }
353 
354         /* alloc block, and copy data to it */
355         *block = udf_new_block(inode->i_sb, inode,
356                                iinfo->i_location.partitionReferenceNum,
357                                iinfo->i_location.logicalBlockNum, err);
358         if (!(*block))
359                 return NULL;
360         newblock = udf_get_pblock(inode->i_sb, *block,
361                                   iinfo->i_location.partitionReferenceNum,
362                                 0);
363         if (!newblock)
364                 return NULL;
365         dbh = udf_tgetblk(inode->i_sb, newblock);
366         if (!dbh)
367                 return NULL;
368         lock_buffer(dbh);
369         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370         set_buffer_uptodate(dbh);
371         unlock_buffer(dbh);
372         mark_buffer_dirty_inode(dbh, inode);
373 
374         sfibh.soffset = sfibh.eoffset =
375                         f_pos & (inode->i_sb->s_blocksize - 1);
376         sfibh.sbh = sfibh.ebh = NULL;
377         dfibh.soffset = dfibh.eoffset = 0;
378         dfibh.sbh = dfibh.ebh = dbh;
379         while (f_pos < size) {
380                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382                                          NULL, NULL, NULL);
383                 if (!sfi) {
384                         brelse(dbh);
385                         return NULL;
386                 }
387                 iinfo->i_alloc_type = alloctype;
388                 sfi->descTag.tagLocation = cpu_to_le32(*block);
389                 dfibh.soffset = dfibh.eoffset;
390                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393                                  sfi->fileIdent +
394                                         le16_to_cpu(sfi->lengthOfImpUse))) {
395                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396                         brelse(dbh);
397                         return NULL;
398                 }
399         }
400         mark_buffer_dirty_inode(dbh, inode);
401 
402         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
403                 iinfo->i_lenAlloc);
404         iinfo->i_lenAlloc = 0;
405         eloc.logicalBlockNum = *block;
406         eloc.partitionReferenceNum =
407                                 iinfo->i_location.partitionReferenceNum;
408         iinfo->i_lenExtents = inode->i_size;
409         epos.bh = NULL;
410         epos.block = iinfo->i_location;
411         epos.offset = udf_file_entry_alloc_offset(inode);
412         udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
413         /* UniqueID stuff */
414 
415         brelse(epos.bh);
416         mark_inode_dirty(inode);
417         return dbh;
418 }
419 
420 static int udf_get_block(struct inode *inode, sector_t block,
421                          struct buffer_head *bh_result, int create)
422 {
423         int err, new;
424         sector_t phys = 0;
425         struct udf_inode_info *iinfo;
426 
427         if (!create) {
428                 phys = udf_block_map(inode, block);
429                 if (phys)
430                         map_bh(bh_result, inode->i_sb, phys);
431                 return 0;
432         }
433 
434         err = -EIO;
435         new = 0;
436         iinfo = UDF_I(inode);
437 
438         down_write(&iinfo->i_data_sem);
439         if (block == iinfo->i_next_alloc_block + 1) {
440                 iinfo->i_next_alloc_block++;
441                 iinfo->i_next_alloc_goal++;
442         }
443 
444         udf_clear_extent_cache(inode);
445         phys = inode_getblk(inode, block, &err, &new);
446         if (!phys)
447                 goto abort;
448 
449         if (new)
450                 set_buffer_new(bh_result);
451         map_bh(bh_result, inode->i_sb, phys);
452 
453 abort:
454         up_write(&iinfo->i_data_sem);
455         return err;
456 }
457 
458 static struct buffer_head *udf_getblk(struct inode *inode, long block,
459                                       int create, int *err)
460 {
461         struct buffer_head *bh;
462         struct buffer_head dummy;
463 
464         dummy.b_state = 0;
465         dummy.b_blocknr = -1000;
466         *err = udf_get_block(inode, block, &dummy, create);
467         if (!*err && buffer_mapped(&dummy)) {
468                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
469                 if (buffer_new(&dummy)) {
470                         lock_buffer(bh);
471                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
472                         set_buffer_uptodate(bh);
473                         unlock_buffer(bh);
474                         mark_buffer_dirty_inode(bh, inode);
475                 }
476                 return bh;
477         }
478 
479         return NULL;
480 }
481 
482 /* Extend the file by 'blocks' blocks, return the number of extents added */
483 static int udf_do_extend_file(struct inode *inode,
484                               struct extent_position *last_pos,
485                               struct kernel_long_ad *last_ext,
486                               sector_t blocks)
487 {
488         sector_t add;
489         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490         struct super_block *sb = inode->i_sb;
491         struct kernel_lb_addr prealloc_loc = {};
492         int prealloc_len = 0;
493         struct udf_inode_info *iinfo;
494         int err;
495 
496         /* The previous extent is fake and we should not extend by anything
497          * - there's nothing to do... */
498         if (!blocks && fake)
499                 return 0;
500 
501         iinfo = UDF_I(inode);
502         /* Round the last extent up to a multiple of block size */
503         if (last_ext->extLength & (sb->s_blocksize - 1)) {
504                 last_ext->extLength =
505                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508                 iinfo->i_lenExtents =
509                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
510                         ~(sb->s_blocksize - 1);
511         }
512 
513         /* Last extent are just preallocated blocks? */
514         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515                                                 EXT_NOT_RECORDED_ALLOCATED) {
516                 /* Save the extent so that we can reattach it to the end */
517                 prealloc_loc = last_ext->extLocation;
518                 prealloc_len = last_ext->extLength;
519                 /* Mark the extent as a hole */
520                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522                 last_ext->extLocation.logicalBlockNum = 0;
523                 last_ext->extLocation.partitionReferenceNum = 0;
524         }
525 
526         /* Can we merge with the previous extent? */
527         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
529                 add = ((1 << 30) - sb->s_blocksize -
530                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
531                         sb->s_blocksize_bits;
532                 if (add > blocks)
533                         add = blocks;
534                 blocks -= add;
535                 last_ext->extLength += add << sb->s_blocksize_bits;
536         }
537 
538         if (fake) {
539                 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540                              last_ext->extLength, 1);
541                 count++;
542         } else
543                 udf_write_aext(inode, last_pos, &last_ext->extLocation,
544                                 last_ext->extLength, 1);
545 
546         /* Managed to do everything necessary? */
547         if (!blocks)
548                 goto out;
549 
550         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551         last_ext->extLocation.logicalBlockNum = 0;
552         last_ext->extLocation.partitionReferenceNum = 0;
553         add = (1 << (30-sb->s_blocksize_bits)) - 1;
554         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555                                 (add << sb->s_blocksize_bits);
556 
557         /* Create enough extents to cover the whole hole */
558         while (blocks > add) {
559                 blocks -= add;
560                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561                                    last_ext->extLength, 1);
562                 if (err)
563                         return err;
564                 count++;
565         }
566         if (blocks) {
567                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568                         (blocks << sb->s_blocksize_bits);
569                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570                                    last_ext->extLength, 1);
571                 if (err)
572                         return err;
573                 count++;
574         }
575 
576 out:
577         /* Do we have some preallocated blocks saved? */
578         if (prealloc_len) {
579                 err = udf_add_aext(inode, last_pos, &prealloc_loc,
580                                    prealloc_len, 1);
581                 if (err)
582                         return err;
583                 last_ext->extLocation = prealloc_loc;
584                 last_ext->extLength = prealloc_len;
585                 count++;
586         }
587 
588         /* last_pos should point to the last written extent... */
589         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590                 last_pos->offset -= sizeof(struct short_ad);
591         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592                 last_pos->offset -= sizeof(struct long_ad);
593         else
594                 return -EIO;
595 
596         return count;
597 }
598 
599 static int udf_extend_file(struct inode *inode, loff_t newsize)
600 {
601 
602         struct extent_position epos;
603         struct kernel_lb_addr eloc;
604         uint32_t elen;
605         int8_t etype;
606         struct super_block *sb = inode->i_sb;
607         sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
608         int adsize;
609         struct udf_inode_info *iinfo = UDF_I(inode);
610         struct kernel_long_ad extent;
611         int err;
612 
613         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614                 adsize = sizeof(struct short_ad);
615         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616                 adsize = sizeof(struct long_ad);
617         else
618                 BUG();
619 
620         etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
621 
622         /* File has extent covering the new size (could happen when extending
623          * inside a block)? */
624         if (etype != -1)
625                 return 0;
626         if (newsize & (sb->s_blocksize - 1))
627                 offset++;
628         /* Extended file just to the boundary of the last file block? */
629         if (offset == 0)
630                 return 0;
631 
632         /* Truncate is extending the file by 'offset' blocks */
633         if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634             (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635                 /* File has no extents at all or has empty last
636                  * indirect extent! Create a fake extent... */
637                 extent.extLocation.logicalBlockNum = 0;
638                 extent.extLocation.partitionReferenceNum = 0;
639                 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
640         } else {
641                 epos.offset -= adsize;
642                 etype = udf_next_aext(inode, &epos, &extent.extLocation,
643                                       &extent.extLength, 0);
644                 extent.extLength |= etype << 30;
645         }
646         err = udf_do_extend_file(inode, &epos, &extent, offset);
647         if (err < 0)
648                 goto out;
649         err = 0;
650         iinfo->i_lenExtents = newsize;
651 out:
652         brelse(epos.bh);
653         return err;
654 }
655 
656 static sector_t inode_getblk(struct inode *inode, sector_t block,
657                              int *err, int *new)
658 {
659         struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660         struct extent_position prev_epos, cur_epos, next_epos;
661         int count = 0, startnum = 0, endnum = 0;
662         uint32_t elen = 0, tmpelen;
663         struct kernel_lb_addr eloc, tmpeloc;
664         int c = 1;
665         loff_t lbcount = 0, b_off = 0;
666         uint32_t newblocknum, newblock;
667         sector_t offset = 0;
668         int8_t etype;
669         struct udf_inode_info *iinfo = UDF_I(inode);
670         int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
671         int lastblock = 0;
672         bool isBeyondEOF;
673 
674         *err = 0;
675         *new = 0;
676         prev_epos.offset = udf_file_entry_alloc_offset(inode);
677         prev_epos.block = iinfo->i_location;
678         prev_epos.bh = NULL;
679         cur_epos = next_epos = prev_epos;
680         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
681 
682         /* find the extent which contains the block we are looking for.
683            alternate between laarr[0] and laarr[1] for locations of the
684            current extent, and the previous extent */
685         do {
686                 if (prev_epos.bh != cur_epos.bh) {
687                         brelse(prev_epos.bh);
688                         get_bh(cur_epos.bh);
689                         prev_epos.bh = cur_epos.bh;
690                 }
691                 if (cur_epos.bh != next_epos.bh) {
692                         brelse(cur_epos.bh);
693                         get_bh(next_epos.bh);
694                         cur_epos.bh = next_epos.bh;
695                 }
696 
697                 lbcount += elen;
698 
699                 prev_epos.block = cur_epos.block;
700                 cur_epos.block = next_epos.block;
701 
702                 prev_epos.offset = cur_epos.offset;
703                 cur_epos.offset = next_epos.offset;
704 
705                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
706                 if (etype == -1)
707                         break;
708 
709                 c = !c;
710 
711                 laarr[c].extLength = (etype << 30) | elen;
712                 laarr[c].extLocation = eloc;
713 
714                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715                         pgoal = eloc.logicalBlockNum +
716                                 ((elen + inode->i_sb->s_blocksize - 1) >>
717                                  inode->i_sb->s_blocksize_bits);
718 
719                 count++;
720         } while (lbcount + elen <= b_off);
721 
722         b_off -= lbcount;
723         offset = b_off >> inode->i_sb->s_blocksize_bits;
724         /*
725          * Move prev_epos and cur_epos into indirect extent if we are at
726          * the pointer to it
727          */
728         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
730 
731         /* if the extent is allocated and recorded, return the block
732            if the extent is not a multiple of the blocksize, round up */
733 
734         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735                 if (elen & (inode->i_sb->s_blocksize - 1)) {
736                         elen = EXT_RECORDED_ALLOCATED |
737                                 ((elen + inode->i_sb->s_blocksize - 1) &
738                                  ~(inode->i_sb->s_blocksize - 1));
739                         udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
740                 }
741                 brelse(prev_epos.bh);
742                 brelse(cur_epos.bh);
743                 brelse(next_epos.bh);
744                 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
745                 return newblock;
746         }
747 
748         /* Are we beyond EOF? */
749         if (etype == -1) {
750                 int ret;
751                 isBeyondEOF = true;
752                 if (count) {
753                         if (c)
754                                 laarr[0] = laarr[1];
755                         startnum = 1;
756                 } else {
757                         /* Create a fake extent when there's not one */
758                         memset(&laarr[0].extLocation, 0x00,
759                                 sizeof(struct kernel_lb_addr));
760                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
761                         /* Will udf_do_extend_file() create real extent from
762                            a fake one? */
763                         startnum = (offset > 0);
764                 }
765                 /* Create extents for the hole between EOF and offset */
766                 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
767                 if (ret < 0) {
768                         brelse(prev_epos.bh);
769                         brelse(cur_epos.bh);
770                         brelse(next_epos.bh);
771                         *err = ret;
772                         return 0;
773                 }
774                 c = 0;
775                 offset = 0;
776                 count += ret;
777                 /* We are not covered by a preallocated extent? */
778                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
779                                                 EXT_NOT_RECORDED_ALLOCATED) {
780                         /* Is there any real extent? - otherwise we overwrite
781                          * the fake one... */
782                         if (count)
783                                 c = !c;
784                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
785                                 inode->i_sb->s_blocksize;
786                         memset(&laarr[c].extLocation, 0x00,
787                                 sizeof(struct kernel_lb_addr));
788                         count++;
789                 }
790                 endnum = c + 1;
791                 lastblock = 1;
792         } else {
793                 isBeyondEOF = false;
794                 endnum = startnum = ((count > 2) ? 2 : count);
795 
796                 /* if the current extent is in position 0,
797                    swap it with the previous */
798                 if (!c && count != 1) {
799                         laarr[2] = laarr[0];
800                         laarr[0] = laarr[1];
801                         laarr[1] = laarr[2];
802                         c = 1;
803                 }
804 
805                 /* if the current block is located in an extent,
806                    read the next extent */
807                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
808                 if (etype != -1) {
809                         laarr[c + 1].extLength = (etype << 30) | elen;
810                         laarr[c + 1].extLocation = eloc;
811                         count++;
812                         startnum++;
813                         endnum++;
814                 } else
815                         lastblock = 1;
816         }
817 
818         /* if the current extent is not recorded but allocated, get the
819          * block in the extent corresponding to the requested block */
820         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
821                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
822         else { /* otherwise, allocate a new block */
823                 if (iinfo->i_next_alloc_block == block)
824                         goal = iinfo->i_next_alloc_goal;
825 
826                 if (!goal) {
827                         if (!(goal = pgoal)) /* XXX: what was intended here? */
828                                 goal = iinfo->i_location.logicalBlockNum + 1;
829                 }
830 
831                 newblocknum = udf_new_block(inode->i_sb, inode,
832                                 iinfo->i_location.partitionReferenceNum,
833                                 goal, err);
834                 if (!newblocknum) {
835                         brelse(prev_epos.bh);
836                         brelse(cur_epos.bh);
837                         brelse(next_epos.bh);
838                         *err = -ENOSPC;
839                         return 0;
840                 }
841                 if (isBeyondEOF)
842                         iinfo->i_lenExtents += inode->i_sb->s_blocksize;
843         }
844 
845         /* if the extent the requsted block is located in contains multiple
846          * blocks, split the extent into at most three extents. blocks prior
847          * to requested block, requested block, and blocks after requested
848          * block */
849         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
850 
851 #ifdef UDF_PREALLOCATE
852         /* We preallocate blocks only for regular files. It also makes sense
853          * for directories but there's a problem when to drop the
854          * preallocation. We might use some delayed work for that but I feel
855          * it's overengineering for a filesystem like UDF. */
856         if (S_ISREG(inode->i_mode))
857                 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
858 #endif
859 
860         /* merge any continuous blocks in laarr */
861         udf_merge_extents(inode, laarr, &endnum);
862 
863         /* write back the new extents, inserting new extents if the new number
864          * of extents is greater than the old number, and deleting extents if
865          * the new number of extents is less than the old number */
866         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
867 
868         brelse(prev_epos.bh);
869         brelse(cur_epos.bh);
870         brelse(next_epos.bh);
871 
872         newblock = udf_get_pblock(inode->i_sb, newblocknum,
873                                 iinfo->i_location.partitionReferenceNum, 0);
874         if (!newblock) {
875                 *err = -EIO;
876                 return 0;
877         }
878         *new = 1;
879         iinfo->i_next_alloc_block = block;
880         iinfo->i_next_alloc_goal = newblocknum;
881         inode->i_ctime = current_fs_time(inode->i_sb);
882 
883         if (IS_SYNC(inode))
884                 udf_sync_inode(inode);
885         else
886                 mark_inode_dirty(inode);
887 
888         return newblock;
889 }
890 
891 static void udf_split_extents(struct inode *inode, int *c, int offset,
892                               int newblocknum,
893                               struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
894                               int *endnum)
895 {
896         unsigned long blocksize = inode->i_sb->s_blocksize;
897         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
898 
899         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
900             (laarr[*c].extLength >> 30) ==
901                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
902                 int curr = *c;
903                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
904                             blocksize - 1) >> blocksize_bits;
905                 int8_t etype = (laarr[curr].extLength >> 30);
906 
907                 if (blen == 1)
908                         ;
909                 else if (!offset || blen == offset + 1) {
910                         laarr[curr + 2] = laarr[curr + 1];
911                         laarr[curr + 1] = laarr[curr];
912                 } else {
913                         laarr[curr + 3] = laarr[curr + 1];
914                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
915                 }
916 
917                 if (offset) {
918                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
919                                 udf_free_blocks(inode->i_sb, inode,
920                                                 &laarr[curr].extLocation,
921                                                 0, offset);
922                                 laarr[curr].extLength =
923                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
924                                         (offset << blocksize_bits);
925                                 laarr[curr].extLocation.logicalBlockNum = 0;
926                                 laarr[curr].extLocation.
927                                                 partitionReferenceNum = 0;
928                         } else
929                                 laarr[curr].extLength = (etype << 30) |
930                                         (offset << blocksize_bits);
931                         curr++;
932                         (*c)++;
933                         (*endnum)++;
934                 }
935 
936                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
937                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
938                         laarr[curr].extLocation.partitionReferenceNum =
939                                 UDF_I(inode)->i_location.partitionReferenceNum;
940                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
941                         blocksize;
942                 curr++;
943 
944                 if (blen != offset + 1) {
945                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
946                                 laarr[curr].extLocation.logicalBlockNum +=
947                                                                 offset + 1;
948                         laarr[curr].extLength = (etype << 30) |
949                                 ((blen - (offset + 1)) << blocksize_bits);
950                         curr++;
951                         (*endnum)++;
952                 }
953         }
954 }
955 
956 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
957                                  struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
958                                  int *endnum)
959 {
960         int start, length = 0, currlength = 0, i;
961 
962         if (*endnum >= (c + 1)) {
963                 if (!lastblock)
964                         return;
965                 else
966                         start = c;
967         } else {
968                 if ((laarr[c + 1].extLength >> 30) ==
969                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
970                         start = c + 1;
971                         length = currlength =
972                                 (((laarr[c + 1].extLength &
973                                         UDF_EXTENT_LENGTH_MASK) +
974                                 inode->i_sb->s_blocksize - 1) >>
975                                 inode->i_sb->s_blocksize_bits);
976                 } else
977                         start = c;
978         }
979 
980         for (i = start + 1; i <= *endnum; i++) {
981                 if (i == *endnum) {
982                         if (lastblock)
983                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
984                 } else if ((laarr[i].extLength >> 30) ==
985                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
986                         length += (((laarr[i].extLength &
987                                                 UDF_EXTENT_LENGTH_MASK) +
988                                     inode->i_sb->s_blocksize - 1) >>
989                                     inode->i_sb->s_blocksize_bits);
990                 } else
991                         break;
992         }
993 
994         if (length) {
995                 int next = laarr[start].extLocation.logicalBlockNum +
996                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
997                           inode->i_sb->s_blocksize - 1) >>
998                           inode->i_sb->s_blocksize_bits);
999                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1000                                 laarr[start].extLocation.partitionReferenceNum,
1001                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1002                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1003                                 currlength);
1004                 if (numalloc)   {
1005                         if (start == (c + 1))
1006                                 laarr[start].extLength +=
1007                                         (numalloc <<
1008                                          inode->i_sb->s_blocksize_bits);
1009                         else {
1010                                 memmove(&laarr[c + 2], &laarr[c + 1],
1011                                         sizeof(struct long_ad) * (*endnum - (c + 1)));
1012                                 (*endnum)++;
1013                                 laarr[c + 1].extLocation.logicalBlockNum = next;
1014                                 laarr[c + 1].extLocation.partitionReferenceNum =
1015                                         laarr[c].extLocation.
1016                                                         partitionReferenceNum;
1017                                 laarr[c + 1].extLength =
1018                                         EXT_NOT_RECORDED_ALLOCATED |
1019                                         (numalloc <<
1020                                          inode->i_sb->s_blocksize_bits);
1021                                 start = c + 1;
1022                         }
1023 
1024                         for (i = start + 1; numalloc && i < *endnum; i++) {
1025                                 int elen = ((laarr[i].extLength &
1026                                                 UDF_EXTENT_LENGTH_MASK) +
1027                                             inode->i_sb->s_blocksize - 1) >>
1028                                             inode->i_sb->s_blocksize_bits;
1029 
1030                                 if (elen > numalloc) {
1031                                         laarr[i].extLength -=
1032                                                 (numalloc <<
1033                                                  inode->i_sb->s_blocksize_bits);
1034                                         numalloc = 0;
1035                                 } else {
1036                                         numalloc -= elen;
1037                                         if (*endnum > (i + 1))
1038                                                 memmove(&laarr[i],
1039                                                         &laarr[i + 1],
1040                                                         sizeof(struct long_ad) *
1041                                                         (*endnum - (i + 1)));
1042                                         i--;
1043                                         (*endnum)--;
1044                                 }
1045                         }
1046                         UDF_I(inode)->i_lenExtents +=
1047                                 numalloc << inode->i_sb->s_blocksize_bits;
1048                 }
1049         }
1050 }
1051 
1052 static void udf_merge_extents(struct inode *inode,
1053                               struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1054                               int *endnum)
1055 {
1056         int i;
1057         unsigned long blocksize = inode->i_sb->s_blocksize;
1058         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1059 
1060         for (i = 0; i < (*endnum - 1); i++) {
1061                 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1062                 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1063 
1064                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1065                         (((li->extLength >> 30) ==
1066                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1067                         ((lip1->extLocation.logicalBlockNum -
1068                           li->extLocation.logicalBlockNum) ==
1069                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1070                         blocksize - 1) >> blocksize_bits)))) {
1071 
1072                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1073                                 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1074                                 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1075                                 lip1->extLength = (lip1->extLength -
1076                                                   (li->extLength &
1077                                                    UDF_EXTENT_LENGTH_MASK) +
1078                                                    UDF_EXTENT_LENGTH_MASK) &
1079                                                         ~(blocksize - 1);
1080                                 li->extLength = (li->extLength &
1081                                                  UDF_EXTENT_FLAG_MASK) +
1082                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1083                                                 blocksize;
1084                                 lip1->extLocation.logicalBlockNum =
1085                                         li->extLocation.logicalBlockNum +
1086                                         ((li->extLength &
1087                                                 UDF_EXTENT_LENGTH_MASK) >>
1088                                                 blocksize_bits);
1089                         } else {
1090                                 li->extLength = lip1->extLength +
1091                                         (((li->extLength &
1092                                                 UDF_EXTENT_LENGTH_MASK) +
1093                                          blocksize - 1) & ~(blocksize - 1));
1094                                 if (*endnum > (i + 2))
1095                                         memmove(&laarr[i + 1], &laarr[i + 2],
1096                                                 sizeof(struct long_ad) *
1097                                                 (*endnum - (i + 2)));
1098                                 i--;
1099                                 (*endnum)--;
1100                         }
1101                 } else if (((li->extLength >> 30) ==
1102                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1103                            ((lip1->extLength >> 30) ==
1104                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1105                         udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1106                                         ((li->extLength &
1107                                           UDF_EXTENT_LENGTH_MASK) +
1108                                          blocksize - 1) >> blocksize_bits);
1109                         li->extLocation.logicalBlockNum = 0;
1110                         li->extLocation.partitionReferenceNum = 0;
1111 
1112                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1113                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1114                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1115                                 lip1->extLength = (lip1->extLength -
1116                                                    (li->extLength &
1117                                                    UDF_EXTENT_LENGTH_MASK) +
1118                                                    UDF_EXTENT_LENGTH_MASK) &
1119                                                    ~(blocksize - 1);
1120                                 li->extLength = (li->extLength &
1121                                                  UDF_EXTENT_FLAG_MASK) +
1122                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1123                                                 blocksize;
1124                         } else {
1125                                 li->extLength = lip1->extLength +
1126                                         (((li->extLength &
1127                                                 UDF_EXTENT_LENGTH_MASK) +
1128                                           blocksize - 1) & ~(blocksize - 1));
1129                                 if (*endnum > (i + 2))
1130                                         memmove(&laarr[i + 1], &laarr[i + 2],
1131                                                 sizeof(struct long_ad) *
1132                                                 (*endnum - (i + 2)));
1133                                 i--;
1134                                 (*endnum)--;
1135                         }
1136                 } else if ((li->extLength >> 30) ==
1137                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1138                         udf_free_blocks(inode->i_sb, inode,
1139                                         &li->extLocation, 0,
1140                                         ((li->extLength &
1141                                                 UDF_EXTENT_LENGTH_MASK) +
1142                                          blocksize - 1) >> blocksize_bits);
1143                         li->extLocation.logicalBlockNum = 0;
1144                         li->extLocation.partitionReferenceNum = 0;
1145                         li->extLength = (li->extLength &
1146                                                 UDF_EXTENT_LENGTH_MASK) |
1147                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
1148                 }
1149         }
1150 }
1151 
1152 static void udf_update_extents(struct inode *inode,
1153                                struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1154                                int startnum, int endnum,
1155                                struct extent_position *epos)
1156 {
1157         int start = 0, i;
1158         struct kernel_lb_addr tmploc;
1159         uint32_t tmplen;
1160 
1161         if (startnum > endnum) {
1162                 for (i = 0; i < (startnum - endnum); i++)
1163                         udf_delete_aext(inode, *epos, laarr[i].extLocation,
1164                                         laarr[i].extLength);
1165         } else if (startnum < endnum) {
1166                 for (i = 0; i < (endnum - startnum); i++) {
1167                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
1168                                         laarr[i].extLength);
1169                         udf_next_aext(inode, epos, &laarr[i].extLocation,
1170                                       &laarr[i].extLength, 1);
1171                         start++;
1172                 }
1173         }
1174 
1175         for (i = start; i < endnum; i++) {
1176                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1177                 udf_write_aext(inode, epos, &laarr[i].extLocation,
1178                                laarr[i].extLength, 1);
1179         }
1180 }
1181 
1182 struct buffer_head *udf_bread(struct inode *inode, int block,
1183                               int create, int *err)
1184 {
1185         struct buffer_head *bh = NULL;
1186 
1187         bh = udf_getblk(inode, block, create, err);
1188         if (!bh)
1189                 return NULL;
1190 
1191         if (buffer_uptodate(bh))
1192                 return bh;
1193 
1194         ll_rw_block(READ, 1, &bh);
1195 
1196         wait_on_buffer(bh);
1197         if (buffer_uptodate(bh))
1198                 return bh;
1199 
1200         brelse(bh);
1201         *err = -EIO;
1202         return NULL;
1203 }
1204 
1205 int udf_setsize(struct inode *inode, loff_t newsize)
1206 {
1207         int err;
1208         struct udf_inode_info *iinfo;
1209         int bsize = 1 << inode->i_blkbits;
1210 
1211         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1212               S_ISLNK(inode->i_mode)))
1213                 return -EINVAL;
1214         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1215                 return -EPERM;
1216 
1217         iinfo = UDF_I(inode);
1218         if (newsize > inode->i_size) {
1219                 down_write(&iinfo->i_data_sem);
1220                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1221                         if (bsize <
1222                             (udf_file_entry_alloc_offset(inode) + newsize)) {
1223                                 err = udf_expand_file_adinicb(inode);
1224                                 if (err)
1225                                         return err;
1226                                 down_write(&iinfo->i_data_sem);
1227                         } else {
1228                                 iinfo->i_lenAlloc = newsize;
1229                                 goto set_size;
1230                         }
1231                 }
1232                 err = udf_extend_file(inode, newsize);
1233                 if (err) {
1234                         up_write(&iinfo->i_data_sem);
1235                         return err;
1236                 }
1237 set_size:
1238                 truncate_setsize(inode, newsize);
1239                 up_write(&iinfo->i_data_sem);
1240         } else {
1241                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1242                         down_write(&iinfo->i_data_sem);
1243                         udf_clear_extent_cache(inode);
1244                         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1245                                0x00, bsize - newsize -
1246                                udf_file_entry_alloc_offset(inode));
1247                         iinfo->i_lenAlloc = newsize;
1248                         truncate_setsize(inode, newsize);
1249                         up_write(&iinfo->i_data_sem);
1250                         goto update_time;
1251                 }
1252                 err = block_truncate_page(inode->i_mapping, newsize,
1253                                           udf_get_block);
1254                 if (err)
1255                         return err;
1256                 down_write(&iinfo->i_data_sem);
1257                 udf_clear_extent_cache(inode);
1258                 truncate_setsize(inode, newsize);
1259                 udf_truncate_extents(inode);
1260                 up_write(&iinfo->i_data_sem);
1261         }
1262 update_time:
1263         inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1264         if (IS_SYNC(inode))
1265                 udf_sync_inode(inode);
1266         else
1267                 mark_inode_dirty(inode);
1268         return 0;
1269 }
1270 
1271 /*
1272  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1273  * arbitrary - just that we hopefully don't limit any real use of rewritten
1274  * inode on write-once media but avoid looping for too long on corrupted media.
1275  */
1276 #define UDF_MAX_ICB_NESTING 1024
1277 
1278 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1279 {
1280         struct buffer_head *bh = NULL;
1281         struct fileEntry *fe;
1282         struct extendedFileEntry *efe;
1283         uint16_t ident;
1284         struct udf_inode_info *iinfo = UDF_I(inode);
1285         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1286         struct kernel_lb_addr *iloc = &iinfo->i_location;
1287         unsigned int link_count;
1288         unsigned int indirections = 0;
1289         int bs = inode->i_sb->s_blocksize;
1290         int ret = -EIO;
1291 
1292 reread:
1293         if (iloc->logicalBlockNum >=
1294             sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1295                 udf_debug("block=%d, partition=%d out of range\n",
1296                           iloc->logicalBlockNum, iloc->partitionReferenceNum);
1297                 return -EIO;
1298         }
1299 
1300         /*
1301          * Set defaults, but the inode is still incomplete!
1302          * Note: get_new_inode() sets the following on a new inode:
1303          *      i_sb = sb
1304          *      i_no = ino
1305          *      i_flags = sb->s_flags
1306          *      i_state = 0
1307          * clean_inode(): zero fills and sets
1308          *      i_count = 1
1309          *      i_nlink = 1
1310          *      i_op = NULL;
1311          */
1312         bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1313         if (!bh) {
1314                 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1315                 return -EIO;
1316         }
1317 
1318         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1319             ident != TAG_IDENT_USE) {
1320                 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1321                         inode->i_ino, ident);
1322                 goto out;
1323         }
1324 
1325         fe = (struct fileEntry *)bh->b_data;
1326         efe = (struct extendedFileEntry *)bh->b_data;
1327 
1328         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1329                 struct buffer_head *ibh;
1330 
1331                 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1332                 if (ident == TAG_IDENT_IE && ibh) {
1333                         struct kernel_lb_addr loc;
1334                         struct indirectEntry *ie;
1335 
1336                         ie = (struct indirectEntry *)ibh->b_data;
1337                         loc = lelb_to_cpu(ie->indirectICB.extLocation);
1338 
1339                         if (ie->indirectICB.extLength) {
1340                                 brelse(ibh);
1341                                 memcpy(&iinfo->i_location, &loc,
1342                                        sizeof(struct kernel_lb_addr));
1343                                 if (++indirections > UDF_MAX_ICB_NESTING) {
1344                                         udf_err(inode->i_sb,
1345                                                 "too many ICBs in ICB hierarchy"
1346                                                 " (max %d supported)\n",
1347                                                 UDF_MAX_ICB_NESTING);
1348                                         goto out;
1349                                 }
1350                                 brelse(bh);
1351                                 goto reread;
1352                         }
1353                 }
1354                 brelse(ibh);
1355         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1356                 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1357                         le16_to_cpu(fe->icbTag.strategyType));
1358                 goto out;
1359         }
1360         if (fe->icbTag.strategyType == cpu_to_le16(4))
1361                 iinfo->i_strat4096 = 0;
1362         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1363                 iinfo->i_strat4096 = 1;
1364 
1365         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1366                                                         ICBTAG_FLAG_AD_MASK;
1367         iinfo->i_unique = 0;
1368         iinfo->i_lenEAttr = 0;
1369         iinfo->i_lenExtents = 0;
1370         iinfo->i_lenAlloc = 0;
1371         iinfo->i_next_alloc_block = 0;
1372         iinfo->i_next_alloc_goal = 0;
1373         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1374                 iinfo->i_efe = 1;
1375                 iinfo->i_use = 0;
1376                 ret = udf_alloc_i_data(inode, bs -
1377                                         sizeof(struct extendedFileEntry));
1378                 if (ret)
1379                         goto out;
1380                 memcpy(iinfo->i_ext.i_data,
1381                        bh->b_data + sizeof(struct extendedFileEntry),
1382                        bs - sizeof(struct extendedFileEntry));
1383         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1384                 iinfo->i_efe = 0;
1385                 iinfo->i_use = 0;
1386                 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1387                 if (ret)
1388                         goto out;
1389                 memcpy(iinfo->i_ext.i_data,
1390                        bh->b_data + sizeof(struct fileEntry),
1391                        bs - sizeof(struct fileEntry));
1392         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1393                 iinfo->i_efe = 0;
1394                 iinfo->i_use = 1;
1395                 iinfo->i_lenAlloc = le32_to_cpu(
1396                                 ((struct unallocSpaceEntry *)bh->b_data)->
1397                                  lengthAllocDescs);
1398                 ret = udf_alloc_i_data(inode, bs -
1399                                         sizeof(struct unallocSpaceEntry));
1400                 if (ret)
1401                         goto out;
1402                 memcpy(iinfo->i_ext.i_data,
1403                        bh->b_data + sizeof(struct unallocSpaceEntry),
1404                        bs - sizeof(struct unallocSpaceEntry));
1405                 return 0;
1406         }
1407 
1408         ret = -EIO;
1409         read_lock(&sbi->s_cred_lock);
1410         i_uid_write(inode, le32_to_cpu(fe->uid));
1411         if (!uid_valid(inode->i_uid) ||
1412             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1413             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1414                 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1415 
1416         i_gid_write(inode, le32_to_cpu(fe->gid));
1417         if (!gid_valid(inode->i_gid) ||
1418             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1419             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1420                 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1421 
1422         if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1423                         sbi->s_fmode != UDF_INVALID_MODE)
1424                 inode->i_mode = sbi->s_fmode;
1425         else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1426                         sbi->s_dmode != UDF_INVALID_MODE)
1427                 inode->i_mode = sbi->s_dmode;
1428         else
1429                 inode->i_mode = udf_convert_permissions(fe);
1430         inode->i_mode &= ~sbi->s_umask;
1431         read_unlock(&sbi->s_cred_lock);
1432 
1433         link_count = le16_to_cpu(fe->fileLinkCount);
1434         if (!link_count) {
1435                 if (!hidden_inode) {
1436                         ret = -ESTALE;
1437                         goto out;
1438                 }
1439                 link_count = 1;
1440         }
1441         set_nlink(inode, link_count);
1442 
1443         inode->i_size = le64_to_cpu(fe->informationLength);
1444         iinfo->i_lenExtents = inode->i_size;
1445 
1446         if (iinfo->i_efe == 0) {
1447                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1448                         (inode->i_sb->s_blocksize_bits - 9);
1449 
1450                 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1451                         inode->i_atime = sbi->s_record_time;
1452 
1453                 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1454                                             fe->modificationTime))
1455                         inode->i_mtime = sbi->s_record_time;
1456 
1457                 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1458                         inode->i_ctime = sbi->s_record_time;
1459 
1460                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1461                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1462                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1463                 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1464         } else {
1465                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1466                     (inode->i_sb->s_blocksize_bits - 9);
1467 
1468                 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1469                         inode->i_atime = sbi->s_record_time;
1470 
1471                 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1472                                             efe->modificationTime))
1473                         inode->i_mtime = sbi->s_record_time;
1474 
1475                 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1476                         iinfo->i_crtime = sbi->s_record_time;
1477 
1478                 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1479                         inode->i_ctime = sbi->s_record_time;
1480 
1481                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1482                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1483                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1484                 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1485         }
1486         inode->i_generation = iinfo->i_unique;
1487 
1488         /*
1489          * Sanity check length of allocation descriptors and extended attrs to
1490          * avoid integer overflows
1491          */
1492         if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1493                 goto out;
1494         /* Now do exact checks */
1495         if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1496                 goto out;
1497         /* Sanity checks for files in ICB so that we don't get confused later */
1498         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1499                 /*
1500                  * For file in ICB data is stored in allocation descriptor
1501                  * so sizes should match
1502                  */
1503                 if (iinfo->i_lenAlloc != inode->i_size)
1504                         goto out;
1505                 /* File in ICB has to fit in there... */
1506                 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1507                         goto out;
1508         }
1509 
1510         switch (fe->icbTag.fileType) {
1511         case ICBTAG_FILE_TYPE_DIRECTORY:
1512                 inode->i_op = &udf_dir_inode_operations;
1513                 inode->i_fop = &udf_dir_operations;
1514                 inode->i_mode |= S_IFDIR;
1515                 inc_nlink(inode);
1516                 break;
1517         case ICBTAG_FILE_TYPE_REALTIME:
1518         case ICBTAG_FILE_TYPE_REGULAR:
1519         case ICBTAG_FILE_TYPE_UNDEF:
1520         case ICBTAG_FILE_TYPE_VAT20:
1521                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1522                         inode->i_data.a_ops = &udf_adinicb_aops;
1523                 else
1524                         inode->i_data.a_ops = &udf_aops;
1525                 inode->i_op = &udf_file_inode_operations;
1526                 inode->i_fop = &udf_file_operations;
1527                 inode->i_mode |= S_IFREG;
1528                 break;
1529         case ICBTAG_FILE_TYPE_BLOCK:
1530                 inode->i_mode |= S_IFBLK;
1531                 break;
1532         case ICBTAG_FILE_TYPE_CHAR:
1533                 inode->i_mode |= S_IFCHR;
1534                 break;
1535         case ICBTAG_FILE_TYPE_FIFO:
1536                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1537                 break;
1538         case ICBTAG_FILE_TYPE_SOCKET:
1539                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1540                 break;
1541         case ICBTAG_FILE_TYPE_SYMLINK:
1542                 inode->i_data.a_ops = &udf_symlink_aops;
1543                 inode->i_op = &udf_symlink_inode_operations;
1544                 inode->i_mode = S_IFLNK | S_IRWXUGO;
1545                 break;
1546         case ICBTAG_FILE_TYPE_MAIN:
1547                 udf_debug("METADATA FILE-----\n");
1548                 break;
1549         case ICBTAG_FILE_TYPE_MIRROR:
1550                 udf_debug("METADATA MIRROR FILE-----\n");
1551                 break;
1552         case ICBTAG_FILE_TYPE_BITMAP:
1553                 udf_debug("METADATA BITMAP FILE-----\n");
1554                 break;
1555         default:
1556                 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1557                         inode->i_ino, fe->icbTag.fileType);
1558                 goto out;
1559         }
1560         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1561                 struct deviceSpec *dsea =
1562                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1563                 if (dsea) {
1564                         init_special_inode(inode, inode->i_mode,
1565                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1566                                       le32_to_cpu(dsea->minorDeviceIdent)));
1567                         /* Developer ID ??? */
1568                 } else
1569                         goto out;
1570         }
1571         ret = 0;
1572 out:
1573         brelse(bh);
1574         return ret;
1575 }
1576 
1577 static int udf_alloc_i_data(struct inode *inode, size_t size)
1578 {
1579         struct udf_inode_info *iinfo = UDF_I(inode);
1580         iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1581 
1582         if (!iinfo->i_ext.i_data) {
1583                 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1584                         inode->i_ino);
1585                 return -ENOMEM;
1586         }
1587 
1588         return 0;
1589 }
1590 
1591 static umode_t udf_convert_permissions(struct fileEntry *fe)
1592 {
1593         umode_t mode;
1594         uint32_t permissions;
1595         uint32_t flags;
1596 
1597         permissions = le32_to_cpu(fe->permissions);
1598         flags = le16_to_cpu(fe->icbTag.flags);
1599 
1600         mode =  ((permissions) & S_IRWXO) |
1601                 ((permissions >> 2) & S_IRWXG) |
1602                 ((permissions >> 4) & S_IRWXU) |
1603                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1604                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1605                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1606 
1607         return mode;
1608 }
1609 
1610 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1611 {
1612         return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1613 }
1614 
1615 static int udf_sync_inode(struct inode *inode)
1616 {
1617         return udf_update_inode(inode, 1);
1618 }
1619 
1620 static int udf_update_inode(struct inode *inode, int do_sync)
1621 {
1622         struct buffer_head *bh = NULL;
1623         struct fileEntry *fe;
1624         struct extendedFileEntry *efe;
1625         uint64_t lb_recorded;
1626         uint32_t udfperms;
1627         uint16_t icbflags;
1628         uint16_t crclen;
1629         int err = 0;
1630         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1631         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1632         struct udf_inode_info *iinfo = UDF_I(inode);
1633 
1634         bh = udf_tgetblk(inode->i_sb,
1635                         udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1636         if (!bh) {
1637                 udf_debug("getblk failure\n");
1638                 return -EIO;
1639         }
1640 
1641         lock_buffer(bh);
1642         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1643         fe = (struct fileEntry *)bh->b_data;
1644         efe = (struct extendedFileEntry *)bh->b_data;
1645 
1646         if (iinfo->i_use) {
1647                 struct unallocSpaceEntry *use =
1648                         (struct unallocSpaceEntry *)bh->b_data;
1649 
1650                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1651                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1652                        iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1653                                         sizeof(struct unallocSpaceEntry));
1654                 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1655                 crclen = sizeof(struct unallocSpaceEntry);
1656 
1657                 goto finish;
1658         }
1659 
1660         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1661                 fe->uid = cpu_to_le32(-1);
1662         else
1663                 fe->uid = cpu_to_le32(i_uid_read(inode));
1664 
1665         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1666                 fe->gid = cpu_to_le32(-1);
1667         else
1668                 fe->gid = cpu_to_le32(i_gid_read(inode));
1669 
1670         udfperms = ((inode->i_mode & S_IRWXO)) |
1671                    ((inode->i_mode & S_IRWXG) << 2) |
1672                    ((inode->i_mode & S_IRWXU) << 4);
1673 
1674         udfperms |= (le32_to_cpu(fe->permissions) &
1675                     (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1676                      FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1677                      FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1678         fe->permissions = cpu_to_le32(udfperms);
1679 
1680         if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1681                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1682         else
1683                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1684 
1685         fe->informationLength = cpu_to_le64(inode->i_size);
1686 
1687         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1688                 struct regid *eid;
1689                 struct deviceSpec *dsea =
1690                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1691                 if (!dsea) {
1692                         dsea = (struct deviceSpec *)
1693                                 udf_add_extendedattr(inode,
1694                                                      sizeof(struct deviceSpec) +
1695                                                      sizeof(struct regid), 12, 0x3);
1696                         dsea->attrType = cpu_to_le32(12);
1697                         dsea->attrSubtype = 1;
1698                         dsea->attrLength = cpu_to_le32(
1699                                                 sizeof(struct deviceSpec) +
1700                                                 sizeof(struct regid));
1701                         dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1702                 }
1703                 eid = (struct regid *)dsea->impUse;
1704                 memset(eid, 0, sizeof(struct regid));
1705                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1706                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1707                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1708                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1709                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1710         }
1711 
1712         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1713                 lb_recorded = 0; /* No extents => no blocks! */
1714         else
1715                 lb_recorded =
1716                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1717                         (blocksize_bits - 9);
1718 
1719         if (iinfo->i_efe == 0) {
1720                 memcpy(bh->b_data + sizeof(struct fileEntry),
1721                        iinfo->i_ext.i_data,
1722                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1723                 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1724 
1725                 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1726                 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1727                 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1728                 memset(&(fe->impIdent), 0, sizeof(struct regid));
1729                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1730                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1731                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1732                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1733                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1734                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1735                 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1736                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1737                 crclen = sizeof(struct fileEntry);
1738         } else {
1739                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1740                        iinfo->i_ext.i_data,
1741                        inode->i_sb->s_blocksize -
1742                                         sizeof(struct extendedFileEntry));
1743                 efe->objectSize = cpu_to_le64(inode->i_size);
1744                 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1745 
1746                 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1747                     (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1748                      iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1749                         iinfo->i_crtime = inode->i_atime;
1750 
1751                 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1752                     (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1753                      iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1754                         iinfo->i_crtime = inode->i_mtime;
1755 
1756                 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1757                     (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1758                      iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1759                         iinfo->i_crtime = inode->i_ctime;
1760 
1761                 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1762                 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1763                 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1764                 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1765 
1766                 memset(&(efe->impIdent), 0, sizeof(struct regid));
1767                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1768                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1769                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1770                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1771                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1772                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1773                 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1774                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1775                 crclen = sizeof(struct extendedFileEntry);
1776         }
1777 
1778 finish:
1779         if (iinfo->i_strat4096) {
1780                 fe->icbTag.strategyType = cpu_to_le16(4096);
1781                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1782                 fe->icbTag.numEntries = cpu_to_le16(2);
1783         } else {
1784                 fe->icbTag.strategyType = cpu_to_le16(4);
1785                 fe->icbTag.numEntries = cpu_to_le16(1);
1786         }
1787 
1788         if (iinfo->i_use)
1789                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1790         else if (S_ISDIR(inode->i_mode))
1791                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1792         else if (S_ISREG(inode->i_mode))
1793                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1794         else if (S_ISLNK(inode->i_mode))
1795                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1796         else if (S_ISBLK(inode->i_mode))
1797                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1798         else if (S_ISCHR(inode->i_mode))
1799                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1800         else if (S_ISFIFO(inode->i_mode))
1801                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1802         else if (S_ISSOCK(inode->i_mode))
1803                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1804 
1805         icbflags =      iinfo->i_alloc_type |
1806                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1807                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1808                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1809                         (le16_to_cpu(fe->icbTag.flags) &
1810                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1811                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1812 
1813         fe->icbTag.flags = cpu_to_le16(icbflags);
1814         if (sbi->s_udfrev >= 0x0200)
1815                 fe->descTag.descVersion = cpu_to_le16(3);
1816         else
1817                 fe->descTag.descVersion = cpu_to_le16(2);
1818         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1819         fe->descTag.tagLocation = cpu_to_le32(
1820                                         iinfo->i_location.logicalBlockNum);
1821         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1822         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1823         fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1824                                                   crclen));
1825         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1826 
1827         set_buffer_uptodate(bh);
1828         unlock_buffer(bh);
1829 
1830         /* write the data blocks */
1831         mark_buffer_dirty(bh);
1832         if (do_sync) {
1833                 sync_dirty_buffer(bh);
1834                 if (buffer_write_io_error(bh)) {
1835                         udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1836                                  inode->i_ino);
1837                         err = -EIO;
1838                 }
1839         }
1840         brelse(bh);
1841 
1842         return err;
1843 }
1844 
1845 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1846                          bool hidden_inode)
1847 {
1848         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1849         struct inode *inode = iget_locked(sb, block);
1850         int err;
1851 
1852         if (!inode)
1853                 return ERR_PTR(-ENOMEM);
1854 
1855         if (!(inode->i_state & I_NEW))
1856                 return inode;
1857 
1858         memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1859         err = udf_read_inode(inode, hidden_inode);
1860         if (err < 0) {
1861                 iget_failed(inode);
1862                 return ERR_PTR(err);
1863         }
1864         unlock_new_inode(inode);
1865 
1866         return inode;
1867 }
1868 
1869 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1870                  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1871 {
1872         int adsize;
1873         struct short_ad *sad = NULL;
1874         struct long_ad *lad = NULL;
1875         struct allocExtDesc *aed;
1876         uint8_t *ptr;
1877         struct udf_inode_info *iinfo = UDF_I(inode);
1878 
1879         if (!epos->bh)
1880                 ptr = iinfo->i_ext.i_data + epos->offset -
1881                         udf_file_entry_alloc_offset(inode) +
1882                         iinfo->i_lenEAttr;
1883         else
1884                 ptr = epos->bh->b_data + epos->offset;
1885 
1886         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1887                 adsize = sizeof(struct short_ad);
1888         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1889                 adsize = sizeof(struct long_ad);
1890         else
1891                 return -EIO;
1892 
1893         if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1894                 unsigned char *sptr, *dptr;
1895                 struct buffer_head *nbh;
1896                 int err, loffset;
1897                 struct kernel_lb_addr obloc = epos->block;
1898 
1899                 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1900                                                 obloc.partitionReferenceNum,
1901                                                 obloc.logicalBlockNum, &err);
1902                 if (!epos->block.logicalBlockNum)
1903                         return -ENOSPC;
1904                 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1905                                                                  &epos->block,
1906                                                                  0));
1907                 if (!nbh)
1908                         return -EIO;
1909                 lock_buffer(nbh);
1910                 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1911                 set_buffer_uptodate(nbh);
1912                 unlock_buffer(nbh);
1913                 mark_buffer_dirty_inode(nbh, inode);
1914 
1915                 aed = (struct allocExtDesc *)(nbh->b_data);
1916                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1917                         aed->previousAllocExtLocation =
1918                                         cpu_to_le32(obloc.logicalBlockNum);
1919                 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1920                         loffset = epos->offset;
1921                         aed->lengthAllocDescs = cpu_to_le32(adsize);
1922                         sptr = ptr - adsize;
1923                         dptr = nbh->b_data + sizeof(struct allocExtDesc);
1924                         memcpy(dptr, sptr, adsize);
1925                         epos->offset = sizeof(struct allocExtDesc) + adsize;
1926                 } else {
1927                         loffset = epos->offset + adsize;
1928                         aed->lengthAllocDescs = cpu_to_le32(0);
1929                         sptr = ptr;
1930                         epos->offset = sizeof(struct allocExtDesc);
1931 
1932                         if (epos->bh) {
1933                                 aed = (struct allocExtDesc *)epos->bh->b_data;
1934                                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1935                         } else {
1936                                 iinfo->i_lenAlloc += adsize;
1937                                 mark_inode_dirty(inode);
1938                         }
1939                 }
1940                 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1941                         udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1942                                     epos->block.logicalBlockNum, sizeof(struct tag));
1943                 else
1944                         udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1945                                     epos->block.logicalBlockNum, sizeof(struct tag));
1946                 switch (iinfo->i_alloc_type) {
1947                 case ICBTAG_FLAG_AD_SHORT:
1948                         sad = (struct short_ad *)sptr;
1949                         sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1950                                                      inode->i_sb->s_blocksize);
1951                         sad->extPosition =
1952                                 cpu_to_le32(epos->block.logicalBlockNum);
1953                         break;
1954                 case ICBTAG_FLAG_AD_LONG:
1955                         lad = (struct long_ad *)sptr;
1956                         lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1957                                                      inode->i_sb->s_blocksize);
1958                         lad->extLocation = cpu_to_lelb(epos->block);
1959                         memset(lad->impUse, 0x00, sizeof(lad->impUse));
1960                         break;
1961                 }
1962                 if (epos->bh) {
1963                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1964                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1965                                 udf_update_tag(epos->bh->b_data, loffset);
1966                         else
1967                                 udf_update_tag(epos->bh->b_data,
1968                                                 sizeof(struct allocExtDesc));
1969                         mark_buffer_dirty_inode(epos->bh, inode);
1970                         brelse(epos->bh);
1971                 } else {
1972                         mark_inode_dirty(inode);
1973                 }
1974                 epos->bh = nbh;
1975         }
1976 
1977         udf_write_aext(inode, epos, eloc, elen, inc);
1978 
1979         if (!epos->bh) {
1980                 iinfo->i_lenAlloc += adsize;
1981                 mark_inode_dirty(inode);
1982         } else {
1983                 aed = (struct allocExtDesc *)epos->bh->b_data;
1984                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1985                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1986                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1987                         udf_update_tag(epos->bh->b_data,
1988                                         epos->offset + (inc ? 0 : adsize));
1989                 else
1990                         udf_update_tag(epos->bh->b_data,
1991                                         sizeof(struct allocExtDesc));
1992                 mark_buffer_dirty_inode(epos->bh, inode);
1993         }
1994 
1995         return 0;
1996 }
1997 
1998 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1999                     struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2000 {
2001         int adsize;
2002         uint8_t *ptr;
2003         struct short_ad *sad;
2004         struct long_ad *lad;
2005         struct udf_inode_info *iinfo = UDF_I(inode);
2006 
2007         if (!epos->bh)
2008                 ptr = iinfo->i_ext.i_data + epos->offset -
2009                         udf_file_entry_alloc_offset(inode) +
2010                         iinfo->i_lenEAttr;
2011         else
2012                 ptr = epos->bh->b_data + epos->offset;
2013 
2014         switch (iinfo->i_alloc_type) {
2015         case ICBTAG_FLAG_AD_SHORT:
2016                 sad = (struct short_ad *)ptr;
2017                 sad->extLength = cpu_to_le32(elen);
2018                 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2019                 adsize = sizeof(struct short_ad);
2020                 break;
2021         case ICBTAG_FLAG_AD_LONG:
2022                 lad = (struct long_ad *)ptr;
2023                 lad->extLength = cpu_to_le32(elen);
2024                 lad->extLocation = cpu_to_lelb(*eloc);
2025                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2026                 adsize = sizeof(struct long_ad);
2027                 break;
2028         default:
2029                 return;
2030         }
2031 
2032         if (epos->bh) {
2033                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2034                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2035                         struct allocExtDesc *aed =
2036                                 (struct allocExtDesc *)epos->bh->b_data;
2037                         udf_update_tag(epos->bh->b_data,
2038                                        le32_to_cpu(aed->lengthAllocDescs) +
2039                                        sizeof(struct allocExtDesc));
2040                 }
2041                 mark_buffer_dirty_inode(epos->bh, inode);
2042         } else {
2043                 mark_inode_dirty(inode);
2044         }
2045 
2046         if (inc)
2047                 epos->offset += adsize;
2048 }
2049 
2050 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2051                      struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2052 {
2053         int8_t etype;
2054 
2055         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2056                (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2057                 int block;
2058                 epos->block = *eloc;
2059                 epos->offset = sizeof(struct allocExtDesc);
2060                 brelse(epos->bh);
2061                 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2062                 epos->bh = udf_tread(inode->i_sb, block);
2063                 if (!epos->bh) {
2064                         udf_debug("reading block %d failed!\n", block);
2065                         return -1;
2066                 }
2067         }
2068 
2069         return etype;
2070 }
2071 
2072 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2073                         struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2074 {
2075         int alen;
2076         int8_t etype;
2077         uint8_t *ptr;
2078         struct short_ad *sad;
2079         struct long_ad *lad;
2080         struct udf_inode_info *iinfo = UDF_I(inode);
2081 
2082         if (!epos->bh) {
2083                 if (!epos->offset)
2084                         epos->offset = udf_file_entry_alloc_offset(inode);
2085                 ptr = iinfo->i_ext.i_data + epos->offset -
2086                         udf_file_entry_alloc_offset(inode) +
2087                         iinfo->i_lenEAttr;
2088                 alen = udf_file_entry_alloc_offset(inode) +
2089                                                         iinfo->i_lenAlloc;
2090         } else {
2091                 if (!epos->offset)
2092                         epos->offset = sizeof(struct allocExtDesc);
2093                 ptr = epos->bh->b_data + epos->offset;
2094                 alen = sizeof(struct allocExtDesc) +
2095                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2096                                                         lengthAllocDescs);
2097         }
2098 
2099         switch (iinfo->i_alloc_type) {
2100         case ICBTAG_FLAG_AD_SHORT:
2101                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2102                 if (!sad)
2103                         return -1;
2104                 etype = le32_to_cpu(sad->extLength) >> 30;
2105                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2106                 eloc->partitionReferenceNum =
2107                                 iinfo->i_location.partitionReferenceNum;
2108                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2109                 break;
2110         case ICBTAG_FLAG_AD_LONG:
2111                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2112                 if (!lad)
2113                         return -1;
2114                 etype = le32_to_cpu(lad->extLength) >> 30;
2115                 *eloc = lelb_to_cpu(lad->extLocation);
2116                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2117                 break;
2118         default:
2119                 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2120                 return -1;
2121         }
2122 
2123         return etype;
2124 }
2125 
2126 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2127                               struct kernel_lb_addr neloc, uint32_t nelen)
2128 {
2129         struct kernel_lb_addr oeloc;
2130         uint32_t oelen;
2131         int8_t etype;
2132 
2133         if (epos.bh)
2134                 get_bh(epos.bh);
2135 
2136         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2137                 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2138                 neloc = oeloc;
2139                 nelen = (etype << 30) | oelen;
2140         }
2141         udf_add_aext(inode, &epos, &neloc, nelen, 1);
2142         brelse(epos.bh);
2143 
2144         return (nelen >> 30);
2145 }
2146 
2147 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2148                        struct kernel_lb_addr eloc, uint32_t elen)
2149 {
2150         struct extent_position oepos;
2151         int adsize;
2152         int8_t etype;
2153         struct allocExtDesc *aed;
2154         struct udf_inode_info *iinfo;
2155 
2156         if (epos.bh) {
2157                 get_bh(epos.bh);
2158                 get_bh(epos.bh);
2159         }
2160 
2161         iinfo = UDF_I(inode);
2162         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2163                 adsize = sizeof(struct short_ad);
2164         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2165                 adsize = sizeof(struct long_ad);
2166         else
2167                 adsize = 0;
2168 
2169         oepos = epos;
2170         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2171                 return -1;
2172 
2173         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2174                 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2175                 if (oepos.bh != epos.bh) {
2176                         oepos.block = epos.block;
2177                         brelse(oepos.bh);
2178                         get_bh(epos.bh);
2179                         oepos.bh = epos.bh;
2180                         oepos.offset = epos.offset - adsize;
2181                 }
2182         }
2183         memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2184         elen = 0;
2185 
2186         if (epos.bh != oepos.bh) {
2187                 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2188                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2189                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2190                 if (!oepos.bh) {
2191                         iinfo->i_lenAlloc -= (adsize * 2);
2192                         mark_inode_dirty(inode);
2193                 } else {
2194                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2195                         le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2196                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2197                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2198                                 udf_update_tag(oepos.bh->b_data,
2199                                                 oepos.offset - (2 * adsize));
2200                         else
2201                                 udf_update_tag(oepos.bh->b_data,
2202                                                 sizeof(struct allocExtDesc));
2203                         mark_buffer_dirty_inode(oepos.bh, inode);
2204                 }
2205         } else {
2206                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2207                 if (!oepos.bh) {
2208                         iinfo->i_lenAlloc -= adsize;
2209                         mark_inode_dirty(inode);
2210                 } else {
2211                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2212                         le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2213                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2214                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2215                                 udf_update_tag(oepos.bh->b_data,
2216                                                 epos.offset - adsize);
2217                         else
2218                                 udf_update_tag(oepos.bh->b_data,
2219                                                 sizeof(struct allocExtDesc));
2220                         mark_buffer_dirty_inode(oepos.bh, inode);
2221                 }
2222         }
2223 
2224         brelse(epos.bh);
2225         brelse(oepos.bh);
2226 
2227         return (elen >> 30);
2228 }
2229 
2230 int8_t inode_bmap(struct inode *inode, sector_t block,
2231                   struct extent_position *pos, struct kernel_lb_addr *eloc,
2232                   uint32_t *elen, sector_t *offset)
2233 {
2234         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2235         loff_t lbcount = 0, bcount =
2236             (loff_t) block << blocksize_bits;
2237         int8_t etype;
2238         struct udf_inode_info *iinfo;
2239 
2240         iinfo = UDF_I(inode);
2241         if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2242                 pos->offset = 0;
2243                 pos->block = iinfo->i_location;
2244                 pos->bh = NULL;
2245         }
2246         *elen = 0;
2247         do {
2248                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2249                 if (etype == -1) {
2250                         *offset = (bcount - lbcount) >> blocksize_bits;
2251                         iinfo->i_lenExtents = lbcount;
2252                         return -1;
2253                 }
2254                 lbcount += *elen;
2255         } while (lbcount <= bcount);
2256         /* update extent cache */
2257         udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2258         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2259 
2260         return etype;
2261 }
2262 
2263 long udf_block_map(struct inode *inode, sector_t block)
2264 {
2265         struct kernel_lb_addr eloc;
2266         uint32_t elen;
2267         sector_t offset;
2268         struct extent_position epos = {};
2269         int ret;
2270 
2271         down_read(&UDF_I(inode)->i_data_sem);
2272 
2273         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2274                                                 (EXT_RECORDED_ALLOCATED >> 30))
2275                 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2276         else
2277                 ret = 0;
2278 
2279         up_read(&UDF_I(inode)->i_data_sem);
2280         brelse(epos.bh);
2281 
2282         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2283                 return udf_fixed_to_variable(ret);
2284         else
2285                 return ret;
2286 }
2287 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp