~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/udf/super.c

Version: ~ [ linux-5.8-rc4 ] ~ [ linux-5.7.7 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.50 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.131 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.187 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.229 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.229 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * super.c
  3  *
  4  * PURPOSE
  5  *  Super block routines for the OSTA-UDF(tm) filesystem.
  6  *
  7  * DESCRIPTION
  8  *  OSTA-UDF(tm) = Optical Storage Technology Association
  9  *  Universal Disk Format.
 10  *
 11  *  This code is based on version 2.00 of the UDF specification,
 12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
 13  *    http://www.osta.org/
 14  *    http://www.ecma.ch/
 15  *    http://www.iso.org/
 16  *
 17  * COPYRIGHT
 18  *  This file is distributed under the terms of the GNU General Public
 19  *  License (GPL). Copies of the GPL can be obtained from:
 20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 21  *  Each contributing author retains all rights to their own work.
 22  *
 23  *  (C) 1998 Dave Boynton
 24  *  (C) 1998-2004 Ben Fennema
 25  *  (C) 2000 Stelias Computing Inc
 26  *
 27  * HISTORY
 28  *
 29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
 30  *                added some debugging.
 31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
 32  *  10/16/98      attempting some multi-session support
 33  *  10/17/98      added freespace count for "df"
 34  *  11/11/98 gr   added novrs option
 35  *  11/26/98 dgb  added fileset,anchor mount options
 36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
 37  *                vol descs. rewrote option handling based on isofs
 38  *  12/20/98      find the free space bitmap (if it exists)
 39  */
 40 
 41 #include "udfdecl.h"
 42 
 43 #include <linux/blkdev.h>
 44 #include <linux/slab.h>
 45 #include <linux/kernel.h>
 46 #include <linux/module.h>
 47 #include <linux/parser.h>
 48 #include <linux/stat.h>
 49 #include <linux/cdrom.h>
 50 #include <linux/nls.h>
 51 #include <linux/buffer_head.h>
 52 #include <linux/vfs.h>
 53 #include <linux/vmalloc.h>
 54 #include <linux/errno.h>
 55 #include <linux/mount.h>
 56 #include <linux/seq_file.h>
 57 #include <linux/bitmap.h>
 58 #include <linux/crc-itu-t.h>
 59 #include <linux/log2.h>
 60 #include <asm/byteorder.h>
 61 
 62 #include "udf_sb.h"
 63 #include "udf_i.h"
 64 
 65 #include <linux/init.h>
 66 #include <asm/uaccess.h>
 67 
 68 #define VDS_POS_PRIMARY_VOL_DESC        0
 69 #define VDS_POS_UNALLOC_SPACE_DESC      1
 70 #define VDS_POS_LOGICAL_VOL_DESC        2
 71 #define VDS_POS_PARTITION_DESC          3
 72 #define VDS_POS_IMP_USE_VOL_DESC        4
 73 #define VDS_POS_VOL_DESC_PTR            5
 74 #define VDS_POS_TERMINATING_DESC        6
 75 #define VDS_POS_LENGTH                  7
 76 
 77 #define UDF_DEFAULT_BLOCKSIZE 2048
 78 
 79 enum { UDF_MAX_LINKS = 0xffff };
 80 
 81 /* These are the "meat" - everything else is stuffing */
 82 static int udf_fill_super(struct super_block *, void *, int);
 83 static void udf_put_super(struct super_block *);
 84 static int udf_sync_fs(struct super_block *, int);
 85 static int udf_remount_fs(struct super_block *, int *, char *);
 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
 88                             struct kernel_lb_addr *);
 89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
 90                              struct kernel_lb_addr *);
 91 static void udf_open_lvid(struct super_block *);
 92 static void udf_close_lvid(struct super_block *);
 93 static unsigned int udf_count_free(struct super_block *);
 94 static int udf_statfs(struct dentry *, struct kstatfs *);
 95 static int udf_show_options(struct seq_file *, struct dentry *);
 96 
 97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
 98 {
 99         struct logicalVolIntegrityDesc *lvid =
100                 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101         __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102         __u32 offset = number_of_partitions * 2 *
103                                 sizeof(uint32_t)/sizeof(uint8_t);
104         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106 
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109                       int flags, const char *dev_name, void *data)
110 {
111         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113 
114 static struct file_system_type udf_fstype = {
115         .owner          = THIS_MODULE,
116         .name           = "udf",
117         .mount          = udf_mount,
118         .kill_sb        = kill_block_super,
119         .fs_flags       = FS_REQUIRES_DEV,
120 };
121 MODULE_ALIAS_FS("udf");
122 
123 static struct kmem_cache *udf_inode_cachep;
124 
125 static struct inode *udf_alloc_inode(struct super_block *sb)
126 {
127         struct udf_inode_info *ei;
128         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
129         if (!ei)
130                 return NULL;
131 
132         ei->i_unique = 0;
133         ei->i_lenExtents = 0;
134         ei->i_next_alloc_block = 0;
135         ei->i_next_alloc_goal = 0;
136         ei->i_strat4096 = 0;
137         init_rwsem(&ei->i_data_sem);
138         ei->cached_extent.lstart = -1;
139         spin_lock_init(&ei->i_extent_cache_lock);
140 
141         return &ei->vfs_inode;
142 }
143 
144 static void udf_i_callback(struct rcu_head *head)
145 {
146         struct inode *inode = container_of(head, struct inode, i_rcu);
147         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
148 }
149 
150 static void udf_destroy_inode(struct inode *inode)
151 {
152         call_rcu(&inode->i_rcu, udf_i_callback);
153 }
154 
155 static void init_once(void *foo)
156 {
157         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
158 
159         ei->i_ext.i_data = NULL;
160         inode_init_once(&ei->vfs_inode);
161 }
162 
163 static int init_inodecache(void)
164 {
165         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
166                                              sizeof(struct udf_inode_info),
167                                              0, (SLAB_RECLAIM_ACCOUNT |
168                                                  SLAB_MEM_SPREAD),
169                                              init_once);
170         if (!udf_inode_cachep)
171                 return -ENOMEM;
172         return 0;
173 }
174 
175 static void destroy_inodecache(void)
176 {
177         /*
178          * Make sure all delayed rcu free inodes are flushed before we
179          * destroy cache.
180          */
181         rcu_barrier();
182         kmem_cache_destroy(udf_inode_cachep);
183 }
184 
185 /* Superblock operations */
186 static const struct super_operations udf_sb_ops = {
187         .alloc_inode    = udf_alloc_inode,
188         .destroy_inode  = udf_destroy_inode,
189         .write_inode    = udf_write_inode,
190         .evict_inode    = udf_evict_inode,
191         .put_super      = udf_put_super,
192         .sync_fs        = udf_sync_fs,
193         .statfs         = udf_statfs,
194         .remount_fs     = udf_remount_fs,
195         .show_options   = udf_show_options,
196 };
197 
198 struct udf_options {
199         unsigned char novrs;
200         unsigned int blocksize;
201         unsigned int session;
202         unsigned int lastblock;
203         unsigned int anchor;
204         unsigned int volume;
205         unsigned short partition;
206         unsigned int fileset;
207         unsigned int rootdir;
208         unsigned int flags;
209         umode_t umask;
210         kgid_t gid;
211         kuid_t uid;
212         umode_t fmode;
213         umode_t dmode;
214         struct nls_table *nls_map;
215 };
216 
217 static int __init init_udf_fs(void)
218 {
219         int err;
220 
221         err = init_inodecache();
222         if (err)
223                 goto out1;
224         err = register_filesystem(&udf_fstype);
225         if (err)
226                 goto out;
227 
228         return 0;
229 
230 out:
231         destroy_inodecache();
232 
233 out1:
234         return err;
235 }
236 
237 static void __exit exit_udf_fs(void)
238 {
239         unregister_filesystem(&udf_fstype);
240         destroy_inodecache();
241 }
242 
243 module_init(init_udf_fs)
244 module_exit(exit_udf_fs)
245 
246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247 {
248         struct udf_sb_info *sbi = UDF_SB(sb);
249 
250         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
251                                   GFP_KERNEL);
252         if (!sbi->s_partmaps) {
253                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
254                         count);
255                 sbi->s_partitions = 0;
256                 return -ENOMEM;
257         }
258 
259         sbi->s_partitions = count;
260         return 0;
261 }
262 
263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
264 {
265         int i;
266         int nr_groups = bitmap->s_nr_groups;
267         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
268                                                 nr_groups);
269 
270         for (i = 0; i < nr_groups; i++)
271                 if (bitmap->s_block_bitmap[i])
272                         brelse(bitmap->s_block_bitmap[i]);
273 
274         if (size <= PAGE_SIZE)
275                 kfree(bitmap);
276         else
277                 vfree(bitmap);
278 }
279 
280 static void udf_free_partition(struct udf_part_map *map)
281 {
282         int i;
283         struct udf_meta_data *mdata;
284 
285         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
286                 iput(map->s_uspace.s_table);
287         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
288                 iput(map->s_fspace.s_table);
289         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
290                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
291         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
292                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
293         if (map->s_partition_type == UDF_SPARABLE_MAP15)
294                 for (i = 0; i < 4; i++)
295                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
296         else if (map->s_partition_type == UDF_METADATA_MAP25) {
297                 mdata = &map->s_type_specific.s_metadata;
298                 iput(mdata->s_metadata_fe);
299                 mdata->s_metadata_fe = NULL;
300 
301                 iput(mdata->s_mirror_fe);
302                 mdata->s_mirror_fe = NULL;
303 
304                 iput(mdata->s_bitmap_fe);
305                 mdata->s_bitmap_fe = NULL;
306         }
307 }
308 
309 static void udf_sb_free_partitions(struct super_block *sb)
310 {
311         struct udf_sb_info *sbi = UDF_SB(sb);
312         int i;
313         if (sbi->s_partmaps == NULL)
314                 return;
315         for (i = 0; i < sbi->s_partitions; i++)
316                 udf_free_partition(&sbi->s_partmaps[i]);
317         kfree(sbi->s_partmaps);
318         sbi->s_partmaps = NULL;
319 }
320 
321 static int udf_show_options(struct seq_file *seq, struct dentry *root)
322 {
323         struct super_block *sb = root->d_sb;
324         struct udf_sb_info *sbi = UDF_SB(sb);
325 
326         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
327                 seq_puts(seq, ",nostrict");
328         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
329                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
330         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
331                 seq_puts(seq, ",unhide");
332         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
333                 seq_puts(seq, ",undelete");
334         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
335                 seq_puts(seq, ",noadinicb");
336         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
337                 seq_puts(seq, ",shortad");
338         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
339                 seq_puts(seq, ",uid=forget");
340         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
341                 seq_puts(seq, ",uid=ignore");
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
343                 seq_puts(seq, ",gid=forget");
344         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
345                 seq_puts(seq, ",gid=ignore");
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
347                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
349                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
350         if (sbi->s_umask != 0)
351                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
352         if (sbi->s_fmode != UDF_INVALID_MODE)
353                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
354         if (sbi->s_dmode != UDF_INVALID_MODE)
355                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
356         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
357                 seq_printf(seq, ",session=%u", sbi->s_session);
358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
359                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
360         if (sbi->s_anchor != 0)
361                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
362         /*
363          * volume, partition, fileset and rootdir seem to be ignored
364          * currently
365          */
366         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
367                 seq_puts(seq, ",utf8");
368         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
369                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
370 
371         return 0;
372 }
373 
374 /*
375  * udf_parse_options
376  *
377  * PURPOSE
378  *      Parse mount options.
379  *
380  * DESCRIPTION
381  *      The following mount options are supported:
382  *
383  *      gid=            Set the default group.
384  *      umask=          Set the default umask.
385  *      mode=           Set the default file permissions.
386  *      dmode=          Set the default directory permissions.
387  *      uid=            Set the default user.
388  *      bs=             Set the block size.
389  *      unhide          Show otherwise hidden files.
390  *      undelete        Show deleted files in lists.
391  *      adinicb         Embed data in the inode (default)
392  *      noadinicb       Don't embed data in the inode
393  *      shortad         Use short ad's
394  *      longad          Use long ad's (default)
395  *      nostrict        Unset strict conformance
396  *      iocharset=      Set the NLS character set
397  *
398  *      The remaining are for debugging and disaster recovery:
399  *
400  *      novrs           Skip volume sequence recognition
401  *
402  *      The following expect a offset from 0.
403  *
404  *      session=        Set the CDROM session (default= last session)
405  *      anchor=         Override standard anchor location. (default= 256)
406  *      volume=         Override the VolumeDesc location. (unused)
407  *      partition=      Override the PartitionDesc location. (unused)
408  *      lastblock=      Set the last block of the filesystem/
409  *
410  *      The following expect a offset from the partition root.
411  *
412  *      fileset=        Override the fileset block location. (unused)
413  *      rootdir=        Override the root directory location. (unused)
414  *              WARNING: overriding the rootdir to a non-directory may
415  *              yield highly unpredictable results.
416  *
417  * PRE-CONDITIONS
418  *      options         Pointer to mount options string.
419  *      uopts           Pointer to mount options variable.
420  *
421  * POST-CONDITIONS
422  *      <return>        1       Mount options parsed okay.
423  *      <return>        0       Error parsing mount options.
424  *
425  * HISTORY
426  *      July 1, 1997 - Andrew E. Mileski
427  *      Written, tested, and released.
428  */
429 
430 enum {
431         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
432         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
433         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
434         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
435         Opt_rootdir, Opt_utf8, Opt_iocharset,
436         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
437         Opt_fmode, Opt_dmode
438 };
439 
440 static const match_table_t tokens = {
441         {Opt_novrs,     "novrs"},
442         {Opt_nostrict,  "nostrict"},
443         {Opt_bs,        "bs=%u"},
444         {Opt_unhide,    "unhide"},
445         {Opt_undelete,  "undelete"},
446         {Opt_noadinicb, "noadinicb"},
447         {Opt_adinicb,   "adinicb"},
448         {Opt_shortad,   "shortad"},
449         {Opt_longad,    "longad"},
450         {Opt_uforget,   "uid=forget"},
451         {Opt_uignore,   "uid=ignore"},
452         {Opt_gforget,   "gid=forget"},
453         {Opt_gignore,   "gid=ignore"},
454         {Opt_gid,       "gid=%u"},
455         {Opt_uid,       "uid=%u"},
456         {Opt_umask,     "umask=%o"},
457         {Opt_session,   "session=%u"},
458         {Opt_lastblock, "lastblock=%u"},
459         {Opt_anchor,    "anchor=%u"},
460         {Opt_volume,    "volume=%u"},
461         {Opt_partition, "partition=%u"},
462         {Opt_fileset,   "fileset=%u"},
463         {Opt_rootdir,   "rootdir=%u"},
464         {Opt_utf8,      "utf8"},
465         {Opt_iocharset, "iocharset=%s"},
466         {Opt_fmode,     "mode=%o"},
467         {Opt_dmode,     "dmode=%o"},
468         {Opt_err,       NULL}
469 };
470 
471 static int udf_parse_options(char *options, struct udf_options *uopt,
472                              bool remount)
473 {
474         char *p;
475         int option;
476 
477         uopt->novrs = 0;
478         uopt->partition = 0xFFFF;
479         uopt->session = 0xFFFFFFFF;
480         uopt->lastblock = 0;
481         uopt->anchor = 0;
482         uopt->volume = 0xFFFFFFFF;
483         uopt->rootdir = 0xFFFFFFFF;
484         uopt->fileset = 0xFFFFFFFF;
485         uopt->nls_map = NULL;
486 
487         if (!options)
488                 return 1;
489 
490         while ((p = strsep(&options, ",")) != NULL) {
491                 substring_t args[MAX_OPT_ARGS];
492                 int token;
493                 if (!*p)
494                         continue;
495 
496                 token = match_token(p, tokens, args);
497                 switch (token) {
498                 case Opt_novrs:
499                         uopt->novrs = 1;
500                         break;
501                 case Opt_bs:
502                         if (match_int(&args[0], &option))
503                                 return 0;
504                         uopt->blocksize = option;
505                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
506                         break;
507                 case Opt_unhide:
508                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
509                         break;
510                 case Opt_undelete:
511                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
512                         break;
513                 case Opt_noadinicb:
514                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
515                         break;
516                 case Opt_adinicb:
517                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
518                         break;
519                 case Opt_shortad:
520                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
521                         break;
522                 case Opt_longad:
523                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
524                         break;
525                 case Opt_gid:
526                         if (match_int(args, &option))
527                                 return 0;
528                         uopt->gid = make_kgid(current_user_ns(), option);
529                         if (!gid_valid(uopt->gid))
530                                 return 0;
531                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
532                         break;
533                 case Opt_uid:
534                         if (match_int(args, &option))
535                                 return 0;
536                         uopt->uid = make_kuid(current_user_ns(), option);
537                         if (!uid_valid(uopt->uid))
538                                 return 0;
539                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
540                         break;
541                 case Opt_umask:
542                         if (match_octal(args, &option))
543                                 return 0;
544                         uopt->umask = option;
545                         break;
546                 case Opt_nostrict:
547                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
548                         break;
549                 case Opt_session:
550                         if (match_int(args, &option))
551                                 return 0;
552                         uopt->session = option;
553                         if (!remount)
554                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
555                         break;
556                 case Opt_lastblock:
557                         if (match_int(args, &option))
558                                 return 0;
559                         uopt->lastblock = option;
560                         if (!remount)
561                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
562                         break;
563                 case Opt_anchor:
564                         if (match_int(args, &option))
565                                 return 0;
566                         uopt->anchor = option;
567                         break;
568                 case Opt_volume:
569                         if (match_int(args, &option))
570                                 return 0;
571                         uopt->volume = option;
572                         break;
573                 case Opt_partition:
574                         if (match_int(args, &option))
575                                 return 0;
576                         uopt->partition = option;
577                         break;
578                 case Opt_fileset:
579                         if (match_int(args, &option))
580                                 return 0;
581                         uopt->fileset = option;
582                         break;
583                 case Opt_rootdir:
584                         if (match_int(args, &option))
585                                 return 0;
586                         uopt->rootdir = option;
587                         break;
588                 case Opt_utf8:
589                         uopt->flags |= (1 << UDF_FLAG_UTF8);
590                         break;
591 #ifdef CONFIG_UDF_NLS
592                 case Opt_iocharset:
593                         uopt->nls_map = load_nls(args[0].from);
594                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
595                         break;
596 #endif
597                 case Opt_uignore:
598                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
599                         break;
600                 case Opt_uforget:
601                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
602                         break;
603                 case Opt_gignore:
604                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
605                         break;
606                 case Opt_gforget:
607                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
608                         break;
609                 case Opt_fmode:
610                         if (match_octal(args, &option))
611                                 return 0;
612                         uopt->fmode = option & 0777;
613                         break;
614                 case Opt_dmode:
615                         if (match_octal(args, &option))
616                                 return 0;
617                         uopt->dmode = option & 0777;
618                         break;
619                 default:
620                         pr_err("bad mount option \"%s\" or missing value\n", p);
621                         return 0;
622                 }
623         }
624         return 1;
625 }
626 
627 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
628 {
629         struct udf_options uopt;
630         struct udf_sb_info *sbi = UDF_SB(sb);
631         int error = 0;
632 
633         if (sbi->s_lvid_bh) {
634                 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
635                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
636                         return -EACCES;
637         }
638 
639         uopt.flags = sbi->s_flags;
640         uopt.uid   = sbi->s_uid;
641         uopt.gid   = sbi->s_gid;
642         uopt.umask = sbi->s_umask;
643         uopt.fmode = sbi->s_fmode;
644         uopt.dmode = sbi->s_dmode;
645 
646         if (!udf_parse_options(options, &uopt, true))
647                 return -EINVAL;
648 
649         write_lock(&sbi->s_cred_lock);
650         sbi->s_flags = uopt.flags;
651         sbi->s_uid   = uopt.uid;
652         sbi->s_gid   = uopt.gid;
653         sbi->s_umask = uopt.umask;
654         sbi->s_fmode = uopt.fmode;
655         sbi->s_dmode = uopt.dmode;
656         write_unlock(&sbi->s_cred_lock);
657 
658         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
659                 goto out_unlock;
660 
661         if (*flags & MS_RDONLY)
662                 udf_close_lvid(sb);
663         else
664                 udf_open_lvid(sb);
665 
666 out_unlock:
667         return error;
668 }
669 
670 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
671 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
672 static loff_t udf_check_vsd(struct super_block *sb)
673 {
674         struct volStructDesc *vsd = NULL;
675         loff_t sector = 32768;
676         int sectorsize;
677         struct buffer_head *bh = NULL;
678         int nsr02 = 0;
679         int nsr03 = 0;
680         struct udf_sb_info *sbi;
681 
682         sbi = UDF_SB(sb);
683         if (sb->s_blocksize < sizeof(struct volStructDesc))
684                 sectorsize = sizeof(struct volStructDesc);
685         else
686                 sectorsize = sb->s_blocksize;
687 
688         sector += (sbi->s_session << sb->s_blocksize_bits);
689 
690         udf_debug("Starting at sector %u (%ld byte sectors)\n",
691                   (unsigned int)(sector >> sb->s_blocksize_bits),
692                   sb->s_blocksize);
693         /* Process the sequence (if applicable) */
694         for (; !nsr02 && !nsr03; sector += sectorsize) {
695                 /* Read a block */
696                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
697                 if (!bh)
698                         break;
699 
700                 /* Look for ISO  descriptors */
701                 vsd = (struct volStructDesc *)(bh->b_data +
702                                               (sector & (sb->s_blocksize - 1)));
703 
704                 if (vsd->stdIdent[0] == 0) {
705                         brelse(bh);
706                         break;
707                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
708                                     VSD_STD_ID_LEN)) {
709                         switch (vsd->structType) {
710                         case 0:
711                                 udf_debug("ISO9660 Boot Record found\n");
712                                 break;
713                         case 1:
714                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
715                                 break;
716                         case 2:
717                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
718                                 break;
719                         case 3:
720                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
721                                 break;
722                         case 255:
723                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
724                                 break;
725                         default:
726                                 udf_debug("ISO9660 VRS (%u) found\n",
727                                           vsd->structType);
728                                 break;
729                         }
730                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
731                                     VSD_STD_ID_LEN))
732                         ; /* nothing */
733                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
734                                     VSD_STD_ID_LEN)) {
735                         brelse(bh);
736                         break;
737                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
738                                     VSD_STD_ID_LEN))
739                         nsr02 = sector;
740                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
741                                     VSD_STD_ID_LEN))
742                         nsr03 = sector;
743                 brelse(bh);
744         }
745 
746         if (nsr03)
747                 return nsr03;
748         else if (nsr02)
749                 return nsr02;
750         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
751                 return -1;
752         else
753                 return 0;
754 }
755 
756 static int udf_find_fileset(struct super_block *sb,
757                             struct kernel_lb_addr *fileset,
758                             struct kernel_lb_addr *root)
759 {
760         struct buffer_head *bh = NULL;
761         long lastblock;
762         uint16_t ident;
763         struct udf_sb_info *sbi;
764 
765         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
766             fileset->partitionReferenceNum != 0xFFFF) {
767                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
768 
769                 if (!bh) {
770                         return 1;
771                 } else if (ident != TAG_IDENT_FSD) {
772                         brelse(bh);
773                         return 1;
774                 }
775 
776         }
777 
778         sbi = UDF_SB(sb);
779         if (!bh) {
780                 /* Search backwards through the partitions */
781                 struct kernel_lb_addr newfileset;
782 
783 /* --> cvg: FIXME - is it reasonable? */
784                 return 1;
785 
786                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
787                      (newfileset.partitionReferenceNum != 0xFFFF &&
788                       fileset->logicalBlockNum == 0xFFFFFFFF &&
789                       fileset->partitionReferenceNum == 0xFFFF);
790                      newfileset.partitionReferenceNum--) {
791                         lastblock = sbi->s_partmaps
792                                         [newfileset.partitionReferenceNum]
793                                                 .s_partition_len;
794                         newfileset.logicalBlockNum = 0;
795 
796                         do {
797                                 bh = udf_read_ptagged(sb, &newfileset, 0,
798                                                       &ident);
799                                 if (!bh) {
800                                         newfileset.logicalBlockNum++;
801                                         continue;
802                                 }
803 
804                                 switch (ident) {
805                                 case TAG_IDENT_SBD:
806                                 {
807                                         struct spaceBitmapDesc *sp;
808                                         sp = (struct spaceBitmapDesc *)
809                                                                 bh->b_data;
810                                         newfileset.logicalBlockNum += 1 +
811                                                 ((le32_to_cpu(sp->numOfBytes) +
812                                                   sizeof(struct spaceBitmapDesc)
813                                                   - 1) >> sb->s_blocksize_bits);
814                                         brelse(bh);
815                                         break;
816                                 }
817                                 case TAG_IDENT_FSD:
818                                         *fileset = newfileset;
819                                         break;
820                                 default:
821                                         newfileset.logicalBlockNum++;
822                                         brelse(bh);
823                                         bh = NULL;
824                                         break;
825                                 }
826                         } while (newfileset.logicalBlockNum < lastblock &&
827                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
828                                  fileset->partitionReferenceNum == 0xFFFF);
829                 }
830         }
831 
832         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
833              fileset->partitionReferenceNum != 0xFFFF) && bh) {
834                 udf_debug("Fileset at block=%d, partition=%d\n",
835                           fileset->logicalBlockNum,
836                           fileset->partitionReferenceNum);
837 
838                 sbi->s_partition = fileset->partitionReferenceNum;
839                 udf_load_fileset(sb, bh, root);
840                 brelse(bh);
841                 return 0;
842         }
843         return 1;
844 }
845 
846 /*
847  * Load primary Volume Descriptor Sequence
848  *
849  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
850  * should be tried.
851  */
852 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
853 {
854         struct primaryVolDesc *pvoldesc;
855         struct ustr *instr, *outstr;
856         struct buffer_head *bh;
857         uint16_t ident;
858         int ret = -ENOMEM;
859 
860         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
861         if (!instr)
862                 return -ENOMEM;
863 
864         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
865         if (!outstr)
866                 goto out1;
867 
868         bh = udf_read_tagged(sb, block, block, &ident);
869         if (!bh) {
870                 ret = -EAGAIN;
871                 goto out2;
872         }
873 
874         if (ident != TAG_IDENT_PVD) {
875                 ret = -EIO;
876                 goto out_bh;
877         }
878 
879         pvoldesc = (struct primaryVolDesc *)bh->b_data;
880 
881         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
882                               pvoldesc->recordingDateAndTime)) {
883 #ifdef UDFFS_DEBUG
884                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
885                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
886                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
887                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
888 #endif
889         }
890 
891         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
892                 if (udf_CS0toUTF8(outstr, instr)) {
893                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
894                                 outstr->u_len > 31 ? 31 : outstr->u_len);
895                         udf_debug("volIdent[] = '%s'\n",
896                                   UDF_SB(sb)->s_volume_ident);
897                 }
898 
899         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
900                 if (udf_CS0toUTF8(outstr, instr))
901                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
902 
903         ret = 0;
904 out_bh:
905         brelse(bh);
906 out2:
907         kfree(outstr);
908 out1:
909         kfree(instr);
910         return ret;
911 }
912 
913 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
914                                         u32 meta_file_loc, u32 partition_num)
915 {
916         struct kernel_lb_addr addr;
917         struct inode *metadata_fe;
918 
919         addr.logicalBlockNum = meta_file_loc;
920         addr.partitionReferenceNum = partition_num;
921 
922         metadata_fe = udf_iget(sb, &addr);
923 
924         if (metadata_fe == NULL)
925                 udf_warn(sb, "metadata inode efe not found\n");
926         else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
927                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
928                 iput(metadata_fe);
929                 metadata_fe = NULL;
930         }
931 
932         return metadata_fe;
933 }
934 
935 static int udf_load_metadata_files(struct super_block *sb, int partition)
936 {
937         struct udf_sb_info *sbi = UDF_SB(sb);
938         struct udf_part_map *map;
939         struct udf_meta_data *mdata;
940         struct kernel_lb_addr addr;
941 
942         map = &sbi->s_partmaps[partition];
943         mdata = &map->s_type_specific.s_metadata;
944 
945         /* metadata address */
946         udf_debug("Metadata file location: block = %d part = %d\n",
947                   mdata->s_meta_file_loc, map->s_partition_num);
948 
949         mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
950                 mdata->s_meta_file_loc, map->s_partition_num);
951 
952         if (mdata->s_metadata_fe == NULL) {
953                 /* mirror file entry */
954                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
955                           mdata->s_mirror_file_loc, map->s_partition_num);
956 
957                 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
958                         mdata->s_mirror_file_loc, map->s_partition_num);
959 
960                 if (mdata->s_mirror_fe == NULL) {
961                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
962                         return -EIO;
963                 }
964         }
965 
966         /*
967          * bitmap file entry
968          * Note:
969          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
970         */
971         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
972                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
973                 addr.partitionReferenceNum = map->s_partition_num;
974 
975                 udf_debug("Bitmap file location: block = %d part = %d\n",
976                           addr.logicalBlockNum, addr.partitionReferenceNum);
977 
978                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
979                 if (mdata->s_bitmap_fe == NULL) {
980                         if (sb->s_flags & MS_RDONLY)
981                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
982                         else {
983                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
984                                 return -EIO;
985                         }
986                 }
987         }
988 
989         udf_debug("udf_load_metadata_files Ok\n");
990         return 0;
991 }
992 
993 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
994                              struct kernel_lb_addr *root)
995 {
996         struct fileSetDesc *fset;
997 
998         fset = (struct fileSetDesc *)bh->b_data;
999 
1000         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1001 
1002         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1003 
1004         udf_debug("Rootdir at block=%d, partition=%d\n",
1005                   root->logicalBlockNum, root->partitionReferenceNum);
1006 }
1007 
1008 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1009 {
1010         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1011         return DIV_ROUND_UP(map->s_partition_len +
1012                             (sizeof(struct spaceBitmapDesc) << 3),
1013                             sb->s_blocksize * 8);
1014 }
1015 
1016 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1017 {
1018         struct udf_bitmap *bitmap;
1019         int nr_groups;
1020         int size;
1021 
1022         nr_groups = udf_compute_nr_groups(sb, index);
1023         size = sizeof(struct udf_bitmap) +
1024                 (sizeof(struct buffer_head *) * nr_groups);
1025 
1026         if (size <= PAGE_SIZE)
1027                 bitmap = kzalloc(size, GFP_KERNEL);
1028         else
1029                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1030 
1031         if (bitmap == NULL)
1032                 return NULL;
1033 
1034         bitmap->s_nr_groups = nr_groups;
1035         return bitmap;
1036 }
1037 
1038 static int udf_fill_partdesc_info(struct super_block *sb,
1039                 struct partitionDesc *p, int p_index)
1040 {
1041         struct udf_part_map *map;
1042         struct udf_sb_info *sbi = UDF_SB(sb);
1043         struct partitionHeaderDesc *phd;
1044 
1045         map = &sbi->s_partmaps[p_index];
1046 
1047         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1048         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1049 
1050         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1051                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1052         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1053                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1054         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1055                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1056         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1057                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1058 
1059         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1060                   p_index, map->s_partition_type,
1061                   map->s_partition_root, map->s_partition_len);
1062 
1063         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1064             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1065                 return 0;
1066 
1067         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1068         if (phd->unallocSpaceTable.extLength) {
1069                 struct kernel_lb_addr loc = {
1070                         .logicalBlockNum = le32_to_cpu(
1071                                 phd->unallocSpaceTable.extPosition),
1072                         .partitionReferenceNum = p_index,
1073                 };
1074 
1075                 map->s_uspace.s_table = udf_iget(sb, &loc);
1076                 if (!map->s_uspace.s_table) {
1077                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1078                                   p_index);
1079                         return -EIO;
1080                 }
1081                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1082                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1083                           p_index, map->s_uspace.s_table->i_ino);
1084         }
1085 
1086         if (phd->unallocSpaceBitmap.extLength) {
1087                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1088                 if (!bitmap)
1089                         return -ENOMEM;
1090                 map->s_uspace.s_bitmap = bitmap;
1091                 bitmap->s_extPosition = le32_to_cpu(
1092                                 phd->unallocSpaceBitmap.extPosition);
1093                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1094                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1095                           p_index, bitmap->s_extPosition);
1096         }
1097 
1098         if (phd->partitionIntegrityTable.extLength)
1099                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1100 
1101         if (phd->freedSpaceTable.extLength) {
1102                 struct kernel_lb_addr loc = {
1103                         .logicalBlockNum = le32_to_cpu(
1104                                 phd->freedSpaceTable.extPosition),
1105                         .partitionReferenceNum = p_index,
1106                 };
1107 
1108                 map->s_fspace.s_table = udf_iget(sb, &loc);
1109                 if (!map->s_fspace.s_table) {
1110                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1111                                   p_index);
1112                         return -EIO;
1113                 }
1114 
1115                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1116                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1117                           p_index, map->s_fspace.s_table->i_ino);
1118         }
1119 
1120         if (phd->freedSpaceBitmap.extLength) {
1121                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1122                 if (!bitmap)
1123                         return -ENOMEM;
1124                 map->s_fspace.s_bitmap = bitmap;
1125                 bitmap->s_extPosition = le32_to_cpu(
1126                                 phd->freedSpaceBitmap.extPosition);
1127                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1128                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1129                           p_index, bitmap->s_extPosition);
1130         }
1131         return 0;
1132 }
1133 
1134 static void udf_find_vat_block(struct super_block *sb, int p_index,
1135                                int type1_index, sector_t start_block)
1136 {
1137         struct udf_sb_info *sbi = UDF_SB(sb);
1138         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1139         sector_t vat_block;
1140         struct kernel_lb_addr ino;
1141 
1142         /*
1143          * VAT file entry is in the last recorded block. Some broken disks have
1144          * it a few blocks before so try a bit harder...
1145          */
1146         ino.partitionReferenceNum = type1_index;
1147         for (vat_block = start_block;
1148              vat_block >= map->s_partition_root &&
1149              vat_block >= start_block - 3 &&
1150              !sbi->s_vat_inode; vat_block--) {
1151                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1152                 sbi->s_vat_inode = udf_iget(sb, &ino);
1153         }
1154 }
1155 
1156 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1157 {
1158         struct udf_sb_info *sbi = UDF_SB(sb);
1159         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1160         struct buffer_head *bh = NULL;
1161         struct udf_inode_info *vati;
1162         uint32_t pos;
1163         struct virtualAllocationTable20 *vat20;
1164         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1165 
1166         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1167         if (!sbi->s_vat_inode &&
1168             sbi->s_last_block != blocks - 1) {
1169                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1170                           (unsigned long)sbi->s_last_block,
1171                           (unsigned long)blocks - 1);
1172                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1173         }
1174         if (!sbi->s_vat_inode)
1175                 return -EIO;
1176 
1177         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1178                 map->s_type_specific.s_virtual.s_start_offset = 0;
1179                 map->s_type_specific.s_virtual.s_num_entries =
1180                         (sbi->s_vat_inode->i_size - 36) >> 2;
1181         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1182                 vati = UDF_I(sbi->s_vat_inode);
1183                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1184                         pos = udf_block_map(sbi->s_vat_inode, 0);
1185                         bh = sb_bread(sb, pos);
1186                         if (!bh)
1187                                 return -EIO;
1188                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1189                 } else {
1190                         vat20 = (struct virtualAllocationTable20 *)
1191                                                         vati->i_ext.i_data;
1192                 }
1193 
1194                 map->s_type_specific.s_virtual.s_start_offset =
1195                         le16_to_cpu(vat20->lengthHeader);
1196                 map->s_type_specific.s_virtual.s_num_entries =
1197                         (sbi->s_vat_inode->i_size -
1198                                 map->s_type_specific.s_virtual.
1199                                         s_start_offset) >> 2;
1200                 brelse(bh);
1201         }
1202         return 0;
1203 }
1204 
1205 /*
1206  * Load partition descriptor block
1207  *
1208  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1209  * sequence.
