~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/udf/super.c

Version: ~ [ linux-5.16-rc3 ] ~ [ linux-5.15.5 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.82 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.162 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.218 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.256 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.291 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.293 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * super.c
  3  *
  4  * PURPOSE
  5  *  Super block routines for the OSTA-UDF(tm) filesystem.
  6  *
  7  * DESCRIPTION
  8  *  OSTA-UDF(tm) = Optical Storage Technology Association
  9  *  Universal Disk Format.
 10  *
 11  *  This code is based on version 2.00 of the UDF specification,
 12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
 13  *    http://www.osta.org/
 14  *    http://www.ecma.ch/
 15  *    http://www.iso.org/
 16  *
 17  * COPYRIGHT
 18  *  This file is distributed under the terms of the GNU General Public
 19  *  License (GPL). Copies of the GPL can be obtained from:
 20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 21  *  Each contributing author retains all rights to their own work.
 22  *
 23  *  (C) 1998 Dave Boynton
 24  *  (C) 1998-2004 Ben Fennema
 25  *  (C) 2000 Stelias Computing Inc
 26  *
 27  * HISTORY
 28  *
 29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
 30  *                added some debugging.
 31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
 32  *  10/16/98      attempting some multi-session support
 33  *  10/17/98      added freespace count for "df"
 34  *  11/11/98 gr   added novrs option
 35  *  11/26/98 dgb  added fileset,anchor mount options
 36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
 37  *                vol descs. rewrote option handling based on isofs
 38  *  12/20/98      find the free space bitmap (if it exists)
 39  */
 40 
 41 #include "udfdecl.h"
 42 
 43 #include <linux/blkdev.h>
 44 #include <linux/slab.h>
 45 #include <linux/kernel.h>
 46 #include <linux/module.h>
 47 #include <linux/parser.h>
 48 #include <linux/stat.h>
 49 #include <linux/cdrom.h>
 50 #include <linux/nls.h>
 51 #include <linux/vfs.h>
 52 #include <linux/vmalloc.h>
 53 #include <linux/errno.h>
 54 #include <linux/mount.h>
 55 #include <linux/seq_file.h>
 56 #include <linux/bitmap.h>
 57 #include <linux/crc-itu-t.h>
 58 #include <linux/log2.h>
 59 #include <asm/byteorder.h>
 60 
 61 #include "udf_sb.h"
 62 #include "udf_i.h"
 63 
 64 #include <linux/init.h>
 65 #include <linux/uaccess.h>
 66 
 67 #define VDS_POS_PRIMARY_VOL_DESC        0
 68 #define VDS_POS_UNALLOC_SPACE_DESC      1
 69 #define VDS_POS_LOGICAL_VOL_DESC        2
 70 #define VDS_POS_PARTITION_DESC          3
 71 #define VDS_POS_IMP_USE_VOL_DESC        4
 72 #define VDS_POS_VOL_DESC_PTR            5
 73 #define VDS_POS_TERMINATING_DESC        6
 74 #define VDS_POS_LENGTH                  7
 75 
 76 #define VSD_FIRST_SECTOR_OFFSET         32768
 77 #define VSD_MAX_SECTOR_OFFSET           0x800000
 78 
 79 /*
 80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
 81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
 82  * hopefully don't limit any real use of rewritten inode on write-once media
 83  * but avoid looping for too long on corrupted media.
 84  */
 85 #define UDF_MAX_TD_NESTING 64
 86 #define UDF_MAX_LVID_NESTING 1000
 87 
 88 enum { UDF_MAX_LINKS = 0xffff };
 89 
 90 /* These are the "meat" - everything else is stuffing */
 91 static int udf_fill_super(struct super_block *, void *, int);
 92 static void udf_put_super(struct super_block *);
 93 static int udf_sync_fs(struct super_block *, int);
 94 static int udf_remount_fs(struct super_block *, int *, char *);
 95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
 96 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
 97                             struct kernel_lb_addr *);
 98 static void udf_load_fileset(struct super_block *, struct buffer_head *,
 99                              struct kernel_lb_addr *);
100 static void udf_open_lvid(struct super_block *);
101 static void udf_close_lvid(struct super_block *);
102 static unsigned int udf_count_free(struct super_block *);
103 static int udf_statfs(struct dentry *, struct kstatfs *);
104 static int udf_show_options(struct seq_file *, struct dentry *);
105 
106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107 {
108         struct logicalVolIntegrityDesc *lvid;
109         unsigned int partnum;
110         unsigned int offset;
111 
112         if (!UDF_SB(sb)->s_lvid_bh)
113                 return NULL;
114         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
115         partnum = le32_to_cpu(lvid->numOfPartitions);
116         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
117              offsetof(struct logicalVolIntegrityDesc, impUse)) /
118              (2 * sizeof(uint32_t)) < partnum) {
119                 udf_err(sb, "Logical volume integrity descriptor corrupted "
120                         "(numOfPartitions = %u)!\n", partnum);
121                 return NULL;
122         }
123         /* The offset is to skip freeSpaceTable and sizeTable arrays */
124         offset = partnum * 2 * sizeof(uint32_t);
125         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
126 }
127 
128 /* UDF filesystem type */
129 static struct dentry *udf_mount(struct file_system_type *fs_type,
130                       int flags, const char *dev_name, void *data)
131 {
132         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
133 }
134 
135 static struct file_system_type udf_fstype = {
136         .owner          = THIS_MODULE,
137         .name           = "udf",
138         .mount          = udf_mount,
139         .kill_sb        = kill_block_super,
140         .fs_flags       = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("udf");
143 
144 static struct kmem_cache *udf_inode_cachep;
145 
146 static struct inode *udf_alloc_inode(struct super_block *sb)
147 {
148         struct udf_inode_info *ei;
149         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
150         if (!ei)
151                 return NULL;
152 
153         ei->i_unique = 0;
154         ei->i_lenExtents = 0;
155         ei->i_next_alloc_block = 0;
156         ei->i_next_alloc_goal = 0;
157         ei->i_strat4096 = 0;
158         init_rwsem(&ei->i_data_sem);
159         ei->cached_extent.lstart = -1;
160         spin_lock_init(&ei->i_extent_cache_lock);
161 
162         return &ei->vfs_inode;
163 }
164 
165 static void udf_i_callback(struct rcu_head *head)
166 {
167         struct inode *inode = container_of(head, struct inode, i_rcu);
168         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169 }
170 
171 static void udf_destroy_inode(struct inode *inode)
172 {
173         call_rcu(&inode->i_rcu, udf_i_callback);
174 }
175 
176 static void init_once(void *foo)
177 {
178         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
179 
180         ei->i_ext.i_data = NULL;
181         inode_init_once(&ei->vfs_inode);
182 }
183 
184 static int __init init_inodecache(void)
185 {
186         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
187                                              sizeof(struct udf_inode_info),
188                                              0, (SLAB_RECLAIM_ACCOUNT |
189                                                  SLAB_MEM_SPREAD |
190                                                  SLAB_ACCOUNT),
191                                              init_once);
192         if (!udf_inode_cachep)
193                 return -ENOMEM;
194         return 0;
195 }
196 
197 static void destroy_inodecache(void)
198 {
199         /*
200          * Make sure all delayed rcu free inodes are flushed before we
201          * destroy cache.
202          */
203         rcu_barrier();
204         kmem_cache_destroy(udf_inode_cachep);
205 }
206 
207 /* Superblock operations */
208 static const struct super_operations udf_sb_ops = {
209         .alloc_inode    = udf_alloc_inode,
210         .destroy_inode  = udf_destroy_inode,
211         .write_inode    = udf_write_inode,
212         .evict_inode    = udf_evict_inode,
213         .put_super      = udf_put_super,
214         .sync_fs        = udf_sync_fs,
215         .statfs         = udf_statfs,
216         .remount_fs     = udf_remount_fs,
217         .show_options   = udf_show_options,
218 };
219 
220 struct udf_options {
221         unsigned char novrs;
222         unsigned int blocksize;
223         unsigned int session;
224         unsigned int lastblock;
225         unsigned int anchor;
226         unsigned int volume;
227         unsigned short partition;
228         unsigned int fileset;
229         unsigned int rootdir;
230         unsigned int flags;
231         umode_t umask;
232         kgid_t gid;
233         kuid_t uid;
234         umode_t fmode;
235         umode_t dmode;
236         struct nls_table *nls_map;
237 };
238 
239 static int __init init_udf_fs(void)
240 {
241         int err;
242 
243         err = init_inodecache();
244         if (err)
245                 goto out1;
246         err = register_filesystem(&udf_fstype);
247         if (err)
248                 goto out;
249 
250         return 0;
251 
252 out:
253         destroy_inodecache();
254 
255 out1:
256         return err;
257 }
258 
259 static void __exit exit_udf_fs(void)
260 {
261         unregister_filesystem(&udf_fstype);
262         destroy_inodecache();
263 }
264 
265 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
266 {
267         struct udf_sb_info *sbi = UDF_SB(sb);
268 
269         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
270                                   GFP_KERNEL);
271         if (!sbi->s_partmaps) {
272                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
273                         count);
274                 sbi->s_partitions = 0;
275                 return -ENOMEM;
276         }
277 
278         sbi->s_partitions = count;
279         return 0;
280 }
281 
282 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
283 {
284         int i;
285         int nr_groups = bitmap->s_nr_groups;
286 
287         for (i = 0; i < nr_groups; i++)
288                 if (bitmap->s_block_bitmap[i])
289                         brelse(bitmap->s_block_bitmap[i]);
290 
291         kvfree(bitmap);
292 }
293 
294 static void udf_free_partition(struct udf_part_map *map)
295 {
296         int i;
297         struct udf_meta_data *mdata;
298 
299         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
300                 iput(map->s_uspace.s_table);
301         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
302                 iput(map->s_fspace.s_table);
303         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
304                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
305         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
306                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
307         if (map->s_partition_type == UDF_SPARABLE_MAP15)
308                 for (i = 0; i < 4; i++)
309                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
310         else if (map->s_partition_type == UDF_METADATA_MAP25) {
311                 mdata = &map->s_type_specific.s_metadata;
312                 iput(mdata->s_metadata_fe);
313                 mdata->s_metadata_fe = NULL;
314 
315                 iput(mdata->s_mirror_fe);
316                 mdata->s_mirror_fe = NULL;
317 
318                 iput(mdata->s_bitmap_fe);
319                 mdata->s_bitmap_fe = NULL;
320         }
321 }
322 
323 static void udf_sb_free_partitions(struct super_block *sb)
324 {
325         struct udf_sb_info *sbi = UDF_SB(sb);
326         int i;
327         if (sbi->s_partmaps == NULL)
328                 return;
329         for (i = 0; i < sbi->s_partitions; i++)
330                 udf_free_partition(&sbi->s_partmaps[i]);
331         kfree(sbi->s_partmaps);
332         sbi->s_partmaps = NULL;
333 }
334 
335 static int udf_show_options(struct seq_file *seq, struct dentry *root)
336 {
337         struct super_block *sb = root->d_sb;
338         struct udf_sb_info *sbi = UDF_SB(sb);
339 
340         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
341                 seq_puts(seq, ",nostrict");
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
343                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
344         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
345                 seq_puts(seq, ",unhide");
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
347                 seq_puts(seq, ",undelete");
348         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
349                 seq_puts(seq, ",noadinicb");
350         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
351                 seq_puts(seq, ",shortad");
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
353                 seq_puts(seq, ",uid=forget");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
355                 seq_puts(seq, ",uid=ignore");
356         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
357                 seq_puts(seq, ",gid=forget");
358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
359                 seq_puts(seq, ",gid=ignore");
360         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
361                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
362         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
363                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
364         if (sbi->s_umask != 0)
365                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
366         if (sbi->s_fmode != UDF_INVALID_MODE)
367                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
368         if (sbi->s_dmode != UDF_INVALID_MODE)
369                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
370         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
371                 seq_printf(seq, ",session=%u", sbi->s_session);
372         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
373                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
374         if (sbi->s_anchor != 0)
375                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
376         /*
377          * volume, partition, fileset and rootdir seem to be ignored
378          * currently
379          */
380         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
381                 seq_puts(seq, ",utf8");
382         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
383                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
384 
385         return 0;
386 }
387 
388 /*
389  * udf_parse_options
390  *
391  * PURPOSE
392  *      Parse mount options.
393  *
394  * DESCRIPTION
395  *      The following mount options are supported:
396  *
397  *      gid=            Set the default group.
398  *      umask=          Set the default umask.
399  *      mode=           Set the default file permissions.
400  *      dmode=          Set the default directory permissions.
401  *      uid=            Set the default user.
402  *      bs=             Set the block size.
403  *      unhide          Show otherwise hidden files.
404  *      undelete        Show deleted files in lists.
405  *      adinicb         Embed data in the inode (default)
406  *      noadinicb       Don't embed data in the inode
407  *      shortad         Use short ad's
408  *      longad          Use long ad's (default)
409  *      nostrict        Unset strict conformance
410  *      iocharset=      Set the NLS character set
411  *
412  *      The remaining are for debugging and disaster recovery:
413  *
414  *      novrs           Skip volume sequence recognition
415  *
416  *      The following expect a offset from 0.
417  *
418  *      session=        Set the CDROM session (default= last session)
419  *      anchor=         Override standard anchor location. (default= 256)
420  *      volume=         Override the VolumeDesc location. (unused)
421  *      partition=      Override the PartitionDesc location. (unused)
422  *      lastblock=      Set the last block of the filesystem/
423  *
424  *      The following expect a offset from the partition root.
425  *
426  *      fileset=        Override the fileset block location. (unused)
427  *      rootdir=        Override the root directory location. (unused)
428  *              WARNING: overriding the rootdir to a non-directory may
429  *              yield highly unpredictable results.
430  *
431  * PRE-CONDITIONS
432  *      options         Pointer to mount options string.
433  *      uopts           Pointer to mount options variable.
434  *
435  * POST-CONDITIONS
436  *      <return>        1       Mount options parsed okay.
437  *      <return>        0       Error parsing mount options.
438  *
439  * HISTORY
440  *      July 1, 1997 - Andrew E. Mileski
441  *      Written, tested, and released.
442  */
443 
444 enum {
445         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
446         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
447         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
448         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
449         Opt_rootdir, Opt_utf8, Opt_iocharset,
450         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
451         Opt_fmode, Opt_dmode
452 };
453 
454 static const match_table_t tokens = {
455         {Opt_novrs,     "novrs"},
456         {Opt_nostrict,  "nostrict"},
457         {Opt_bs,        "bs=%u"},
458         {Opt_unhide,    "unhide"},
459         {Opt_undelete,  "undelete"},
460         {Opt_noadinicb, "noadinicb"},
461         {Opt_adinicb,   "adinicb"},
462         {Opt_shortad,   "shortad"},
463         {Opt_longad,    "longad"},
464         {Opt_uforget,   "uid=forget"},
465         {Opt_uignore,   "uid=ignore"},
466         {Opt_gforget,   "gid=forget"},
467         {Opt_gignore,   "gid=ignore"},
468         {Opt_gid,       "gid=%u"},
469         {Opt_uid,       "uid=%u"},
470         {Opt_umask,     "umask=%o"},
471         {Opt_session,   "session=%u"},
472         {Opt_lastblock, "lastblock=%u"},
473         {Opt_anchor,    "anchor=%u"},
474         {Opt_volume,    "volume=%u"},
475         {Opt_partition, "partition=%u"},
476         {Opt_fileset,   "fileset=%u"},
477         {Opt_rootdir,   "rootdir=%u"},
478         {Opt_utf8,      "utf8"},
479         {Opt_iocharset, "iocharset=%s"},
480         {Opt_fmode,     "mode=%o"},
481         {Opt_dmode,     "dmode=%o"},
482         {Opt_err,       NULL}
483 };
484 
485 static int udf_parse_options(char *options, struct udf_options *uopt,
486                              bool remount)
487 {
488         char *p;
489         int option;
490 
491         uopt->novrs = 0;
492         uopt->partition = 0xFFFF;
493         uopt->session = 0xFFFFFFFF;
494         uopt->lastblock = 0;
495         uopt->anchor = 0;
496         uopt->volume = 0xFFFFFFFF;
497         uopt->rootdir = 0xFFFFFFFF;
498         uopt->fileset = 0xFFFFFFFF;
499         uopt->nls_map = NULL;
500 
501         if (!options)
502                 return 1;
503 
504         while ((p = strsep(&options, ",")) != NULL) {
505                 substring_t args[MAX_OPT_ARGS];
506                 int token;
507                 unsigned n;
508                 if (!*p)
509                         continue;
510 
511                 token = match_token(p, tokens, args);
512                 switch (token) {
513                 case Opt_novrs:
514                         uopt->novrs = 1;
515                         break;
516                 case Opt_bs:
517                         if (match_int(&args[0], &option))
518                                 return 0;
519                         n = option;
520                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
521                                 return 0;
522                         uopt->blocksize = n;
523                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
524                         break;
525                 case Opt_unhide:
526                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
527                         break;
528                 case Opt_undelete:
529                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
530                         break;
531                 case Opt_noadinicb:
532                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
533                         break;
534                 case Opt_adinicb:
535                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
536                         break;
537                 case Opt_shortad:
538                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
539                         break;
540                 case Opt_longad:
541                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
542                         break;
543                 case Opt_gid:
544                         if (match_int(args, &option))
545                                 return 0;
546                         uopt->gid = make_kgid(current_user_ns(), option);
547                         if (!gid_valid(uopt->gid))
548                                 return 0;
549                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
550                         break;
551                 case Opt_uid:
552                         if (match_int(args, &option))
553                                 return 0;
554                         uopt->uid = make_kuid(current_user_ns(), option);
555                         if (!uid_valid(uopt->uid))
556                                 return 0;
557                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
558                         break;
559                 case Opt_umask:
560                         if (match_octal(args, &option))
561                                 return 0;
562                         uopt->umask = option;
563                         break;
564                 case Opt_nostrict:
565                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
566                         break;
567                 case Opt_session:
568                         if (match_int(args, &option))
569                                 return 0;
570                         uopt->session = option;
571                         if (!remount)
572                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
573                         break;
574                 case Opt_lastblock:
575                         if (match_int(args, &option))
576                                 return 0;
577                         uopt->lastblock = option;
578                         if (!remount)
579                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
580                         break;
581                 case Opt_anchor:
582                         if (match_int(args, &option))
583                                 return 0;
584                         uopt->anchor = option;
585                         break;
586                 case Opt_volume:
587                         if (match_int(args, &option))
588                                 return 0;
589                         uopt->volume = option;
590                         break;
591                 case Opt_partition:
592                         if (match_int(args, &option))
593                                 return 0;
594                         uopt->partition = option;
595                         break;
596                 case Opt_fileset:
597                         if (match_int(args, &option))
598                                 return 0;
599                         uopt->fileset = option;
600                         break;
601                 case Opt_rootdir:
602                         if (match_int(args, &option))
603                                 return 0;
604                         uopt->rootdir = option;
605                         break;
606                 case Opt_utf8:
607                         uopt->flags |= (1 << UDF_FLAG_UTF8);
608                         break;
609 #ifdef CONFIG_UDF_NLS
610                 case Opt_iocharset:
611                         uopt->nls_map = load_nls(args[0].from);
612                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
613                         break;
614 #endif
615                 case Opt_uignore:
616                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
617                         break;
618                 case Opt_uforget:
619                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
620                         break;
621                 case Opt_gignore:
622                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
623                         break;
624                 case Opt_gforget:
625                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
626                         break;
627                 case Opt_fmode:
628                         if (match_octal(args, &option))
629                                 return 0;
630                         uopt->fmode = option & 0777;
631                         break;
632                 case Opt_dmode:
633                         if (match_octal(args, &option))
634                                 return 0;
635                         uopt->dmode = option & 0777;
636                         break;
637                 default:
638                         pr_err("bad mount option \"%s\" or missing value\n", p);
639                         return 0;
640                 }
641         }
642         return 1;
643 }
644 
645 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
646 {
647         struct udf_options uopt;
648         struct udf_sb_info *sbi = UDF_SB(sb);
649         int error = 0;
650         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
651 
652         sync_filesystem(sb);
653         if (lvidiu) {
654                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
655                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
656                         return -EACCES;
657         }
658 
659         uopt.flags = sbi->s_flags;
660         uopt.uid   = sbi->s_uid;
661         uopt.gid   = sbi->s_gid;
662         uopt.umask = sbi->s_umask;
663         uopt.fmode = sbi->s_fmode;
664         uopt.dmode = sbi->s_dmode;
665 
666         if (!udf_parse_options(options, &uopt, true))
667                 return -EINVAL;
668 
669         write_lock(&sbi->s_cred_lock);
670         sbi->s_flags = uopt.flags;
671         sbi->s_uid   = uopt.uid;
672         sbi->s_gid   = uopt.gid;
673         sbi->s_umask = uopt.umask;
674         sbi->s_fmode = uopt.fmode;
675         sbi->s_dmode = uopt.dmode;
676         write_unlock(&sbi->s_cred_lock);
677 
678         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
679                 goto out_unlock;
680 
681         if (*flags & MS_RDONLY)
682                 udf_close_lvid(sb);
683         else
684                 udf_open_lvid(sb);
685 
686 out_unlock:
687         return error;
688 }
689 
690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
692 static loff_t udf_check_vsd(struct super_block *sb)
693 {
694         struct volStructDesc *vsd = NULL;
695         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
696         int sectorsize;
697         struct buffer_head *bh = NULL;
698         int nsr02 = 0;
699         int nsr03 = 0;
700         struct udf_sb_info *sbi;
701 
702         sbi = UDF_SB(sb);
703         if (sb->s_blocksize < sizeof(struct volStructDesc))
704                 sectorsize = sizeof(struct volStructDesc);
705         else
706                 sectorsize = sb->s_blocksize;
707 
708         sector += (sbi->s_session << sb->s_blocksize_bits);
709 
710         udf_debug("Starting at sector %u (%ld byte sectors)\n",
711                   (unsigned int)(sector >> sb->s_blocksize_bits),
712                   sb->s_blocksize);
713         /* Process the sequence (if applicable). The hard limit on the sector
714          * offset is arbitrary, hopefully large enough so that all valid UDF
715          * filesystems will be recognised. There is no mention of an upper
716          * bound to the size of the volume recognition area in the standard.
717          *  The limit will prevent the code to read all the sectors of a
718          * specially crafted image (like a bluray disc full of CD001 sectors),
719          * potentially causing minutes or even hours of uninterruptible I/O
720          * activity. This actually happened with uninitialised SSD partitions
721          * (all 0xFF) before the check for the limit and all valid IDs were
722          * added */
723         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
724              sector += sectorsize) {
725                 /* Read a block */
726                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
727                 if (!bh)
728                         break;
729 
730                 /* Look for ISO  descriptors */
731                 vsd = (struct volStructDesc *)(bh->b_data +
732                                               (sector & (sb->s_blocksize - 1)));
733 
734                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
735                                     VSD_STD_ID_LEN)) {
736                         switch (vsd->structType) {
737                         case 0:
738                                 udf_debug("ISO9660 Boot Record found\n");
739                                 break;
740                         case 1:
741                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
742                                 break;
743                         case 2:
744                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
745                                 break;
746                         case 3:
747                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
748                                 break;
749                         case 255:
750                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
751                                 break;
752                         default:
753                                 udf_debug("ISO9660 VRS (%u) found\n",
754                                           vsd->structType);
755                                 break;
756                         }
757                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
758                                     VSD_STD_ID_LEN))
759                         ; /* nothing */
760                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
761                                     VSD_STD_ID_LEN)) {
762                         brelse(bh);
763                         break;
764                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
765                                     VSD_STD_ID_LEN))
766                         nsr02 = sector;
767                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
768                                     VSD_STD_ID_LEN))
769                         nsr03 = sector;
770                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
771                                     VSD_STD_ID_LEN))
772                         ; /* nothing */
773                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
774                                     VSD_STD_ID_LEN))
775                         ; /* nothing */
776                 else {
777                         /* invalid id : end of volume recognition area */
778                         brelse(bh);
779                         break;
780                 }
781                 brelse(bh);
782         }
783 
784         if (nsr03)
785                 return nsr03;
786         else if (nsr02)
787                 return nsr02;
788         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
789                         VSD_FIRST_SECTOR_OFFSET)
790                 return -1;
791         else
792                 return 0;
793 }
794 
795 static int udf_find_fileset(struct super_block *sb,
796                             struct kernel_lb_addr *fileset,
797                             struct kernel_lb_addr *root)
798 {
799         struct buffer_head *bh = NULL;
800         long lastblock;
801         uint16_t ident;
802         struct udf_sb_info *sbi;
803 
804         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
805             fileset->partitionReferenceNum != 0xFFFF) {
806                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
807 
808                 if (!bh) {
809                         return 1;
810                 } else if (ident != TAG_IDENT_FSD) {
811                         brelse(bh);
812                         return 1;
813                 }
814 
815         }
816 
817         sbi = UDF_SB(sb);
818         if (!bh) {
819                 /* Search backwards through the partitions */
820                 struct kernel_lb_addr newfileset;
821 
822 /* --> cvg: FIXME - is it reasonable? */
823                 return 1;
824 
825                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
826                      (newfileset.partitionReferenceNum != 0xFFFF &&
827                       fileset->logicalBlockNum == 0xFFFFFFFF &&
828                       fileset->partitionReferenceNum == 0xFFFF);
829                      newfileset.partitionReferenceNum--) {
830                         lastblock = sbi->s_partmaps
831                                         [newfileset.partitionReferenceNum]
832                                                 .s_partition_len;
833                         newfileset.logicalBlockNum = 0;
834 
835                         do {
836                                 bh = udf_read_ptagged(sb, &newfileset, 0,
837                                                       &ident);
838                                 if (!bh) {
839                                         newfileset.logicalBlockNum++;
840                                         continue;
841                                 }
842 
843                                 switch (ident) {
844                                 case TAG_IDENT_SBD:
845                                 {
846                                         struct spaceBitmapDesc *sp;
847                                         sp = (struct spaceBitmapDesc *)
848                                                                 bh->b_data;
849                                         newfileset.logicalBlockNum += 1 +
850                                                 ((le32_to_cpu(sp->numOfBytes) +
851                                                   sizeof(struct spaceBitmapDesc)
852                                                   - 1) >> sb->s_blocksize_bits);
853                                         brelse(bh);
854                                         break;
855                                 }
856                                 case TAG_IDENT_FSD:
857                                         *fileset = newfileset;
858                                         break;
859                                 default:
860                                         newfileset.logicalBlockNum++;
861                                         brelse(bh);
862                                         bh = NULL;
863                                         break;
864                                 }
865                         } while (newfileset.logicalBlockNum < lastblock &&
866                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
867                                  fileset->partitionReferenceNum == 0xFFFF);
868                 }
869         }
870 
871         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
872              fileset->partitionReferenceNum != 0xFFFF) && bh) {
873                 udf_debug("Fileset at block=%d, partition=%d\n",
874                           fileset->logicalBlockNum,
875                           fileset->partitionReferenceNum);
876 
877                 sbi->s_partition = fileset->partitionReferenceNum;
878                 udf_load_fileset(sb, bh, root);
879                 brelse(bh);
880                 return 0;
881         }
882         return 1;
883 }
884 
885 /*
886  * Load primary Volume Descriptor Sequence
887  *
888  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
889  * should be tried.
890  */
891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
892 {
893         struct primaryVolDesc *pvoldesc;
894         uint8_t *outstr;
895         struct buffer_head *bh;
896         uint16_t ident;
897         int ret = -ENOMEM;
898 
899         outstr = kmalloc(128, GFP_NOFS);
900         if (!outstr)
901                 return -ENOMEM;
902 
903         bh = udf_read_tagged(sb, block, block, &ident);
904         if (!bh) {
905                 ret = -EAGAIN;
906                 goto out2;
907         }
908 
909         if (ident != TAG_IDENT_PVD) {
910                 ret = -EIO;
911                 goto out_bh;
912         }
913 
914         pvoldesc = (struct primaryVolDesc *)bh->b_data;
915 
916         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917                               pvoldesc->recordingDateAndTime)) {
918 #ifdef UDFFS_DEBUG
919                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
920                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
921                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
922                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
923 #endif
924         }
925 
926         ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
927         if (ret < 0)
928                 goto out_bh;
929 
930         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
931         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
932 
933         ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
934         if (ret < 0)
935                 goto out_bh;
936 
937         outstr[ret] = 0;
938         udf_debug("volSetIdent[] = '%s'\n", outstr);
939 
940         ret = 0;
941 out_bh:
942         brelse(bh);
943 out2:
944         kfree(outstr);
945         return ret;
946 }
947 
948 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
949                                         u32 meta_file_loc, u32 partition_ref)
950 {
951         struct kernel_lb_addr addr;
952         struct inode *metadata_fe;
953 
954         addr.logicalBlockNum = meta_file_loc;
955         addr.partitionReferenceNum = partition_ref;
956 
957         metadata_fe = udf_iget_special(sb, &addr);
958 
959         if (IS_ERR(metadata_fe)) {
960                 udf_warn(sb, "metadata inode efe not found\n");
961                 return metadata_fe;
962         }
963         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
964                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
965                 iput(metadata_fe);
966                 return ERR_PTR(-EIO);
967         }
968 
969         return metadata_fe;
970 }
971 
972 static int udf_load_metadata_files(struct super_block *sb, int partition,
973                                    int type1_index)
974 {
975         struct udf_sb_info *sbi = UDF_SB(sb);
976         struct udf_part_map *map;
977         struct udf_meta_data *mdata;
978         struct kernel_lb_addr addr;
979         struct inode *fe;
980 
981         map = &sbi->s_partmaps[partition];
982         mdata = &map->s_type_specific.s_metadata;
983         mdata->s_phys_partition_ref = type1_index;
984 
985         /* metadata address */
986         udf_debug("Metadata file location: block = %d part = %d\n",
987                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
988 
989         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
990                                          mdata->s_phys_partition_ref);
991         if (IS_ERR(fe)) {
992                 /* mirror file entry */
993                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
994                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
995 
996                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
997                                                  mdata->s_phys_partition_ref);
998 
999                 if (IS_ERR(fe)) {
1000                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1001                         return PTR_ERR(fe);
1002                 }
1003                 mdata->s_mirror_fe = fe;
1004         } else
1005                 mdata->s_metadata_fe = fe;
1006 
1007 
1008         /*
1009          * bitmap file entry
1010          * Note:
1011          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1012         */
1013         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1014                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1015                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1016 
1017                 udf_debug("Bitmap file location: block = %d part = %d\n",
1018                           addr.logicalBlockNum, addr.partitionReferenceNum);
1019 
1020                 fe = udf_iget_special(sb, &addr);
1021                 if (IS_ERR(fe)) {
1022                         if (sb->s_flags & MS_RDONLY)
1023                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1024                         else {
1025                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1026                                 return PTR_ERR(fe);
1027                         }
1028                 } else
1029                         mdata->s_bitmap_fe = fe;
1030         }
1031 
1032         udf_debug("udf_load_metadata_files Ok\n");
1033         return 0;
1034 }
1035 
1036 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1037                              struct kernel_lb_addr *root)
1038 {
1039         struct fileSetDesc *fset;
1040 
1041         fset = (struct fileSetDesc *)bh->b_data;
1042 
1043         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1044 
1045         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1046 
1047         udf_debug("Rootdir at block=%d, partition=%d\n",
1048                   root->logicalBlockNum, root->partitionReferenceNum);
1049 }
1050 
1051 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1052 {
1053         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1054         return DIV_ROUND_UP(map->s_partition_len +
1055                             (sizeof(struct spaceBitmapDesc) << 3),
1056                             sb->s_blocksize * 8);
1057 }
1058 
1059 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1060 {
1061         struct udf_bitmap *bitmap;
1062         int nr_groups;
1063         int size;
1064 
1065         nr_groups = udf_compute_nr_groups(sb, index);
1066         size = sizeof(struct udf_bitmap) +
1067                 (sizeof(struct buffer_head *) * nr_groups);
1068 
1069         if (size <= PAGE_SIZE)
1070                 bitmap = kzalloc(size, GFP_KERNEL);
1071         else
1072                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1073 
1074         if (bitmap == NULL)
1075                 return NULL;
1076 
1077         bitmap->s_nr_groups = nr_groups;
1078         return bitmap;
1079 }
1080 
1081 static int udf_fill_partdesc_info(struct super_block *sb,
1082                 struct partitionDesc *p, int p_index)
1083 {
1084         struct udf_part_map *map;
1085         struct udf_sb_info *sbi = UDF_SB(sb);
1086         struct partitionHeaderDesc *phd;
1087 
1088         map = &sbi->s_partmaps[p_index];
1089 
1090         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1091         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1092 
1093         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1094                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1095         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1096                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1097         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1098                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1099         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1100                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1101 
1102         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1103                   p_index, map->s_partition_type,
1104                   map->s_partition_root, map->s_partition_len);
1105 
1106         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1107             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1108                 return 0;
1109 
1110         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1111         if (phd->unallocSpaceTable.extLength) {
1112                 struct kernel_lb_addr loc = {
1113                         .logicalBlockNum = le32_to_cpu(
1114                                 phd->unallocSpaceTable.extPosition),
1115                         .partitionReferenceNum = p_index,
1116                 };
1117                 struct inode *inode;
1118 
1119                 inode = udf_iget_special(sb, &loc);
1120                 if (IS_ERR(inode)) {
1121                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1122                                   p_index);
1123                         return PTR_ERR(inode);
1124                 }
1125                 map->s_uspace.s_table = inode;
1126                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1127                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1128                           p_index, map->s_uspace.s_table->i_ino);
1129         }
1130 
1131         if (phd->unallocSpaceBitmap.extLength) {
1132                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1133                 if (!bitmap)
1134                         return -ENOMEM;
1135                 map->s_uspace.s_bitmap = bitmap;
1136                 bitmap->s_extPosition = le32_to_cpu(
1137                                 phd->unallocSpaceBitmap.extPosition);
1138                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1139                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1140                           p_index, bitmap->s_extPosition);
1141         }
1142 
1143         if (phd->partitionIntegrityTable.extLength)
1144                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1145 
1146         if (phd->freedSpaceTable.extLength) {
1147                 struct kernel_lb_addr loc = {
1148                         .logicalBlockNum = le32_to_cpu(
1149                                 phd->freedSpaceTable.extPosition),
1150                         .partitionReferenceNum = p_index,
1151                 };
1152                 struct inode *inode;
1153 
1154                 inode = udf_iget_special(sb, &loc);
1155                 if (IS_ERR(inode)) {
1156                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1157                                   p_index);
1158                         return PTR_ERR(inode);
1159                 }
1160                 map->s_fspace.s_table = inode;
1161                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1162                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1163                           p_index, map->s_fspace.s_table->i_ino);
1164         }
1165 
1166         if (phd->freedSpaceBitmap.extLength) {
1167                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1168                 if (!bitmap)
1169                         return -ENOMEM;
1170                 map->s_fspace.s_bitmap = bitmap;
1171                 bitmap->s_extPosition = le32_to_cpu(
1172                                 phd->freedSpaceBitmap.extPosition);
1173                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1174                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1175                           p_index, bitmap->s_extPosition);
1176         }
1177         return 0;
1178 }
1179 
1180 static void udf_find_vat_block(struct super_block *sb, int p_index,
1181                                int type1_index, sector_t start_block)
1182 {
1183         struct udf_sb_info *sbi = UDF_SB(sb);
1184         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1185         sector_t vat_block;
1186         struct kernel_lb_addr ino;
1187         struct inode *inode;
1188 
1189         /*
1190          * VAT file entry is in the last recorded block. Some broken disks have
1191          * it a few blocks before so try a bit harder...
1192          */
1193         ino.partitionReferenceNum = type1_index;
1194         for (vat_block = start_block;
1195              vat_block >= map->s_partition_root &&
1196              vat_block >= start_block - 3; vat_block--) {
1197                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1198                 inode = udf_iget_special(sb, &ino);
1199                 if (!IS_ERR(inode)) {
1200                         sbi->s_vat_inode = inode;
1201                         break;
1202                 }
1203         }
1204 }
1205 
1206 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1207 {
1208         struct udf_sb_info *sbi = UDF_SB(sb);
1209         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1210         struct buffer_head *bh = NULL;
1211         struct udf_inode_info *vati;
1212         uint32_t pos;
1213         struct virtualAllocationTable20 *vat20;
1214         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1215                           sb->s_blocksize_bits;
1216 
1217         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1218         if (!sbi->s_vat_inode &&
1219             sbi->s_last_block != blocks - 1) {
1220                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1221                           (unsigned long)sbi->s_last_block,
1222                           (unsigned long)blocks - 1);
1223                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1224         }
1225         if (!sbi->s_vat_inode)
1226                 return -EIO;
1227 
1228         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1229                 map->s_type_specific.s_virtual.s_start_offset = 0;
1230                 map->s_type_specific.s_virtual.s_num_entries =
1231                         (sbi->s_vat_inode->i_size - 36) >> 2;
1232         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1233                 vati = UDF_I(sbi->s_vat_inode);
1234                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1235                         pos = udf_block_map(sbi->s_vat_inode, 0);
1236                         bh = sb_bread(sb, pos);
1237                         if (!bh)
1238                                 return -EIO;
1239                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1240                 } else {
1241                         vat20 = (struct virtualAllocationTable20 *)
1242                                                         vati->i_ext.i_data;
1243                 }
1244 
1245                 map->s_type_specific.s_virtual.s_start_offset =
1246                         le16_to_cpu(vat20->lengthHeader);
1247                 map->s_type_specific.s_virtual.s_num_entries =
1248                         (sbi->s_vat_inode->i_size -
1249                                 map->s_type_specific.s_virtual.
1250                                         s_start_offset) >> 2;
1251                 brelse(bh);
1252         }
1253         return 0;
1254 }
1255 
1256 /*
1257  * Load partition descriptor block
1258  *
1259  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1260  * sequence.
1261  */
1262 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1263 {
1264         struct buffer_head *bh;
1265         struct partitionDesc *p;
1266         struct udf_part_map *map;
1267         struct udf_sb_info *sbi = UDF_SB(sb);
1268         int i, type1_idx;
1269         uint16_t partitionNumber;
1270         uint16_t ident;
1271         int ret;
1272 
1273         bh = udf_read_tagged(sb, block, block, &ident);
1274         if (!bh)
1275                 return -EAGAIN;
1276         if (ident != TAG_IDENT_PD) {
1277                 ret = 0;
1278                 goto out_bh;
1279         }
1280 
1281         p = (struct partitionDesc *)bh->b_data;
1282         partitionNumber = le16_to_cpu(p->partitionNumber);
1283 
1284         /* First scan for TYPE1 and SPARABLE partitions */
1285         for (i = 0; i < sbi->s_partitions; i++) {
1286                 map = &sbi->s_partmaps[i];
1287                 udf_debug("Searching map: (%d == %d)\n",
1288                           map->s_partition_num, partitionNumber);
1289                 if (map->s_partition_num == partitionNumber &&
1290                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1291                      map->s_partition_type == UDF_SPARABLE_MAP15))
1292                         break;
1293         }
1294 
1295         if (i >= sbi->s_partitions) {
1296                 udf_debug("Partition (%d) not found in partition map\n",
1297                           partitionNumber);
1298                 ret = 0;
1299                 goto out_bh;
1300         }
1301 
1302         ret = udf_fill_partdesc_info(sb, p, i);
1303         if (ret < 0)
1304                 goto out_bh;
1305 
1306         /*
1307          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1308          * PHYSICAL partitions are already set up
1309          */
1310         type1_idx = i;
1311 #ifdef UDFFS_DEBUG
1312         map = NULL; /* supress 'maybe used uninitialized' warning */
1313 #endif
1314         for (i = 0; i < sbi->s_partitions; i++) {
1315                 map = &sbi->s_partmaps[i];
1316 
1317                 if (map->s_partition_num == partitionNumber &&
1318                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1319                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1320                      map->s_partition_type == UDF_METADATA_MAP25))
1321                         break;
1322         }
1323 
1324         if (i >= sbi->s_partitions) {
1325                 ret = 0;
1326                 goto out_bh;
1327         }
1328 
1329         ret = udf_fill_partdesc_info(sb, p, i);
1330         if (ret < 0)
1331                 goto out_bh;
1332 
1333         if (map->s_partition_type == UDF_METADATA_MAP25) {
1334                 ret = udf_load_metadata_files(sb, i, type1_idx);
1335                 if (ret < 0) {
1336                         udf_err(sb, "error loading MetaData partition map %d\n",
1337                                 i);
1338                         goto out_bh;
1339                 }
1340         } else {
1341                 /*
1342                  * If we have a partition with virtual map, we don't handle
1343                  * writing to it (we overwrite blocks instead of relocating
1344                  * them).
1345                  */
1346                 if (!(sb->s_flags & MS_RDONLY)) {
1347                         ret = -EACCES;
1348                         goto out_bh;
1349                 }
1350                 ret = udf_load_vat(sb, i, type1_idx);
1351                 if (ret < 0)
1352                         goto out_bh;
1353         }
1354         ret = 0;
1355 out_bh:
1356         /* In case loading failed, we handle cleanup in udf_fill_super */
1357         brelse(bh);
1358         return ret;
1359 }
1360 
1361 static int udf_load_sparable_map(struct super_block *sb,
1362                                  struct udf_part_map *map,
1363                                  struct sparablePartitionMap *spm)
1364 {
1365         uint32_t loc;
1366         uint16_t ident;
1367         struct sparingTable *st;
1368         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1369         int i;
1370         struct buffer_head *bh;
1371 
1372         map->s_partition_type = UDF_SPARABLE_MAP15;
1373         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1374         if (!is_power_of_2(sdata->s_packet_len)) {
1375                 udf_err(sb, "error loading logical volume descriptor: "
1376                         "Invalid packet length %u\n",
1377                         (unsigned)sdata->s_packet_len);
1378                 return -EIO;
1379         }
1380         if (spm->numSparingTables > 4) {
1381                 udf_err(sb, "error loading logical volume descriptor: "
1382                         "Too many sparing tables (%d)\n",
1383                         (int)spm->numSparingTables);
1384                 return -EIO;
1385         }
1386 
1387         for (i = 0; i < spm->numSparingTables; i++) {
1388                 loc = le32_to_cpu(spm->locSparingTable[i]);
1389                 bh = udf_read_tagged(sb, loc, loc, &ident);
1390                 if (!bh)
1391                         continue;
1392 
1393                 st = (struct sparingTable *)bh->b_data;
1394                 if (ident != 0 ||
1395                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1396                             strlen(UDF_ID_SPARING)) ||
1397                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1398                                                         sb->s_blocksize) {
1399                         brelse(bh);
1400                         continue;
1401                 }
1402 
1403                 sdata->s_spar_map[i] = bh;
1404         }
1405         map->s_partition_func = udf_get_pblock_spar15;
1406         return 0;
1407 }
1408 
1409 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1410                                struct kernel_lb_addr *fileset)
1411 {
1412         struct logicalVolDesc *lvd;
1413         int i, offset;
1414         uint8_t type;
1415         struct udf_sb_info *sbi = UDF_SB(sb);
1416         struct genericPartitionMap *gpm;
1417         uint16_t ident;
1418         struct buffer_head *bh;
1419         unsigned int table_len;
1420         int ret;
1421 
1422         bh = udf_read_tagged(sb, block, block, &ident);
1423         if (!bh)
1424                 return -EAGAIN;
1425         BUG_ON(ident != TAG_IDENT_LVD);
1426         lvd = (struct logicalVolDesc *)bh->b_data;
1427         table_len = le32_to_cpu(lvd->mapTableLength);
1428         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1429                 udf_err(sb, "error loading logical volume descriptor: "
1430                         "Partition table too long (%u > %lu)\n", table_len,
1431                         sb->s_blocksize - sizeof(*lvd));
1432                 ret = -EIO;
1433                 goto out_bh;
1434         }
1435 
1436         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1437         if (ret)
1438                 goto out_bh;
1439 
1440         for (i = 0, offset = 0;
1441              i < sbi->s_partitions && offset < table_len;
1442              i++, offset += gpm->partitionMapLength) {
1443                 struct udf_part_map *map = &sbi->s_partmaps[i];
1444                 gpm = (struct genericPartitionMap *)
1445                                 &(lvd->partitionMaps[offset]);
1446                 type = gpm->partitionMapType;
1447                 if (type == 1) {
1448                         struct genericPartitionMap1 *gpm1 =
1449                                 (struct genericPartitionMap1 *)gpm;
1450                         map->s_partition_type = UDF_TYPE1_MAP15;
1451                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1452                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1453                         map->s_partition_func = NULL;
1454                 } else if (type == 2) {
1455                         struct udfPartitionMap2 *upm2 =
1456                                                 (struct udfPartitionMap2 *)gpm;
1457                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1458                                                 strlen(UDF_ID_VIRTUAL))) {
1459                                 u16 suf =
1460                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1461                                                         identSuffix)[0]);
1462                                 if (suf < 0x0200) {
1463                                         map->s_partition_type =
1464                                                         UDF_VIRTUAL_MAP15;
1465                                         map->s_partition_func =
1466                                                         udf_get_pblock_virt15;
1467                                 } else {
1468                                         map->s_partition_type =
1469                                                         UDF_VIRTUAL_MAP20;
1470                                         map->s_partition_func =
1471                                                         udf_get_pblock_virt20;
1472                                 }
1473                         } else if (!strncmp(upm2->partIdent.ident,
1474                                                 UDF_ID_SPARABLE,
1475                                                 strlen(UDF_ID_SPARABLE))) {
1476                                 ret = udf_load_sparable_map(sb, map,
1477                                         (struct sparablePartitionMap *)gpm);
1478                                 if (ret < 0)
1479                                         goto out_bh;
1480                         } else if (!strncmp(upm2->partIdent.ident,
1481                                                 UDF_ID_METADATA,
1482                                                 strlen(UDF_ID_METADATA))) {
1483                                 struct udf_meta_data *mdata =
1484                                         &map->s_type_specific.s_metadata;
1485                                 struct metadataPartitionMap *mdm =
1486                                                 (struct metadataPartitionMap *)
1487                                                 &(lvd->partitionMaps[offset]);
1488                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1489                                           i, type, UDF_ID_METADATA);
1490 
1491                                 map->s_partition_type = UDF_METADATA_MAP25;
1492                                 map->s_partition_func = udf_get_pblock_meta25;
1493 
1494                                 mdata->s_meta_file_loc   =
1495                                         le32_to_cpu(mdm->metadataFileLoc);
1496                                 mdata->s_mirror_file_loc =
1497                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1498                                 mdata->s_bitmap_file_loc =
1499                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1500                                 mdata->s_alloc_unit_size =
1501                                         le32_to_cpu(mdm->allocUnitSize);
1502                                 mdata->s_align_unit_size =
1503                                         le16_to_cpu(mdm->alignUnitSize);
1504                                 if (mdm->flags & 0x01)
1505                                         mdata->s_flags |= MF_DUPLICATE_MD;
1506 
1507                                 udf_debug("Metadata Ident suffix=0x%x\n",
1508                                           le16_to_cpu(*(__le16 *)
1509                                                       mdm->partIdent.identSuffix));
1510                                 udf_debug("Metadata part num=%d\n",
1511                                           le16_to_cpu(mdm->partitionNum));
1512                                 udf_debug("Metadata part alloc unit size=%d\n",
1513                                           le32_to_cpu(mdm->allocUnitSize));
1514                                 udf_debug("Metadata file loc=%d\n",
1515                                           le32_to_cpu(mdm->metadataFileLoc));
1516                                 udf_debug("Mirror file loc=%d\n",
1517                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1518                                 udf_debug("Bitmap file loc=%d\n",
1519                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1520                                 udf_debug("Flags: %d %d\n",
1521                                           mdata->s_flags, mdm->flags);
1522                         } else {
1523                                 udf_debug("Unknown ident: %s\n",
1524                                           upm2->partIdent.ident);
1525                                 continue;
1526                         }
1527                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1528                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1529                 }
1530                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1531                           i, map->s_partition_num, type, map->s_volumeseqnum);
1532         }
1533 
1534         if (fileset) {
1535                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1536 
1537                 *fileset = lelb_to_cpu(la->extLocation);
1538                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1539                           fileset->logicalBlockNum,
1540                           fileset->partitionReferenceNum);
1541         }
1542         if (lvd->integritySeqExt.extLength)
1543                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1544         ret = 0;
1545 out_bh:
1546         brelse(bh);
1547         return ret;
1548 }
1549 
1550 /*
1551  * Find the prevailing Logical Volume Integrity Descriptor.
1552  */
1553 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1554 {
1555         struct buffer_head *bh, *final_bh;
1556         uint16_t ident;
1557         struct udf_sb_info *sbi = UDF_SB(sb);
1558         struct logicalVolIntegrityDesc *lvid;
1559         int indirections = 0;
1560 
1561         while (++indirections <= UDF_MAX_LVID_NESTING) {
1562                 final_bh = NULL;
1563                 while (loc.extLength > 0 &&
1564                         (bh = udf_read_tagged(sb, loc.extLocation,
1565                                         loc.extLocation, &ident))) {
1566                         if (ident != TAG_IDENT_LVID) {
1567                                 brelse(bh);
1568                                 break;
1569                         }
1570 
1571                         brelse(final_bh);
1572                         final_bh = bh;
1573 
1574                         loc.extLength -= sb->s_blocksize;
1575                         loc.extLocation++;
1576                 }
1577 
1578                 if (!final_bh)
1579                         return;
1580 
1581                 brelse(sbi->s_lvid_bh);
1582                 sbi->s_lvid_bh = final_bh;
1583 
1584                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1585                 if (lvid->nextIntegrityExt.extLength == 0)
1586                         return;
1587 
1588                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1589         }
1590 
1591         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1592                 UDF_MAX_LVID_NESTING);
1593         brelse(sbi->s_lvid_bh);
1594         sbi->s_lvid_bh = NULL;
1595 }
1596 
1597 
1598 /*
1599  * Process a main/reserve volume descriptor sequence.
1600  *   @block             First block of first extent of the sequence.
1601  *   @lastblock         Lastblock of first extent of the sequence.
1602  *   @fileset           There we store extent containing root fileset
1603  *
1604  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1605  * sequence
1606  */
1607 static noinline int udf_process_sequence(
1608                 struct super_block *sb,
1609                 sector_t block, sector_t lastblock,
1610                 struct kernel_lb_addr *fileset)
1611 {
1612         struct buffer_head *bh = NULL;
1613         struct udf_vds_record vds[VDS_POS_LENGTH];
1614         struct udf_vds_record *curr;
1615         struct generic_desc *gd;
1616         struct volDescPtr *vdp;
1617         bool done = false;
1618         uint32_t vdsn;
1619         uint16_t ident;
1620         long next_s = 0, next_e = 0;
1621         int ret;
1622         unsigned int indirections = 0;
1623 
1624         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1625 
1626         /*
1627          * Read the main descriptor sequence and find which descriptors
1628          * are in it.
1629          */
1630         for (; (!done && block <= lastblock); block++) {
1631 
1632                 bh = udf_read_tagged(sb, block, block, &ident);
1633                 if (!bh) {
1634                         udf_err(sb,
1635                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1636                                 (unsigned long long)block);
1637                         return -EAGAIN;
1638                 }
1639 
1640                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1641                 gd = (struct generic_desc *)bh->b_data;
1642                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1643                 switch (ident) {
1644                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1645                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1646                         if (vdsn >= curr->volDescSeqNum) {
1647                                 curr->volDescSeqNum = vdsn;
1648                                 curr->block = block;
1649                         }
1650                         break;
1651                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1652                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1653                         if (vdsn >= curr->volDescSeqNum) {
1654                                 curr->volDescSeqNum = vdsn;
1655                                 curr->block = block;
1656 
1657                                 vdp = (struct volDescPtr *)bh->b_data;
1658                                 next_s = le32_to_cpu(
1659                                         vdp->nextVolDescSeqExt.extLocation);
1660                                 next_e = le32_to_cpu(
1661                                         vdp->nextVolDescSeqExt.extLength);
1662                                 next_e = next_e >> sb->s_blocksize_bits;
1663                                 next_e += next_s;
1664                         }
1665                         break;
1666                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1667                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1668                         if (vdsn >= curr->volDescSeqNum) {
1669                                 curr->volDescSeqNum = vdsn;
1670                                 curr->block = block;
1671                         }
1672                         break;
1673                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1674                         curr = &vds[VDS_POS_PARTITION_DESC];
1675                         if (!curr->block)
1676                                 curr->block = block;
1677                         break;
1678                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1679                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1680                         if (vdsn >= curr->volDescSeqNum) {
1681                                 curr->volDescSeqNum = vdsn;
1682                                 curr->block = block;
1683                         }
1684                         break;
1685                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1686                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1687                         if (vdsn >= curr->volDescSeqNum) {
1688                                 curr->volDescSeqNum = vdsn;
1689                                 curr->block = block;
1690                         }
1691                         break;
1692                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1693                         if (++indirections > UDF_MAX_TD_NESTING) {
1694                                 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1695                                 brelse(bh);
1696                                 return -EIO;
1697                         }
1698 
1699                         vds[VDS_POS_TERMINATING_DESC].block = block;
1700                         if (next_e) {
1701                                 block = next_s;
1702                                 lastblock = next_e;
1703                                 next_s = next_e = 0;
1704                         } else
1705                                 done = true;
1706                         break;
1707                 }
1708                 brelse(bh);
1709         }
1710         /*
1711          * Now read interesting descriptors again and process them
1712          * in a suitable order
1713          */
1714         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1715                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1716                 return -EAGAIN;
1717         }
1718         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1719         if (ret < 0)
1720                 return ret;
1721 
1722         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1723                 ret = udf_load_logicalvol(sb,
1724                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1725                                           fileset);
1726                 if (ret < 0)
1727                         return ret;
1728         }
1729 
1730         if (vds[VDS_POS_PARTITION_DESC].block) {
1731                 /*
1732                  * We rescan the whole descriptor sequence to find
1733                  * partition descriptor blocks and process them.
1734                  */
1735                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1736                      block < vds[VDS_POS_TERMINATING_DESC].block;
1737                      block++) {
1738                         ret = udf_load_partdesc(sb, block);
1739                         if (ret < 0)
1740                                 return ret;
1741                 }
1742         }
1743 
1744         return 0;
1745 }
1746 
1747 /*
1748  * Load Volume Descriptor Sequence described by anchor in bh
1749  *
1750  * Returns <0 on error, 0 on success
1751  */
1752 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1753                              struct kernel_lb_addr *fileset)
1754 {
1755         struct anchorVolDescPtr *anchor;
1756         sector_t main_s, main_e, reserve_s, reserve_e;
1757         int ret;
1758 
1759         anchor = (struct anchorVolDescPtr *)bh->b_data;
1760 
1761         /* Locate the main sequence */
1762         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1763         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1764         main_e = main_e >> sb->s_blocksize_bits;
1765         main_e += main_s;
1766 
1767         /* Locate the reserve sequence */
1768         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1769         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1770         reserve_e = reserve_e >> sb->s_blocksize_bits;
1771         reserve_e += reserve_s;
1772 
1773         /* Process the main & reserve sequences */
1774         /* responsible for finding the PartitionDesc(s) */
1775         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1776         if (ret != -EAGAIN)
1777                 return ret;
1778         udf_sb_free_partitions(sb);
1779         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1780         if (ret < 0) {
1781                 udf_sb_free_partitions(sb);
1782                 /* No sequence was OK, return -EIO */
1783                 if (ret == -EAGAIN)
1784                         ret = -EIO;
1785         }
1786         return ret;
1787 }
1788 
1789 /*
1790  * Check whether there is an anchor block in the given block and
1791  * load Volume Descriptor Sequence if so.
1792  *
1793  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1794  * block
1795  */
1796 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1797                                   struct kernel_lb_addr *fileset)
1798 {
1799         struct buffer_head *bh;
1800         uint16_t ident;
1801         int ret;
1802 
1803         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1804             udf_fixed_to_variable(block) >=
1805             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1806                 return -EAGAIN;
1807 
1808         bh = udf_read_tagged(sb, block, block, &ident);
1809         if (!bh)
1810                 return -EAGAIN;
1811         if (ident != TAG_IDENT_AVDP) {
1812                 brelse(bh);
1813                 return -EAGAIN;
1814         }
1815         ret = udf_load_sequence(sb, bh, fileset);
1816         brelse(bh);
1817         return ret;
1818 }
1819 
1820 /*
1821  * Search for an anchor volume descriptor pointer.
1822  *
1823  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1824  * of anchors.
1825  */
1826 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1827                             struct kernel_lb_addr *fileset)
1828 {
1829         sector_t last[6];
1830         int i;
1831         struct udf_sb_info *sbi = UDF_SB(sb);
1832         int last_count = 0;
1833         int ret;
1834 
1835         /* First try user provided anchor */
1836         if (sbi->s_anchor) {
1837                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1838                 if (ret != -EAGAIN)
1839                         return ret;
1840         }
1841         /*
1842          * according to spec, anchor is in either:
1843          *     block 256
1844          *     lastblock-256
1845          *     lastblock
1846          *  however, if the disc isn't closed, it could be 512.
1847          */
1848         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1849         if (ret != -EAGAIN)
1850                 return ret;
1851         /*
1852          * The trouble is which block is the last one. Drives often misreport
1853          * this so we try various possibilities.
1854          */
1855         last[last_count++] = *lastblock;
1856         if (*lastblock >= 1)
1857                 last[last_count++] = *lastblock - 1;
1858         last[last_count++] = *lastblock + 1;
1859         if (*lastblock >= 2)
1860                 last[last_count++] = *lastblock - 2;
1861         if (*lastblock >= 150)
1862                 last[last_count++] = *lastblock - 150;
1863         if (*lastblock >= 152)
1864                 last[last_count++] = *lastblock - 152;
1865 
1866         for (i = 0; i < last_count; i++) {
1867                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1868                                 sb->s_blocksize_bits)
1869                         continue;
1870                 ret = udf_check_anchor_block(sb, last[i], fileset);
1871                 if (ret != -EAGAIN) {
1872                         if (!ret)
1873                                 *lastblock = last[i];
1874                         return ret;
1875                 }
1876                 if (last[i] < 256)
1877                         continue;
1878                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1879                 if (ret != -EAGAIN) {
1880                         if (!ret)
1881                                 *lastblock = last[i];
1882                         return ret;
1883                 }
1884         }
1885 
1886         /* Finally try block 512 in case media is open */
1887         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1888 }
1889 
1890 /*
1891  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1892  * area specified by it. The function expects sbi->s_lastblock to be the last
1893  * block on the media.
1894  *
1895  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1896  * was not found.
1897  */
1898 static int udf_find_anchor(struct super_block *sb,
1899                            struct kernel_lb_addr *fileset)
1900 {
1901         struct udf_sb_info *sbi = UDF_SB(sb);
1902         sector_t lastblock = sbi->s_last_block;
1903         int ret;
1904 
1905         ret = udf_scan_anchors(sb, &lastblock, fileset);
1906         if (ret != -EAGAIN)
1907                 goto out;
1908 
1909         /* No anchor found? Try VARCONV conversion of block numbers */
1910         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1911         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1912         /* Firstly, we try to not convert number of the last block */
1913         ret = udf_scan_anchors(sb, &lastblock, fileset);
1914         if (ret != -EAGAIN)
1915                 goto out;
1916 
1917         lastblock = sbi->s_last_block;
1918         /* Secondly, we try with converted number of the last block */
1919         ret = udf_scan_anchors(sb, &lastblock, fileset);
1920         if (ret < 0) {
1921                 /* VARCONV didn't help. Clear it. */
1922                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1923         }
1924 out:
1925         if (ret == 0)
1926                 sbi->s_last_block = lastblock;
1927         return ret;
1928 }
1929 
1930 /*
1931  * Check Volume Structure Descriptor, find Anchor block and load Volume
1932  * Descriptor Sequence.
1933  *
1934  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1935  * block was not found.
1936  */
1937 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1938                         int silent, struct kernel_lb_addr *fileset)
1939 {
1940         struct udf_sb_info *sbi = UDF_SB(sb);
1941         loff_t nsr_off;
1942         int ret;
1943 
1944         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1945                 if (!silent)
1946                         udf_warn(sb, "Bad block size\n");
1947                 return -EINVAL;
1948         }
1949         sbi->s_last_block = uopt->lastblock;
1950         if (!uopt->novrs) {
1951                 /* Check that it is NSR02 compliant */
1952                 nsr_off = udf_check_vsd(sb);
1953                 if (!nsr_off) {
1954                         if (!silent)
1955                                 udf_warn(sb, "No VRS found\n");
1956                         return -EINVAL;
1957                 }
1958                 if (nsr_off == -1)
1959                         udf_debug("Failed to read sector at offset %d. "
1960                                   "Assuming open disc. Skipping validity "
1961                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1962                 if (!sbi->s_last_block)
1963                         sbi->s_last_block = udf_get_last_block(sb);
1964         } else {
1965                 udf_debug("Validity check skipped because of novrs option\n");
1966         }
1967 
1968         /* Look for anchor block and load Volume Descriptor Sequence */
1969         sbi->s_anchor = uopt->anchor;
1970         ret = udf_find_anchor(sb, fileset);
1971         if (ret < 0) {
1972                 if (!silent && ret == -EAGAIN)
1973                         udf_warn(sb, "No anchor found\n");
1974                 return ret;
1975         }
1976         return 0;
1977 }
1978 
1979 static void udf_open_lvid(struct super_block *sb)
1980 {
1981         struct udf_sb_info *sbi = UDF_SB(sb);
1982         struct buffer_head *bh = sbi->s_lvid_bh;
1983         struct logicalVolIntegrityDesc *lvid;
1984         struct logicalVolIntegrityDescImpUse *lvidiu;
1985         struct timespec ts;
1986 
1987         if (!bh)
1988                 return;
1989         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1990         lvidiu = udf_sb_lvidiu(sb);
1991         if (!lvidiu)
1992                 return;
1993 
1994         mutex_lock(&sbi->s_alloc_mutex);
1995         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1996         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1997         ktime_get_real_ts(&ts);
1998         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1999         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2000 
2001         lvid->descTag.descCRC = cpu_to_le16(
2002                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2003                         le16_to_cpu(lvid->descTag.descCRCLength)));
2004 
2005         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2006         mark_buffer_dirty(bh);
2007         sbi->s_lvid_dirty = 0;
2008         mutex_unlock(&sbi->s_alloc_mutex);
2009         /* Make opening of filesystem visible on the media immediately */
2010         sync_dirty_buffer(bh);
2011 }
2012 
2013 static void udf_close_lvid(struct super_block *sb)
2014 {
2015         struct udf_sb_info *sbi = UDF_SB(sb);
2016         struct buffer_head *bh = sbi->s_lvid_bh;
2017         struct logicalVolIntegrityDesc *lvid;
2018         struct logicalVolIntegrityDescImpUse *lvidiu;
2019         struct timespec ts;
2020 
2021         if (!bh)
2022                 return;
2023         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024         lvidiu = udf_sb_lvidiu(sb);
2025         if (!lvidiu)
2026                 return;
2027 
2028         mutex_lock(&sbi->s_alloc_mutex);
2029         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2030         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2031         ktime_get_real_ts(&ts);
2032         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2033         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2034                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2035         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2036                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2037         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2038                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2039         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2040 
2041         lvid->descTag.descCRC = cpu_to_le16(
2042                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2043                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2044 
2045         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2046         /*
2047          * We set buffer uptodate unconditionally here to avoid spurious
2048          * warnings from mark_buffer_dirty() when previous EIO has marked
2049          * the buffer as !uptodate
2050          */
2051         set_buffer_uptodate(bh);
2052         mark_buffer_dirty(bh);
2053         sbi->s_lvid_dirty = 0;
2054         mutex_unlock(&sbi->s_alloc_mutex);
2055         /* Make closing of filesystem visible on the media immediately */
2056         sync_dirty_buffer(bh);
2057 }
2058 
2059 u64 lvid_get_unique_id(struct super_block *sb)
2060 {
2061         struct buffer_head *bh;
2062         struct udf_sb_info *sbi = UDF_SB(sb);
2063         struct logicalVolIntegrityDesc *lvid;
2064         struct logicalVolHeaderDesc *lvhd;
2065         u64 uniqueID;
2066         u64 ret;
2067 
2068         bh = sbi->s_lvid_bh;
2069         if (!bh)
2070                 return 0;
2071 
2072         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2073         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2074 
2075         mutex_lock(&sbi->s_alloc_mutex);
2076         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2077         if (!(++uniqueID & 0xFFFFFFFF))
2078                 uniqueID += 16;
2079         lvhd->uniqueID = cpu_to_le64(uniqueID);
2080         mutex_unlock(&sbi->s_alloc_mutex);
2081         mark_buffer_dirty(bh);
2082 
2083         return ret;
2084 }
2085 
2086 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2087 {
2088         int ret = -EINVAL;
2089         struct inode *inode = NULL;
2090         struct udf_options uopt;
2091         struct kernel_lb_addr rootdir, fileset;
2092         struct udf_sb_info *sbi;
2093         bool lvid_open = false;
2094 
2095         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2096         uopt.uid = INVALID_UID;
2097         uopt.gid = INVALID_GID;
2098         uopt.umask = 0;
2099         uopt.fmode = UDF_INVALID_MODE;
2100         uopt.dmode = UDF_INVALID_MODE;
2101 
2102         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2103         if (!sbi)
2104                 return -ENOMEM;
2105 
2106         sb->s_fs_info = sbi;
2107 
2108         mutex_init(&sbi->s_alloc_mutex);
2109 
2110         if (!udf_parse_options((char *)options, &uopt, false))
2111                 goto parse_options_failure;
2112 
2113         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2114             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2115                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2116                 goto parse_options_failure;
2117         }
2118 #ifdef CONFIG_UDF_NLS
2119         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2120                 uopt.nls_map = load_nls_default();
2121                 if (!uopt.nls_map)
2122                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2123                 else
2124                         udf_debug("Using default NLS map\n");
2125         }
2126 #endif
2127         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2128                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2129 
2130         fileset.logicalBlockNum = 0xFFFFFFFF;
2131         fileset.partitionReferenceNum = 0xFFFF;
2132 
2133         sbi->s_flags = uopt.flags;
2134         sbi->s_uid = uopt.uid;
2135         sbi->s_gid = uopt.gid;
2136         sbi->s_umask = uopt.umask;
2137         sbi->s_fmode = uopt.fmode;
2138         sbi->s_dmode = uopt.dmode;
2139         sbi->s_nls_map = uopt.nls_map;
2140         rwlock_init(&sbi->s_cred_lock);
2141 
2142         if (uopt.session == 0xFFFFFFFF)
2143                 sbi->s_session = udf_get_last_session(sb);
2144         else
2145                 sbi->s_session = uopt.session;
2146 
2147         udf_debug("Multi-session=%d\n", sbi->s_session);
2148 
2149         /* Fill in the rest of the superblock */
2150         sb->s_op = &udf_sb_ops;
2151         sb->s_export_op = &udf_export_ops;
2152 
2153         sb->s_magic = UDF_SUPER_MAGIC;
2154         sb->s_time_gran = 1000;
2155 
2156         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2157                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2158         } else {
2159                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2160                 while (uopt.blocksize <= 4096) {
2161                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162                         if (ret < 0) {
2163                                 if (!silent && ret != -EACCES) {
2164                                         pr_notice("Scanning with blocksize %d failed\n",
2165                                                   uopt.blocksize);
2166                                 }
2167                                 brelse(sbi->s_lvid_bh);
2168                                 sbi->s_lvid_bh = NULL;
2169                                 /*
2170                                  * EACCES is special - we want to propagate to
2171                                  * upper layers that we cannot handle RW mount.
2172                                  */
2173                                 if (ret == -EACCES)
2174                                         break;
2175                         } else
2176                                 break;
2177 
2178                         uopt.blocksize <<= 1;
2179                 }
2180         }
2181         if (ret < 0) {
2182                 if (ret == -EAGAIN) {
2183                         udf_warn(sb, "No partition found (1)\n");
2184                         ret = -EINVAL;
2185                 }
2186                 goto error_out;
2187         }
2188 
2189         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2190 
2191         if (sbi->s_lvid_bh) {
2192                 struct logicalVolIntegrityDescImpUse *lvidiu =
2193                                                         udf_sb_lvidiu(sb);
2194                 uint16_t minUDFReadRev;
2195                 uint16_t minUDFWriteRev;
2196 
2197                 if (!lvidiu) {
2198                         ret = -EINVAL;
2199                         goto error_out;
2200                 }
2201                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2202                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2203                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2204                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2205                                 minUDFReadRev,
2206                                 UDF_MAX_READ_VERSION);
2207                         ret = -EINVAL;
2208                         goto error_out;
2209                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2210                            !(sb->s_flags & MS_RDONLY)) {
2211                         ret = -EACCES;
2212                         goto error_out;
2213                 }
2214 
2215                 sbi->s_udfrev = minUDFWriteRev;
2216 
2217                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2218                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2219                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2220                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2221         }
2222 
2223         if (!sbi->s_partitions) {
2224                 udf_warn(sb, "No partition found (2)\n");
2225                 ret = -EINVAL;
2226                 goto error_out;
2227         }
2228 
2229         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2230                         UDF_PART_FLAG_READ_ONLY &&
2231             !(sb->s_flags & MS_RDONLY)) {
2232                 ret = -EACCES;
2233                 goto error_out;
2234         }
2235 
2236         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2237                 udf_warn(sb, "No fileset found\n");
2238                 ret = -EINVAL;
2239                 goto error_out;
2240         }
2241 
2242         if (!silent) {
2243                 struct timestamp ts;
2244                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2245                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2246                          sbi->s_volume_ident,
2247                          le16_to_cpu(ts.year), ts.month, ts.day,
2248                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2249         }
2250         if (!(sb->s_flags & MS_RDONLY)) {
2251                 udf_open_lvid(sb);
2252                 lvid_open = true;
2253         }
2254 
2255         /* Assign the root inode */
2256         /* assign inodes by physical block number */
2257         /* perhaps it's not extensible enough, but for now ... */
2258         inode = udf_iget(sb, &rootdir);
2259         if (IS_ERR(inode)) {
2260                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2261                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2262                 ret = PTR_ERR(inode);
2263                 goto error_out;
2264         }
2265 
2266         /* Allocate a dentry for the root inode */
2267         sb->s_root = d_make_root(inode);
2268         if (!sb->s_root) {
2269                 udf_err(sb, "Couldn't allocate root dentry\n");
2270                 ret = -ENOMEM;
2271                 goto error_out;
2272         }
2273         sb->s_maxbytes = MAX_LFS_FILESIZE;
2274         sb->s_max_links = UDF_MAX_LINKS;
2275         return 0;
2276 
2277 error_out:
2278         iput(sbi->s_vat_inode);
2279 parse_options_failure:
2280 #ifdef CONFIG_UDF_NLS
2281         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2282                 unload_nls(sbi->s_nls_map);
2283 #endif
2284         if (lvid_open)
2285                 udf_close_lvid(sb);
2286         brelse(sbi->s_lvid_bh);
2287         udf_sb_free_partitions(sb);
2288         kfree(sbi);
2289         sb->s_fs_info = NULL;
2290 
2291         return ret;
2292 }
2293 
2294 void _udf_err(struct super_block *sb, const char *function,
2295               const char *fmt, ...)
2296 {
2297         struct va_format vaf;
2298         va_list args;
2299 
2300         va_start(args, fmt);
2301 
2302         vaf.fmt = fmt;
2303         vaf.va = &args;
2304 
2305         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2306 
2307         va_end(args);
2308 }
2309 
2310 void _udf_warn(struct super_block *sb, const char *function,
2311                const char *fmt, ...)
2312 {
2313         struct va_format vaf;
2314         va_list args;
2315 
2316         va_start(args, fmt);
2317 
2318         vaf.fmt = fmt;
2319         vaf.va = &args;
2320 
2321         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2322 
2323         va_end(args);
2324 }
2325 
2326 static void udf_put_super(struct super_block *sb)
2327 {
2328         struct udf_sb_info *sbi;
2329 
2330         sbi = UDF_SB(sb);
2331 
2332         iput(sbi->s_vat_inode);
2333 #ifdef CONFIG_UDF_NLS
2334         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2335                 unload_nls(sbi->s_nls_map);
2336 #endif
2337         if (!(sb->s_flags & MS_RDONLY))
2338                 udf_close_lvid(sb);
2339         brelse(sbi->s_lvid_bh);
2340         udf_sb_free_partitions(sb);
2341         mutex_destroy(&sbi->s_alloc_mutex);
2342         kfree(sb->s_fs_info);
2343         sb->s_fs_info = NULL;
2344 }
2345 
2346 static int udf_sync_fs(struct super_block *sb, int wait)
2347 {
2348         struct udf_sb_info *sbi = UDF_SB(sb);
2349 
2350         mutex_lock(&sbi->s_alloc_mutex);
2351         if (sbi->s_lvid_dirty) {
2352                 /*
2353                  * Blockdevice will be synced later so we don't have to submit
2354                  * the buffer for IO
2355                  */
2356                 mark_buffer_dirty(sbi->s_lvid_bh);
2357                 sbi->s_lvid_dirty = 0;
2358         }
2359         mutex_unlock(&sbi->s_alloc_mutex);
2360 
2361         return 0;
2362 }
2363 
2364 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2365 {
2366         struct super_block *sb = dentry->d_sb;
2367         struct udf_sb_info *sbi = UDF_SB(sb);
2368         struct logicalVolIntegrityDescImpUse *lvidiu;
2369         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2370 
2371         lvidiu = udf_sb_lvidiu(sb);
2372         buf->f_type = UDF_SUPER_MAGIC;
2373         buf->f_bsize = sb->s_blocksize;
2374         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2375         buf->f_bfree = udf_count_free(sb);
2376         buf->f_bavail = buf->f_bfree;
2377         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2378                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2379                         + buf->f_bfree;
2380         buf->f_ffree = buf->f_bfree;
2381         buf->f_namelen = UDF_NAME_LEN;
2382         buf->f_fsid.val[0] = (u32)id;
2383         buf->f_fsid.val[1] = (u32)(id >> 32);
2384 
2385         return 0;
2386 }
2387 
2388 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2389                                           struct udf_bitmap *bitmap)
2390 {
2391         struct buffer_head *bh = NULL;
2392         unsigned int accum = 0;
2393         int index;
2394         int block = 0, newblock;
2395         struct kernel_lb_addr loc;
2396         uint32_t bytes;
2397         uint8_t *ptr;
2398         uint16_t ident;
2399         struct spaceBitmapDesc *bm;
2400 
2401         loc.logicalBlockNum = bitmap->s_extPosition;
2402         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2403         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2404 
2405         if (!bh) {
2406                 udf_err(sb, "udf_count_free failed\n");
2407                 goto out;
2408         } else if (ident != TAG_IDENT_SBD) {
2409                 brelse(bh);
2410                 udf_err(sb, "udf_count_free failed\n");
2411                 goto out;
2412         }
2413 
2414         bm = (struct spaceBitmapDesc *)bh->b_data;
2415         bytes = le32_to_cpu(bm->numOfBytes);
2416         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2417         ptr = (uint8_t *)bh->b_data;
2418 
2419         while (bytes > 0) {
2420                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2421                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2422                                         cur_bytes * 8);
2423                 bytes -= cur_bytes;
2424                 if (bytes) {
2425                         brelse(bh);
2426                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2427                         bh = udf_tread(sb, newblock);
2428                         if (!bh) {
2429                                 udf_debug("read failed\n");
2430                                 goto out;
2431                         }
2432                         index = 0;
2433                         ptr = (uint8_t *)bh->b_data;
2434                 }
2435         }
2436         brelse(bh);
2437 out:
2438         return accum;
2439 }
2440 
2441 static unsigned int udf_count_free_table(struct super_block *sb,
2442                                          struct inode *table)
2443 {
2444         unsigned int accum = 0;
2445         uint32_t elen;
2446         struct kernel_lb_addr eloc;
2447         int8_t etype;
2448         struct extent_position epos;
2449 
2450         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2451         epos.block = UDF_I(table)->i_location;
2452         epos.offset = sizeof(struct unallocSpaceEntry);
2453         epos.bh = NULL;
2454 
2455         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2456                 accum += (elen >> table->i_sb->s_blocksize_bits);
2457 
2458         brelse(epos.bh);
2459         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2460 
2461         return accum;
2462 }
2463 
2464 static unsigned int udf_count_free(struct super_block *sb)
2465 {
2466         unsigned int accum = 0;
2467         struct udf_sb_info *sbi;
2468         struct udf_part_map *map;
2469 
2470         sbi = UDF_SB(sb);
2471         if (sbi->s_lvid_bh) {
2472                 struct logicalVolIntegrityDesc *lvid =
2473                         (struct logicalVolIntegrityDesc *)
2474                         sbi->s_lvid_bh->b_data;
2475                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2476                         accum = le32_to_cpu(
2477                                         lvid->freeSpaceTable[sbi->s_partition]);
2478                         if (accum == 0xFFFFFFFF)
2479                                 accum = 0;
2480                 }
2481         }
2482 
2483         if (accum)
2484                 return accum;
2485 
2486         map = &sbi->s_partmaps[sbi->s_partition];
2487         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2488                 accum += udf_count_free_bitmap(sb,
2489                                                map->s_uspace.s_bitmap);
2490         }
2491         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2492                 accum += udf_count_free_bitmap(sb,
2493                                                map->s_fspace.s_bitmap);
2494         }
2495         if (accum)
2496                 return accum;
2497 
2498         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2499                 accum += udf_count_free_table(sb,
2500                                               map->s_uspace.s_table);
2501         }
2502         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2503                 accum += udf_count_free_table(sb,
2504                                               map->s_fspace.s_table);
2505         }
2506 
2507         return accum;
2508 }
2509 
2510 MODULE_AUTHOR("Ben Fennema");
2511 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2512 MODULE_LICENSE("GPL");
2513 module_init(init_udf_fs)
2514 module_exit(exit_udf_fs)
2515 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp