1 #ifndef __ASM_SH64_PGTABLE_H 2 #define __ASM_SH64_PGTABLE_H 3 4 /* 5 * This file is subject to the terms and conditions of the GNU General Public 6 * License. See the file "COPYING" in the main directory of this archive 7 * for more details. 8 * 9 * include/asm-sh64/pgtable.h 10 * 11 * Copyright (C) 2000, 2001 Paolo Alberelli 12 * Copyright (C) 2003 Paul Mundt 13 * Copyright (C) 2003 Richard Curnow 14 * 15 * This file contains the functions and defines necessary to modify and use 16 * the SuperH page table tree. 17 */ 18 19 #ifndef __ASSEMBLY__ 20 #include <asm/processor.h> 21 #include <asm/page.h> 22 #include <linux/threads.h> 23 #include <linux/config.h> 24 25 extern void paging_init(void); 26 27 extern void flush_cache_all(void); 28 extern void flush_cache_mm(struct mm_struct *mm); 29 extern void flush_cache_range(struct mm_struct *mm, unsigned long start, 30 unsigned long end); 31 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long addr); 32 33 extern void flush_page_to_ram(struct page *page); 34 35 extern void flush_icache_range(unsigned long start, unsigned long end); 36 extern void flush_icache_page(struct vm_area_struct *vma, struct page *pg); 37 38 extern void flush_dcache_page(struct page *pg); 39 40 extern void flush_cache_sigtramp(unsigned long start, unsigned long end); 41 42 #ifdef CONFIG_DCACHE_DISABLED 43 44 #define sh64_dcache_purge_sets(base,sets) do { } while (0) 45 #define sh64_dcache_purge_all() do { } while (0) 46 #define sh64_dcache_purge_kernel_range(start,end) do { } while (0) 47 #define sh64_dcache_purge_coloured_phy_page(addr,eaddr) do { } while (0) 48 #define sh64_dcache_purge_phy_page(pg) do { } while (0) 49 #define sh64_dcache_purge_virt_page(mm,eaddr) do { } while (0) 50 #define sh64_dcache_purge_user_page(mm,eaddr) do { } while (0) 51 #define sh64_dcache_purge_user_range(mm,start,end) do { } while (0) 52 #define sh64_dcache_wback_current_user_range(start,end) do { } while (0) 53 54 #define copy_user_page(to, from, addr) memcpy(to, from, PAGE_SIZE) 55 #define clear_user_page(to, addr) memset(to, 0, PAGE_SIZE) 56 57 #endif /* CONFIG_DCACHE_DISABLED */ 58 59 #ifdef CONFIG_ICACHE_DISABLED 60 61 #define sh64_icache_inv_all() do { } while (0) 62 #define sh64_icache_inv_kernel_range(start,end) do { } while (0) 63 #define sh64_icache_inv_user_page(vma,eaddr) do { } while (0) 64 #define sh64_icache_inv_user_page_range(mm,start,end) do { } while (0) 65 #define sh64_icache_inv_user_small_range(mm,start,len) do { } while (0) 66 #define sh64_icache_inv_current_user_range(start,end) do { } while (0) 67 68 #endif /* CONFIG_ICACHE_DISABLED */ 69 70 /* We provide our own get_unmapped_area to avoid cache synonym issue */ 71 #define HAVE_ARCH_UNMAPPED_AREA 72 73 /* 74 * Basically we have the same two-level (which is the logical three level 75 * Linux page table layout folded) page tables as the i386. 76 */ 77 78 /* 79 * ZERO_PAGE is a global shared page that is always zero: used 80 * for zero-mapped memory areas etc.. 81 */ 82 extern unsigned char empty_zero_page[PAGE_SIZE]; 83 #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page)) 84 85 #endif /* !__ASSEMBLY__ */ 86 87 /* 88 * NEFF and NPHYS related defines. 89 * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103 90 * implement 32 bits effective and 32 bits physical. But future implementations may 91 * extend beyond this. 92 */ 93 #define NEFF 32 94 #define NEFF_SIGN (1LL << (NEFF - 1)) 95 #define NEFF_MASK (-1LL << NEFF) 96 97 #define NPHYS 32 98 #define NPHYS_SIGN (1LL << (NPHYS - 1)) 99 #define NPHYS_MASK (-1LL << NPHYS) 100 101 /* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond 102 that 3-level would be appropriate. */ 103 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 104 /* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */ 105 #define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long)) 106 #define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */ 107 #define PTE_SHIFT PAGE_SHIFT 108 #define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE) 109 110 /* top level: PMD. */ 111 #define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS) 112 #define PGD_BITS (NEFF - PGDIR_SHIFT) 113 #define PTRS_PER_PGD (1<<PGD_BITS) 114 115 /* middle level: PMD. This doesn't do anything for the 2-level case. */ 116 #define PTRS_PER_PMD (1) 117 118 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 119 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 120 #define PMD_SHIFT PGDIR_SHIFT 121 #define PMD_SIZE PGDIR_SIZE 122 #define PMD_MASK PGDIR_MASK 123 124 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 125 /* 126 * three-level asymmetric paging structure: PGD is top level. 127 * The asymmetry comes from 32-bit pointers and 64-bit PTEs. 128 */ 129 /* bottom level: PTE. It's 9 bits = 512 pointers */ 130 #define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long)) 131 #define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */ 132 #define PTE_SHIFT PAGE_SHIFT 133 #define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE) 134 135 /* middle level: PMD. It's 10 bits = 1024 pointers */ 136 #define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *)) 137 #define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */ 138 #define PMD_SHIFT (PTE_SHIFT + PTE_BITS) 139 #define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE) 140 141 /* top level: PMD. It's 1 bit = 2 pointers */ 142 #define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS) 143 #define PGD_BITS (NEFF - PGDIR_SHIFT) 144 #define PTRS_PER_PGD (1<<PGD_BITS) 145 146 #define PMD_SIZE (1UL << PMD_SHIFT) 147 #define PMD_MASK (~(PMD_SIZE-1)) 148 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 149 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 150 151 #else 152 #error "No defined number of page table levels" 153 #endif 154 155 /* 156 * Error outputs. 157 */ 158 #define pte_ERROR(e) \ 159 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e)) 160 #define pmd_ERROR(e) \ 161 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 162 #define pgd_ERROR(e) \ 163 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 164 165 /* 166 * Table setting routines. Used within arch/mm only. 167 */ 168 #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval) 169 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 170 171 static __inline__ void set_pte(pte_t *pteptr, pte_t pteval) 172 { 173 unsigned long long x = ((unsigned long long) pteval.pte); 174 unsigned long long *xp = (unsigned long long *) pteptr; 175 /* 176 * Sign-extend based on NPHYS. 177 */ 178 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x; 179 } 180 181 static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep) 182 { 183 pmd_val(*pmdp) = (unsigned long) ptep; 184 } 185 186 /* 187 * PGD defines. Top level. 188 */ 189 190 /* To find an entry in a generic PGD. */ 191 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 192 #define __pgd_offset(address) pgd_index(address) 193 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 194 195 /* To find an entry in a kernel PGD. */ 196 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 197 198 /* 199 * PGD level access routines. 200 * 201 * Note1: 202 * There's no need to use physical addresses since the tree walk is all 203 * in performed in software, until the PTE translation. 204 * 205 * Note 2: 206 * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad, 207 * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain 208 * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must 209 * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and 210 * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a 211 * bad pgd that must be notified via printk(). 212 * 213 */ 214 #define _PGD_EMPTY 0x0 215 216 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 217 static inline int pgd_none(pgd_t pgd) { return 0; } 218 static inline int pgd_bad(pgd_t pgd) { return 0; } 219 static inline int pgd_present(pgd_t pgd) { return 1; } 220 #define pgd_clear(xx) do { } while(0) 221 222 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 223 #define pgd_present(pgd_entry) (1) 224 #define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY) 225 /* TODO: Think later about what a useful definition of 'bad' would be now. */ 226 #define pgd_bad(pgd_entry) (0) 227 #define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY))) 228 229 #endif 230 231 232 #define pgd_page(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK)) 233 234 /* 235 * PMD defines. Middle level. 236 */ 237 238 /* PGD to PMD dereferencing */ 239 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 240 static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 241 { 242 return (pmd_t *) dir; 243 } 244 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 245 #define __pmd_offset(address) \ 246 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 247 #define pmd_offset(dir, addr) \ 248 ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr))) 249 #endif 250 251 /* 252 * PMD level access routines. Same notes as above. 253 */ 254 #define _PMD_EMPTY 0x0 255 /* Either the PMD is empty or present, it's not paged out */ 256 #define pmd_present(pmd_entry) (1) 257 #define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY))) 258 #define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY) 259 /* TODO: Think later about what a useful definition of 'bad' would be now. */ 260 #define pmd_bad(pmd_entry) (0) 261 #define pmd_page(pmd_entry) ((unsigned long) (pmd_val(pmd_entry) & PAGE_MASK)) 262 263 /* PMD to PTE dereferencing */ 264 #define __pte_offset(address) \ 265 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 266 267 #define pte_offset(dir, addr) \ 268 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + __pte_offset((addr))) 269 270 /* Round it up ! */ 271 #define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE) 272 #define FIRST_USER_PGD_NR 0 273 274 #ifndef __ASSEMBLY__ 275 #define VMALLOC_END 0xff000000 276 #define VMALLOC_START 0xf0000000 277 #define VMALLOC_VMADDR(x) ((unsigned long)(x)) 278 279 #define IOBASE_VADDR 0xff000000 280 #define IOBASE_END 0xffffffff 281 282 /* 283 * PTEL coherent flags. 284 * See Chapter 17 ST50 CPU Core Volume 1, Architecture. 285 */ 286 /* The bits that are required in the SH-5 TLB are placed in the h/w-defined 287 positions, to avoid expensive bit shuffling on every refill. The remaining 288 bits are used for s/w purposes and masked out on each refill. 289 290 Note, the PTE slots are used to hold data of type swp_entry_t when a page is 291 swapped out. Only the _PAGE_PRESENT flag is significant when the page is 292 swapped out, and it must be placed so that it doesn't overlap either the 293 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type 294 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This 295 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit 296 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split 297 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */ 298 #define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */ 299 #define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */ 300 #define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */ 301 #define _PAGE_PRESENT 0x004 /* software: if allocated */ 302 #define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */ 303 #define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */ 304 #define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */ 305 #define _PAGE_READ 0x040 /* PR0-bit : read access allowed */ 306 #define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */ 307 #define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */ 308 #define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */ 309 #define _PAGE_DIRTY 0x400 /* software: page accessed in write */ 310 #define _PAGE_ACCESSED 0x800 /* software: page referenced */ 311 312 /* Mask which drops software flags */ 313 #define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL 314 /* Flags default: 4KB, Read, Not write, Not execute, Not user */ 315 #define _PAGE_FLAGS_HARDWARE_DEFAULT 0x0000000000000040LL 316 317 /* 318 * Default flags for a Kernel page. 319 * This is fundametally also SHARED because the main use of this define 320 * (other than for PGD/PMD entries) is for the VMALLOC pool which is 321 * contextless. 322 * 323 * _PAGE_EXECUTE is required for modules 324 * 325 */ 326 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 327 _PAGE_EXECUTE | \ 328 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \ 329 _PAGE_SHARED) 330 331 /* Default flags for a User page */ 332 #define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER) 333 334 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 335 336 #define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED) 337 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 338 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \ 339 _PAGE_SHARED) 340 /* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default 341 * protection mode for the stack. */ 342 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ 343 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE) 344 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ 345 _PAGE_ACCESSED | _PAGE_USER) 346 #define PAGE_KERNEL __pgprot(_KERNPG_TABLE) 347 348 349 /* 350 * In ST50 we have full permissions (Read/Write/Execute/Shared). 351 * Just match'em all. These are for mmap(), therefore all at least 352 * User/Cachable/Present/Accessed. No point in making Fault on Write. 353 */ 354 #define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED) 355 /* sxwr */ 356 #define __P000 __pgprot(__MMAP_COMMON) 357 #define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ) 358 #define __P010 __pgprot(__MMAP_COMMON) 359 #define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ) 360 #define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) 361 #define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) 362 #define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) 363 #define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) 364 365 #define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED) 366 #define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ) 367 #define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE) 368 #define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE) 369 #define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE) 370 #define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ) 371 #define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE) 372 #define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE) 373 374 /* Make it a device mapping for maximum safety (e.g. for mapping device 375 registers into user-space via /dev/map). */ 376 #define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE) 377 378 /* 379 * Handling allocation failures during page table setup. 380 */ 381 extern void __handle_bad_pmd_kernel(pmd_t * pmd); 382 #define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x) 383 384 /* 385 * PTE level access routines. 386 * 387 * Note1: 388 * It's the tree walk leaf. This is physical address to be stored. 389 * 390 * Note 2: 391 * Regarding the choice of _PTE_EMPTY: 392 393 We must choose a bit pattern that cannot be valid, whether or not the page 394 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped 395 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is 396 left for us to select. If we force bit[7]==0 when swapped out, we could use 397 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if 398 we force bit[7]==1 when swapped out, we can use all zeroes to indicate 399 empty. This is convenient, because the page tables get cleared to zero 400 when they are allocated. 401 402 */ 403 #define _PTE_EMPTY 0x0 404 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 405 #define pte_clear(xp) (set_pte(xp, __pte(_PTE_EMPTY))) 406 #define pte_none(x) (pte_val(x) == _PTE_EMPTY) 407 408 /* 409 * Some definitions to translate between mem_map, PTEs, and page 410 * addresses: 411 */ 412 413 /* 414 * Given a PTE, return the index of the mem_map[] entry corresponding 415 * to the page frame the PTE. Get the absolute physical address, make 416 * a relative physical address and translate it to an index. 417 */ 418 #define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \ 419 __MEMORY_START) >> PAGE_SHIFT) 420 421 /* 422 * Given a PTE, return the "struct page *". 423 */ 424 #define pte_page(x) (mem_map + pte_pagenr(x)) 425 426 /* 427 * Return number of (down rounded) MB corresponding to x pages. 428 */ 429 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) 430 431 432 /* 433 * The following have defined behavior only work if pte_present() is true. 434 */ 435 extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } 436 extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; } 437 extern inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; } 438 extern inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; } 439 extern inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; } 440 441 extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; } 442 extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; } 443 extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; } 444 extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } 445 extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } 446 447 extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; } 448 extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; } 449 extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; } 450 extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } 451 extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } 452 453 /* 454 * Conversion functions: convert a page and protection to a page entry. 455 * 456 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) 457 */ 458 #define mk_pte(page,pgprot) \ 459 ({ \ 460 pte_t __pte; \ 461 \ 462 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \ 463 __MEMORY_START | pgprot_val((pgprot)))); \ 464 __pte; \ 465 }) 466 467 /* 468 * This takes a (absolute) physical page address that is used 469 * by the remapping functions 470 */ 471 #define mk_pte_phys(physpage, pgprot) \ 472 ({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; }) 473 474 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 475 { set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; } 476 477 #define page_pte_prot(page, prot) mk_pte(page, prot) 478 #define page_pte(page) page_pte_prot(page, __pgprot(0)) 479 480 #define pte_same(A,B) (pte_val(A) == pte_val(B)) 481 482 483 extern void update_mmu_cache(struct vm_area_struct * vma, 484 unsigned long address, pte_t pte); 485 486 487 /* Swap-related things */ 488 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 489 490 /* Encode and de-code a swap entry */ 491 #define SWP_TYPE(x) (((x).val & 3) + (((x).val >> 1) & 0x3c)) 492 #define SWP_OFFSET(x) ((x).val >> 8) 493 494 /* Avoid bit 2 for type */ 495 static inline swp_entry_t SWP_ENTRY(unsigned long type, unsigned long offset) 496 { 497 unsigned long result; 498 /* Assert bit[7], to make swapped out page table entries distinct 499 from unused/uninitialised ones */ 500 result = (offset << 8) + 0x80 + ((type & 0x3c) << 1) + (type & 3); 501 return (swp_entry_t) {result}; 502 } 503 #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 504 #define swp_entry_to_pte(x) ((pte_t) { (x).val }) 505 506 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 507 #define PageSkip(page) (0) 508 #define kern_addr_valid(addr) (1) 509 510 #define io_remap_page_range remap_page_range 511 #endif /* !__ASSEMBLY__ */ 512 513 /* 514 * No page table caches to initialise 515 */ 516 #define pgtable_cache_init() do { } while (0) 517 518 /* This must be implemented for ptrace() */ 519 #if 0 520 #define flush_icache_user_range(vma,pg,adr,len) do { } while (0) 521 #endif 522 523 524 #endif /* __ASM_SH64_PGTABLE_H */ 525
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.