1210  */
1211 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1212 {
1213         struct buffer_head *bh;
1214         struct partitionDesc *p;
1215         struct udf_part_map *map;
1216         struct udf_sb_info *sbi = UDF_SB(sb);
1217         int i, type1_idx;
1218         uint16_t partitionNumber;
1219         uint16_t ident;
1220         int ret;
1221 
1222         bh = udf_read_tagged(sb, block, block, &ident);
1223         if (!bh)
1224                 return -EAGAIN;
1225         if (ident != TAG_IDENT_PD) {
1226                 ret = 0;
1227                 goto out_bh;
1228         }
1229 
1230         p = (struct partitionDesc *)bh->b_data;
1231         partitionNumber = le16_to_cpu(p->partitionNumber);
1232 
1233         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1234         for (i = 0; i < sbi->s_partitions; i++) {
1235                 map = &sbi->s_partmaps[i];
1236                 udf_debug("Searching map: (%d == %d)\n",
1237                           map->s_partition_num, partitionNumber);
1238                 if (map->s_partition_num == partitionNumber &&
1239                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1240                      map->s_partition_type == UDF_SPARABLE_MAP15))
1241                         break;
1242         }
1243 
1244         if (i >= sbi->s_partitions) {
1245                 udf_debug("Partition (%d) not found in partition map\n",
1246                           partitionNumber);
1247                 ret = 0;
1248                 goto out_bh;
1249         }
1250 
1251         ret = udf_fill_partdesc_info(sb, p, i);
1252         if (ret < 0)
1253                 goto out_bh;
1254 
1255         /*
1256          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1257          * PHYSICAL partitions are already set up
1258          */
1259         type1_idx = i;
1260         for (i = 0; i < sbi->s_partitions; i++) {
1261                 map = &sbi->s_partmaps[i];
1262 
1263                 if (map->s_partition_num == partitionNumber &&
1264                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1265                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1266                      map->s_partition_type == UDF_METADATA_MAP25))
1267                         break;
1268         }
1269 
1270         if (i >= sbi->s_partitions) {
1271                 ret = 0;
1272                 goto out_bh;
1273         }
1274 
1275         ret = udf_fill_partdesc_info(sb, p, i);
1276         if (ret < 0)
1277                 goto out_bh;
1278 
1279         if (map->s_partition_type == UDF_METADATA_MAP25) {
1280                 ret = udf_load_metadata_files(sb, i);
1281                 if (ret < 0) {
1282                         udf_err(sb, "error loading MetaData partition map %d\n",
1283                                 i);
1284                         goto out_bh;
1285                 }
1286         } else {
1287                 /*
1288                  * If we have a partition with virtual map, we don't handle
1289                  * writing to it (we overwrite blocks instead of relocating
1290                  * them).
1291                  */
1292                 if (!(sb->s_flags & MS_RDONLY)) {
1293                         ret = -EACCES;
1294                         goto out_bh;
1295                 }
1296                 ret = udf_load_vat(sb, i, type1_idx);
1297                 if (ret < 0)
1298                         goto out_bh;
1299         }
1300         ret = 0;
1301 out_bh:
1302         /* In case loading failed, we handle cleanup in udf_fill_super */
1303         brelse(bh);
1304         return ret;
1305 }
1306 
1307 static int udf_load_sparable_map(struct super_block *sb,
1308                                  struct udf_part_map *map,
1309                                  struct sparablePartitionMap *spm)
1310 {
1311         uint32_t loc;
1312         uint16_t ident;
1313         struct sparingTable *st;
1314         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1315         int i;
1316         struct buffer_head *bh;
1317 
1318         map->s_partition_type = UDF_SPARABLE_MAP15;
1319         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1320         if (!is_power_of_2(sdata->s_packet_len)) {
1321                 udf_err(sb, "error loading logical volume descriptor: "
1322                         "Invalid packet length %u\n",
1323                         (unsigned)sdata->s_packet_len);
1324                 return -EIO;
1325         }
1326         if (spm->numSparingTables > 4) {
1327                 udf_err(sb, "error loading logical volume descriptor: "
1328                         "Too many sparing tables (%d)\n",
1329                         (int)spm->numSparingTables);
1330                 return -EIO;
1331         }
1332 
1333         for (i = 0; i < spm->numSparingTables; i++) {
1334                 loc = le32_to_cpu(spm->locSparingTable[i]);
1335                 bh = udf_read_tagged(sb, loc, loc, &ident);
1336                 if (!bh)
1337                         continue;
1338 
1339                 st = (struct sparingTable *)bh->b_data;
1340                 if (ident != 0 ||
1341                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1342                             strlen(UDF_ID_SPARING)) ||
1343                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1344                                                         sb->s_blocksize) {
1345                         brelse(bh);
1346                         continue;
1347                 }
1348 
1349                 sdata->s_spar_map[i] = bh;
1350         }
1351         map->s_partition_func = udf_get_pblock_spar15;
1352         return 0;
1353 }
1354 
1355 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1356                                struct kernel_lb_addr *fileset)
1357 {
1358         struct logicalVolDesc *lvd;
1359         int i, offset;
1360         uint8_t type;
1361         struct udf_sb_info *sbi = UDF_SB(sb);
1362         struct genericPartitionMap *gpm;
1363         uint16_t ident;
1364         struct buffer_head *bh;
1365         unsigned int table_len;
1366         int ret;
1367 
1368         bh = udf_read_tagged(sb, block, block, &ident);
1369         if (!bh)
1370                 return -EAGAIN;
1371         BUG_ON(ident != TAG_IDENT_LVD);
1372         lvd = (struct logicalVolDesc *)bh->b_data;
1373         table_len = le32_to_cpu(lvd->mapTableLength);
1374         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1375                 udf_err(sb, "error loading logical volume descriptor: "
1376                         "Partition table too long (%u > %lu)\n", table_len,
1377                         sb->s_blocksize - sizeof(*lvd));
1378                 ret = -EIO;
1379                 goto out_bh;
1380         }
1381 
1382         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1383         if (ret)
1384                 goto out_bh;
1385 
1386         for (i = 0, offset = 0;
1387              i < sbi->s_partitions && offset < table_len;
1388              i++, offset += gpm->partitionMapLength) {
1389                 struct udf_part_map *map = &sbi->s_partmaps[i];
1390                 gpm = (struct genericPartitionMap *)
1391                                 &(lvd->partitionMaps[offset]);
1392                 type = gpm->partitionMapType;
1393                 if (type == 1) {
1394                         struct genericPartitionMap1 *gpm1 =
1395                                 (struct genericPartitionMap1 *)gpm;
1396                         map->s_partition_type = UDF_TYPE1_MAP15;
1397                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1398                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1399                         map->s_partition_func = NULL;
1400                 } else if (type == 2) {
1401                         struct udfPartitionMap2 *upm2 =
1402                                                 (struct udfPartitionMap2 *)gpm;
1403                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1404                                                 strlen(UDF_ID_VIRTUAL))) {
1405                                 u16 suf =
1406                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1407                                                         identSuffix)[0]);
1408                                 if (suf < 0x0200) {
1409                                         map->s_partition_type =
1410                                                         UDF_VIRTUAL_MAP15;
1411                                         map->s_partition_func =
1412                                                         udf_get_pblock_virt15;
1413                                 } else {
1414                                         map->s_partition_type =
1415                                                         UDF_VIRTUAL_MAP20;
1416                                         map->s_partition_func =
1417                                                         udf_get_pblock_virt20;
1418                                 }
1419                         } else if (!strncmp(upm2->partIdent.ident,
1420                                                 UDF_ID_SPARABLE,
1421                                                 strlen(UDF_ID_SPARABLE))) {
1422                                 ret = udf_load_sparable_map(sb, map,
1423                                         (struct sparablePartitionMap *)gpm);
1424                                 if (ret < 0)
1425                                         goto out_bh;
1426                         } else if (!strncmp(upm2->partIdent.ident,
1427                                                 UDF_ID_METADATA,
1428                                                 strlen(UDF_ID_METADATA))) {
1429                                 struct udf_meta_data *mdata =
1430                                         &map->s_type_specific.s_metadata;
1431                                 struct metadataPartitionMap *mdm =
1432                                                 (struct metadataPartitionMap *)
1433                                                 &(lvd->partitionMaps[offset]);
1434                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1435                                           i, type, UDF_ID_METADATA);
1436 
1437                                 map->s_partition_type = UDF_METADATA_MAP25;
1438                                 map->s_partition_func = udf_get_pblock_meta25;
1439 
1440                                 mdata->s_meta_file_loc   =
1441                                         le32_to_cpu(mdm->metadataFileLoc);
1442                                 mdata->s_mirror_file_loc =
1443                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1444                                 mdata->s_bitmap_file_loc =
1445                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1446                                 mdata->s_alloc_unit_size =
1447                                         le32_to_cpu(mdm->allocUnitSize);
1448                                 mdata->s_align_unit_size =
1449                                         le16_to_cpu(mdm->alignUnitSize);
1450                                 if (mdm->flags & 0x01)
1451                                         mdata->s_flags |= MF_DUPLICATE_MD;
1452 
1453                                 udf_debug("Metadata Ident suffix=0x%x\n",
1454                                           le16_to_cpu(*(__le16 *)
1455                                                       mdm->partIdent.identSuffix));
1456                                 udf_debug("Metadata part num=%d\n",
1457                                           le16_to_cpu(mdm->partitionNum));
1458                                 udf_debug("Metadata part alloc unit size=%d\n",
1459                                           le32_to_cpu(mdm->allocUnitSize));
1460                                 udf_debug("Metadata file loc=%d\n",
1461                                           le32_to_cpu(mdm->metadataFileLoc));
1462                                 udf_debug("Mirror file loc=%d\n",
1463                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1464                                 udf_debug("Bitmap file loc=%d\n",
1465                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1466                                 udf_debug("Flags: %d %d\n",
1467                                           mdata->s_flags, mdm->flags);
1468                         } else {
1469                                 udf_debug("Unknown ident: %s\n",
1470                                           upm2->partIdent.ident);
1471                                 continue;
1472                         }
1473                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1474                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1475                 }
1476                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1477                           i, map->s_partition_num, type, map->s_volumeseqnum);
1478         }
1479 
1480         if (fileset) {
1481                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1482 
1483                 *fileset = lelb_to_cpu(la->extLocation);
1484                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1485                           fileset->logicalBlockNum,
1486                           fileset->partitionReferenceNum);
1487         }
1488         if (lvd->integritySeqExt.extLength)
1489                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1490         ret = 0;
1491 out_bh:
1492         brelse(bh);
1493         return ret;
1494 }
1495 
1496 /*
1497  * udf_load_logicalvolint
1498  *
1499  */
1500 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1501 {
1502         struct buffer_head *bh = NULL;
1503         uint16_t ident;
1504         struct udf_sb_info *sbi = UDF_SB(sb);
1505         struct logicalVolIntegrityDesc *lvid;
1506 
1507         while (loc.extLength > 0 &&
1508                (bh = udf_read_tagged(sb, loc.extLocation,
1509                                      loc.extLocation, &ident)) &&
1510                ident == TAG_IDENT_LVID) {
1511                 sbi->s_lvid_bh = bh;
1512                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1513 
1514                 if (lvid->nextIntegrityExt.extLength)
1515                         udf_load_logicalvolint(sb,
1516                                 leea_to_cpu(lvid->nextIntegrityExt));
1517 
1518                 if (sbi->s_lvid_bh != bh)
1519                         brelse(bh);
1520                 loc.extLength -= sb->s_blocksize;
1521                 loc.extLocation++;
1522         }
1523         if (sbi->s_lvid_bh != bh)
1524                 brelse(bh);
1525 }
1526 
1527 /*
1528  * Process a main/reserve volume descriptor sequence.
1529  *   @block             First block of first extent of the sequence.
1530  *   @lastblock         Lastblock of first extent of the sequence.
1531  *   @fileset           There we store extent containing root fileset
1532  *
1533  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1534  * sequence
1535  */
1536 static noinline int udf_process_sequence(
1537                 struct super_block *sb,
1538                 sector_t block, sector_t lastblock,
1539                 struct kernel_lb_addr *fileset)
1540 {
1541         struct buffer_head *bh = NULL;
1542         struct udf_vds_record vds[VDS_POS_LENGTH];
1543         struct udf_vds_record *curr;
1544         struct generic_desc *gd;
1545         struct volDescPtr *vdp;
1546         int done = 0;
1547         uint32_t vdsn;
1548         uint16_t ident;
1549         long next_s = 0, next_e = 0;
1550         int ret;
1551 
1552         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1553 
1554         /*
1555          * Read the main descriptor sequence and find which descriptors
1556          * are in it.
1557          */
1558         for (; (!done && block <= lastblock); block++) {
1559 
1560                 bh = udf_read_tagged(sb, block, block, &ident);
1561                 if (!bh) {
1562                         udf_err(sb,
1563                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1564                                 (unsigned long long)block);
1565                         return -EAGAIN;
1566                 }
1567 
1568                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1569                 gd = (struct generic_desc *)bh->b_data;
1570                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1571                 switch (ident) {
1572                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1573                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1574                         if (vdsn >= curr->volDescSeqNum) {
1575                                 curr->volDescSeqNum = vdsn;
1576                                 curr->block = block;
1577                         }
1578                         break;
1579                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1580                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1581                         if (vdsn >= curr->volDescSeqNum) {
1582                                 curr->volDescSeqNum = vdsn;
1583                                 curr->block = block;
1584 
1585                                 vdp = (struct volDescPtr *)bh->b_data;
1586                                 next_s = le32_to_cpu(
1587                                         vdp->nextVolDescSeqExt.extLocation);
1588                                 next_e = le32_to_cpu(
1589                                         vdp->nextVolDescSeqExt.extLength);
1590                                 next_e = next_e >> sb->s_blocksize_bits;
1591                                 next_e += next_s;
1592                         }
1593                         break;
1594                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1595                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1596                         if (vdsn >= curr->volDescSeqNum) {
1597                                 curr->volDescSeqNum = vdsn;
1598                                 curr->block = block;
1599                         }
1600                         break;
1601                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1602                         curr = &vds[VDS_POS_PARTITION_DESC];
1603                         if (!curr->block)
1604                                 curr->block = block;
1605                         break;
1606                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1607                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1608                         if (vdsn >= curr->volDescSeqNum) {
1609                                 curr->volDescSeqNum = vdsn;
1610                                 curr->block = block;
1611                         }
1612                         break;
1613                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1614                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1615                         if (vdsn >= curr->volDescSeqNum) {
1616                                 curr->volDescSeqNum = vdsn;
1617                                 curr->block = block;
1618                         }
1619                         break;
1620                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1621                         vds[VDS_POS_TERMINATING_DESC].block = block;
1622                         if (next_e) {
1623                                 block = next_s;
1624                                 lastblock = next_e;
1625                                 next_s = next_e = 0;
1626                         } else
1627                                 done = 1;
1628                         break;
1629                 }
1630                 brelse(bh);
1631         }
1632         /*
1633          * Now read interesting descriptors again and process them
1634          * in a suitable order
1635          */
1636         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1637                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1638                 return -EAGAIN;
1639         }
1640         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1641         if (ret < 0)
1642                 return ret;
1643 
1644         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1645                 ret = udf_load_logicalvol(sb,
1646                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1647                                           fileset);
1648                 if (ret < 0)
1649                         return ret;
1650         }
1651 
1652         if (vds[VDS_POS_PARTITION_DESC].block) {
1653                 /*
1654                  * We rescan the whole descriptor sequence to find
1655                  * partition descriptor blocks and process them.
1656                  */
1657                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1658                      block < vds[VDS_POS_TERMINATING_DESC].block;
1659                      block++) {
1660                         ret = udf_load_partdesc(sb, block);
1661                         if (ret < 0)
1662                                 return ret;
1663                 }
1664         }
1665 
1666         return 0;
1667 }
1668 
1669 /*
1670  * Load Volume Descriptor Sequence described by anchor in bh
1671  *
1672  * Returns <0 on error, 0 on success
1673  */
1674 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1675                              struct kernel_lb_addr *fileset)
1676 {
1677         struct anchorVolDescPtr *anchor;
1678         sector_t main_s, main_e, reserve_s, reserve_e;
1679         int ret;
1680 
1681         anchor = (struct anchorVolDescPtr *)bh->b_data;
1682 
1683         /* Locate the main sequence */
1684         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1685         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1686         main_e = main_e >> sb->s_blocksize_bits;
1687         main_e += main_s;
1688 
1689         /* Locate the reserve sequence */
1690         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1691         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1692         reserve_e = reserve_e >> sb->s_blocksize_bits;
1693         reserve_e += reserve_s;
1694 
1695         /* Process the main & reserve sequences */
1696         /* responsible for finding the PartitionDesc(s) */
1697         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1698         if (ret != -EAGAIN)
1699                 return ret;
1700         udf_sb_free_partitions(sb);
1701         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1702         if (ret < 0) {
1703                 udf_sb_free_partitions(sb);
1704                 /* No sequence was OK, return -EIO */
1705                 if (ret == -EAGAIN)
1706                         ret = -EIO;
1707         }
1708         return ret;
1709 }
1710 
1711 /*
1712  * Check whether there is an anchor block in the given block and
1713  * load Volume Descriptor Sequence if so.
1714  *
1715  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1716  * block
1717  */
1718 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1719                                   struct kernel_lb_addr *fileset)
1720 {
1721         struct buffer_head *bh;
1722         uint16_t ident;
1723         int ret;
1724 
1725         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1726             udf_fixed_to_variable(block) >=
1727             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1728                 return -EAGAIN;
1729 
1730         bh = udf_read_tagged(sb, block, block, &ident);
1731         if (!bh)
1732                 return -EAGAIN;
1733         if (ident != TAG_IDENT_AVDP) {
1734                 brelse(bh);
1735                 return -EAGAIN;
1736         }
1737         ret = udf_load_sequence(sb, bh, fileset);
1738         brelse(bh);
1739         return ret;
1740 }
1741 
1742 /*
1743  * Search for an anchor volume descriptor pointer.
1744  *
1745  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1746  * of anchors.
1747  */
1748 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1749                             struct kernel_lb_addr *fileset)
1750 {
1751         sector_t last[6];
1752         int i;
1753         struct udf_sb_info *sbi = UDF_SB(sb);
1754         int last_count = 0;
1755         int ret;
1756 
1757         /* First try user provided anchor */
1758         if (sbi->s_anchor) {
1759                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1760                 if (ret != -EAGAIN)
1761                         return ret;
1762         }
1763         /*
1764          * according to spec, anchor is in either:
1765          *     block 256
1766          *     lastblock-256
1767          *     lastblock
1768          *  however, if the disc isn't closed, it could be 512.
1769          */
1770         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1771         if (ret != -EAGAIN)
1772                 return ret;
1773         /*
1774          * The trouble is which block is the last one. Drives often misreport
1775          * this so we try various possibilities.
1776          */
1777         last[last_count++] = *lastblock;
1778         if (*lastblock >= 1)
1779                 last[last_count++] = *lastblock - 1;
1780         last[last_count++] = *lastblock + 1;
1781         if (*lastblock >= 2)
1782                 last[last_count++] = *lastblock - 2;
1783         if (*lastblock >= 150)
1784                 last[last_count++] = *lastblock - 150;
1785         if (*lastblock >= 152)
1786                 last[last_count++] = *lastblock - 152;
1787 
1788         for (i = 0; i < last_count; i++) {
1789                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1790                                 sb->s_blocksize_bits)
1791                         continue;
1792                 ret = udf_check_anchor_block(sb, last[i], fileset);
1793                 if (ret != -EAGAIN) {
1794                         if (!ret)
1795                                 *lastblock = last[i];
1796                         return ret;
1797                 }
1798                 if (last[i] < 256)
1799                         continue;
1800                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1801                 if (ret != -EAGAIN) {
1802                         if (!ret)
1803                                 *lastblock = last[i];
1804                         return ret;
1805                 }
1806         }
1807 
1808         /* Finally try block 512 in case media is open */
1809         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1810 }
1811 
1812 /*
1813  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1814  * area specified by it. The function expects sbi->s_lastblock to be the last
1815  * block on the media.
1816  *
1817  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1818  * was not found.
1819  */
1820 static int udf_find_anchor(struct super_block *sb,
1821                            struct kernel_lb_addr *fileset)
1822 {
1823         struct udf_sb_info *sbi = UDF_SB(sb);
1824         sector_t lastblock = sbi->s_last_block;
1825         int ret;
1826 
1827         ret = udf_scan_anchors(sb, &lastblock, fileset);
1828         if (ret != -EAGAIN)
1829                 goto out;
1830 
1831         /* No anchor found? Try VARCONV conversion of block numbers */
1832         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1833         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1834         /* Firstly, we try to not convert number of the last block */
1835         ret = udf_scan_anchors(sb, &lastblock, fileset);
1836         if (ret != -EAGAIN)
1837                 goto out;
1838 
1839         lastblock = sbi->s_last_block;
1840         /* Secondly, we try with converted number of the last block */
1841         ret = udf_scan_anchors(sb, &lastblock, fileset);
1842         if (ret < 0) {
1843                 /* VARCONV didn't help. Clear it. */
1844                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1845         }
1846 out:
1847         if (ret == 0)
1848                 sbi->s_last_block = lastblock;
1849         return ret;
1850 }
1851 
1852 /*
1853  * Check Volume Structure Descriptor, find Anchor block and load Volume
1854  * Descriptor Sequence.
1855  *
1856  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1857  * block was not found.
1858  */
1859 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1860                         int silent, struct kernel_lb_addr *fileset)
1861 {
1862         struct udf_sb_info *sbi = UDF_SB(sb);
1863         loff_t nsr_off;
1864         int ret;
1865 
1866         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1867                 if (!silent)
1868                         udf_warn(sb, "Bad block size\n");
1869                 return -EINVAL;
1870         }
1871         sbi->s_last_block = uopt->lastblock;
1872         if (!uopt->novrs) {
1873                 /* Check that it is NSR02 compliant */
1874                 nsr_off = udf_check_vsd(sb);
1875                 if (!nsr_off) {
1876                         if (!silent)
1877                                 udf_warn(sb, "No VRS found\n");
1878                         return 0;
1879                 }
1880                 if (nsr_off == -1)
1881                         udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1882                 if (!sbi->s_last_block)
1883                         sbi->s_last_block = udf_get_last_block(sb);
1884         } else {
1885                 udf_debug("Validity check skipped because of novrs option\n");
1886         }
1887 
1888         /* Look for anchor block and load Volume Descriptor Sequence */
1889         sbi->s_anchor = uopt->anchor;
1890         ret = udf_find_anchor(sb, fileset);
1891         if (ret < 0) {
1892                 if (!silent && ret == -EAGAIN)
1893                         udf_warn(sb, "No anchor found\n");
1894                 return ret;
1895         }
1896         return 0;
1897 }
1898 
1899 static void udf_open_lvid(struct super_block *sb)
1900 {
1901         struct udf_sb_info *sbi = UDF_SB(sb);
1902         struct buffer_head *bh = sbi->s_lvid_bh;
1903         struct logicalVolIntegrityDesc *lvid;
1904         struct logicalVolIntegrityDescImpUse *lvidiu;
1905 
1906         if (!bh)
1907                 return;
1908 
1909         mutex_lock(&sbi->s_alloc_mutex);
1910         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1911         lvidiu = udf_sb_lvidiu(sbi);
1912 
1913         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1914         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1915         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1916                                 CURRENT_TIME);
1917         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1918 
1919         lvid->descTag.descCRC = cpu_to_le16(
1920                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1921                         le16_to_cpu(lvid->descTag.descCRCLength)));
1922 
1923         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1924         mark_buffer_dirty(bh);
1925         sbi->s_lvid_dirty = 0;
1926         mutex_unlock(&sbi->s_alloc_mutex);
1927         /* Make opening of filesystem visible on the media immediately */
1928         sync_dirty_buffer(bh);
1929 }
1930 
1931 static void udf_close_lvid(struct super_block *sb)
1932 {
1933         struct udf_sb_info *sbi = UDF_SB(sb);
1934         struct buffer_head *bh = sbi->s_lvid_bh;
1935         struct logicalVolIntegrityDesc *lvid;
1936         struct logicalVolIntegrityDescImpUse *lvidiu;
1937 
1938         if (!bh)
1939                 return;
1940 
1941         mutex_lock(&sbi->s_alloc_mutex);
1942         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1943         lvidiu = udf_sb_lvidiu(sbi);
1944         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1945         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1946         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1947         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1948                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1949         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1950                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1951         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1952                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1953         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1954 
1955         lvid->descTag.descCRC = cpu_to_le16(
1956                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1957                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1958 
1959         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1960         /*
1961          * We set buffer uptodate unconditionally here to avoid spurious
1962          * warnings from mark_buffer_dirty() when previous EIO has marked
1963          * the buffer as !uptodate
1964          */
1965         set_buffer_uptodate(bh);
1966         mark_buffer_dirty(bh);
1967         sbi->s_lvid_dirty = 0;
1968         mutex_unlock(&sbi->s_alloc_mutex);
1969         /* Make closing of filesystem visible on the media immediately */
1970         sync_dirty_buffer(bh);
1971 }
1972 
1973 u64 lvid_get_unique_id(struct super_block *sb)
1974 {
1975         struct buffer_head *bh;
1976         struct udf_sb_info *sbi = UDF_SB(sb);
1977         struct logicalVolIntegrityDesc *lvid;
1978         struct logicalVolHeaderDesc *lvhd;
1979         u64 uniqueID;
1980         u64 ret;
1981 
1982         bh = sbi->s_lvid_bh;
1983         if (!bh)
1984                 return 0;
1985 
1986         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1987         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1988 
1989         mutex_lock(&sbi->s_alloc_mutex);
1990         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1991         if (!(++uniqueID & 0xFFFFFFFF))
1992                 uniqueID += 16;
1993         lvhd->uniqueID = cpu_to_le64(uniqueID);
1994         mutex_unlock(&sbi->s_alloc_mutex);
1995         mark_buffer_dirty(bh);
1996 
1997         return ret;
1998 }
1999 
2000 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2001 {
2002         int ret = -EINVAL;
2003         struct inode *inode = NULL;
2004         struct udf_options uopt;
2005         struct kernel_lb_addr rootdir, fileset;
2006         struct udf_sb_info *sbi;
2007 
2008         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2009         uopt.uid = INVALID_UID;
2010         uopt.gid = INVALID_GID;
2011         uopt.umask = 0;
2012         uopt.fmode = UDF_INVALID_MODE;
2013         uopt.dmode = UDF_INVALID_MODE;
2014 
2015         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2016         if (!sbi)
2017                 return -ENOMEM;
2018 
2019         sb->s_fs_info = sbi;
2020 
2021         mutex_init(&sbi->s_alloc_mutex);
2022 
2023         if (!udf_parse_options((char *)options, &uopt, false))
2024                 goto error_out;
2025 
2026         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2027             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2028                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2029                 goto error_out;
2030         }
2031 #ifdef CONFIG_UDF_NLS
2032         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2033                 uopt.nls_map = load_nls_default();
2034                 if (!uopt.nls_map)
2035                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2036                 else
2037                         udf_debug("Using default NLS map\n");
2038         }
2039 #endif
2040         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2041                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2042 
2043         fileset.logicalBlockNum = 0xFFFFFFFF;
2044         fileset.partitionReferenceNum = 0xFFFF;
2045 
2046         sbi->s_flags = uopt.flags;
2047         sbi->s_uid = uopt.uid;
2048         sbi->s_gid = uopt.gid;
2049         sbi->s_umask = uopt.umask;
2050         sbi->s_fmode = uopt.fmode;
2051         sbi->s_dmode = uopt.dmode;
2052         sbi->s_nls_map = uopt.nls_map;
2053         rwlock_init(&sbi->s_cred_lock);
2054 
2055         if (uopt.session == 0xFFFFFFFF)
2056                 sbi->s_session = udf_get_last_session(sb);
2057         else
2058                 sbi->s_session = uopt.session;
2059 
2060         udf_debug("Multi-session=%d\n", sbi->s_session);
2061 
2062         /* Fill in the rest of the superblock */
2063         sb->s_op = &udf_sb_ops;
2064         sb->s_export_op = &udf_export_ops;
2065 
2066         sb->s_magic = UDF_SUPER_MAGIC;
2067         sb->s_time_gran = 1000;
2068 
2069         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2070                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2071         } else {
2072                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2073                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2074                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2075                         if (!silent)
2076                                 pr_notice("Rescanning with blocksize %d\n",
2077                                           UDF_DEFAULT_BLOCKSIZE);
2078                         brelse(sbi->s_lvid_bh);
2079                         sbi->s_lvid_bh = NULL;
2080                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2081                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2082                 }
2083         }
2084         if (ret < 0) {
2085                 if (ret == -EAGAIN) {
2086                         udf_warn(sb, "No partition found (1)\n");
2087                         ret = -EINVAL;
2088                 }
2089                 goto error_out;
2090         }
2091 
2092         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2093 
2094         if (sbi->s_lvid_bh) {
2095                 struct logicalVolIntegrityDescImpUse *lvidiu =
2096                                                         udf_sb_lvidiu(sbi);
2097                 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2098                 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2099                 /* uint16_t maxUDFWriteRev =
2100                                 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2101 
2102                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2103                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2104                                 le16_to_cpu(lvidiu->minUDFReadRev),
2105                                 UDF_MAX_READ_VERSION);
2106                         ret = -EINVAL;
2107                         goto error_out;
2108                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2109                            !(sb->s_flags & MS_RDONLY)) {
2110                         ret = -EACCES;
2111                         goto error_out;
2112                 }
2113 
2114                 sbi->s_udfrev = minUDFWriteRev;
2115 
2116                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2117                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2118                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2119                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2120         }
2121 
2122         if (!sbi->s_partitions) {
2123                 udf_warn(sb, "No partition found (2)\n");
2124                 ret = -EINVAL;
2125                 goto error_out;
2126         }
2127 
2128         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2129                         UDF_PART_FLAG_READ_ONLY &&
2130             !(sb->s_flags & MS_RDONLY)) {
2131                 ret = -EACCES;
2132                 goto error_out;
2133         }
2134 
2135         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2136                 udf_warn(sb, "No fileset found\n");
2137                 ret = -EINVAL;
2138                 goto error_out;
2139         }
2140 
2141         if (!silent) {
2142                 struct timestamp ts;
2143                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2144                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2145                          sbi->s_volume_ident,
2146                          le16_to_cpu(ts.year), ts.month, ts.day,
2147                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2148         }
2149         if (!(sb->s_flags & MS_RDONLY))
2150                 udf_open_lvid(sb);
2151 
2152         /* Assign the root inode */
2153         /* assign inodes by physical block number */
2154         /* perhaps it's not extensible enough, but for now ... */
2155         inode = udf_iget(sb, &rootdir);
2156         if (!inode) {
2157                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2158                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2159                 ret = -EIO;
2160                 goto error_out;
2161         }
2162 
2163         /* Allocate a dentry for the root inode */
2164         sb->s_root = d_make_root(inode);
2165         if (!sb->s_root) {
2166                 udf_err(sb, "Couldn't allocate root dentry\n");
2167                 ret = -ENOMEM;
2168                 goto error_out;
2169         }
2170         sb->s_maxbytes = MAX_LFS_FILESIZE;
2171         sb->s_max_links = UDF_MAX_LINKS;
2172         return 0;
2173 
2174 error_out:
2175         if (sbi->s_vat_inode)
2176                 iput(sbi->s_vat_inode);
2177 #ifdef CONFIG_UDF_NLS
2178         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2179                 unload_nls(sbi->s_nls_map);
2180 #endif
2181         if (!(sb->s_flags & MS_RDONLY))
2182                 udf_close_lvid(sb);
2183         brelse(sbi->s_lvid_bh);
2184         udf_sb_free_partitions(sb);
2185         kfree(sbi);
2186         sb->s_fs_info = NULL;
2187 
2188         return ret;
2189 }
2190 
2191 void _udf_err(struct super_block *sb, const char *function,
2192               const char *fmt, ...)
2193 {
2194         struct va_format vaf;
2195         va_list args;
2196 
2197         va_start(args, fmt);
2198 
2199         vaf.fmt = fmt;
2200         vaf.va = &args;
2201 
2202         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2203 
2204         va_end(args);
2205 }
2206 
2207 void _udf_warn(struct super_block *sb, const char *function,
2208                const char *fmt, ...)
2209 {
2210         struct va_format vaf;
2211         va_list args;
2212 
2213         va_start(args, fmt);
2214 
2215         vaf.fmt = fmt;
2216         vaf.va = &args;
2217 
2218         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2219 
2220         va_end(args);
2221 }
2222 
2223 static void udf_put_super(struct super_block *sb)
2224 {
2225         struct udf_sb_info *sbi;
2226 
2227         sbi = UDF_SB(sb);
2228 
2229         if (sbi->s_vat_inode)
2230                 iput(sbi->s_vat_inode);
2231 #ifdef CONFIG_UDF_NLS
2232         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2233                 unload_nls(sbi->s_nls_map);
2234 #endif
2235         if (!(sb->s_flags & MS_RDONLY))
2236                 udf_close_lvid(sb);
2237         brelse(sbi->s_lvid_bh);
2238         udf_sb_free_partitions(sb);
2239         kfree(sb->s_fs_info);
2240         sb->s_fs_info = NULL;
2241 }
2242 
2243 static int udf_sync_fs(struct super_block *sb, int wait)
2244 {
2245         struct udf_sb_info *sbi = UDF_SB(sb);
2246 
2247         mutex_lock(&sbi->s_alloc_mutex);
2248         if (sbi->s_lvid_dirty) {
2249                 /*
2250                  * Blockdevice will be synced later so we don't have to submit
2251                  * the buffer for IO
2252                  */
2253                 mark_buffer_dirty(sbi->s_lvid_bh);
2254                 sbi->s_lvid_dirty = 0;
2255         }
2256         mutex_unlock(&sbi->s_alloc_mutex);
2257 
2258         return 0;
2259 }
2260 
2261 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2262 {
2263         struct super_block *sb = dentry->d_sb;
2264         struct udf_sb_info *sbi = UDF_SB(sb);
2265         struct logicalVolIntegrityDescImpUse *lvidiu;
2266         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2267 
2268         if (sbi->s_lvid_bh != NULL)
2269                 lvidiu = udf_sb_lvidiu(sbi);
2270         else
2271                 lvidiu = NULL;
2272 
2273         buf->f_type = UDF_SUPER_MAGIC;
2274         buf->f_bsize = sb->s_blocksize;
2275         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2276         buf->f_bfree = udf_count_free(sb);
2277         buf->f_bavail = buf->f_bfree;
2278         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2279                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2280                         + buf->f_bfree;
2281         buf->f_ffree = buf->f_bfree;
2282         buf->f_namelen = UDF_NAME_LEN - 2;
2283         buf->f_fsid.val[0] = (u32)id;
2284         buf->f_fsid.val[1] = (u32)(id >> 32);
2285 
2286         return 0;
2287 }
2288 
2289 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2290                                           struct udf_bitmap *bitmap)
2291 {
2292         struct buffer_head *bh = NULL;
2293         unsigned int accum = 0;
2294         int index;
2295         int block = 0, newblock;
2296         struct kernel_lb_addr loc;
2297         uint32_t bytes;
2298         uint8_t *ptr;
2299         uint16_t ident;
2300         struct spaceBitmapDesc *bm;
2301 
2302         loc.logicalBlockNum = bitmap->s_extPosition;
2303         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2304         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2305 
2306         if (!bh) {
2307                 udf_err(sb, "udf_count_free failed\n");
2308                 goto out;
2309         } else if (ident != TAG_IDENT_SBD) {
2310                 brelse(bh);
2311                 udf_err(sb, "udf_count_free failed\n");
2312                 goto out;
2313         }
2314 
2315         bm = (struct spaceBitmapDesc *)bh->b_data;
2316         bytes = le32_to_cpu(bm->numOfBytes);
2317         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2318         ptr = (uint8_t *)bh->b_data;
2319 
2320         while (bytes > 0) {
2321                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2322                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2323                                         cur_bytes * 8);
2324                 bytes -= cur_bytes;
2325                 if (bytes) {
2326                         brelse(bh);
2327                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2328                         bh = udf_tread(sb, newblock);
2329                         if (!bh) {
2330                                 udf_debug("read failed\n");
2331                                 goto out;
2332                         }
2333                         index = 0;
2334                         ptr = (uint8_t *)bh->b_data;
2335                 }
2336         }
2337         brelse(bh);
2338 out:
2339         return accum;
2340 }
2341 
2342 static unsigned int udf_count_free_table(struct super_block *sb,
2343                                          struct inode *table)
2344 {
2345         unsigned int accum = 0;
2346         uint32_t elen;
2347         struct kernel_lb_addr eloc;
2348         int8_t etype;
2349         struct extent_position epos;
2350 
2351         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2352         epos.block = UDF_I(table)->i_location;
2353         epos.offset = sizeof(struct unallocSpaceEntry);
2354         epos.bh = NULL;
2355 
2356         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2357                 accum += (elen >> table->i_sb->s_blocksize_bits);
2358 
2359         brelse(epos.bh);
2360         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2361 
2362         return accum;
2363 }
2364 
2365 static unsigned int udf_count_free(struct super_block *sb)
2366 {
2367         unsigned int accum = 0;
2368         struct udf_sb_info *sbi;
2369         struct udf_part_map *map;
2370 
2371         sbi = UDF_SB(sb);
2372         if (sbi->s_lvid_bh) {
2373                 struct logicalVolIntegrityDesc *lvid =
2374                         (struct logicalVolIntegrityDesc *)
2375                         sbi->s_lvid_bh->b_data;
2376                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2377                         accum = le32_to_cpu(
2378                                         lvid->freeSpaceTable[sbi->s_partition]);
2379                         if (accum == 0xFFFFFFFF)
2380                                 accum = 0;
2381                 }
2382         }
2383 
2384         if (accum)
2385                 return accum;
2386 
2387         map = &sbi->s_partmaps[sbi->s_partition];
2388         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2389                 accum += udf_count_free_bitmap(sb,
2390                                                map->s_uspace.s_bitmap);
2391         }
2392         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2393                 accum += udf_count_free_bitmap(sb,
2394                                                map->s_fspace.s_bitmap);
2395         }
2396         if (accum)
2397                 return accum;
2398 
2399         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2400                 accum += udf_count_free_table(sb,
2401                                               map->s_uspace.s_table);
2402         }
2403         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2404                 accum += udf_count_free_table(sb,
2405                                               map->s_fspace.s_table);
2406         }
2407 
2408         return accum;
2409 }
2410 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp