~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/udf/inode.c

Version: ~ [ linux-5.15-rc5 ] ~ [ linux-5.14.11 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.72 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.152 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.210 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.250 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.286 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.288 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * inode.c
  3  *
  4  * PURPOSE
  5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
  6  *
  7  * COPYRIGHT
  8  *  This file is distributed under the terms of the GNU General Public
  9  *  License (GPL). Copies of the GPL can be obtained from:
 10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 11  *  Each contributing author retains all rights to their own work.
 12  *
 13  *  (C) 1998 Dave Boynton
 14  *  (C) 1998-2004 Ben Fennema
 15  *  (C) 1999-2000 Stelias Computing Inc
 16  *
 17  * HISTORY
 18  *
 19  *  10/04/98 dgb  Added rudimentary directory functions
 20  *  10/07/98      Fully working udf_block_map! It works!
 21  *  11/25/98      bmap altered to better support extents
 22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
 23  *                and udf_read_inode
 24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
 25  *                block boundaries (which is not actually allowed)
 26  *  12/20/98      added support for strategy 4096
 27  *  03/07/99      rewrote udf_block_map (again)
 28  *                New funcs, inode_bmap, udf_next_aext
 29  *  04/19/99      Support for writing device EA's for major/minor #
 30  */
 31 
 32 #include "udfdecl.h"
 33 #include <linux/mm.h>
 34 #include <linux/module.h>
 35 #include <linux/pagemap.h>
 36 #include <linux/writeback.h>
 37 #include <linux/slab.h>
 38 #include <linux/crc-itu-t.h>
 39 #include <linux/mpage.h>
 40 #include <linux/uio.h>
 41 #include <linux/bio.h>
 42 
 43 #include "udf_i.h"
 44 #include "udf_sb.h"
 45 
 46 #define EXTENT_MERGE_SIZE 5
 47 
 48 static umode_t udf_convert_permissions(struct fileEntry *);
 49 static int udf_update_inode(struct inode *, int);
 50 static int udf_sync_inode(struct inode *inode);
 51 static int udf_alloc_i_data(struct inode *inode, size_t size);
 52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
 53 static int8_t udf_insert_aext(struct inode *, struct extent_position,
 54                               struct kernel_lb_addr, uint32_t);
 55 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
 56                               struct kernel_long_ad *, int *);
 57 static void udf_prealloc_extents(struct inode *, int, int,
 58                                  struct kernel_long_ad *, int *);
 59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
 60 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
 61                                int, struct extent_position *);
 62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
 63 
 64 static void __udf_clear_extent_cache(struct inode *inode)
 65 {
 66         struct udf_inode_info *iinfo = UDF_I(inode);
 67 
 68         if (iinfo->cached_extent.lstart != -1) {
 69                 brelse(iinfo->cached_extent.epos.bh);
 70                 iinfo->cached_extent.lstart = -1;
 71         }
 72 }
 73 
 74 /* Invalidate extent cache */
 75 static void udf_clear_extent_cache(struct inode *inode)
 76 {
 77         struct udf_inode_info *iinfo = UDF_I(inode);
 78 
 79         spin_lock(&iinfo->i_extent_cache_lock);
 80         __udf_clear_extent_cache(inode);
 81         spin_unlock(&iinfo->i_extent_cache_lock);
 82 }
 83 
 84 /* Return contents of extent cache */
 85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
 86                                  loff_t *lbcount, struct extent_position *pos)
 87 {
 88         struct udf_inode_info *iinfo = UDF_I(inode);
 89         int ret = 0;
 90 
 91         spin_lock(&iinfo->i_extent_cache_lock);
 92         if ((iinfo->cached_extent.lstart <= bcount) &&
 93             (iinfo->cached_extent.lstart != -1)) {
 94                 /* Cache hit */
 95                 *lbcount = iinfo->cached_extent.lstart;
 96                 memcpy(pos, &iinfo->cached_extent.epos,
 97                        sizeof(struct extent_position));
 98                 if (pos->bh)
 99                         get_bh(pos->bh);
100                 ret = 1;
101         }
102         spin_unlock(&iinfo->i_extent_cache_lock);
103         return ret;
104 }
105 
106 /* Add extent to extent cache */
107 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108                                     struct extent_position *pos)
109 {
110         struct udf_inode_info *iinfo = UDF_I(inode);
111 
112         spin_lock(&iinfo->i_extent_cache_lock);
113         /* Invalidate previously cached extent */
114         __udf_clear_extent_cache(inode);
115         if (pos->bh)
116                 get_bh(pos->bh);
117         memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118         iinfo->cached_extent.lstart = estart;
119         switch (iinfo->i_alloc_type) {
120         case ICBTAG_FLAG_AD_SHORT:
121                 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122                 break;
123         case ICBTAG_FLAG_AD_LONG:
124                 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125                 break;
126         }
127         spin_unlock(&iinfo->i_extent_cache_lock);
128 }
129 
130 void udf_evict_inode(struct inode *inode)
131 {
132         struct udf_inode_info *iinfo = UDF_I(inode);
133         int want_delete = 0;
134 
135         if (!inode->i_nlink && !is_bad_inode(inode)) {
136                 want_delete = 1;
137                 udf_setsize(inode, 0);
138                 udf_update_inode(inode, IS_SYNC(inode));
139         }
140         truncate_inode_pages_final(&inode->i_data);
141         invalidate_inode_buffers(inode);
142         clear_inode(inode);
143         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
144             inode->i_size != iinfo->i_lenExtents) {
145                 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
146                          inode->i_ino, inode->i_mode,
147                          (unsigned long long)inode->i_size,
148                          (unsigned long long)iinfo->i_lenExtents);
149         }
150         kfree(iinfo->i_ext.i_data);
151         iinfo->i_ext.i_data = NULL;
152         udf_clear_extent_cache(inode);
153         if (want_delete) {
154                 udf_free_inode(inode);
155         }
156 }
157 
158 static void udf_write_failed(struct address_space *mapping, loff_t to)
159 {
160         struct inode *inode = mapping->host;
161         struct udf_inode_info *iinfo = UDF_I(inode);
162         loff_t isize = inode->i_size;
163 
164         if (to > isize) {
165                 truncate_pagecache(inode, isize);
166                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
167                         down_write(&iinfo->i_data_sem);
168                         udf_clear_extent_cache(inode);
169                         udf_truncate_extents(inode);
170                         up_write(&iinfo->i_data_sem);
171                 }
172         }
173 }
174 
175 static int udf_writepage(struct page *page, struct writeback_control *wbc)
176 {
177         return block_write_full_page(page, udf_get_block, wbc);
178 }
179 
180 static int udf_writepages(struct address_space *mapping,
181                         struct writeback_control *wbc)
182 {
183         return mpage_writepages(mapping, wbc, udf_get_block);
184 }
185 
186 static int udf_readpage(struct file *file, struct page *page)
187 {
188         return mpage_readpage(page, udf_get_block);
189 }
190 
191 static int udf_readpages(struct file *file, struct address_space *mapping,
192                         struct list_head *pages, unsigned nr_pages)
193 {
194         return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
195 }
196 
197 static int udf_write_begin(struct file *file, struct address_space *mapping,
198                         loff_t pos, unsigned len, unsigned flags,
199                         struct page **pagep, void **fsdata)
200 {
201         int ret;
202 
203         ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
204         if (unlikely(ret))
205                 udf_write_failed(mapping, pos + len);
206         return ret;
207 }
208 
209 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
210 {
211         struct file *file = iocb->ki_filp;
212         struct address_space *mapping = file->f_mapping;
213         struct inode *inode = mapping->host;
214         size_t count = iov_iter_count(iter);
215         ssize_t ret;
216 
217         ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
218         if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
219                 udf_write_failed(mapping, iocb->ki_pos + count);
220         return ret;
221 }
222 
223 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
224 {
225         return generic_block_bmap(mapping, block, udf_get_block);
226 }
227 
228 const struct address_space_operations udf_aops = {
229         .readpage       = udf_readpage,
230         .readpages      = udf_readpages,
231         .writepage      = udf_writepage,
232         .writepages     = udf_writepages,
233         .write_begin    = udf_write_begin,
234         .write_end      = generic_write_end,
235         .direct_IO      = udf_direct_IO,
236         .bmap           = udf_bmap,
237 };
238 
239 /*
240  * Expand file stored in ICB to a normal one-block-file
241  *
242  * This function requires i_data_sem for writing and releases it.
243  * This function requires i_mutex held
244  */
245 int udf_expand_file_adinicb(struct inode *inode)
246 {
247         struct page *page;
248         char *kaddr;
249         struct udf_inode_info *iinfo = UDF_I(inode);
250         int err;
251         struct writeback_control udf_wbc = {
252                 .sync_mode = WB_SYNC_NONE,
253                 .nr_to_write = 1,
254         };
255 
256         WARN_ON_ONCE(!inode_is_locked(inode));
257         if (!iinfo->i_lenAlloc) {
258                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
259                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
260                 else
261                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
262                 /* from now on we have normal address_space methods */
263                 inode->i_data.a_ops = &udf_aops;
264                 up_write(&iinfo->i_data_sem);
265                 mark_inode_dirty(inode);
266                 return 0;
267         }
268         /*
269          * Release i_data_sem so that we can lock a page - page lock ranks
270          * above i_data_sem. i_mutex still protects us against file changes.
271          */
272         up_write(&iinfo->i_data_sem);
273 
274         page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
275         if (!page)
276                 return -ENOMEM;
277 
278         if (!PageUptodate(page)) {
279                 kaddr = kmap_atomic(page);
280                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
281                        PAGE_SIZE - iinfo->i_lenAlloc);
282                 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
283                         iinfo->i_lenAlloc);
284                 flush_dcache_page(page);
285                 SetPageUptodate(page);
286                 kunmap_atomic(kaddr);
287         }
288         down_write(&iinfo->i_data_sem);
289         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
290                iinfo->i_lenAlloc);
291         iinfo->i_lenAlloc = 0;
292         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
293                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
294         else
295                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
296         /* from now on we have normal address_space methods */
297         inode->i_data.a_ops = &udf_aops;
298         up_write(&iinfo->i_data_sem);
299         err = inode->i_data.a_ops->writepage(page, &udf_wbc);
300         if (err) {
301                 /* Restore everything back so that we don't lose data... */
302                 lock_page(page);
303                 down_write(&iinfo->i_data_sem);
304                 kaddr = kmap_atomic(page);
305                 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
306                        inode->i_size);
307                 kunmap_atomic(kaddr);
308                 unlock_page(page);
309                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310                 inode->i_data.a_ops = &udf_adinicb_aops;
311                 up_write(&iinfo->i_data_sem);
312         }
313         put_page(page);
314         mark_inode_dirty(inode);
315 
316         return err;
317 }
318 
319 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
320                                             udf_pblk_t *block, int *err)
321 {
322         udf_pblk_t newblock;
323         struct buffer_head *dbh = NULL;
324         struct kernel_lb_addr eloc;
325         uint8_t alloctype;
326         struct extent_position epos;
327 
328         struct udf_fileident_bh sfibh, dfibh;
329         loff_t f_pos = udf_ext0_offset(inode);
330         int size = udf_ext0_offset(inode) + inode->i_size;
331         struct fileIdentDesc cfi, *sfi, *dfi;
332         struct udf_inode_info *iinfo = UDF_I(inode);
333 
334         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
335                 alloctype = ICBTAG_FLAG_AD_SHORT;
336         else
337                 alloctype = ICBTAG_FLAG_AD_LONG;
338 
339         if (!inode->i_size) {
340                 iinfo->i_alloc_type = alloctype;
341                 mark_inode_dirty(inode);
342                 return NULL;
343         }
344 
345         /* alloc block, and copy data to it */
346         *block = udf_new_block(inode->i_sb, inode,
347                                iinfo->i_location.partitionReferenceNum,
348                                iinfo->i_location.logicalBlockNum, err);
349         if (!(*block))
350                 return NULL;
351         newblock = udf_get_pblock(inode->i_sb, *block,
352                                   iinfo->i_location.partitionReferenceNum,
353                                 0);
354         if (!newblock)
355                 return NULL;
356         dbh = udf_tgetblk(inode->i_sb, newblock);
357         if (!dbh)
358                 return NULL;
359         lock_buffer(dbh);
360         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
361         set_buffer_uptodate(dbh);
362         unlock_buffer(dbh);
363         mark_buffer_dirty_inode(dbh, inode);
364 
365         sfibh.soffset = sfibh.eoffset =
366                         f_pos & (inode->i_sb->s_blocksize - 1);
367         sfibh.sbh = sfibh.ebh = NULL;
368         dfibh.soffset = dfibh.eoffset = 0;
369         dfibh.sbh = dfibh.ebh = dbh;
370         while (f_pos < size) {
371                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
372                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
373                                          NULL, NULL, NULL);
374                 if (!sfi) {
375                         brelse(dbh);
376                         return NULL;
377                 }
378                 iinfo->i_alloc_type = alloctype;
379                 sfi->descTag.tagLocation = cpu_to_le32(*block);
380                 dfibh.soffset = dfibh.eoffset;
381                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
382                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
383                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
384                                  sfi->fileIdent +
385                                         le16_to_cpu(sfi->lengthOfImpUse))) {
386                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387                         brelse(dbh);
388                         return NULL;
389                 }
390         }
391         mark_buffer_dirty_inode(dbh, inode);
392 
393         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
394                 iinfo->i_lenAlloc);
395         iinfo->i_lenAlloc = 0;
396         eloc.logicalBlockNum = *block;
397         eloc.partitionReferenceNum =
398                                 iinfo->i_location.partitionReferenceNum;
399         iinfo->i_lenExtents = inode->i_size;
400         epos.bh = NULL;
401         epos.block = iinfo->i_location;
402         epos.offset = udf_file_entry_alloc_offset(inode);
403         udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
404         /* UniqueID stuff */
405 
406         brelse(epos.bh);
407         mark_inode_dirty(inode);
408         return dbh;
409 }
410 
411 static int udf_get_block(struct inode *inode, sector_t block,
412                          struct buffer_head *bh_result, int create)
413 {
414         int err, new;
415         sector_t phys = 0;
416         struct udf_inode_info *iinfo;
417 
418         if (!create) {
419                 phys = udf_block_map(inode, block);
420                 if (phys)
421                         map_bh(bh_result, inode->i_sb, phys);
422                 return 0;
423         }
424 
425         err = -EIO;
426         new = 0;
427         iinfo = UDF_I(inode);
428 
429         down_write(&iinfo->i_data_sem);
430         if (block == iinfo->i_next_alloc_block + 1) {
431                 iinfo->i_next_alloc_block++;
432                 iinfo->i_next_alloc_goal++;
433         }
434 
435         udf_clear_extent_cache(inode);
436         phys = inode_getblk(inode, block, &err, &new);
437         if (!phys)
438                 goto abort;
439 
440         if (new)
441                 set_buffer_new(bh_result);
442         map_bh(bh_result, inode->i_sb, phys);
443 
444 abort:
445         up_write(&iinfo->i_data_sem);
446         return err;
447 }
448 
449 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
450                                       int create, int *err)
451 {
452         struct buffer_head *bh;
453         struct buffer_head dummy;
454 
455         dummy.b_state = 0;
456         dummy.b_blocknr = -1000;
457         *err = udf_get_block(inode, block, &dummy, create);
458         if (!*err && buffer_mapped(&dummy)) {
459                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
460                 if (buffer_new(&dummy)) {
461                         lock_buffer(bh);
462                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
463                         set_buffer_uptodate(bh);
464                         unlock_buffer(bh);
465                         mark_buffer_dirty_inode(bh, inode);
466                 }
467                 return bh;
468         }
469 
470         return NULL;
471 }
472 
473 /* Extend the file with new blocks totaling 'new_block_bytes',
474  * return the number of extents added
475  */
476 static int udf_do_extend_file(struct inode *inode,
477                               struct extent_position *last_pos,
478                               struct kernel_long_ad *last_ext,
479                               loff_t new_block_bytes)
480 {
481         uint32_t add;
482         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
483         struct super_block *sb = inode->i_sb;
484         struct kernel_lb_addr prealloc_loc = {};
485         uint32_t prealloc_len = 0;
486         struct udf_inode_info *iinfo;
487         int err;
488 
489         /* The previous extent is fake and we should not extend by anything
490          * - there's nothing to do... */
491         if (!new_block_bytes && fake)
492                 return 0;
493 
494         iinfo = UDF_I(inode);
495         /* Round the last extent up to a multiple of block size */
496         if (last_ext->extLength & (sb->s_blocksize - 1)) {
497                 last_ext->extLength =
498                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
499                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
500                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
501                 iinfo->i_lenExtents =
502                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
503                         ~(sb->s_blocksize - 1);
504         }
505 
506         /* Last extent are just preallocated blocks? */
507         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
508                                                 EXT_NOT_RECORDED_ALLOCATED) {
509                 /* Save the extent so that we can reattach it to the end */
510                 prealloc_loc = last_ext->extLocation;
511                 prealloc_len = last_ext->extLength;
512                 /* Mark the extent as a hole */
513                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
514                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
515                 last_ext->extLocation.logicalBlockNum = 0;
516                 last_ext->extLocation.partitionReferenceNum = 0;
517         }
518 
519         /* Can we merge with the previous extent? */
520         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
521                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
522                 add = (1 << 30) - sb->s_blocksize -
523                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
524                 if (add > new_block_bytes)
525                         add = new_block_bytes;
526                 new_block_bytes -= add;
527                 last_ext->extLength += add;
528         }
529 
530         if (fake) {
531                 udf_add_aext(inode, last_pos, &last_ext->extLocation,
532                              last_ext->extLength, 1);
533                 count++;
534         } else {
535                 struct kernel_lb_addr tmploc;
536                 uint32_t tmplen;
537 
538                 udf_write_aext(inode, last_pos, &last_ext->extLocation,
539                                 last_ext->extLength, 1);
540                 /*
541                  * We've rewritten the last extent but there may be empty
542                  * indirect extent after it - enter it.
543                  */
544                 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
545         }
546 
547         /* Managed to do everything necessary? */
548         if (!new_block_bytes)
549                 goto out;
550 
551         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
552         last_ext->extLocation.logicalBlockNum = 0;
553         last_ext->extLocation.partitionReferenceNum = 0;
554         add = (1 << 30) - sb->s_blocksize;
555         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
556 
557         /* Create enough extents to cover the whole hole */
558         while (new_block_bytes > add) {
559                 new_block_bytes -= add;
560                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561                                    last_ext->extLength, 1);
562                 if (err)
563                         return err;
564                 count++;
565         }
566         if (new_block_bytes) {
567                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568                         new_block_bytes;
569                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570                                    last_ext->extLength, 1);
571                 if (err)
572                         return err;
573                 count++;
574         }
575 
576 out:
577         /* Do we have some preallocated blocks saved? */
578         if (prealloc_len) {
579                 err = udf_add_aext(inode, last_pos, &prealloc_loc,
580                                    prealloc_len, 1);
581                 if (err)
582                         return err;
583                 last_ext->extLocation = prealloc_loc;
584                 last_ext->extLength = prealloc_len;
585                 count++;
586         }
587 
588         /* last_pos should point to the last written extent... */
589         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590                 last_pos->offset -= sizeof(struct short_ad);
591         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592                 last_pos->offset -= sizeof(struct long_ad);
593         else
594                 return -EIO;
595 
596         return count;
597 }
598 
599 /* Extend the final block of the file to final_block_len bytes */
600 static void udf_do_extend_final_block(struct inode *inode,
601                                       struct extent_position *last_pos,
602                                       struct kernel_long_ad *last_ext,
603                                       uint32_t final_block_len)
604 {
605         struct super_block *sb = inode->i_sb;
606         uint32_t added_bytes;
607 
608         added_bytes = final_block_len -
609                       (last_ext->extLength & (sb->s_blocksize - 1));
610         last_ext->extLength += added_bytes;
611         UDF_I(inode)->i_lenExtents += added_bytes;
612 
613         udf_write_aext(inode, last_pos, &last_ext->extLocation,
614                         last_ext->extLength, 1);
615 }
616 
617 static int udf_extend_file(struct inode *inode, loff_t newsize)
618 {
619 
620         struct extent_position epos;
621         struct kernel_lb_addr eloc;
622         uint32_t elen;
623         int8_t etype;
624         struct super_block *sb = inode->i_sb;
625         sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
626         unsigned long partial_final_block;
627         int adsize;
628         struct udf_inode_info *iinfo = UDF_I(inode);
629         struct kernel_long_ad extent;
630         int err = 0;
631         int within_final_block;
632 
633         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
634                 adsize = sizeof(struct short_ad);
635         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
636                 adsize = sizeof(struct long_ad);
637         else
638                 BUG();
639 
640         etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
641         within_final_block = (etype != -1);
642 
643         if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
644             (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
645                 /* File has no extents at all or has empty last
646                  * indirect extent! Create a fake extent... */
647                 extent.extLocation.logicalBlockNum = 0;
648                 extent.extLocation.partitionReferenceNum = 0;
649                 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
650         } else {
651                 epos.offset -= adsize;
652                 etype = udf_next_aext(inode, &epos, &extent.extLocation,
653                                       &extent.extLength, 0);
654                 extent.extLength |= etype << 30;
655         }
656 
657         partial_final_block = newsize & (sb->s_blocksize - 1);
658 
659         /* File has extent covering the new size (could happen when extending
660          * inside a block)?
661          */
662         if (within_final_block) {
663                 /* Extending file within the last file block */
664                 udf_do_extend_final_block(inode, &epos, &extent,
665                                           partial_final_block);
666         } else {
667                 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
668                              partial_final_block;
669                 err = udf_do_extend_file(inode, &epos, &extent, add);
670         }
671 
672         if (err < 0)
673                 goto out;
674         err = 0;
675         iinfo->i_lenExtents = newsize;
676 out:
677         brelse(epos.bh);
678         return err;
679 }
680 
681 static sector_t inode_getblk(struct inode *inode, sector_t block,
682                              int *err, int *new)
683 {
684         struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
685         struct extent_position prev_epos, cur_epos, next_epos;
686         int count = 0, startnum = 0, endnum = 0;
687         uint32_t elen = 0, tmpelen;
688         struct kernel_lb_addr eloc, tmpeloc;
689         int c = 1;
690         loff_t lbcount = 0, b_off = 0;
691         udf_pblk_t newblocknum, newblock;
692         sector_t offset = 0;
693         int8_t etype;
694         struct udf_inode_info *iinfo = UDF_I(inode);
695         udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
696         int lastblock = 0;
697         bool isBeyondEOF;
698 
699         *err = 0;
700         *new = 0;
701         prev_epos.offset = udf_file_entry_alloc_offset(inode);
702         prev_epos.block = iinfo->i_location;
703         prev_epos.bh = NULL;
704         cur_epos = next_epos = prev_epos;
705         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
706 
707         /* find the extent which contains the block we are looking for.
708            alternate between laarr[0] and laarr[1] for locations of the
709            current extent, and the previous extent */
710         do {
711                 if (prev_epos.bh != cur_epos.bh) {
712                         brelse(prev_epos.bh);
713                         get_bh(cur_epos.bh);
714                         prev_epos.bh = cur_epos.bh;
715                 }
716                 if (cur_epos.bh != next_epos.bh) {
717                         brelse(cur_epos.bh);
718                         get_bh(next_epos.bh);
719                         cur_epos.bh = next_epos.bh;
720                 }
721 
722                 lbcount += elen;
723 
724                 prev_epos.block = cur_epos.block;
725                 cur_epos.block = next_epos.block;
726 
727                 prev_epos.offset = cur_epos.offset;
728                 cur_epos.offset = next_epos.offset;
729 
730                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
731                 if (etype == -1)
732                         break;
733 
734                 c = !c;
735 
736                 laarr[c].extLength = (etype << 30) | elen;
737                 laarr[c].extLocation = eloc;
738 
739                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
740                         pgoal = eloc.logicalBlockNum +
741                                 ((elen + inode->i_sb->s_blocksize - 1) >>
742                                  inode->i_sb->s_blocksize_bits);
743 
744                 count++;
745         } while (lbcount + elen <= b_off);
746 
747         b_off -= lbcount;
748         offset = b_off >> inode->i_sb->s_blocksize_bits;
749         /*
750          * Move prev_epos and cur_epos into indirect extent if we are at
751          * the pointer to it
752          */
753         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
754         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
755 
756         /* if the extent is allocated and recorded, return the block
757            if the extent is not a multiple of the blocksize, round up */
758 
759         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
760                 if (elen & (inode->i_sb->s_blocksize - 1)) {
761                         elen = EXT_RECORDED_ALLOCATED |
762                                 ((elen + inode->i_sb->s_blocksize - 1) &
763                                  ~(inode->i_sb->s_blocksize - 1));
764                         udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
765                 }
766                 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
767                 goto out_free;
768         }
769 
770         /* Are we beyond EOF? */
771         if (etype == -1) {
772                 int ret;
773                 loff_t hole_len;
774                 isBeyondEOF = true;
775                 if (count) {
776                         if (c)
777                                 laarr[0] = laarr[1];
778                         startnum = 1;
779                 } else {
780                         /* Create a fake extent when there's not one */
781                         memset(&laarr[0].extLocation, 0x00,
782                                 sizeof(struct kernel_lb_addr));
783                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
784                         /* Will udf_do_extend_file() create real extent from
785                            a fake one? */
786                         startnum = (offset > 0);
787                 }
788                 /* Create extents for the hole between EOF and offset */
789                 hole_len = (loff_t)offset << inode->i_blkbits;
790                 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
791                 if (ret < 0) {
792                         *err = ret;
793                         newblock = 0;
794                         goto out_free;
795                 }
796                 c = 0;
797                 offset = 0;
798                 count += ret;
799                 /* We are not covered by a preallocated extent? */
800                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
801                                                 EXT_NOT_RECORDED_ALLOCATED) {
802                         /* Is there any real extent? - otherwise we overwrite
803                          * the fake one... */
804                         if (count)
805                                 c = !c;
806                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
807                                 inode->i_sb->s_blocksize;
808                         memset(&laarr[c].extLocation, 0x00,
809                                 sizeof(struct kernel_lb_addr));
810                         count++;
811                 }
812                 endnum = c + 1;
813                 lastblock = 1;
814         } else {
815                 isBeyondEOF = false;
816                 endnum = startnum = ((count > 2) ? 2 : count);
817 
818                 /* if the current extent is in position 0,
819                    swap it with the previous */
820                 if (!c && count != 1) {
821                         laarr[2] = laarr[0];
822                         laarr[0] = laarr[1];
823                         laarr[1] = laarr[2];
824                         c = 1;
825                 }
826 
827                 /* if the current block is located in an extent,
828                    read the next extent */
829                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
830                 if (etype != -1) {
831                         laarr[c + 1].extLength = (etype << 30) | elen;
832                         laarr[c + 1].extLocation = eloc;
833                         count++;
834                         startnum++;
835                         endnum++;
836                 } else
837                         lastblock = 1;
838         }
839 
840         /* if the current extent is not recorded but allocated, get the
841          * block in the extent corresponding to the requested block */
842         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
843                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
844         else { /* otherwise, allocate a new block */
845                 if (iinfo->i_next_alloc_block == block)
846                         goal = iinfo->i_next_alloc_goal;
847 
848                 if (!goal) {
849                         if (!(goal = pgoal)) /* XXX: what was intended here? */
850                                 goal = iinfo->i_location.logicalBlockNum + 1;
851                 }
852 
853                 newblocknum = udf_new_block(inode->i_sb, inode,
854                                 iinfo->i_location.partitionReferenceNum,
855                                 goal, err);
856                 if (!newblocknum) {
857                         *err = -ENOSPC;
858                         newblock = 0;
859                         goto out_free;
860                 }
861                 if (isBeyondEOF)
862                         iinfo->i_lenExtents += inode->i_sb->s_blocksize;
863         }
864 
865         /* if the extent the requsted block is located in contains multiple
866          * blocks, split the extent into at most three extents. blocks prior
867          * to requested block, requested block, and blocks after requested
868          * block */
869         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
870 
871         /* We preallocate blocks only for regular files. It also makes sense
872          * for directories but there's a problem when to drop the
873          * preallocation. We might use some delayed work for that but I feel
874          * it's overengineering for a filesystem like UDF. */
875         if (S_ISREG(inode->i_mode))
876                 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
877 
878         /* merge any continuous blocks in laarr */
879         udf_merge_extents(inode, laarr, &endnum);
880 
881         /* write back the new extents, inserting new extents if the new number
882          * of extents is greater than the old number, and deleting extents if
883          * the new number of extents is less than the old number */
884         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
885 
886         newblock = udf_get_pblock(inode->i_sb, newblocknum,
887                                 iinfo->i_location.partitionReferenceNum, 0);
888         if (!newblock) {
889                 *err = -EIO;
890                 goto out_free;
891         }
892         *new = 1;
893         iinfo->i_next_alloc_block = block;
894         iinfo->i_next_alloc_goal = newblocknum;
895         inode->i_ctime = current_time(inode);
896 
897         if (IS_SYNC(inode))
898                 udf_sync_inode(inode);
899         else
900                 mark_inode_dirty(inode);
901 out_free:
902         brelse(prev_epos.bh);
903         brelse(cur_epos.bh);
904         brelse(next_epos.bh);
905         return newblock;
906 }
907 
908 static void udf_split_extents(struct inode *inode, int *c, int offset,
909                                udf_pblk_t newblocknum,
910                                struct kernel_long_ad *laarr, int *endnum)
911 {
912         unsigned long blocksize = inode->i_sb->s_blocksize;
913         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
914 
915         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
916             (laarr[*c].extLength >> 30) ==
917                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
918                 int curr = *c;
919                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
920                             blocksize - 1) >> blocksize_bits;
921                 int8_t etype = (laarr[curr].extLength >> 30);
922 
923                 if (blen == 1)
924                         ;
925                 else if (!offset || blen == offset + 1) {
926                         laarr[curr + 2] = laarr[curr + 1];
927                         laarr[curr + 1] = laarr[curr];
928                 } else {
929                         laarr[curr + 3] = laarr[curr + 1];
930                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
931                 }
932 
933                 if (offset) {
934                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
935                                 udf_free_blocks(inode->i_sb, inode,
936                                                 &laarr[curr].extLocation,
937                                                 0, offset);
938                                 laarr[curr].extLength =
939                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
940                                         (offset << blocksize_bits);
941                                 laarr[curr].extLocation.logicalBlockNum = 0;
942                                 laarr[curr].extLocation.
943                                                 partitionReferenceNum = 0;
944                         } else
945                                 laarr[curr].extLength = (etype << 30) |
946                                         (offset << blocksize_bits);
947                         curr++;
948                         (*c)++;
949                         (*endnum)++;
950                 }
951 
952                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
953                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
954                         laarr[curr].extLocation.partitionReferenceNum =
955                                 UDF_I(inode)->i_location.partitionReferenceNum;
956                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
957                         blocksize;
958                 curr++;
959 
960                 if (blen != offset + 1) {
961                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
962                                 laarr[curr].extLocation.logicalBlockNum +=
963                                                                 offset + 1;
964                         laarr[curr].extLength = (etype << 30) |
965                                 ((blen - (offset + 1)) << blocksize_bits);
966                         curr++;
967                         (*endnum)++;
968                 }
969         }
970 }
971 
972 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
973                                  struct kernel_long_ad *laarr,
974                                  int *endnum)
975 {
976         int start, length = 0, currlength = 0, i;
977 
978         if (*endnum >= (c + 1)) {
979                 if (!lastblock)
980                         return;
981                 else
982                         start = c;
983         } else {
984                 if ((laarr[c + 1].extLength >> 30) ==
985                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
986                         start = c + 1;
987                         length = currlength =
988                                 (((laarr[c + 1].extLength &
989                                         UDF_EXTENT_LENGTH_MASK) +
990                                 inode->i_sb->s_blocksize - 1) >>
991                                 inode->i_sb->s_blocksize_bits);
992                 } else
993                         start = c;
994         }
995 
996         for (i = start + 1; i <= *endnum; i++) {
997                 if (i == *endnum) {
998                         if (lastblock)
999                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1000                 } else if ((laarr[i].extLength >> 30) ==
1001                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1002                         length += (((laarr[i].extLength &
1003                                                 UDF_EXTENT_LENGTH_MASK) +
1004                                     inode->i_sb->s_blocksize - 1) >>
1005                                     inode->i_sb->s_blocksize_bits);
1006                 } else
1007                         break;
1008         }
1009 
1010         if (length) {
1011                 int next = laarr[start].extLocation.logicalBlockNum +
1012                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1013                           inode->i_sb->s_blocksize - 1) >>
1014                           inode->i_sb->s_blocksize_bits);
1015                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1016                                 laarr[start].extLocation.partitionReferenceNum,
1017                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1018                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1019                                 currlength);
1020                 if (numalloc)   {
1021                         if (start == (c + 1))
1022                                 laarr[start].extLength +=
1023                                         (numalloc <<
1024                                          inode->i_sb->s_blocksize_bits);
1025                         else {
1026                                 memmove(&laarr[c + 2], &laarr[c + 1],
1027                                         sizeof(struct long_ad) * (*endnum - (c + 1)));
1028                                 (*endnum)++;
1029                                 laarr[c + 1].extLocation.logicalBlockNum = next;
1030                                 laarr[c + 1].extLocation.partitionReferenceNum =
1031                                         laarr[c].extLocation.
1032                                                         partitionReferenceNum;
1033                                 laarr[c + 1].extLength =
1034                                         EXT_NOT_RECORDED_ALLOCATED |
1035                                         (numalloc <<
1036                                          inode->i_sb->s_blocksize_bits);
1037                                 start = c + 1;
1038                         }
1039 
1040                         for (i = start + 1; numalloc && i < *endnum; i++) {
1041                                 int elen = ((laarr[i].extLength &
1042                                                 UDF_EXTENT_LENGTH_MASK) +
1043                                             inode->i_sb->s_blocksize - 1) >>
1044                                             inode->i_sb->s_blocksize_bits;
1045 
1046                                 if (elen > numalloc) {
1047                                         laarr[i].extLength -=
1048                                                 (numalloc <<
1049                                                  inode->i_sb->s_blocksize_bits);
1050                                         numalloc = 0;
1051                                 } else {
1052                                         numalloc -= elen;
1053                                         if (*endnum > (i + 1))
1054                                                 memmove(&laarr[i],
1055                                                         &laarr[i + 1],
1056                                                         sizeof(struct long_ad) *
1057                                                         (*endnum - (i + 1)));
1058                                         i--;
1059                                         (*endnum)--;
1060                                 }
1061                         }
1062                         UDF_I(inode)->i_lenExtents +=
1063                                 numalloc << inode->i_sb->s_blocksize_bits;
1064                 }
1065         }
1066 }
1067 
1068 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1069                               int *endnum)
1070 {
1071         int i;
1072         unsigned long blocksize = inode->i_sb->s_blocksize;
1073         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1074 
1075         for (i = 0; i < (*endnum - 1); i++) {
1076                 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1077                 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1078 
1079                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1080                         (((li->extLength >> 30) ==
1081                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1082                         ((lip1->extLocation.logicalBlockNum -
1083                           li->extLocation.logicalBlockNum) ==
1084                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1085                         blocksize - 1) >> blocksize_bits)))) {
1086 
1087                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1088                                 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1089                                 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1090                                 lip1->extLength = (lip1->extLength -
1091                                                   (li->extLength &
1092                                                    UDF_EXTENT_LENGTH_MASK) +
1093                                                    UDF_EXTENT_LENGTH_MASK) &
1094                                                         ~(blocksize - 1);
1095                                 li->extLength = (li->extLength &
1096                                                  UDF_EXTENT_FLAG_MASK) +
1097                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1098                                                 blocksize;
1099                                 lip1->extLocation.logicalBlockNum =
1100                                         li->extLocation.logicalBlockNum +
1101                                         ((li->extLength &
1102                                                 UDF_EXTENT_LENGTH_MASK) >>
1103                                                 blocksize_bits);
1104                         } else {
1105                                 li->extLength = lip1->extLength +
1106                                         (((li->extLength &
1107                                                 UDF_EXTENT_LENGTH_MASK) +
1108                                          blocksize - 1) & ~(blocksize - 1));
1109                                 if (*endnum > (i + 2))
1110                                         memmove(&laarr[i + 1], &laarr[i + 2],
1111                                                 sizeof(struct long_ad) *
1112                                                 (*endnum - (i + 2)));
1113                                 i--;
1114                                 (*endnum)--;
1115                         }
1116                 } else if (((li->extLength >> 30) ==
1117                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1118                            ((lip1->extLength >> 30) ==
1119                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1120                         udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1121                                         ((li->extLength &
1122                                           UDF_EXTENT_LENGTH_MASK) +
1123                                          blocksize - 1) >> blocksize_bits);
1124                         li->extLocation.logicalBlockNum = 0;
1125                         li->extLocation.partitionReferenceNum = 0;
1126 
1127                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1128                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1129                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1130                                 lip1->extLength = (lip1->extLength -
1131                                                    (li->extLength &
1132                                                    UDF_EXTENT_LENGTH_MASK) +
1133                                                    UDF_EXTENT_LENGTH_MASK) &
1134                                                    ~(blocksize - 1);
1135                                 li->extLength = (li->extLength &
1136                                                  UDF_EXTENT_FLAG_MASK) +
1137                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1138                                                 blocksize;
1139                         } else {
1140                                 li->extLength = lip1->extLength +
1141                                         (((li->extLength &
1142                                                 UDF_EXTENT_LENGTH_MASK) +
1143                                           blocksize - 1) & ~(blocksize - 1));
1144                                 if (*endnum > (i + 2))
1145                                         memmove(&laarr[i + 1], &laarr[i + 2],
1146                                                 sizeof(struct long_ad) *
1147                                                 (*endnum - (i + 2)));
1148                                 i--;
1149                                 (*endnum)--;
1150                         }
1151                 } else if ((li->extLength >> 30) ==
1152                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1153                         udf_free_blocks(inode->i_sb, inode,
1154                                         &li->extLocation, 0,
1155                                         ((li->extLength &
1156                                                 UDF_EXTENT_LENGTH_MASK) +
1157                                          blocksize - 1) >> blocksize_bits);
1158                         li->extLocation.logicalBlockNum = 0;
1159                         li->extLocation.partitionReferenceNum = 0;
1160                         li->extLength = (li->extLength &
1161                                                 UDF_EXTENT_LENGTH_MASK) |
1162                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
1163                 }
1164         }
1165 }
1166 
1167 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1168                                int startnum, int endnum,
1169                                struct extent_position *epos)
1170 {
1171         int start = 0, i;
1172         struct kernel_lb_addr tmploc;
1173         uint32_t tmplen;
1174 
1175         if (startnum > endnum) {
1176                 for (i = 0; i < (startnum - endnum); i++)
1177                         udf_delete_aext(inode, *epos);
1178         } else if (startnum < endnum) {
1179                 for (i = 0; i < (endnum - startnum); i++) {
1180                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
1181                                         laarr[i].extLength);
1182                         udf_next_aext(inode, epos, &laarr[i].extLocation,
1183                                       &laarr[i].extLength, 1);
1184                         start++;
1185                 }
1186         }
1187 
1188         for (i = start; i < endnum; i++) {
1189                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1190                 udf_write_aext(inode, epos, &laarr[i].extLocation,
1191                                laarr[i].extLength, 1);
1192         }
1193 }
1194 
1195 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1196                               int create, int *err)
1197 {
1198         struct buffer_head *bh = NULL;
1199 
1200         bh = udf_getblk(inode, block, create, err);
1201         if (!bh)
1202                 return NULL;
1203 
1204         if (buffer_uptodate(bh))
1205                 return bh;
1206 
1207         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1208 
1209         wait_on_buffer(bh);
1210         if (buffer_uptodate(bh))
1211                 return bh;
1212 
1213         brelse(bh);
1214         *err = -EIO;
1215         return NULL;
1216 }
1217 
1218 int udf_setsize(struct inode *inode, loff_t newsize)
1219 {
1220         int err;
1221         struct udf_inode_info *iinfo;
1222         unsigned int bsize = i_blocksize(inode);
1223 
1224         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1225               S_ISLNK(inode->i_mode)))
1226                 return -EINVAL;
1227         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1228                 return -EPERM;
1229 
1230         iinfo = UDF_I(inode);
1231         if (newsize > inode->i_size) {
1232                 down_write(&iinfo->i_data_sem);
1233                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1234                         if (bsize <
1235                             (udf_file_entry_alloc_offset(inode) + newsize)) {
1236                                 err = udf_expand_file_adinicb(inode);
1237                                 if (err)
1238                                         return err;
1239                                 down_write(&iinfo->i_data_sem);
1240                         } else {
1241                                 iinfo->i_lenAlloc = newsize;
1242                                 goto set_size;
1243                         }
1244                 }
1245                 err = udf_extend_file(inode, newsize);
1246                 if (err) {
1247                         up_write(&iinfo->i_data_sem);
1248                         return err;
1249                 }
1250 set_size:
1251                 up_write(&iinfo->i_data_sem);
1252                 truncate_setsize(inode, newsize);
1253         } else {
1254                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1255                         down_write(&iinfo->i_data_sem);
1256                         udf_clear_extent_cache(inode);
1257                         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1258                                0x00, bsize - newsize -
1259                                udf_file_entry_alloc_offset(inode));
1260                         iinfo->i_lenAlloc = newsize;
1261                         truncate_setsize(inode, newsize);
1262                         up_write(&iinfo->i_data_sem);
1263                         goto update_time;
1264                 }
1265                 err = block_truncate_page(inode->i_mapping, newsize,
1266                                           udf_get_block);
1267                 if (err)
1268                         return err;
1269                 truncate_setsize(inode, newsize);
1270                 down_write(&iinfo->i_data_sem);
1271                 udf_clear_extent_cache(inode);
1272                 err = udf_truncate_extents(inode);
1273                 up_write(&iinfo->i_data_sem);
1274                 if (err)
1275                         return err;
1276         }
1277 update_time:
1278         inode->i_mtime = inode->i_ctime = current_time(inode);
1279         if (IS_SYNC(inode))
1280                 udf_sync_inode(inode);
1281         else
1282                 mark_inode_dirty(inode);
1283         return 0;
1284 }
1285 
1286 /*
1287  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1288  * arbitrary - just that we hopefully don't limit any real use of rewritten
1289  * inode on write-once media but avoid looping for too long on corrupted media.
1290  */
1291 #define UDF_MAX_ICB_NESTING 1024
1292 
1293 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1294 {
1295         struct buffer_head *bh = NULL;
1296         struct fileEntry *fe;
1297         struct extendedFileEntry *efe;
1298         uint16_t ident;
1299         struct udf_inode_info *iinfo = UDF_I(inode);
1300         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1301         struct kernel_lb_addr *iloc = &iinfo->i_location;
1302         unsigned int link_count;
1303         unsigned int indirections = 0;
1304         int bs = inode->i_sb->s_blocksize;
1305         int ret = -EIO;
1306         uint32_t uid, gid;
1307 
1308 reread:
1309         if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1310                 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1311                           iloc->partitionReferenceNum, sbi->s_partitions);
1312                 return -EIO;
1313         }
1314 
1315         if (iloc->logicalBlockNum >=
1316             sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1317                 udf_debug("block=%u, partition=%u out of range\n",
1318                           iloc->logicalBlockNum, iloc->partitionReferenceNum);
1319                 return -EIO;
1320         }
1321 
1322         /*
1323          * Set defaults, but the inode is still incomplete!
1324          * Note: get_new_inode() sets the following on a new inode:
1325          *      i_sb = sb
1326          *      i_no = ino
1327          *      i_flags = sb->s_flags
1328          *      i_state = 0
1329          * clean_inode(): zero fills and sets
1330          *      i_count = 1
1331          *      i_nlink = 1
1332          *      i_op = NULL;
1333          */
1334         bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1335         if (!bh) {
1336                 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1337                 return -EIO;
1338         }
1339 
1340         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1341             ident != TAG_IDENT_USE) {
1342                 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1343                         inode->i_ino, ident);
1344                 goto out;
1345         }
1346 
1347         fe = (struct fileEntry *)bh->b_data;
1348         efe = (struct extendedFileEntry *)bh->b_data;
1349 
1350         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1351                 struct buffer_head *ibh;
1352 
1353                 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1354                 if (ident == TAG_IDENT_IE && ibh) {
1355                         struct kernel_lb_addr loc;
1356                         struct indirectEntry *ie;
1357 
1358                         ie = (struct indirectEntry *)ibh->b_data;
1359                         loc = lelb_to_cpu(ie->indirectICB.extLocation);
1360 
1361                         if (ie->indirectICB.extLength) {
1362                                 brelse(ibh);
1363                                 memcpy(&iinfo->i_location, &loc,
1364                                        sizeof(struct kernel_lb_addr));
1365                                 if (++indirections > UDF_MAX_ICB_NESTING) {
1366                                         udf_err(inode->i_sb,
1367                                                 "too many ICBs in ICB hierarchy"
1368                                                 " (max %d supported)\n",
1369                                                 UDF_MAX_ICB_NESTING);
1370                                         goto out;
1371                                 }
1372                                 brelse(bh);
1373                                 goto reread;
1374                         }
1375                 }
1376                 brelse(ibh);
1377         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1378                 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1379                         le16_to_cpu(fe->icbTag.strategyType));
1380                 goto out;
1381         }
1382         if (fe->icbTag.strategyType == cpu_to_le16(4))
1383                 iinfo->i_strat4096 = 0;
1384         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1385                 iinfo->i_strat4096 = 1;
1386 
1387         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1388                                                         ICBTAG_FLAG_AD_MASK;
1389         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1390             iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1391             iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1392                 ret = -EIO;
1393                 goto out;
1394         }
1395         iinfo->i_unique = 0;
1396         iinfo->i_lenEAttr = 0;
1397         iinfo->i_lenExtents = 0;
1398         iinfo->i_lenAlloc = 0;
1399         iinfo->i_next_alloc_block = 0;
1400         iinfo->i_next_alloc_goal = 0;
1401         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1402                 iinfo->i_efe = 1;
1403                 iinfo->i_use = 0;
1404                 ret = udf_alloc_i_data(inode, bs -
1405                                         sizeof(struct extendedFileEntry));
1406                 if (ret)
1407                         goto out;
1408                 memcpy(iinfo->i_ext.i_data,
1409                        bh->b_data + sizeof(struct extendedFileEntry),
1410                        bs - sizeof(struct extendedFileEntry));
1411         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1412                 iinfo->i_efe = 0;
1413                 iinfo->i_use = 0;
1414                 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1415                 if (ret)
1416                         goto out;
1417                 memcpy(iinfo->i_ext.i_data,
1418                        bh->b_data + sizeof(struct fileEntry),
1419                        bs - sizeof(struct fileEntry));
1420         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1421                 iinfo->i_efe = 0;
1422                 iinfo->i_use = 1;
1423                 iinfo->i_lenAlloc = le32_to_cpu(
1424                                 ((struct unallocSpaceEntry *)bh->b_data)->
1425                                  lengthAllocDescs);
1426                 ret = udf_alloc_i_data(inode, bs -
1427                                         sizeof(struct unallocSpaceEntry));
1428                 if (ret)
1429                         goto out;
1430                 memcpy(iinfo->i_ext.i_data,
1431                        bh->b_data + sizeof(struct unallocSpaceEntry),
1432                        bs - sizeof(struct unallocSpaceEntry));
1433                 return 0;
1434         }
1435 
1436         ret = -EIO;
1437         read_lock(&sbi->s_cred_lock);
1438         uid = le32_to_cpu(fe->uid);
1439         if (uid == UDF_INVALID_ID ||
1440             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1441                 inode->i_uid = sbi->s_uid;
1442         else
1443                 i_uid_write(inode, uid);
1444 
1445         gid = le32_to_cpu(fe->gid);
1446         if (gid == UDF_INVALID_ID ||
1447             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1448                 inode->i_gid = sbi->s_gid;
1449         else
1450                 i_gid_write(inode, gid);
1451 
1452         if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1453                         sbi->s_fmode != UDF_INVALID_MODE)
1454                 inode->i_mode = sbi->s_fmode;
1455         else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1456                         sbi->s_dmode != UDF_INVALID_MODE)
1457                 inode->i_mode = sbi->s_dmode;
1458         else
1459                 inode->i_mode = udf_convert_permissions(fe);
1460         inode->i_mode &= ~sbi->s_umask;
1461         read_unlock(&sbi->s_cred_lock);
1462 
1463         link_count = le16_to_cpu(fe->fileLinkCount);
1464         if (!link_count) {
1465                 if (!hidden_inode) {
1466                         ret = -ESTALE;
1467                         goto out;
1468                 }
1469                 link_count = 1;
1470         }
1471         set_nlink(inode, link_count);
1472 
1473         inode->i_size = le64_to_cpu(fe->informationLength);
1474         iinfo->i_lenExtents = inode->i_size;
1475 
1476         if (iinfo->i_efe == 0) {
1477                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1478                         (inode->i_sb->s_blocksize_bits - 9);
1479 
1480                 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1481                 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1482                 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1483 
1484                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1485                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1486                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1487                 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1488         } else {
1489                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1490                     (inode->i_sb->s_blocksize_bits - 9);
1491 
1492                 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1493                 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1494                 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1495                 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1496 
1497                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1498                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1499                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1500                 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1501         }
1502         inode->i_generation = iinfo->i_unique;
1503 
1504         /*
1505          * Sanity check length of allocation descriptors and extended attrs to
1506          * avoid integer overflows
1507          */
1508         if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1509                 goto out;
1510         /* Now do exact checks */
1511         if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1512                 goto out;
1513         /* Sanity checks for files in ICB so that we don't get confused later */
1514         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1515                 /*
1516                  * For file in ICB data is stored in allocation descriptor
1517                  * so sizes should match
1518                  */
1519                 if (iinfo->i_lenAlloc != inode->i_size)
1520                         goto out;
1521                 /* File in ICB has to fit in there... */
1522                 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1523                         goto out;
1524         }
1525 
1526         switch (fe->icbTag.fileType) {
1527         case ICBTAG_FILE_TYPE_DIRECTORY:
1528                 inode->i_op = &udf_dir_inode_operations;
1529                 inode->i_fop = &udf_dir_operations;
1530                 inode->i_mode |= S_IFDIR;
1531                 inc_nlink(inode);
1532                 break;
1533         case ICBTAG_FILE_TYPE_REALTIME:
1534         case ICBTAG_FILE_TYPE_REGULAR:
1535         case ICBTAG_FILE_TYPE_UNDEF:
1536         case ICBTAG_FILE_TYPE_VAT20:
1537                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1538                         inode->i_data.a_ops = &udf_adinicb_aops;
1539                 else
1540                         inode->i_data.a_ops = &udf_aops;
1541                 inode->i_op = &udf_file_inode_operations;
1542                 inode->i_fop = &udf_file_operations;
1543                 inode->i_mode |= S_IFREG;
1544                 break;
1545         case ICBTAG_FILE_TYPE_BLOCK:
1546                 inode->i_mode |= S_IFBLK;
1547                 break;
1548         case ICBTAG_FILE_TYPE_CHAR:
1549                 inode->i_mode |= S_IFCHR;
1550                 break;
1551         case ICBTAG_FILE_TYPE_FIFO:
1552                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1553                 break;
1554         case ICBTAG_FILE_TYPE_SOCKET:
1555                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1556                 break;
1557         case ICBTAG_FILE_TYPE_SYMLINK:
1558                 inode->i_data.a_ops = &udf_symlink_aops;
1559                 inode->i_op = &udf_symlink_inode_operations;
1560                 inode_nohighmem(inode);
1561                 inode->i_mode = S_IFLNK | 0777;
1562                 break;
1563         case ICBTAG_FILE_TYPE_MAIN:
1564                 udf_debug("METADATA FILE-----\n");
1565                 break;
1566         case ICBTAG_FILE_TYPE_MIRROR:
1567                 udf_debug("METADATA MIRROR FILE-----\n");
1568                 break;
1569         case ICBTAG_FILE_TYPE_BITMAP:
1570                 udf_debug("METADATA BITMAP FILE-----\n");
1571                 break;
1572         default:
1573                 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1574                         inode->i_ino, fe->icbTag.fileType);
1575                 goto out;
1576         }
1577         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1578                 struct deviceSpec *dsea =
1579                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1580                 if (dsea) {
1581                         init_special_inode(inode, inode->i_mode,
1582                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1583                                       le32_to_cpu(dsea->minorDeviceIdent)));
1584                         /* Developer ID ??? */
1585                 } else
1586                         goto out;
1587         }
1588         ret = 0;
1589 out:
1590         brelse(bh);
1591         return ret;
1592 }
1593 
1594 static int udf_alloc_i_data(struct inode *inode, size_t size)
1595 {
1596         struct udf_inode_info *iinfo = UDF_I(inode);
1597         iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1598         if (!iinfo->i_ext.i_data)
1599                 return -ENOMEM;
1600         return 0;
1601 }
1602 
1603 static umode_t udf_convert_permissions(struct fileEntry *fe)
1604 {
1605         umode_t mode;
1606         uint32_t permissions;
1607         uint32_t flags;
1608 
1609         permissions = le32_to_cpu(fe->permissions);
1610         flags = le16_to_cpu(fe->icbTag.flags);
1611 
1612         mode =  ((permissions) & 0007) |
1613                 ((permissions >> 2) & 0070) |
1614                 ((permissions >> 4) & 0700) |
1615                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1616                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1617                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1618 
1619         return mode;
1620 }
1621 
1622 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1623 {
1624         return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1625 }
1626 
1627 static int udf_sync_inode(struct inode *inode)
1628 {
1629         return udf_update_inode(inode, 1);
1630 }
1631 
1632 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1633 {
1634         if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1635             (iinfo->i_crtime.tv_sec == time.tv_sec &&
1636              iinfo->i_crtime.tv_nsec > time.tv_nsec))
1637                 iinfo->i_crtime = time;
1638 }
1639 
1640 static int udf_update_inode(struct inode *inode, int do_sync)
1641 {
1642         struct buffer_head *bh = NULL;
1643         struct fileEntry *fe;
1644         struct extendedFileEntry *efe;
1645         uint64_t lb_recorded;
1646         uint32_t udfperms;
1647         uint16_t icbflags;
1648         uint16_t crclen;
1649         int err = 0;
1650         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1651         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1652         struct udf_inode_info *iinfo = UDF_I(inode);
1653 
1654         bh = udf_tgetblk(inode->i_sb,
1655                         udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1656         if (!bh) {
1657                 udf_debug("getblk failure\n");
1658                 return -EIO;
1659         }
1660 
1661         lock_buffer(bh);
1662         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1663         fe = (struct fileEntry *)bh->b_data;
1664         efe = (struct extendedFileEntry *)bh->b_data;
1665 
1666         if (iinfo->i_use) {
1667                 struct unallocSpaceEntry *use =
1668                         (struct unallocSpaceEntry *)bh->b_data;
1669 
1670                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1671                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1672                        iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1673                                         sizeof(struct unallocSpaceEntry));
1674                 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1675                 crclen = sizeof(struct unallocSpaceEntry);
1676 
1677                 goto finish;
1678         }
1679 
1680         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1681                 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1682         else
1683                 fe->uid = cpu_to_le32(i_uid_read(inode));
1684 
1685         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1686                 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1687         else
1688                 fe->gid = cpu_to_le32(i_gid_read(inode));
1689 
1690         udfperms = ((inode->i_mode & 0007)) |
1691                    ((inode->i_mode & 0070) << 2) |
1692                    ((inode->i_mode & 0700) << 4);
1693 
1694         udfperms |= (le32_to_cpu(fe->permissions) &
1695                     (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1696                      FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1697                      FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1698         fe->permissions = cpu_to_le32(udfperms);
1699 
1700         if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1701                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1702         else
1703                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1704 
1705         fe->informationLength = cpu_to_le64(inode->i_size);
1706 
1707         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1708                 struct regid *eid;
1709                 struct deviceSpec *dsea =
1710                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1711                 if (!dsea) {
1712                         dsea = (struct deviceSpec *)
1713                                 udf_add_extendedattr(inode,
1714                                                      sizeof(struct deviceSpec) +
1715                                                      sizeof(struct regid), 12, 0x3);
1716                         dsea->attrType = cpu_to_le32(12);
1717                         dsea->attrSubtype = 1;
1718                         dsea->attrLength = cpu_to_le32(
1719                                                 sizeof(struct deviceSpec) +
1720                                                 sizeof(struct regid));
1721                         dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1722                 }
1723                 eid = (struct regid *)dsea->impUse;
1724                 memset(eid, 0, sizeof(*eid));
1725                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1726                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1727                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1728                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1729                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1730         }
1731 
1732         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1733                 lb_recorded = 0; /* No extents => no blocks! */
1734         else
1735                 lb_recorded =
1736                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1737                         (blocksize_bits - 9);
1738 
1739         if (iinfo->i_efe == 0) {
1740                 memcpy(bh->b_data + sizeof(struct fileEntry),
1741                        iinfo->i_ext.i_data,
1742                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1743                 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1744 
1745                 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1746                 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1747                 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1748                 memset(&(fe->impIdent), 0, sizeof(struct regid));
1749                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1750                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1751                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1752                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1753                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1754                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1755                 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1756                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1757                 crclen = sizeof(struct fileEntry);
1758         } else {
1759                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1760                        iinfo->i_ext.i_data,
1761                        inode->i_sb->s_blocksize -
1762                                         sizeof(struct extendedFileEntry));
1763                 efe->objectSize = cpu_to_le64(inode->i_size);
1764                 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1765 
1766                 udf_adjust_time(iinfo, inode->i_atime);
1767                 udf_adjust_time(iinfo, inode->i_mtime);
1768                 udf_adjust_time(iinfo, inode->i_ctime);
1769 
1770                 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1771                 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1772                 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1773                 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1774 
1775                 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1776                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1777                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1778                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1779                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1780                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1781                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1782                 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1783                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1784                 crclen = sizeof(struct extendedFileEntry);
1785         }
1786 
1787 finish:
1788         if (iinfo->i_strat4096) {
1789                 fe->icbTag.strategyType = cpu_to_le16(4096);
1790                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1791                 fe->icbTag.numEntries = cpu_to_le16(2);
1792         } else {
1793                 fe->icbTag.strategyType = cpu_to_le16(4);
1794                 fe->icbTag.numEntries = cpu_to_le16(1);
1795         }
1796 
1797         if (iinfo->i_use)
1798                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1799         else if (S_ISDIR(inode->i_mode))
1800                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1801         else if (S_ISREG(inode->i_mode))
1802                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1803         else if (S_ISLNK(inode->i_mode))
1804                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1805         else if (S_ISBLK(inode->i_mode))
1806                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1807         else if (S_ISCHR(inode->i_mode))
1808                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1809         else if (S_ISFIFO(inode->i_mode))
1810                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1811         else if (S_ISSOCK(inode->i_mode))
1812                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1813 
1814         icbflags =      iinfo->i_alloc_type |
1815                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1816                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1817                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1818                         (le16_to_cpu(fe->icbTag.flags) &
1819                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1820                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1821 
1822         fe->icbTag.flags = cpu_to_le16(icbflags);
1823         if (sbi->s_udfrev >= 0x0200)
1824                 fe->descTag.descVersion = cpu_to_le16(3);
1825         else
1826                 fe->descTag.descVersion = cpu_to_le16(2);
1827         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1828         fe->descTag.tagLocation = cpu_to_le32(
1829                                         iinfo->i_location.logicalBlockNum);
1830         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1831         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1832         fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1833                                                   crclen));
1834         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1835 
1836         set_buffer_uptodate(bh);
1837         unlock_buffer(bh);
1838 
1839         /* write the data blocks */
1840         mark_buffer_dirty(bh);
1841         if (do_sync) {
1842                 sync_dirty_buffer(bh);
1843                 if (buffer_write_io_error(bh)) {
1844                         udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1845                                  inode->i_ino);
1846                         err = -EIO;
1847                 }
1848         }
1849         brelse(bh);
1850 
1851         return err;
1852 }
1853 
1854 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1855                          bool hidden_inode)
1856 {
1857         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1858         struct inode *inode = iget_locked(sb, block);
1859         int err;
1860 
1861         if (!inode)
1862                 return ERR_PTR(-ENOMEM);
1863 
1864         if (!(inode->i_state & I_NEW))
1865                 return inode;
1866 
1867         memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1868         err = udf_read_inode(inode, hidden_inode);
1869         if (err < 0) {
1870                 iget_failed(inode);
1871                 return ERR_PTR(err);
1872         }
1873         unlock_new_inode(inode);
1874 
1875         return inode;
1876 }
1877 
1878 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1879                             struct extent_position *epos)
1880 {
1881         struct super_block *sb = inode->i_sb;
1882         struct buffer_head *bh;
1883         struct allocExtDesc *aed;
1884         struct extent_position nepos;
1885         struct kernel_lb_addr neloc;
1886         int ver, adsize;
1887 
1888         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1889                 adsize = sizeof(struct short_ad);
1890         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1891                 adsize = sizeof(struct long_ad);
1892         else
1893                 return -EIO;
1894 
1895         neloc.logicalBlockNum = block;
1896         neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1897 
1898         bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1899         if (!bh)
1900                 return -EIO;
1901         lock_buffer(bh);
1902         memset(bh->b_data, 0x00, sb->s_blocksize);
1903         set_buffer_uptodate(bh);
1904         unlock_buffer(bh);
1905         mark_buffer_dirty_inode(bh, inode);
1906 
1907         aed = (struct allocExtDesc *)(bh->b_data);
1908         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1909                 aed->previousAllocExtLocation =
1910                                 cpu_to_le32(epos->block.logicalBlockNum);
1911         }
1912         aed->lengthAllocDescs = cpu_to_le32(0);
1913         if (UDF_SB(sb)->s_udfrev >= 0x0200)
1914                 ver = 3;
1915         else
1916                 ver = 2;
1917         udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1918                     sizeof(struct tag));
1919 
1920         nepos.block = neloc;
1921         nepos.offset = sizeof(struct allocExtDesc);
1922         nepos.bh = bh;
1923 
1924         /*
1925          * Do we have to copy current last extent to make space for indirect
1926          * one?
1927          */
1928         if (epos->offset + adsize > sb->s_blocksize) {
1929                 struct kernel_lb_addr cp_loc;
1930                 uint32_t cp_len;
1931                 int cp_type;
1932 
1933                 epos->offset -= adsize;
1934                 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1935                 cp_len |= ((uint32_t)cp_type) << 30;
1936 
1937                 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1938                 udf_write_aext(inode, epos, &nepos.block,
1939                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1940         } else {
1941                 __udf_add_aext(inode, epos, &nepos.block,
1942                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1943         }
1944 
1945         brelse(epos->bh);
1946         *epos = nepos;
1947 
1948         return 0;
1949 }
1950 
1951 /*
1952  * Append extent at the given position - should be the first free one in inode
1953  * / indirect extent. This function assumes there is enough space in the inode
1954  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1955  */
1956 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1957                    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1958 {
1959         struct udf_inode_info *iinfo = UDF_I(inode);
1960         struct allocExtDesc *aed;
1961         int adsize;
1962 
1963         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1964                 adsize = sizeof(struct short_ad);
1965         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1966                 adsize = sizeof(struct long_ad);
1967         else
1968                 return -EIO;
1969 
1970         if (!epos->bh) {
1971                 WARN_ON(iinfo->i_lenAlloc !=
1972                         epos->offset - udf_file_entry_alloc_offset(inode));
1973         } else {
1974                 aed = (struct allocExtDesc *)epos->bh->b_data;
1975                 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1976                         epos->offset - sizeof(struct allocExtDesc));
1977                 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1978         }
1979 
1980         udf_write_aext(inode, epos, eloc, elen, inc);
1981 
1982         if (!epos->bh) {
1983                 iinfo->i_lenAlloc += adsize;
1984                 mark_inode_dirty(inode);
1985         } else {
1986                 aed = (struct allocExtDesc *)epos->bh->b_data;
1987                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1988                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1989                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1990                         udf_update_tag(epos->bh->b_data,
1991                                         epos->offset + (inc ? 0 : adsize));
1992                 else
1993                         udf_update_tag(epos->bh->b_data,
1994                                         sizeof(struct allocExtDesc));
1995                 mark_buffer_dirty_inode(epos->bh, inode);
1996         }
1997 
1998         return 0;
1999 }
2000 
2001 /*
2002  * Append extent at given position - should be the first free one in inode
2003  * / indirect extent. Takes care of allocating and linking indirect blocks.
2004  */
2005 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2006                  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007 {
2008         int adsize;
2009         struct super_block *sb = inode->i_sb;
2010 
2011         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2012                 adsize = sizeof(struct short_ad);
2013         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2014                 adsize = sizeof(struct long_ad);
2015         else
2016                 return -EIO;
2017 
2018         if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2019                 int err;
2020                 udf_pblk_t new_block;
2021 
2022                 new_block = udf_new_block(sb, NULL,
2023                                           epos->block.partitionReferenceNum,
2024                                           epos->block.logicalBlockNum, &err);
2025                 if (!new_block)
2026                         return -ENOSPC;
2027 
2028                 err = udf_setup_indirect_aext(inode, new_block, epos);
2029                 if (err)
2030                         return err;
2031         }
2032 
2033         return __udf_add_aext(inode, epos, eloc, elen, inc);
2034 }
2035 
2036 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2037                     struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2038 {
2039         int adsize;
2040         uint8_t *ptr;
2041         struct short_ad *sad;
2042         struct long_ad *lad;
2043         struct udf_inode_info *iinfo = UDF_I(inode);
2044 
2045         if (!epos->bh)
2046                 ptr = iinfo->i_ext.i_data + epos->offset -
2047                         udf_file_entry_alloc_offset(inode) +
2048                         iinfo->i_lenEAttr;
2049         else
2050                 ptr = epos->bh->b_data + epos->offset;
2051 
2052         switch (iinfo->i_alloc_type) {
2053         case ICBTAG_FLAG_AD_SHORT:
2054                 sad = (struct short_ad *)ptr;
2055                 sad->extLength = cpu_to_le32(elen);
2056                 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2057                 adsize = sizeof(struct short_ad);
2058                 break;
2059         case ICBTAG_FLAG_AD_LONG:
2060                 lad = (struct long_ad *)ptr;
2061                 lad->extLength = cpu_to_le32(elen);
2062                 lad->extLocation = cpu_to_lelb(*eloc);
2063                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2064                 adsize = sizeof(struct long_ad);
2065                 break;
2066         default:
2067                 return;
2068         }
2069 
2070         if (epos->bh) {
2071                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2072                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2073                         struct allocExtDesc *aed =
2074                                 (struct allocExtDesc *)epos->bh->b_data;
2075                         udf_update_tag(epos->bh->b_data,
2076                                        le32_to_cpu(aed->lengthAllocDescs) +
2077                                        sizeof(struct allocExtDesc));
2078                 }
2079                 mark_buffer_dirty_inode(epos->bh, inode);
2080         } else {
2081                 mark_inode_dirty(inode);
2082         }
2083 
2084         if (inc)
2085                 epos->offset += adsize;
2086 }
2087 
2088 /*
2089  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2090  * someone does some weird stuff.
2091  */
2092 #define UDF_MAX_INDIR_EXTS 16
2093 
2094 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2095                      struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2096 {
2097         int8_t etype;
2098         unsigned int indirections = 0;
2099 
2100         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2101                (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2102                 udf_pblk_t block;
2103 
2104                 if (++indirections > UDF_MAX_INDIR_EXTS) {
2105                         udf_err(inode->i_sb,
2106                                 "too many indirect extents in inode %lu\n",
2107                                 inode->i_ino);
2108                         return -1;
2109                 }
2110 
2111                 epos->block = *eloc;
2112                 epos->offset = sizeof(struct allocExtDesc);
2113                 brelse(epos->bh);
2114                 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2115                 epos->bh = udf_tread(inode->i_sb, block);
2116                 if (!epos->bh) {
2117                         udf_debug("reading block %u failed!\n", block);
2118                         return -1;
2119                 }
2120         }
2121 
2122         return etype;
2123 }
2124 
2125 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2126                         struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2127 {
2128         int alen;
2129         int8_t etype;
2130         uint8_t *ptr;
2131         struct short_ad *sad;
2132         struct long_ad *lad;
2133         struct udf_inode_info *iinfo = UDF_I(inode);
2134 
2135         if (!epos->bh) {
2136                 if (!epos->offset)
2137                         epos->offset = udf_file_entry_alloc_offset(inode);
2138                 ptr = iinfo->i_ext.i_data + epos->offset -
2139                         udf_file_entry_alloc_offset(inode) +
2140                         iinfo->i_lenEAttr;
2141                 alen = udf_file_entry_alloc_offset(inode) +
2142                                                         iinfo->i_lenAlloc;
2143         } else {
2144                 if (!epos->offset)
2145                         epos->offset = sizeof(struct allocExtDesc);
2146                 ptr = epos->bh->b_data + epos->offset;
2147                 alen = sizeof(struct allocExtDesc) +
2148                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2149                                                         lengthAllocDescs);
2150         }
2151 
2152         switch (iinfo->i_alloc_type) {
2153         case ICBTAG_FLAG_AD_SHORT:
2154                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2155                 if (!sad)
2156                         return -1;
2157                 etype = le32_to_cpu(sad->extLength) >> 30;
2158                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2159                 eloc->partitionReferenceNum =
2160                                 iinfo->i_location.partitionReferenceNum;
2161                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2162                 break;
2163         case ICBTAG_FLAG_AD_LONG:
2164                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2165                 if (!lad)
2166                         return -1;
2167                 etype = le32_to_cpu(lad->extLength) >> 30;
2168                 *eloc = lelb_to_cpu(lad->extLocation);
2169                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2170                 break;
2171         default:
2172                 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2173                 return -1;
2174         }
2175 
2176         return etype;
2177 }
2178 
2179 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2180                               struct kernel_lb_addr neloc, uint32_t nelen)
2181 {
2182         struct kernel_lb_addr oeloc;
2183         uint32_t oelen;
2184         int8_t etype;
2185 
2186         if (epos.bh)
2187                 get_bh(epos.bh);
2188 
2189         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2190                 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2191                 neloc = oeloc;
2192                 nelen = (etype << 30) | oelen;
2193         }
2194         udf_add_aext(inode, &epos, &neloc, nelen, 1);
2195         brelse(epos.bh);
2196 
2197         return (nelen >> 30);
2198 }
2199 
2200 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2201 {
2202         struct extent_position oepos;
2203         int adsize;
2204         int8_t etype;
2205         struct allocExtDesc *aed;
2206         struct udf_inode_info *iinfo;
2207         struct kernel_lb_addr eloc;
2208         uint32_t elen;
2209 
2210         if (epos.bh) {
2211                 get_bh(epos.bh);
2212                 get_bh(epos.bh);
2213         }
2214 
2215         iinfo = UDF_I(inode);
2216         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2217                 adsize = sizeof(struct short_ad);
2218         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2219                 adsize = sizeof(struct long_ad);
2220         else
2221                 adsize = 0;
2222 
2223         oepos = epos;
2224         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2225                 return -1;
2226 
2227         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2228                 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2229                 if (oepos.bh != epos.bh) {
2230                         oepos.block = epos.block;
2231                         brelse(oepos.bh);
2232                         get_bh(epos.bh);
2233                         oepos.bh = epos.bh;
2234                         oepos.offset = epos.offset - adsize;
2235                 }
2236         }
2237         memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2238         elen = 0;
2239 
2240         if (epos.bh != oepos.bh) {
2241                 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2242                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2243                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2244                 if (!oepos.bh) {
2245                         iinfo->i_lenAlloc -= (adsize * 2);
2246                         mark_inode_dirty(inode);
2247                 } else {
2248                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2249                         le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2250                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2251                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2252                                 udf_update_tag(oepos.bh->b_data,
2253                                                 oepos.offset - (2 * adsize));
2254                         else
2255                                 udf_update_tag(oepos.bh->b_data,
2256                                                 sizeof(struct allocExtDesc));
2257                         mark_buffer_dirty_inode(oepos.bh, inode);
2258                 }
2259         } else {
2260                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2261                 if (!oepos.bh) {
2262                         iinfo->i_lenAlloc -= adsize;
2263                         mark_inode_dirty(inode);
2264                 } else {
2265                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2266                         le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2267                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2268                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2269                                 udf_update_tag(oepos.bh->b_data,
2270                                                 epos.offset - adsize);
2271                         else
2272                                 udf_update_tag(oepos.bh->b_data,
2273                                                 sizeof(struct allocExtDesc));
2274                         mark_buffer_dirty_inode(oepos.bh, inode);
2275                 }
2276         }
2277 
2278         brelse(epos.bh);
2279         brelse(oepos.bh);
2280 
2281         return (elen >> 30);
2282 }
2283 
2284 int8_t inode_bmap(struct inode *inode, sector_t block,
2285                   struct extent_position *pos, struct kernel_lb_addr *eloc,
2286                   uint32_t *elen, sector_t *offset)
2287 {
2288         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2289         loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2290         int8_t etype;
2291         struct udf_inode_info *iinfo;
2292 
2293         iinfo = UDF_I(inode);
2294         if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2295                 pos->offset = 0;
2296                 pos->block = iinfo->i_location;
2297                 pos->bh = NULL;
2298         }
2299         *elen = 0;
2300         do {
2301                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2302                 if (etype == -1) {
2303                         *offset = (bcount - lbcount) >> blocksize_bits;
2304                         iinfo->i_lenExtents = lbcount;
2305                         return -1;
2306                 }
2307                 lbcount += *elen;
2308         } while (lbcount <= bcount);
2309         /* update extent cache */
2310         udf_update_extent_cache(inode, lbcount - *elen, pos);
2311         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2312 
2313         return etype;
2314 }
2315 
2316 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2317 {
2318         struct kernel_lb_addr eloc;
2319         uint32_t elen;
2320         sector_t offset;
2321         struct extent_position epos = {};
2322         udf_pblk_t ret;
2323 
2324         down_read(&UDF_I(inode)->i_data_sem);
2325 
2326         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2327                                                 (EXT_RECORDED_ALLOCATED >> 30))
2328                 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2329         else
2330                 ret = 0;
2331 
2332         up_read(&UDF_I(inode)->i_data_sem);
2333         brelse(epos.bh);
2334 
2335         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2336                 return udf_fixed_to_variable(ret);
2337         else
2338                 return ret;
2339 }
2340 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp