~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/udf/super.c

Version: ~ [ linux-5.4-rc7 ] ~ [ linux-5.3.11 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.84 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.154 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.201 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.201 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.77 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * super.c
  3  *
  4  * PURPOSE
  5  *  Super block routines for the OSTA-UDF(tm) filesystem.
  6  *
  7  * DESCRIPTION
  8  *  OSTA-UDF(tm) = Optical Storage Technology Association
  9  *  Universal Disk Format.
 10  *
 11  *  This code is based on version 2.00 of the UDF specification,
 12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
 13  *    http://www.osta.org/
 14  *    http://www.ecma.ch/
 15  *    http://www.iso.org/
 16  *
 17  * COPYRIGHT
 18  *  This file is distributed under the terms of the GNU General Public
 19  *  License (GPL). Copies of the GPL can be obtained from:
 20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 21  *  Each contributing author retains all rights to their own work.
 22  *
 23  *  (C) 1998 Dave Boynton
 24  *  (C) 1998-2004 Ben Fennema
 25  *  (C) 2000 Stelias Computing Inc
 26  *
 27  * HISTORY
 28  *
 29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
 30  *                added some debugging.
 31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
 32  *  10/16/98      attempting some multi-session support
 33  *  10/17/98      added freespace count for "df"
 34  *  11/11/98 gr   added novrs option
 35  *  11/26/98 dgb  added fileset,anchor mount options
 36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
 37  *                vol descs. rewrote option handling based on isofs
 38  *  12/20/98      find the free space bitmap (if it exists)
 39  */
 40 
 41 #include "udfdecl.h"
 42 
 43 #include <linux/blkdev.h>
 44 #include <linux/slab.h>
 45 #include <linux/kernel.h>
 46 #include <linux/module.h>
 47 #include <linux/parser.h>
 48 #include <linux/stat.h>
 49 #include <linux/cdrom.h>
 50 #include <linux/nls.h>
 51 #include <linux/smp_lock.h>
 52 #include <linux/buffer_head.h>
 53 #include <linux/vfs.h>
 54 #include <linux/vmalloc.h>
 55 #include <linux/errno.h>
 56 #include <linux/mount.h>
 57 #include <linux/seq_file.h>
 58 #include <linux/bitmap.h>
 59 #include <linux/crc-itu-t.h>
 60 #include <linux/log2.h>
 61 #include <asm/byteorder.h>
 62 
 63 #include "udf_sb.h"
 64 #include "udf_i.h"
 65 
 66 #include <linux/init.h>
 67 #include <asm/uaccess.h>
 68 
 69 #define VDS_POS_PRIMARY_VOL_DESC        0
 70 #define VDS_POS_UNALLOC_SPACE_DESC      1
 71 #define VDS_POS_LOGICAL_VOL_DESC        2
 72 #define VDS_POS_PARTITION_DESC          3
 73 #define VDS_POS_IMP_USE_VOL_DESC        4
 74 #define VDS_POS_VOL_DESC_PTR            5
 75 #define VDS_POS_TERMINATING_DESC        6
 76 #define VDS_POS_LENGTH                  7
 77 
 78 #define UDF_DEFAULT_BLOCKSIZE 2048
 79 
 80 static char error_buf[1024];
 81 
 82 /* These are the "meat" - everything else is stuffing */
 83 static int udf_fill_super(struct super_block *, void *, int);
 84 static void udf_put_super(struct super_block *);
 85 static int udf_sync_fs(struct super_block *, int);
 86 static int udf_remount_fs(struct super_block *, int *, char *);
 87 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
 88 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
 89                             struct kernel_lb_addr *);
 90 static void udf_load_fileset(struct super_block *, struct buffer_head *,
 91                              struct kernel_lb_addr *);
 92 static void udf_open_lvid(struct super_block *);
 93 static void udf_close_lvid(struct super_block *);
 94 static unsigned int udf_count_free(struct super_block *);
 95 static int udf_statfs(struct dentry *, struct kstatfs *);
 96 static int udf_show_options(struct seq_file *, struct vfsmount *);
 97 
 98 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
 99 {
100         struct logicalVolIntegrityDesc *lvid =
101                 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
102         __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
103         __u32 offset = number_of_partitions * 2 *
104                                 sizeof(uint32_t)/sizeof(uint8_t);
105         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
106 }
107 
108 /* UDF filesystem type */
109 static int udf_get_sb(struct file_system_type *fs_type,
110                       int flags, const char *dev_name, void *data,
111                       struct vfsmount *mnt)
112 {
113         return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
114 }
115 
116 static struct file_system_type udf_fstype = {
117         .owner          = THIS_MODULE,
118         .name           = "udf",
119         .get_sb         = udf_get_sb,
120         .kill_sb        = kill_block_super,
121         .fs_flags       = FS_REQUIRES_DEV,
122 };
123 
124 static struct kmem_cache *udf_inode_cachep;
125 
126 static struct inode *udf_alloc_inode(struct super_block *sb)
127 {
128         struct udf_inode_info *ei;
129         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
130         if (!ei)
131                 return NULL;
132 
133         ei->i_unique = 0;
134         ei->i_lenExtents = 0;
135         ei->i_next_alloc_block = 0;
136         ei->i_next_alloc_goal = 0;
137         ei->i_strat4096 = 0;
138 
139         return &ei->vfs_inode;
140 }
141 
142 static void udf_destroy_inode(struct inode *inode)
143 {
144         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145 }
146 
147 static void init_once(void *foo)
148 {
149         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
150 
151         ei->i_ext.i_data = NULL;
152         inode_init_once(&ei->vfs_inode);
153 }
154 
155 static int init_inodecache(void)
156 {
157         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
158                                              sizeof(struct udf_inode_info),
159                                              0, (SLAB_RECLAIM_ACCOUNT |
160                                                  SLAB_MEM_SPREAD),
161                                              init_once);
162         if (!udf_inode_cachep)
163                 return -ENOMEM;
164         return 0;
165 }
166 
167 static void destroy_inodecache(void)
168 {
169         kmem_cache_destroy(udf_inode_cachep);
170 }
171 
172 /* Superblock operations */
173 static const struct super_operations udf_sb_ops = {
174         .alloc_inode    = udf_alloc_inode,
175         .destroy_inode  = udf_destroy_inode,
176         .write_inode    = udf_write_inode,
177         .delete_inode   = udf_delete_inode,
178         .clear_inode    = udf_clear_inode,
179         .put_super      = udf_put_super,
180         .sync_fs        = udf_sync_fs,
181         .statfs         = udf_statfs,
182         .remount_fs     = udf_remount_fs,
183         .show_options   = udf_show_options,
184 };
185 
186 struct udf_options {
187         unsigned char novrs;
188         unsigned int blocksize;
189         unsigned int session;
190         unsigned int lastblock;
191         unsigned int anchor;
192         unsigned int volume;
193         unsigned short partition;
194         unsigned int fileset;
195         unsigned int rootdir;
196         unsigned int flags;
197         mode_t umask;
198         gid_t gid;
199         uid_t uid;
200         mode_t fmode;
201         mode_t dmode;
202         struct nls_table *nls_map;
203 };
204 
205 static int __init init_udf_fs(void)
206 {
207         int err;
208 
209         err = init_inodecache();
210         if (err)
211                 goto out1;
212         err = register_filesystem(&udf_fstype);
213         if (err)
214                 goto out;
215 
216         return 0;
217 
218 out:
219         destroy_inodecache();
220 
221 out1:
222         return err;
223 }
224 
225 static void __exit exit_udf_fs(void)
226 {
227         unregister_filesystem(&udf_fstype);
228         destroy_inodecache();
229 }
230 
231 module_init(init_udf_fs)
232 module_exit(exit_udf_fs)
233 
234 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
235 {
236         struct udf_sb_info *sbi = UDF_SB(sb);
237 
238         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
239                                   GFP_KERNEL);
240         if (!sbi->s_partmaps) {
241                 udf_error(sb, __func__,
242                           "Unable to allocate space for %d partition maps",
243                           count);
244                 sbi->s_partitions = 0;
245                 return -ENOMEM;
246         }
247 
248         sbi->s_partitions = count;
249         return 0;
250 }
251 
252 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
253 {
254         struct super_block *sb = mnt->mnt_sb;
255         struct udf_sb_info *sbi = UDF_SB(sb);
256 
257         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
258                 seq_puts(seq, ",nostrict");
259         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
260                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
261         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
262                 seq_puts(seq, ",unhide");
263         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
264                 seq_puts(seq, ",undelete");
265         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
266                 seq_puts(seq, ",noadinicb");
267         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
268                 seq_puts(seq, ",shortad");
269         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
270                 seq_puts(seq, ",uid=forget");
271         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
272                 seq_puts(seq, ",uid=ignore");
273         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
274                 seq_puts(seq, ",gid=forget");
275         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
276                 seq_puts(seq, ",gid=ignore");
277         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
278                 seq_printf(seq, ",uid=%u", sbi->s_uid);
279         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
280                 seq_printf(seq, ",gid=%u", sbi->s_gid);
281         if (sbi->s_umask != 0)
282                 seq_printf(seq, ",umask=%o", sbi->s_umask);
283         if (sbi->s_fmode != UDF_INVALID_MODE)
284                 seq_printf(seq, ",mode=%o", sbi->s_fmode);
285         if (sbi->s_dmode != UDF_INVALID_MODE)
286                 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
287         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
288                 seq_printf(seq, ",session=%u", sbi->s_session);
289         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
290                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
291         if (sbi->s_anchor != 0)
292                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
293         /*
294          * volume, partition, fileset and rootdir seem to be ignored
295          * currently
296          */
297         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
298                 seq_puts(seq, ",utf8");
299         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
300                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
301 
302         return 0;
303 }
304 
305 /*
306  * udf_parse_options
307  *
308  * PURPOSE
309  *      Parse mount options.
310  *
311  * DESCRIPTION
312  *      The following mount options are supported:
313  *
314  *      gid=            Set the default group.
315  *      umask=          Set the default umask.
316  *      mode=           Set the default file permissions.
317  *      dmode=          Set the default directory permissions.
318  *      uid=            Set the default user.
319  *      bs=             Set the block size.
320  *      unhide          Show otherwise hidden files.
321  *      undelete        Show deleted files in lists.
322  *      adinicb         Embed data in the inode (default)
323  *      noadinicb       Don't embed data in the inode
324  *      shortad         Use short ad's
325  *      longad          Use long ad's (default)
326  *      nostrict        Unset strict conformance
327  *      iocharset=      Set the NLS character set
328  *
329  *      The remaining are for debugging and disaster recovery:
330  *
331  *      novrs           Skip volume sequence recognition
332  *
333  *      The following expect a offset from 0.
334  *
335  *      session=        Set the CDROM session (default= last session)
336  *      anchor=         Override standard anchor location. (default= 256)
337  *      volume=         Override the VolumeDesc location. (unused)
338  *      partition=      Override the PartitionDesc location. (unused)
339  *      lastblock=      Set the last block of the filesystem/
340  *
341  *      The following expect a offset from the partition root.
342  *
343  *      fileset=        Override the fileset block location. (unused)
344  *      rootdir=        Override the root directory location. (unused)
345  *              WARNING: overriding the rootdir to a non-directory may
346  *              yield highly unpredictable results.
347  *
348  * PRE-CONDITIONS
349  *      options         Pointer to mount options string.
350  *      uopts           Pointer to mount options variable.
351  *
352  * POST-CONDITIONS
353  *      <return>        1       Mount options parsed okay.
354  *      <return>        0       Error parsing mount options.
355  *
356  * HISTORY
357  *      July 1, 1997 - Andrew E. Mileski
358  *      Written, tested, and released.
359  */
360 
361 enum {
362         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
363         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
364         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
365         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
366         Opt_rootdir, Opt_utf8, Opt_iocharset,
367         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
368         Opt_fmode, Opt_dmode
369 };
370 
371 static const match_table_t tokens = {
372         {Opt_novrs,     "novrs"},
373         {Opt_nostrict,  "nostrict"},
374         {Opt_bs,        "bs=%u"},
375         {Opt_unhide,    "unhide"},
376         {Opt_undelete,  "undelete"},
377         {Opt_noadinicb, "noadinicb"},
378         {Opt_adinicb,   "adinicb"},
379         {Opt_shortad,   "shortad"},
380         {Opt_longad,    "longad"},
381         {Opt_uforget,   "uid=forget"},
382         {Opt_uignore,   "uid=ignore"},
383         {Opt_gforget,   "gid=forget"},
384         {Opt_gignore,   "gid=ignore"},
385         {Opt_gid,       "gid=%u"},
386         {Opt_uid,       "uid=%u"},
387         {Opt_umask,     "umask=%o"},
388         {Opt_session,   "session=%u"},
389         {Opt_lastblock, "lastblock=%u"},
390         {Opt_anchor,    "anchor=%u"},
391         {Opt_volume,    "volume=%u"},
392         {Opt_partition, "partition=%u"},
393         {Opt_fileset,   "fileset=%u"},
394         {Opt_rootdir,   "rootdir=%u"},
395         {Opt_utf8,      "utf8"},
396         {Opt_iocharset, "iocharset=%s"},
397         {Opt_fmode,     "mode=%o"},
398         {Opt_dmode,     "dmode=%o"},
399         {Opt_err,       NULL}
400 };
401 
402 static int udf_parse_options(char *options, struct udf_options *uopt,
403                              bool remount)
404 {
405         char *p;
406         int option;
407 
408         uopt->novrs = 0;
409         uopt->partition = 0xFFFF;
410         uopt->session = 0xFFFFFFFF;
411         uopt->lastblock = 0;
412         uopt->anchor = 0;
413         uopt->volume = 0xFFFFFFFF;
414         uopt->rootdir = 0xFFFFFFFF;
415         uopt->fileset = 0xFFFFFFFF;
416         uopt->nls_map = NULL;
417 
418         if (!options)
419                 return 1;
420 
421         while ((p = strsep(&options, ",")) != NULL) {
422                 substring_t args[MAX_OPT_ARGS];
423                 int token;
424                 if (!*p)
425                         continue;
426 
427                 token = match_token(p, tokens, args);
428                 switch (token) {
429                 case Opt_novrs:
430                         uopt->novrs = 1;
431                         break;
432                 case Opt_bs:
433                         if (match_int(&args[0], &option))
434                                 return 0;
435                         uopt->blocksize = option;
436                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
437                         break;
438                 case Opt_unhide:
439                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
440                         break;
441                 case Opt_undelete:
442                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
443                         break;
444                 case Opt_noadinicb:
445                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
446                         break;
447                 case Opt_adinicb:
448                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
449                         break;
450                 case Opt_shortad:
451                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
452                         break;
453                 case Opt_longad:
454                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
455                         break;
456                 case Opt_gid:
457                         if (match_int(args, &option))
458                                 return 0;
459                         uopt->gid = option;
460                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
461                         break;
462                 case Opt_uid:
463                         if (match_int(args, &option))
464                                 return 0;
465                         uopt->uid = option;
466                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
467                         break;
468                 case Opt_umask:
469                         if (match_octal(args, &option))
470                                 return 0;
471                         uopt->umask = option;
472                         break;
473                 case Opt_nostrict:
474                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
475                         break;
476                 case Opt_session:
477                         if (match_int(args, &option))
478                                 return 0;
479                         uopt->session = option;
480                         if (!remount)
481                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
482                         break;
483                 case Opt_lastblock:
484                         if (match_int(args, &option))
485                                 return 0;
486                         uopt->lastblock = option;
487                         if (!remount)
488                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
489                         break;
490                 case Opt_anchor:
491                         if (match_int(args, &option))
492                                 return 0;
493                         uopt->anchor = option;
494                         break;
495                 case Opt_volume:
496                         if (match_int(args, &option))
497                                 return 0;
498                         uopt->volume = option;
499                         break;
500                 case Opt_partition:
501                         if (match_int(args, &option))
502                                 return 0;
503                         uopt->partition = option;
504                         break;
505                 case Opt_fileset:
506                         if (match_int(args, &option))
507                                 return 0;
508                         uopt->fileset = option;
509                         break;
510                 case Opt_rootdir:
511                         if (match_int(args, &option))
512                                 return 0;
513                         uopt->rootdir = option;
514                         break;
515                 case Opt_utf8:
516                         uopt->flags |= (1 << UDF_FLAG_UTF8);
517                         break;
518 #ifdef CONFIG_UDF_NLS
519                 case Opt_iocharset:
520                         uopt->nls_map = load_nls(args[0].from);
521                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
522                         break;
523 #endif
524                 case Opt_uignore:
525                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
526                         break;
527                 case Opt_uforget:
528                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
529                         break;
530                 case Opt_gignore:
531                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
532                         break;
533                 case Opt_gforget:
534                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
535                         break;
536                 case Opt_fmode:
537                         if (match_octal(args, &option))
538                                 return 0;
539                         uopt->fmode = option & 0777;
540                         break;
541                 case Opt_dmode:
542                         if (match_octal(args, &option))
543                                 return 0;
544                         uopt->dmode = option & 0777;
545                         break;
546                 default:
547                         printk(KERN_ERR "udf: bad mount option \"%s\" "
548                                "or missing value\n", p);
549                         return 0;
550                 }
551         }
552         return 1;
553 }
554 
555 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
556 {
557         struct udf_options uopt;
558         struct udf_sb_info *sbi = UDF_SB(sb);
559 
560         uopt.flags = sbi->s_flags;
561         uopt.uid   = sbi->s_uid;
562         uopt.gid   = sbi->s_gid;
563         uopt.umask = sbi->s_umask;
564         uopt.fmode = sbi->s_fmode;
565         uopt.dmode = sbi->s_dmode;
566 
567         if (!udf_parse_options(options, &uopt, true))
568                 return -EINVAL;
569 
570         lock_kernel();
571         sbi->s_flags = uopt.flags;
572         sbi->s_uid   = uopt.uid;
573         sbi->s_gid   = uopt.gid;
574         sbi->s_umask = uopt.umask;
575         sbi->s_fmode = uopt.fmode;
576         sbi->s_dmode = uopt.dmode;
577 
578         if (sbi->s_lvid_bh) {
579                 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
580                 if (write_rev > UDF_MAX_WRITE_VERSION)
581                         *flags |= MS_RDONLY;
582         }
583 
584         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
585                 unlock_kernel();
586                 return 0;
587         }
588         if (*flags & MS_RDONLY)
589                 udf_close_lvid(sb);
590         else
591                 udf_open_lvid(sb);
592 
593         unlock_kernel();
594         return 0;
595 }
596 
597 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
598 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
599 static loff_t udf_check_vsd(struct super_block *sb)
600 {
601         struct volStructDesc *vsd = NULL;
602         loff_t sector = 32768;
603         int sectorsize;
604         struct buffer_head *bh = NULL;
605         int nsr02 = 0;
606         int nsr03 = 0;
607         struct udf_sb_info *sbi;
608 
609         sbi = UDF_SB(sb);
610         if (sb->s_blocksize < sizeof(struct volStructDesc))
611                 sectorsize = sizeof(struct volStructDesc);
612         else
613                 sectorsize = sb->s_blocksize;
614 
615         sector += (sbi->s_session << sb->s_blocksize_bits);
616 
617         udf_debug("Starting at sector %u (%ld byte sectors)\n",
618                   (unsigned int)(sector >> sb->s_blocksize_bits),
619                   sb->s_blocksize);
620         /* Process the sequence (if applicable) */
621         for (; !nsr02 && !nsr03; sector += sectorsize) {
622                 /* Read a block */
623                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
624                 if (!bh)
625                         break;
626 
627                 /* Look for ISO  descriptors */
628                 vsd = (struct volStructDesc *)(bh->b_data +
629                                               (sector & (sb->s_blocksize - 1)));
630 
631                 if (vsd->stdIdent[0] == 0) {
632                         brelse(bh);
633                         break;
634                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
635                                     VSD_STD_ID_LEN)) {
636                         switch (vsd->structType) {
637                         case 0:
638                                 udf_debug("ISO9660 Boot Record found\n");
639                                 break;
640                         case 1:
641                                 udf_debug("ISO9660 Primary Volume Descriptor "
642                                           "found\n");
643                                 break;
644                         case 2:
645                                 udf_debug("ISO9660 Supplementary Volume "
646                                           "Descriptor found\n");
647                                 break;
648                         case 3:
649                                 udf_debug("ISO9660 Volume Partition Descriptor "
650                                           "found\n");
651                                 break;
652                         case 255:
653                                 udf_debug("ISO9660 Volume Descriptor Set "
654                                           "Terminator found\n");
655                                 break;
656                         default:
657                                 udf_debug("ISO9660 VRS (%u) found\n",
658                                           vsd->structType);
659                                 break;
660                         }
661                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
662                                     VSD_STD_ID_LEN))
663                         ; /* nothing */
664                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
665                                     VSD_STD_ID_LEN)) {
666                         brelse(bh);
667                         break;
668                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
669                                     VSD_STD_ID_LEN))
670                         nsr02 = sector;
671                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
672                                     VSD_STD_ID_LEN))
673                         nsr03 = sector;
674                 brelse(bh);
675         }
676 
677         if (nsr03)
678                 return nsr03;
679         else if (nsr02)
680                 return nsr02;
681         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
682                 return -1;
683         else
684                 return 0;
685 }
686 
687 static int udf_find_fileset(struct super_block *sb,
688                             struct kernel_lb_addr *fileset,
689                             struct kernel_lb_addr *root)
690 {
691         struct buffer_head *bh = NULL;
692         long lastblock;
693         uint16_t ident;
694         struct udf_sb_info *sbi;
695 
696         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
697             fileset->partitionReferenceNum != 0xFFFF) {
698                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
699 
700                 if (!bh) {
701                         return 1;
702                 } else if (ident != TAG_IDENT_FSD) {
703                         brelse(bh);
704                         return 1;
705                 }
706 
707         }
708 
709         sbi = UDF_SB(sb);
710         if (!bh) {
711                 /* Search backwards through the partitions */
712                 struct kernel_lb_addr newfileset;
713 
714 /* --> cvg: FIXME - is it reasonable? */
715                 return 1;
716 
717                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
718                      (newfileset.partitionReferenceNum != 0xFFFF &&
719                       fileset->logicalBlockNum == 0xFFFFFFFF &&
720                       fileset->partitionReferenceNum == 0xFFFF);
721                      newfileset.partitionReferenceNum--) {
722                         lastblock = sbi->s_partmaps
723                                         [newfileset.partitionReferenceNum]
724                                                 .s_partition_len;
725                         newfileset.logicalBlockNum = 0;
726 
727                         do {
728                                 bh = udf_read_ptagged(sb, &newfileset, 0,
729                                                       &ident);
730                                 if (!bh) {
731                                         newfileset.logicalBlockNum++;
732                                         continue;
733                                 }
734 
735                                 switch (ident) {
736                                 case TAG_IDENT_SBD:
737                                 {
738                                         struct spaceBitmapDesc *sp;
739                                         sp = (struct spaceBitmapDesc *)
740                                                                 bh->b_data;
741                                         newfileset.logicalBlockNum += 1 +
742                                                 ((le32_to_cpu(sp->numOfBytes) +
743                                                   sizeof(struct spaceBitmapDesc)
744                                                   - 1) >> sb->s_blocksize_bits);
745                                         brelse(bh);
746                                         break;
747                                 }
748                                 case TAG_IDENT_FSD:
749                                         *fileset = newfileset;
750                                         break;
751                                 default:
752                                         newfileset.logicalBlockNum++;
753                                         brelse(bh);
754                                         bh = NULL;
755                                         break;
756                                 }
757                         } while (newfileset.logicalBlockNum < lastblock &&
758                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
759                                  fileset->partitionReferenceNum == 0xFFFF);
760                 }
761         }
762 
763         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
764              fileset->partitionReferenceNum != 0xFFFF) && bh) {
765                 udf_debug("Fileset at block=%d, partition=%d\n",
766                           fileset->logicalBlockNum,
767                           fileset->partitionReferenceNum);
768 
769                 sbi->s_partition = fileset->partitionReferenceNum;
770                 udf_load_fileset(sb, bh, root);
771                 brelse(bh);
772                 return 0;
773         }
774         return 1;
775 }
776 
777 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
778 {
779         struct primaryVolDesc *pvoldesc;
780         struct ustr *instr, *outstr;
781         struct buffer_head *bh;
782         uint16_t ident;
783         int ret = 1;
784 
785         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
786         if (!instr)
787                 return 1;
788 
789         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
790         if (!outstr)
791                 goto out1;
792 
793         bh = udf_read_tagged(sb, block, block, &ident);
794         if (!bh)
795                 goto out2;
796 
797         BUG_ON(ident != TAG_IDENT_PVD);
798 
799         pvoldesc = (struct primaryVolDesc *)bh->b_data;
800 
801         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
802                               pvoldesc->recordingDateAndTime)) {
803 #ifdef UDFFS_DEBUG
804                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
805                 udf_debug("recording time %04u/%02u/%02u"
806                           " %02u:%02u (%x)\n",
807                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
808                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
809 #endif
810         }
811 
812         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
813                 if (udf_CS0toUTF8(outstr, instr)) {
814                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
815                                 outstr->u_len > 31 ? 31 : outstr->u_len);
816                         udf_debug("volIdent[] = '%s'\n",
817                                         UDF_SB(sb)->s_volume_ident);
818                 }
819 
820         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
821                 if (udf_CS0toUTF8(outstr, instr))
822                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
823 
824         brelse(bh);
825         ret = 0;
826 out2:
827         kfree(outstr);
828 out1:
829         kfree(instr);
830         return ret;
831 }
832 
833 static int udf_load_metadata_files(struct super_block *sb, int partition)
834 {
835         struct udf_sb_info *sbi = UDF_SB(sb);
836         struct udf_part_map *map;
837         struct udf_meta_data *mdata;
838         struct kernel_lb_addr addr;
839         int fe_error = 0;
840 
841         map = &sbi->s_partmaps[partition];
842         mdata = &map->s_type_specific.s_metadata;
843 
844         /* metadata address */
845         addr.logicalBlockNum =  mdata->s_meta_file_loc;
846         addr.partitionReferenceNum = map->s_partition_num;
847 
848         udf_debug("Metadata file location: block = %d part = %d\n",
849                           addr.logicalBlockNum, addr.partitionReferenceNum);
850 
851         mdata->s_metadata_fe = udf_iget(sb, &addr);
852 
853         if (mdata->s_metadata_fe == NULL) {
854                 udf_warning(sb, __func__, "metadata inode efe not found, "
855                                 "will try mirror inode.");
856                 fe_error = 1;
857         } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
858                  ICBTAG_FLAG_AD_SHORT) {
859                 udf_warning(sb, __func__, "metadata inode efe does not have "
860                         "short allocation descriptors!");
861                 fe_error = 1;
862                 iput(mdata->s_metadata_fe);
863                 mdata->s_metadata_fe = NULL;
864         }
865 
866         /* mirror file entry */
867         addr.logicalBlockNum = mdata->s_mirror_file_loc;
868         addr.partitionReferenceNum = map->s_partition_num;
869 
870         udf_debug("Mirror metadata file location: block = %d part = %d\n",
871                           addr.logicalBlockNum, addr.partitionReferenceNum);
872 
873         mdata->s_mirror_fe = udf_iget(sb, &addr);
874 
875         if (mdata->s_mirror_fe == NULL) {
876                 if (fe_error) {
877                         udf_error(sb, __func__, "mirror inode efe not found "
878                         "and metadata inode is missing too, exiting...");
879                         goto error_exit;
880                 } else
881                         udf_warning(sb, __func__, "mirror inode efe not found,"
882                                         " but metadata inode is OK");
883         } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
884                  ICBTAG_FLAG_AD_SHORT) {
885                 udf_warning(sb, __func__, "mirror inode efe does not have "
886                         "short allocation descriptors!");
887                 iput(mdata->s_mirror_fe);
888                 mdata->s_mirror_fe = NULL;
889                 if (fe_error)
890                         goto error_exit;
891         }
892 
893         /*
894          * bitmap file entry
895          * Note:
896          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
897         */
898         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
899                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
900                 addr.partitionReferenceNum = map->s_partition_num;
901 
902                 udf_debug("Bitmap file location: block = %d part = %d\n",
903                         addr.logicalBlockNum, addr.partitionReferenceNum);
904 
905                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
906 
907                 if (mdata->s_bitmap_fe == NULL) {
908                         if (sb->s_flags & MS_RDONLY)
909                                 udf_warning(sb, __func__, "bitmap inode efe "
910                                         "not found but it's ok since the disc"
911                                         " is mounted read-only");
912                         else {
913                                 udf_error(sb, __func__, "bitmap inode efe not "
914                                         "found and attempted read-write mount");
915                                 goto error_exit;
916                         }
917                 }
918         }
919 
920         udf_debug("udf_load_metadata_files Ok\n");
921 
922         return 0;
923 
924 error_exit:
925         return 1;
926 }
927 
928 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
929                              struct kernel_lb_addr *root)
930 {
931         struct fileSetDesc *fset;
932 
933         fset = (struct fileSetDesc *)bh->b_data;
934 
935         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
936 
937         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
938 
939         udf_debug("Rootdir at block=%d, partition=%d\n",
940                   root->logicalBlockNum, root->partitionReferenceNum);
941 }
942 
943 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
944 {
945         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
946         return DIV_ROUND_UP(map->s_partition_len +
947                             (sizeof(struct spaceBitmapDesc) << 3),
948                             sb->s_blocksize * 8);
949 }
950 
951 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
952 {
953         struct udf_bitmap *bitmap;
954         int nr_groups;
955         int size;
956 
957         nr_groups = udf_compute_nr_groups(sb, index);
958         size = sizeof(struct udf_bitmap) +
959                 (sizeof(struct buffer_head *) * nr_groups);
960 
961         if (size <= PAGE_SIZE)
962                 bitmap = kmalloc(size, GFP_KERNEL);
963         else
964                 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
965 
966         if (bitmap == NULL) {
967                 udf_error(sb, __func__,
968                           "Unable to allocate space for bitmap "
969                           "and %d buffer_head pointers", nr_groups);
970                 return NULL;
971         }
972 
973         memset(bitmap, 0x00, size);
974         bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
975         bitmap->s_nr_groups = nr_groups;
976         return bitmap;
977 }
978 
979 static int udf_fill_partdesc_info(struct super_block *sb,
980                 struct partitionDesc *p, int p_index)
981 {
982         struct udf_part_map *map;
983         struct udf_sb_info *sbi = UDF_SB(sb);
984         struct partitionHeaderDesc *phd;
985 
986         map = &sbi->s_partmaps[p_index];
987 
988         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
989         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
990 
991         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
992                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
993         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
994                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
995         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
996                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
997         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
998                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
999 
1000         udf_debug("Partition (%d type %x) starts at physical %d, "
1001                   "block length %d\n", p_index,
1002                   map->s_partition_type, map->s_partition_root,
1003                   map->s_partition_len);
1004 
1005         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1006             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1007                 return 0;
1008 
1009         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1010         if (phd->unallocSpaceTable.extLength) {
1011                 struct kernel_lb_addr loc = {
1012                         .logicalBlockNum = le32_to_cpu(
1013                                 phd->unallocSpaceTable.extPosition),
1014                         .partitionReferenceNum = p_index,
1015                 };
1016 
1017                 map->s_uspace.s_table = udf_iget(sb, &loc);
1018                 if (!map->s_uspace.s_table) {
1019                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1020                                         p_index);
1021                         return 1;
1022                 }
1023                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1024                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1025                                 p_index, map->s_uspace.s_table->i_ino);
1026         }
1027 
1028         if (phd->unallocSpaceBitmap.extLength) {
1029                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1030                 if (!bitmap)
1031                         return 1;
1032                 map->s_uspace.s_bitmap = bitmap;
1033                 bitmap->s_extLength = le32_to_cpu(
1034                                 phd->unallocSpaceBitmap.extLength);
1035                 bitmap->s_extPosition = le32_to_cpu(
1036                                 phd->unallocSpaceBitmap.extPosition);
1037                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1038                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1039                                                 bitmap->s_extPosition);
1040         }
1041 
1042         if (phd->partitionIntegrityTable.extLength)
1043                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1044 
1045         if (phd->freedSpaceTable.extLength) {
1046                 struct kernel_lb_addr loc = {
1047                         .logicalBlockNum = le32_to_cpu(
1048                                 phd->freedSpaceTable.extPosition),
1049                         .partitionReferenceNum = p_index,
1050                 };
1051 
1052                 map->s_fspace.s_table = udf_iget(sb, &loc);
1053                 if (!map->s_fspace.s_table) {
1054                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1055                                 p_index);
1056                         return 1;
1057                 }
1058 
1059                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1060                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1061                                 p_index, map->s_fspace.s_table->i_ino);
1062         }
1063 
1064         if (phd->freedSpaceBitmap.extLength) {
1065                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1066                 if (!bitmap)
1067                         return 1;
1068                 map->s_fspace.s_bitmap = bitmap;
1069                 bitmap->s_extLength = le32_to_cpu(
1070                                 phd->freedSpaceBitmap.extLength);
1071                 bitmap->s_extPosition = le32_to_cpu(
1072                                 phd->freedSpaceBitmap.extPosition);
1073                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1074                 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1075                                         bitmap->s_extPosition);
1076         }
1077         return 0;
1078 }
1079 
1080 static void udf_find_vat_block(struct super_block *sb, int p_index,
1081                                int type1_index, sector_t start_block)
1082 {
1083         struct udf_sb_info *sbi = UDF_SB(sb);
1084         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1085         sector_t vat_block;
1086         struct kernel_lb_addr ino;
1087 
1088         /*
1089          * VAT file entry is in the last recorded block. Some broken disks have
1090          * it a few blocks before so try a bit harder...
1091          */
1092         ino.partitionReferenceNum = type1_index;
1093         for (vat_block = start_block;
1094              vat_block >= map->s_partition_root &&
1095              vat_block >= start_block - 3 &&
1096              !sbi->s_vat_inode; vat_block--) {
1097                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1098                 sbi->s_vat_inode = udf_iget(sb, &ino);
1099         }
1100 }
1101 
1102 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1103 {
1104         struct udf_sb_info *sbi = UDF_SB(sb);
1105         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1106         struct buffer_head *bh = NULL;
1107         struct udf_inode_info *vati;
1108         uint32_t pos;
1109         struct virtualAllocationTable20 *vat20;
1110         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1111 
1112         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1113         if (!sbi->s_vat_inode &&
1114             sbi->s_last_block != blocks - 1) {
1115                 printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the"
1116                        " last recorded block (%lu), retrying with the last "
1117                        "block of the device (%lu).\n",
1118                        (unsigned long)sbi->s_last_block,
1119                        (unsigned long)blocks - 1);
1120                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1121         }
1122         if (!sbi->s_vat_inode)
1123                 return 1;
1124 
1125         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1126                 map->s_type_specific.s_virtual.s_start_offset = 0;
1127                 map->s_type_specific.s_virtual.s_num_entries =
1128                         (sbi->s_vat_inode->i_size - 36) >> 2;
1129         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1130                 vati = UDF_I(sbi->s_vat_inode);
1131                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1132                         pos = udf_block_map(sbi->s_vat_inode, 0);
1133                         bh = sb_bread(sb, pos);
1134                         if (!bh)
1135                                 return 1;
1136                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1137                 } else {
1138                         vat20 = (struct virtualAllocationTable20 *)
1139                                                         vati->i_ext.i_data;
1140                 }
1141 
1142                 map->s_type_specific.s_virtual.s_start_offset =
1143                         le16_to_cpu(vat20->lengthHeader);
1144                 map->s_type_specific.s_virtual.s_num_entries =
1145                         (sbi->s_vat_inode->i_size -
1146                                 map->s_type_specific.s_virtual.
1147                                         s_start_offset) >> 2;
1148                 brelse(bh);
1149         }
1150         return 0;
1151 }
1152 
1153 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1154 {
1155         struct buffer_head *bh;
1156         struct partitionDesc *p;
1157         struct udf_part_map *map;
1158         struct udf_sb_info *sbi = UDF_SB(sb);
1159         int i, type1_idx;
1160         uint16_t partitionNumber;
1161         uint16_t ident;
1162         int ret = 0;
1163 
1164         bh = udf_read_tagged(sb, block, block, &ident);
1165         if (!bh)
1166                 return 1;
1167         if (ident != TAG_IDENT_PD)
1168                 goto out_bh;
1169 
1170         p = (struct partitionDesc *)bh->b_data;
1171         partitionNumber = le16_to_cpu(p->partitionNumber);
1172 
1173         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1174         for (i = 0; i < sbi->s_partitions; i++) {
1175                 map = &sbi->s_partmaps[i];
1176                 udf_debug("Searching map: (%d == %d)\n",
1177                           map->s_partition_num, partitionNumber);
1178                 if (map->s_partition_num == partitionNumber &&
1179                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1180                      map->s_partition_type == UDF_SPARABLE_MAP15))
1181                         break;
1182         }
1183 
1184         if (i >= sbi->s_partitions) {
1185                 udf_debug("Partition (%d) not found in partition map\n",
1186                           partitionNumber);
1187                 goto out_bh;
1188         }
1189 
1190         ret = udf_fill_partdesc_info(sb, p, i);
1191 
1192         /*
1193          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1194          * PHYSICAL partitions are already set up
1195          */
1196         type1_idx = i;
1197         for (i = 0; i < sbi->s_partitions; i++) {
1198                 map = &sbi->s_partmaps[i];
1199 
1200                 if (map->s_partition_num == partitionNumber &&
1201                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1202                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1203                      map->s_partition_type == UDF_METADATA_MAP25))
1204                         break;
1205         }
1206 
1207         if (i >= sbi->s_partitions)
1208                 goto out_bh;
1209 
1210         ret = udf_fill_partdesc_info(sb, p, i);
1211         if (ret)
1212                 goto out_bh;
1213 
1214         if (map->s_partition_type == UDF_METADATA_MAP25) {
1215                 ret = udf_load_metadata_files(sb, i);
1216                 if (ret) {
1217                         printk(KERN_ERR "UDF-fs: error loading MetaData "
1218                         "partition map %d\n", i);
1219                         goto out_bh;
1220                 }
1221         } else {
1222                 ret = udf_load_vat(sb, i, type1_idx);
1223                 if (ret)
1224                         goto out_bh;
1225                 /*
1226                  * Mark filesystem read-only if we have a partition with
1227                  * virtual map since we don't handle writing to it (we
1228                  * overwrite blocks instead of relocating them).
1229                  */
1230                 sb->s_flags |= MS_RDONLY;
1231                 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1232                         "because writing to pseudooverwrite partition is "
1233                         "not implemented.\n");
1234         }
1235 out_bh:
1236         /* In case loading failed, we handle cleanup in udf_fill_super */
1237         brelse(bh);
1238         return ret;
1239 }
1240 
1241 static int udf_load_sparable_map(struct super_block *sb,
1242                                  struct udf_part_map *map,
1243                                  struct sparablePartitionMap *spm)
1244 {
1245         uint32_t loc;
1246         uint16_t ident;
1247         struct sparingTable *st;
1248         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1249         int i;
1250         struct buffer_head *bh;
1251 
1252         map->s_partition_type = UDF_SPARABLE_MAP15;
1253         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1254         if (!is_power_of_2(sdata->s_packet_len)) {
1255                 udf_error(sb, __func__, "error loading logical volume descriptor: "
1256                         "Invalid packet length %u\n",
1257                         (unsigned)sdata->s_packet_len);
1258                 return -EIO;
1259         }
1260         if (spm->numSparingTables > 4) {
1261                 udf_error(sb, __func__, "error loading logical volume descriptor: "
1262                         "Too many sparing tables (%d)\n",
1263                         (int)spm->numSparingTables);
1264                 return -EIO;
1265         }
1266 
1267         for (i = 0; i < spm->numSparingTables; i++) {
1268                 loc = le32_to_cpu(spm->locSparingTable[i]);
1269                 bh = udf_read_tagged(sb, loc, loc, &ident);
1270                 if (!bh)
1271                         continue;
1272 
1273                 st = (struct sparingTable *)bh->b_data;
1274                 if (ident != 0 ||
1275                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1276                             strlen(UDF_ID_SPARING)) ||
1277                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1278                                                         sb->s_blocksize) {
1279                         brelse(bh);
1280                         continue;
1281                 }
1282 
1283                 sdata->s_spar_map[i] = bh;
1284         }
1285         map->s_partition_func = udf_get_pblock_spar15;
1286         return 0;
1287 }
1288 
1289 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1290                                struct kernel_lb_addr *fileset)
1291 {
1292         struct logicalVolDesc *lvd;
1293         int i, offset;
1294         uint8_t type;
1295         struct udf_sb_info *sbi = UDF_SB(sb);
1296         struct genericPartitionMap *gpm;
1297         uint16_t ident;
1298         struct buffer_head *bh;
1299         unsigned int table_len;
1300         int ret = 0;
1301 
1302         bh = udf_read_tagged(sb, block, block, &ident);
1303         if (!bh)
1304                 return 1;
1305         BUG_ON(ident != TAG_IDENT_LVD);
1306         lvd = (struct logicalVolDesc *)bh->b_data;
1307 
1308         table_len = le32_to_cpu(lvd->mapTableLength);
1309         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1310                 udf_error(sb, __func__, "error loading logical volume descriptor: "
1311                           "Partition table too long (%u > %lu)\n", table_len,
1312                           sb->s_blocksize - sizeof(*lvd));
1313                 ret = 1;
1314                 goto out_bh;
1315         }
1316 
1317         i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1318         if (i != 0) {
1319                 ret = i;
1320                 goto out_bh;
1321         }
1322 
1323         for (i = 0, offset = 0;
1324              i < sbi->s_partitions && offset < table_len;
1325              i++, offset += gpm->partitionMapLength) {
1326                 struct udf_part_map *map = &sbi->s_partmaps[i];
1327                 gpm = (struct genericPartitionMap *)
1328                                 &(lvd->partitionMaps[offset]);
1329                 type = gpm->partitionMapType;
1330                 if (type == 1) {
1331                         struct genericPartitionMap1 *gpm1 =
1332                                 (struct genericPartitionMap1 *)gpm;
1333                         map->s_partition_type = UDF_TYPE1_MAP15;
1334                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1335                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1336                         map->s_partition_func = NULL;
1337                 } else if (type == 2) {
1338                         struct udfPartitionMap2 *upm2 =
1339                                                 (struct udfPartitionMap2 *)gpm;
1340                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1341                                                 strlen(UDF_ID_VIRTUAL))) {
1342                                 u16 suf =
1343                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1344                                                         identSuffix)[0]);
1345                                 if (suf < 0x0200) {
1346                                         map->s_partition_type =
1347                                                         UDF_VIRTUAL_MAP15;
1348                                         map->s_partition_func =
1349                                                         udf_get_pblock_virt15;
1350                                 } else {
1351                                         map->s_partition_type =
1352                                                         UDF_VIRTUAL_MAP20;
1353                                         map->s_partition_func =
1354                                                         udf_get_pblock_virt20;
1355                                 }
1356                         } else if (!strncmp(upm2->partIdent.ident,
1357                                                 UDF_ID_SPARABLE,
1358                                                 strlen(UDF_ID_SPARABLE))) {
1359                                 if (udf_load_sparable_map(sb, map,
1360                                     (struct sparablePartitionMap *)gpm) < 0) {
1361                                         ret = 1;
1362                                         goto out_bh;
1363                                 }
1364                         } else if (!strncmp(upm2->partIdent.ident,
1365                                                 UDF_ID_METADATA,
1366                                                 strlen(UDF_ID_METADATA))) {
1367                                 struct udf_meta_data *mdata =
1368                                         &map->s_type_specific.s_metadata;
1369                                 struct metadataPartitionMap *mdm =
1370                                                 (struct metadataPartitionMap *)
1371                                                 &(lvd->partitionMaps[offset]);
1372                                 udf_debug("Parsing Logical vol part %d "
1373                                         "type %d  id=%s\n", i, type,
1374                                         UDF_ID_METADATA);
1375 
1376                                 map->s_partition_type = UDF_METADATA_MAP25;
1377                                 map->s_partition_func = udf_get_pblock_meta25;
1378 
1379                                 mdata->s_meta_file_loc   =
1380                                         le32_to_cpu(mdm->metadataFileLoc);
1381                                 mdata->s_mirror_file_loc =
1382                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1383                                 mdata->s_bitmap_file_loc =
1384                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1385                                 mdata->s_alloc_unit_size =
1386                                         le32_to_cpu(mdm->allocUnitSize);
1387                                 mdata->s_align_unit_size =
1388                                         le16_to_cpu(mdm->alignUnitSize);
1389                                 mdata->s_dup_md_flag     =
1390                                         mdm->flags & 0x01;
1391 
1392                                 udf_debug("Metadata Ident suffix=0x%x\n",
1393                                         (le16_to_cpu(
1394                                          ((__le16 *)
1395                                               mdm->partIdent.identSuffix)[0])));
1396                                 udf_debug("Metadata part num=%d\n",
1397                                         le16_to_cpu(mdm->partitionNum));
1398                                 udf_debug("Metadata part alloc unit size=%d\n",
1399                                         le32_to_cpu(mdm->allocUnitSize));
1400                                 udf_debug("Metadata file loc=%d\n",
1401                                         le32_to_cpu(mdm->metadataFileLoc));
1402                                 udf_debug("Mirror file loc=%d\n",
1403                                        le32_to_cpu(mdm->metadataMirrorFileLoc));
1404                                 udf_debug("Bitmap file loc=%d\n",
1405                                        le32_to_cpu(mdm->metadataBitmapFileLoc));
1406                                 udf_debug("Duplicate Flag: %d %d\n",
1407                                         mdata->s_dup_md_flag, mdm->flags);
1408                         } else {
1409                                 udf_debug("Unknown ident: %s\n",
1410                                           upm2->partIdent.ident);
1411                                 continue;
1412                         }
1413                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1414                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1415                 }
1416                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1417                           i, map->s_partition_num, type,
1418                           map->s_volumeseqnum);
1419         }
1420 
1421         if (fileset) {
1422                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1423 
1424                 *fileset = lelb_to_cpu(la->extLocation);
1425                 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1426                           "partition=%d\n", fileset->logicalBlockNum,
1427                           fileset->partitionReferenceNum);
1428         }
1429         if (lvd->integritySeqExt.extLength)
1430                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1431 
1432 out_bh:
1433         brelse(bh);
1434         return ret;
1435 }
1436 
1437 /*
1438  * udf_load_logicalvolint
1439  *
1440  */
1441 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1442 {
1443         struct buffer_head *bh = NULL;
1444         uint16_t ident;
1445         struct udf_sb_info *sbi = UDF_SB(sb);
1446         struct logicalVolIntegrityDesc *lvid;
1447 
1448         while (loc.extLength > 0 &&
1449                (bh = udf_read_tagged(sb, loc.extLocation,
1450                                      loc.extLocation, &ident)) &&
1451                ident == TAG_IDENT_LVID) {
1452                 sbi->s_lvid_bh = bh;
1453                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1454 
1455                 if (lvid->nextIntegrityExt.extLength)
1456                         udf_load_logicalvolint(sb,
1457                                 leea_to_cpu(lvid->nextIntegrityExt));
1458 
1459                 if (sbi->s_lvid_bh != bh)
1460                         brelse(bh);
1461                 loc.extLength -= sb->s_blocksize;
1462                 loc.extLocation++;
1463         }
1464         if (sbi->s_lvid_bh != bh)
1465                 brelse(bh);
1466 }
1467 
1468 /*
1469  * udf_process_sequence
1470  *
1471  * PURPOSE
1472  *      Process a main/reserve volume descriptor sequence.
1473  *
1474  * PRE-CONDITIONS
1475  *      sb                      Pointer to _locked_ superblock.
1476  *      block                   First block of first extent of the sequence.
1477  *      lastblock               Lastblock of first extent of the sequence.
1478  *
1479  * HISTORY
1480  *      July 1, 1997 - Andrew E. Mileski
1481  *      Written, tested, and released.
1482  */
1483 static noinline int udf_process_sequence(struct super_block *sb, long block,
1484                                 long lastblock, struct kernel_lb_addr *fileset)
1485 {
1486         struct buffer_head *bh = NULL;
1487         struct udf_vds_record vds[VDS_POS_LENGTH];
1488         struct udf_vds_record *curr;
1489         struct generic_desc *gd;
1490         struct volDescPtr *vdp;
1491         int done = 0;
1492         uint32_t vdsn;
1493         uint16_t ident;
1494         long next_s = 0, next_e = 0;
1495 
1496         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1497 
1498         /*
1499          * Read the main descriptor sequence and find which descriptors
1500          * are in it.
1501          */
1502         for (; (!done && block <= lastblock); block++) {
1503 
1504                 bh = udf_read_tagged(sb, block, block, &ident);
1505                 if (!bh) {
1506                         printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1507                                "sequence is corrupted or we could not read "
1508                                "it.\n", (unsigned long long)block);
1509                         return 1;
1510                 }
1511 
1512                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1513                 gd = (struct generic_desc *)bh->b_data;
1514                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1515                 switch (ident) {
1516                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1517                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1518                         if (vdsn >= curr->volDescSeqNum) {
1519                                 curr->volDescSeqNum = vdsn;
1520                                 curr->block = block;
1521                         }
1522                         break;
1523                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1524                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1525                         if (vdsn >= curr->volDescSeqNum) {
1526                                 curr->volDescSeqNum = vdsn;
1527                                 curr->block = block;
1528 
1529                                 vdp = (struct volDescPtr *)bh->b_data;
1530                                 next_s = le32_to_cpu(
1531                                         vdp->nextVolDescSeqExt.extLocation);
1532                                 next_e = le32_to_cpu(
1533                                         vdp->nextVolDescSeqExt.extLength);
1534                                 next_e = next_e >> sb->s_blocksize_bits;
1535                                 next_e += next_s;
1536                         }
1537                         break;
1538                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1539                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1540                         if (vdsn >= curr->volDescSeqNum) {
1541                                 curr->volDescSeqNum = vdsn;
1542                                 curr->block = block;
1543                         }
1544                         break;
1545                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1546                         curr = &vds[VDS_POS_PARTITION_DESC];
1547                         if (!curr->block)
1548                                 curr->block = block;
1549                         break;
1550                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1551                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1552                         if (vdsn >= curr->volDescSeqNum) {
1553                                 curr->volDescSeqNum = vdsn;
1554                                 curr->block = block;
1555                         }
1556                         break;
1557                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1558                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1559                         if (vdsn >= curr->volDescSeqNum) {
1560                                 curr->volDescSeqNum = vdsn;
1561                                 curr->block = block;
1562                         }
1563                         break;
1564                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1565                         vds[VDS_POS_TERMINATING_DESC].block = block;
1566                         if (next_e) {
1567                                 block = next_s;
1568                                 lastblock = next_e;
1569                                 next_s = next_e = 0;
1570                         } else
1571                                 done = 1;
1572                         break;
1573                 }
1574                 brelse(bh);
1575         }
1576         /*
1577          * Now read interesting descriptors again and process them
1578          * in a suitable order
1579          */
1580         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1581                 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1582                 return 1;
1583         }
1584         if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1585                 return 1;
1586 
1587         if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1588             vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1589                 return 1;
1590 
1591         if (vds[VDS_POS_PARTITION_DESC].block) {
1592                 /*
1593                  * We rescan the whole descriptor sequence to find
1594                  * partition descriptor blocks and process them.
1595                  */
1596                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1597                      block < vds[VDS_POS_TERMINATING_DESC].block;
1598                      block++)
1599                         if (udf_load_partdesc(sb, block))
1600                                 return 1;
1601         }
1602 
1603         return 0;
1604 }
1605 
1606 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1607                              struct kernel_lb_addr *fileset)
1608 {
1609         struct anchorVolDescPtr *anchor;
1610         long main_s, main_e, reserve_s, reserve_e;
1611         struct udf_sb_info *sbi;
1612 
1613         sbi = UDF_SB(sb);
1614         anchor = (struct anchorVolDescPtr *)bh->b_data;
1615 
1616         /* Locate the main sequence */
1617         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1618         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1619         main_e = main_e >> sb->s_blocksize_bits;
1620         main_e += main_s;
1621 
1622         /* Locate the reserve sequence */
1623         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1624         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1625         reserve_e = reserve_e >> sb->s_blocksize_bits;
1626         reserve_e += reserve_s;
1627 
1628         /* Process the main & reserve sequences */
1629         /* responsible for finding the PartitionDesc(s) */
1630         if (!udf_process_sequence(sb, main_s, main_e, fileset))
1631                 return 1;
1632         return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1633 }
1634 
1635 /*
1636  * Check whether there is an anchor block in the given block and
1637  * load Volume Descriptor Sequence if so.
1638  */
1639 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1640                                   struct kernel_lb_addr *fileset)
1641 {
1642         struct buffer_head *bh;
1643         uint16_t ident;
1644         int ret;
1645 
1646         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1647             udf_fixed_to_variable(block) >=
1648             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1649                 return 0;
1650 
1651         bh = udf_read_tagged(sb, block, block, &ident);
1652         if (!bh)
1653                 return 0;
1654         if (ident != TAG_IDENT_AVDP) {
1655                 brelse(bh);
1656                 return 0;
1657         }
1658         ret = udf_load_sequence(sb, bh, fileset);
1659         brelse(bh);
1660         return ret;
1661 }
1662 
1663 /* Search for an anchor volume descriptor pointer */
1664 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1665                                  struct kernel_lb_addr *fileset)
1666 {
1667         sector_t last[6];
1668         int i;
1669         struct udf_sb_info *sbi = UDF_SB(sb);
1670         int last_count = 0;
1671 
1672         /* First try user provided anchor */
1673         if (sbi->s_anchor) {
1674                 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1675                         return lastblock;
1676         }
1677         /*
1678          * according to spec, anchor is in either:
1679          *     block 256
1680          *     lastblock-256
1681          *     lastblock
1682          *  however, if the disc isn't closed, it could be 512.
1683          */
1684         if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1685                 return lastblock;
1686         /*
1687          * The trouble is which block is the last one. Drives often misreport
1688          * this so we try various possibilities.
1689          */
1690         last[last_count++] = lastblock;
1691         if (lastblock >= 1)
1692                 last[last_count++] = lastblock - 1;
1693         last[last_count++] = lastblock + 1;
1694         if (lastblock >= 2)
1695                 last[last_count++] = lastblock - 2;
1696         if (lastblock >= 150)
1697                 last[last_count++] = lastblock - 150;
1698         if (lastblock >= 152)
1699                 last[last_count++] = lastblock - 152;
1700 
1701         for (i = 0; i < last_count; i++) {
1702                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1703                                 sb->s_blocksize_bits)
1704                         continue;
1705                 if (udf_check_anchor_block(sb, last[i], fileset))
1706                         return last[i];
1707                 if (last[i] < 256)
1708                         continue;
1709                 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1710                         return last[i];
1711         }
1712 
1713         /* Finally try block 512 in case media is open */
1714         if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1715                 return last[0];
1716         return 0;
1717 }
1718 
1719 /*
1720  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1721  * area specified by it. The function expects sbi->s_lastblock to be the last
1722  * block on the media.
1723  *
1724  * Return 1 if ok, 0 if not found.
1725  *
1726  */
1727 static int udf_find_anchor(struct super_block *sb,
1728                            struct kernel_lb_addr *fileset)
1729 {
1730         sector_t lastblock;
1731         struct udf_sb_info *sbi = UDF_SB(sb);
1732 
1733         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1734         if (lastblock)
1735                 goto out;
1736 
1737         /* No anchor found? Try VARCONV conversion of block numbers */
1738         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1739         /* Firstly, we try to not convert number of the last block */
1740         lastblock = udf_scan_anchors(sb,
1741                                 udf_variable_to_fixed(sbi->s_last_block),
1742                                 fileset);
1743         if (lastblock)
1744                 goto out;
1745 
1746         /* Secondly, we try with converted number of the last block */
1747         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1748         if (!lastblock) {
1749                 /* VARCONV didn't help. Clear it. */
1750                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1751                 return 0;
1752         }
1753 out:
1754         sbi->s_last_block = lastblock;
1755         return 1;
1756 }
1757 
1758 /*
1759  * Check Volume Structure Descriptor, find Anchor block and load Volume
1760  * Descriptor Sequence
1761  */
1762 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1763                         int silent, struct kernel_lb_addr *fileset)
1764 {
1765         struct udf_sb_info *sbi = UDF_SB(sb);
1766         loff_t nsr_off;
1767 
1768         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1769                 if (!silent)
1770                         printk(KERN_WARNING "UDF-fs: Bad block size\n");
1771                 return 0;
1772         }
1773         sbi->s_last_block = uopt->lastblock;
1774         if (!uopt->novrs) {
1775                 /* Check that it is NSR02 compliant */
1776                 nsr_off = udf_check_vsd(sb);
1777                 if (!nsr_off) {
1778                         if (!silent)
1779                                 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1780                         return 0;
1781                 }
1782                 if (nsr_off == -1)
1783                         udf_debug("Failed to read byte 32768. Assuming open "
1784                                   "disc. Skipping validity check\n");
1785                 if (!sbi->s_last_block)
1786                         sbi->s_last_block = udf_get_last_block(sb);
1787         } else {
1788                 udf_debug("Validity check skipped because of novrs option\n");
1789         }
1790 
1791         /* Look for anchor block and load Volume Descriptor Sequence */
1792         sbi->s_anchor = uopt->anchor;
1793         if (!udf_find_anchor(sb, fileset)) {
1794                 if (!silent)
1795                         printk(KERN_WARNING "UDF-fs: No anchor found\n");
1796                 return 0;
1797         }
1798         return 1;
1799 }
1800 
1801 static void udf_open_lvid(struct super_block *sb)
1802 {
1803         struct udf_sb_info *sbi = UDF_SB(sb);
1804         struct buffer_head *bh = sbi->s_lvid_bh;
1805         struct logicalVolIntegrityDesc *lvid;
1806         struct logicalVolIntegrityDescImpUse *lvidiu;
1807 
1808         if (!bh)
1809                 return;
1810         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1811         lvidiu = udf_sb_lvidiu(sbi);
1812 
1813         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1814         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1815         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1816                                 CURRENT_TIME);
1817         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1818 
1819         lvid->descTag.descCRC = cpu_to_le16(
1820                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1821                         le16_to_cpu(lvid->descTag.descCRCLength)));
1822 
1823         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1824         /*
1825          * We set buffer uptodate unconditionally here to avoid spurious
1826          * warnings from mark_buffer_dirty() when previous EIO has marked
1827          * the buffer as !uptodate
1828          */
1829         set_buffer_uptodate(bh);
1830         mark_buffer_dirty(bh);
1831         sbi->s_lvid_dirty = 0;
1832 }
1833 
1834 static void udf_close_lvid(struct super_block *sb)
1835 {
1836         struct udf_sb_info *sbi = UDF_SB(sb);
1837         struct buffer_head *bh = sbi->s_lvid_bh;
1838         struct logicalVolIntegrityDesc *lvid;
1839         struct logicalVolIntegrityDescImpUse *lvidiu;
1840 
1841         if (!bh)
1842                 return;
1843 
1844         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1845         lvidiu = udf_sb_lvidiu(sbi);
1846         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1847         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1848         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1849         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1850                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1851         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1852                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1853         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1854                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1855         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1856 
1857         lvid->descTag.descCRC = cpu_to_le16(
1858                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1859                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1860 
1861         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1862         mark_buffer_dirty(bh);
1863         sbi->s_lvid_dirty = 0;
1864 }
1865 
1866 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1867 {
1868         int i;
1869         int nr_groups = bitmap->s_nr_groups;
1870         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1871                                                 nr_groups);
1872 
1873         for (i = 0; i < nr_groups; i++)
1874                 if (bitmap->s_block_bitmap[i])
1875                         brelse(bitmap->s_block_bitmap[i]);
1876 
1877         if (size <= PAGE_SIZE)
1878                 kfree(bitmap);
1879         else
1880                 vfree(bitmap);
1881 }
1882 
1883 static void udf_free_partition(struct udf_part_map *map)
1884 {
1885         int i;
1886         struct udf_meta_data *mdata;
1887 
1888         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1889                 iput(map->s_uspace.s_table);
1890         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1891                 iput(map->s_fspace.s_table);
1892         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1893                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1894         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1895                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1896         if (map->s_partition_type == UDF_SPARABLE_MAP15)
1897                 for (i = 0; i < 4; i++)
1898                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1899         else if (map->s_partition_type == UDF_METADATA_MAP25) {
1900                 mdata = &map->s_type_specific.s_metadata;
1901                 iput(mdata->s_metadata_fe);
1902                 mdata->s_metadata_fe = NULL;
1903 
1904                 iput(mdata->s_mirror_fe);
1905                 mdata->s_mirror_fe = NULL;
1906 
1907                 iput(mdata->s_bitmap_fe);
1908                 mdata->s_bitmap_fe = NULL;
1909         }
1910 }
1911 
1912 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1913 {
1914         int i;
1915         int ret;
1916         struct inode *inode = NULL;
1917         struct udf_options uopt;
1918         struct kernel_lb_addr rootdir, fileset;
1919         struct udf_sb_info *sbi;
1920 
1921         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1922         uopt.uid = -1;
1923         uopt.gid = -1;
1924         uopt.umask = 0;
1925         uopt.fmode = UDF_INVALID_MODE;
1926         uopt.dmode = UDF_INVALID_MODE;
1927 
1928         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1929         if (!sbi)
1930                 return -ENOMEM;
1931 
1932         sb->s_fs_info = sbi;
1933 
1934         mutex_init(&sbi->s_alloc_mutex);
1935 
1936         if (!udf_parse_options((char *)options, &uopt, false))
1937                 goto error_out;
1938 
1939         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1940             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1941                 udf_error(sb, "udf_read_super",
1942                           "utf8 cannot be combined with iocharset\n");
1943                 goto error_out;
1944         }
1945 #ifdef CONFIG_UDF_NLS
1946         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1947                 uopt.nls_map = load_nls_default();
1948                 if (!uopt.nls_map)
1949                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1950                 else
1951                         udf_debug("Using default NLS map\n");
1952         }
1953 #endif
1954         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1955                 uopt.flags |= (1 << UDF_FLAG_UTF8);
1956 
1957         fileset.logicalBlockNum = 0xFFFFFFFF;
1958         fileset.partitionReferenceNum = 0xFFFF;
1959 
1960         sbi->s_flags = uopt.flags;
1961         sbi->s_uid = uopt.uid;
1962         sbi->s_gid = uopt.gid;
1963         sbi->s_umask = uopt.umask;
1964         sbi->s_fmode = uopt.fmode;
1965         sbi->s_dmode = uopt.dmode;
1966         sbi->s_nls_map = uopt.nls_map;
1967 
1968         if (uopt.session == 0xFFFFFFFF)
1969                 sbi->s_session = udf_get_last_session(sb);
1970         else
1971                 sbi->s_session = uopt.session;
1972 
1973         udf_debug("Multi-session=%d\n", sbi->s_session);
1974 
1975         /* Fill in the rest of the superblock */
1976         sb->s_op = &udf_sb_ops;
1977         sb->s_export_op = &udf_export_ops;
1978         sb->dq_op = NULL;
1979         sb->s_dirt = 0;
1980         sb->s_magic = UDF_SUPER_MAGIC;
1981         sb->s_time_gran = 1000;
1982 
1983         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1984                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1985         } else {
1986                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1987                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1988                 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1989                         if (!silent)
1990                                 printk(KERN_NOTICE
1991                                        "UDF-fs: Rescanning with blocksize "
1992                                        "%d\n", UDF_DEFAULT_BLOCKSIZE);
1993                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1994                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1995                 }
1996         }
1997         if (!ret) {
1998                 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1999                 goto error_out;
2000         }
2001 
2002         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2003 
2004         if (sbi->s_lvid_bh) {
2005                 struct logicalVolIntegrityDescImpUse *lvidiu =
2006                                                         udf_sb_lvidiu(sbi);
2007                 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2008                 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2009                 /* uint16_t maxUDFWriteRev =
2010                                 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2011 
2012                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2013                         printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
2014                                         "(max is %x)\n",
2015                                le16_to_cpu(lvidiu->minUDFReadRev),
2016                                UDF_MAX_READ_VERSION);
2017                         goto error_out;
2018                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2019                         sb->s_flags |= MS_RDONLY;
2020 
2021                 sbi->s_udfrev = minUDFWriteRev;
2022 
2023                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2024                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2025                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2026                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2027         }
2028 
2029         if (!sbi->s_partitions) {
2030                 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
2031                 goto error_out;
2032         }
2033 
2034         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2035                         UDF_PART_FLAG_READ_ONLY) {
2036                 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
2037                                    "forcing readonly mount\n");
2038                 sb->s_flags |= MS_RDONLY;
2039         }
2040 
2041         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2042                 printk(KERN_WARNING "UDF-fs: No fileset found\n");
2043                 goto error_out;
2044         }
2045 
2046         if (!silent) {
2047                 struct timestamp ts;
2048                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2049                 udf_info("UDF: Mounting volume '%s', "
2050                          "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2051                          sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
2052                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2053         }
2054         if (!(sb->s_flags & MS_RDONLY))
2055                 udf_open_lvid(sb);
2056 
2057         /* Assign the root inode */
2058         /* assign inodes by physical block number */
2059         /* perhaps it's not extensible enough, but for now ... */
2060         inode = udf_iget(sb, &rootdir);
2061         if (!inode) {
2062                 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2063                                 "partition=%d\n",
2064                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2065                 goto error_out;
2066         }
2067 
2068         /* Allocate a dentry for the root inode */
2069         sb->s_root = d_alloc_root(inode);
2070         if (!sb->s_root) {
2071                 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2072                 iput(inode);
2073                 goto error_out;
2074         }
2075         sb->s_maxbytes = MAX_LFS_FILESIZE;
2076         return 0;
2077 
2078 error_out:
2079         if (sbi->s_vat_inode)
2080                 iput(sbi->s_vat_inode);
2081         if (sbi->s_partitions)
2082                 for (i = 0; i < sbi->s_partitions; i++)
2083                         udf_free_partition(&sbi->s_partmaps[i]);
2084 #ifdef CONFIG_UDF_NLS
2085         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2086                 unload_nls(sbi->s_nls_map);
2087 #endif
2088         if (!(sb->s_flags & MS_RDONLY))
2089                 udf_close_lvid(sb);
2090         brelse(sbi->s_lvid_bh);
2091 
2092         kfree(sbi->s_partmaps);
2093         kfree(sbi);
2094         sb->s_fs_info = NULL;
2095 
2096         return -EINVAL;
2097 }
2098 
2099 void udf_error(struct super_block *sb, const char *function,
2100                const char *fmt, ...)
2101 {
2102         va_list args;
2103 
2104         if (!(sb->s_flags & MS_RDONLY)) {
2105                 /* mark sb error */
2106                 sb->s_dirt = 1;
2107         }
2108         va_start(args, fmt);
2109         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2110         va_end(args);
2111         printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2112                 sb->s_id, function, error_buf);
2113 }
2114 
2115 void udf_warning(struct super_block *sb, const char *function,
2116                  const char *fmt, ...)
2117 {
2118         va_list args;
2119 
2120         va_start(args, fmt);
2121         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2122         va_end(args);
2123         printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2124                sb->s_id, function, error_buf);
2125 }
2126 
2127 static void udf_put_super(struct super_block *sb)
2128 {
2129         int i;
2130         struct udf_sb_info *sbi;
2131 
2132         sbi = UDF_SB(sb);
2133 
2134         lock_kernel();
2135 
2136         if (sbi->s_vat_inode)
2137                 iput(sbi->s_vat_inode);
2138         if (sbi->s_partitions)
2139                 for (i = 0; i < sbi->s_partitions; i++)
2140                         udf_free_partition(&sbi->s_partmaps[i]);
2141 #ifdef CONFIG_UDF_NLS
2142         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2143                 unload_nls(sbi->s_nls_map);
2144 #endif
2145         if (!(sb->s_flags & MS_RDONLY))
2146                 udf_close_lvid(sb);
2147         brelse(sbi->s_lvid_bh);
2148         kfree(sbi->s_partmaps);
2149         kfree(sb->s_fs_info);
2150         sb->s_fs_info = NULL;
2151 
2152         unlock_kernel();
2153 }
2154 
2155 static int udf_sync_fs(struct super_block *sb, int wait)
2156 {
2157         struct udf_sb_info *sbi = UDF_SB(sb);
2158 
2159         mutex_lock(&sbi->s_alloc_mutex);
2160         if (sbi->s_lvid_dirty) {
2161                 /*
2162                  * Blockdevice will be synced later so we don't have to submit
2163                  * the buffer for IO
2164                  */
2165                 mark_buffer_dirty(sbi->s_lvid_bh);
2166                 sb->s_dirt = 0;
2167                 sbi->s_lvid_dirty = 0;
2168         }
2169         mutex_unlock(&sbi->s_alloc_mutex);
2170 
2171         return 0;
2172 }
2173 
2174 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2175 {
2176         struct super_block *sb = dentry->d_sb;
2177         struct udf_sb_info *sbi = UDF_SB(sb);
2178         struct logicalVolIntegrityDescImpUse *lvidiu;
2179         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2180 
2181         if (sbi->s_lvid_bh != NULL)
2182                 lvidiu = udf_sb_lvidiu(sbi);
2183         else
2184                 lvidiu = NULL;
2185 
2186         buf->f_type = UDF_SUPER_MAGIC;
2187         buf->f_bsize = sb->s_blocksize;
2188         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2189         buf->f_bfree = udf_count_free(sb);
2190         buf->f_bavail = buf->f_bfree;
2191         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2192                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2193                         + buf->f_bfree;
2194         buf->f_ffree = buf->f_bfree;
2195         buf->f_namelen = UDF_NAME_LEN - 2;
2196         buf->f_fsid.val[0] = (u32)id;
2197         buf->f_fsid.val[1] = (u32)(id >> 32);
2198 
2199         return 0;
2200 }
2201 
2202 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2203                                           struct udf_bitmap *bitmap)
2204 {
2205         struct buffer_head *bh = NULL;
2206         unsigned int accum = 0;
2207         int index;
2208         int block = 0, newblock;
2209         struct kernel_lb_addr loc;
2210         uint32_t bytes;
2211         uint8_t *ptr;
2212         uint16_t ident;
2213         struct spaceBitmapDesc *bm;
2214 
2215         lock_kernel();
2216 
2217         loc.logicalBlockNum = bitmap->s_extPosition;
2218         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2219         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2220 
2221         if (!bh) {
2222                 printk(KERN_ERR "udf: udf_count_free failed\n");
2223                 goto out;
2224         } else if (ident != TAG_IDENT_SBD) {
2225                 brelse(bh);
2226                 printk(KERN_ERR "udf: udf_count_free failed\n");
2227                 goto out;
2228         }
2229 
2230         bm = (struct spaceBitmapDesc *)bh->b_data;
2231         bytes = le32_to_cpu(bm->numOfBytes);
2232         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2233         ptr = (uint8_t *)bh->b_data;
2234 
2235         while (bytes > 0) {
2236                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2237                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2238                                         cur_bytes * 8);
2239                 bytes -= cur_bytes;
2240                 if (bytes) {
2241                         brelse(bh);
2242                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2243                         bh = udf_tread(sb, newblock);
2244                         if (!bh) {
2245                                 udf_debug("read failed\n");
2246                                 goto out;
2247                         }
2248                         index = 0;
2249                         ptr = (uint8_t *)bh->b_data;
2250                 }
2251         }
2252         brelse(bh);
2253 
2254 out:
2255         unlock_kernel();
2256 
2257         return accum;
2258 }
2259 
2260 static unsigned int udf_count_free_table(struct super_block *sb,
2261                                          struct inode *table)
2262 {
2263         unsigned int accum = 0;
2264         uint32_t elen;
2265         struct kernel_lb_addr eloc;
2266         int8_t etype;
2267         struct extent_position epos;
2268 
2269         lock_kernel();
2270 
2271         epos.block = UDF_I(table)->i_location;
2272         epos.offset = sizeof(struct unallocSpaceEntry);
2273         epos.bh = NULL;
2274 
2275         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2276                 accum += (elen >> table->i_sb->s_blocksize_bits);
2277 
2278         brelse(epos.bh);
2279 
2280         unlock_kernel();
2281 
2282         return accum;
2283 }
2284 
2285 static unsigned int udf_count_free(struct super_block *sb)
2286 {
2287         unsigned int accum = 0;
2288         struct udf_sb_info *sbi;
2289         struct udf_part_map *map;
2290 
2291         sbi = UDF_SB(sb);
2292         if (sbi->s_lvid_bh) {
2293                 struct logicalVolIntegrityDesc *lvid =
2294                         (struct logicalVolIntegrityDesc *)
2295                         sbi->s_lvid_bh->b_data;
2296                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2297                         accum = le32_to_cpu(
2298                                         lvid->freeSpaceTable[sbi->s_partition]);
2299                         if (accum == 0xFFFFFFFF)
2300                                 accum = 0;
2301                 }
2302         }
2303 
2304         if (accum)
2305                 return accum;
2306 
2307         map = &sbi->s_partmaps[sbi->s_partition];
2308         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2309                 accum += udf_count_free_bitmap(sb,
2310                                                map->s_uspace.s_bitmap);
2311         }
2312         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2313                 accum += udf_count_free_bitmap(sb,
2314                                                map->s_fspace.s_bitmap);
2315         }
2316         if (accum)
2317                 return accum;
2318 
2319         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2320                 accum += udf_count_free_table(sb,
2321                                               map->s_uspace.s_table);
2322         }
2323         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2324                 accum += udf_count_free_table(sb,
2325                                               map->s_fspace.s_table);
2326         }
2327 
2328         return accum;
2329 }
2330 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp