~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/crypto/hash.h

Version: ~ [ linux-5.4-rc3 ] ~ [ linux-5.3.6 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.79 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.149 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.196 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.196 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.75 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Hash: Hash algorithms under the crypto API
  3  * 
  4  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
  5  *
  6  * This program is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License as published by the Free
  8  * Software Foundation; either version 2 of the License, or (at your option) 
  9  * any later version.
 10  *
 11  */
 12 
 13 #ifndef _CRYPTO_HASH_H
 14 #define _CRYPTO_HASH_H
 15 
 16 #include <linux/crypto.h>
 17 #include <linux/string.h>
 18 
 19 struct crypto_ahash;
 20 
 21 /**
 22  * DOC: Message Digest Algorithm Definitions
 23  *
 24  * These data structures define modular message digest algorithm
 25  * implementations, managed via crypto_register_ahash(),
 26  * crypto_register_shash(), crypto_unregister_ahash() and
 27  * crypto_unregister_shash().
 28  */
 29 
 30 /**
 31  * struct hash_alg_common - define properties of message digest
 32  * @digestsize: Size of the result of the transformation. A buffer of this size
 33  *              must be available to the @final and @finup calls, so they can
 34  *              store the resulting hash into it. For various predefined sizes,
 35  *              search include/crypto/ using
 36  *              git grep _DIGEST_SIZE include/crypto.
 37  * @statesize: Size of the block for partial state of the transformation. A
 38  *             buffer of this size must be passed to the @export function as it
 39  *             will save the partial state of the transformation into it. On the
 40  *             other side, the @import function will load the state from a
 41  *             buffer of this size as well.
 42  * @base: Start of data structure of cipher algorithm. The common data
 43  *        structure of crypto_alg contains information common to all ciphers.
 44  *        The hash_alg_common data structure now adds the hash-specific
 45  *        information.
 46  */
 47 struct hash_alg_common {
 48         unsigned int digestsize;
 49         unsigned int statesize;
 50 
 51         struct crypto_alg base;
 52 };
 53 
 54 struct ahash_request {
 55         struct crypto_async_request base;
 56 
 57         unsigned int nbytes;
 58         struct scatterlist *src;
 59         u8 *result;
 60 
 61         /* This field may only be used by the ahash API code. */
 62         void *priv;
 63 
 64         void *__ctx[] CRYPTO_MINALIGN_ATTR;
 65 };
 66 
 67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
 68         char __##name##_desc[sizeof(struct ahash_request) + \
 69                 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
 70         struct ahash_request *name = (void *)__##name##_desc
 71 
 72 /**
 73  * struct ahash_alg - asynchronous message digest definition
 74  * @init: Initialize the transformation context. Intended only to initialize the
 75  *        state of the HASH transformation at the beginning. This shall fill in
 76  *        the internal structures used during the entire duration of the whole
 77  *        transformation. No data processing happens at this point.
 78  *        Note: mandatory.
 79  * @update: Push a chunk of data into the driver for transformation. This
 80  *         function actually pushes blocks of data from upper layers into the
 81  *         driver, which then passes those to the hardware as seen fit. This
 82  *         function must not finalize the HASH transformation by calculating the
 83  *         final message digest as this only adds more data into the
 84  *         transformation. This function shall not modify the transformation
 85  *         context, as this function may be called in parallel with the same
 86  *         transformation object. Data processing can happen synchronously
 87  *         [SHASH] or asynchronously [AHASH] at this point.
 88  *         Note: mandatory.
 89  * @final: Retrieve result from the driver. This function finalizes the
 90  *         transformation and retrieves the resulting hash from the driver and
 91  *         pushes it back to upper layers. No data processing happens at this
 92  *         point unless hardware requires it to finish the transformation
 93  *         (then the data buffered by the device driver is processed).
 94  *         Note: mandatory.
 95  * @finup: Combination of @update and @final. This function is effectively a
 96  *         combination of @update and @final calls issued in sequence. As some
 97  *         hardware cannot do @update and @final separately, this callback was
 98  *         added to allow such hardware to be used at least by IPsec. Data
 99  *         processing can happen synchronously [SHASH] or asynchronously [AHASH]
100  *         at this point.
101  *         Note: optional.
102  * @digest: Combination of @init and @update and @final. This function
103  *          effectively behaves as the entire chain of operations, @init,
104  *          @update and @final issued in sequence. Just like @finup, this was
105  *          added for hardware which cannot do even the @finup, but can only do
106  *          the whole transformation in one run. Data processing can happen
107  *          synchronously [SHASH] or asynchronously [AHASH] at this point.
108  * @setkey: Set optional key used by the hashing algorithm. Intended to push
109  *          optional key used by the hashing algorithm from upper layers into
110  *          the driver. This function can store the key in the transformation
111  *          context or can outright program it into the hardware. In the former
112  *          case, one must be careful to program the key into the hardware at
113  *          appropriate time and one must be careful that .setkey() can be
114  *          called multiple times during the existence of the transformation
115  *          object. Not  all hashing algorithms do implement this function as it
116  *          is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
117  *          implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
118  *          this function. This function must be called before any other of the
119  *          @init, @update, @final, @finup, @digest is called. No data
120  *          processing happens at this point.
121  * @export: Export partial state of the transformation. This function dumps the
122  *          entire state of the ongoing transformation into a provided block of
123  *          data so it can be @import 'ed back later on. This is useful in case
124  *          you want to save partial result of the transformation after
125  *          processing certain amount of data and reload this partial result
126  *          multiple times later on for multiple re-use. No data processing
127  *          happens at this point.
128  * @import: Import partial state of the transformation. This function loads the
129  *          entire state of the ongoing transformation from a provided block of
130  *          data so the transformation can continue from this point onward. No
131  *          data processing happens at this point.
132  * @halg: see struct hash_alg_common
133  */
134 struct ahash_alg {
135         int (*init)(struct ahash_request *req);
136         int (*update)(struct ahash_request *req);
137         int (*final)(struct ahash_request *req);
138         int (*finup)(struct ahash_request *req);
139         int (*digest)(struct ahash_request *req);
140         int (*export)(struct ahash_request *req, void *out);
141         int (*import)(struct ahash_request *req, const void *in);
142         int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
143                       unsigned int keylen);
144 
145         struct hash_alg_common halg;
146 };
147 
148 struct shash_desc {
149         struct crypto_shash *tfm;
150         u32 flags;
151 
152         void *__ctx[] CRYPTO_MINALIGN_ATTR;
153 };
154 
155 #define SHASH_DESC_ON_STACK(shash, ctx)                           \
156         char __##shash##_desc[sizeof(struct shash_desc) +         \
157                 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
158         struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
159 
160 /**
161  * struct shash_alg - synchronous message digest definition
162  * @init: see struct ahash_alg
163  * @update: see struct ahash_alg
164  * @final: see struct ahash_alg
165  * @finup: see struct ahash_alg
166  * @digest: see struct ahash_alg
167  * @export: see struct ahash_alg
168  * @import: see struct ahash_alg
169  * @setkey: see struct ahash_alg
170  * @digestsize: see struct ahash_alg
171  * @statesize: see struct ahash_alg
172  * @descsize: Size of the operational state for the message digest. This state
173  *            size is the memory size that needs to be allocated for
174  *            shash_desc.__ctx
175  * @base: internally used
176  */
177 struct shash_alg {
178         int (*init)(struct shash_desc *desc);
179         int (*update)(struct shash_desc *desc, const u8 *data,
180                       unsigned int len);
181         int (*final)(struct shash_desc *desc, u8 *out);
182         int (*finup)(struct shash_desc *desc, const u8 *data,
183                      unsigned int len, u8 *out);
184         int (*digest)(struct shash_desc *desc, const u8 *data,
185                       unsigned int len, u8 *out);
186         int (*export)(struct shash_desc *desc, void *out);
187         int (*import)(struct shash_desc *desc, const void *in);
188         int (*setkey)(struct crypto_shash *tfm, const u8 *key,
189                       unsigned int keylen);
190 
191         unsigned int descsize;
192 
193         /* These fields must match hash_alg_common. */
194         unsigned int digestsize
195                 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
196         unsigned int statesize;
197 
198         struct crypto_alg base;
199 };
200 
201 struct crypto_ahash {
202         int (*init)(struct ahash_request *req);
203         int (*update)(struct ahash_request *req);
204         int (*final)(struct ahash_request *req);
205         int (*finup)(struct ahash_request *req);
206         int (*digest)(struct ahash_request *req);
207         int (*export)(struct ahash_request *req, void *out);
208         int (*import)(struct ahash_request *req, const void *in);
209         int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
210                       unsigned int keylen);
211 
212         unsigned int reqsize;
213         struct crypto_tfm base;
214 };
215 
216 struct crypto_shash {
217         unsigned int descsize;
218         struct crypto_tfm base;
219 };
220 
221 /**
222  * DOC: Asynchronous Message Digest API
223  *
224  * The asynchronous message digest API is used with the ciphers of type
225  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
226  *
227  * The asynchronous cipher operation discussion provided for the
228  * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
229  */
230 
231 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
232 {
233         return container_of(tfm, struct crypto_ahash, base);
234 }
235 
236 /**
237  * crypto_alloc_ahash() - allocate ahash cipher handle
238  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
239  *            ahash cipher
240  * @type: specifies the type of the cipher
241  * @mask: specifies the mask for the cipher
242  *
243  * Allocate a cipher handle for an ahash. The returned struct
244  * crypto_ahash is the cipher handle that is required for any subsequent
245  * API invocation for that ahash.
246  *
247  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
248  *         of an error, PTR_ERR() returns the error code.
249  */
250 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
251                                         u32 mask);
252 
253 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
254 {
255         return &tfm->base;
256 }
257 
258 /**
259  * crypto_free_ahash() - zeroize and free the ahash handle
260  * @tfm: cipher handle to be freed
261  */
262 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
263 {
264         crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
265 }
266 
267 /**
268  * crypto_has_ahash() - Search for the availability of an ahash.
269  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
270  *            ahash
271  * @type: specifies the type of the ahash
272  * @mask: specifies the mask for the ahash
273  *
274  * Return: true when the ahash is known to the kernel crypto API; false
275  *         otherwise
276  */
277 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
278 
279 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
280 {
281         return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
282 }
283 
284 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
285 {
286         return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
287 }
288 
289 static inline unsigned int crypto_ahash_alignmask(
290         struct crypto_ahash *tfm)
291 {
292         return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
293 }
294 
295 /**
296  * crypto_ahash_blocksize() - obtain block size for cipher
297  * @tfm: cipher handle
298  *
299  * The block size for the message digest cipher referenced with the cipher
300  * handle is returned.
301  *
302  * Return: block size of cipher
303  */
304 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
305 {
306         return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
307 }
308 
309 static inline struct hash_alg_common *__crypto_hash_alg_common(
310         struct crypto_alg *alg)
311 {
312         return container_of(alg, struct hash_alg_common, base);
313 }
314 
315 static inline struct hash_alg_common *crypto_hash_alg_common(
316         struct crypto_ahash *tfm)
317 {
318         return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
319 }
320 
321 /**
322  * crypto_ahash_digestsize() - obtain message digest size
323  * @tfm: cipher handle
324  *
325  * The size for the message digest created by the message digest cipher
326  * referenced with the cipher handle is returned.
327  *
328  *
329  * Return: message digest size of cipher
330  */
331 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
332 {
333         return crypto_hash_alg_common(tfm)->digestsize;
334 }
335 
336 /**
337  * crypto_ahash_statesize() - obtain size of the ahash state
338  * @tfm: cipher handle
339  *
340  * Return the size of the ahash state. With the crypto_ahash_export()
341  * function, the caller can export the state into a buffer whose size is
342  * defined with this function.
343  *
344  * Return: size of the ahash state
345  */
346 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
347 {
348         return crypto_hash_alg_common(tfm)->statesize;
349 }
350 
351 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
352 {
353         return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
354 }
355 
356 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
357 {
358         crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
359 }
360 
361 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
362 {
363         crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
364 }
365 
366 /**
367  * crypto_ahash_reqtfm() - obtain cipher handle from request
368  * @req: asynchronous request handle that contains the reference to the ahash
369  *       cipher handle
370  *
371  * Return the ahash cipher handle that is registered with the asynchronous
372  * request handle ahash_request.
373  *
374  * Return: ahash cipher handle
375  */
376 static inline struct crypto_ahash *crypto_ahash_reqtfm(
377         struct ahash_request *req)
378 {
379         return __crypto_ahash_cast(req->base.tfm);
380 }
381 
382 /**
383  * crypto_ahash_reqsize() - obtain size of the request data structure
384  * @tfm: cipher handle
385  *
386  * Return: size of the request data
387  */
388 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
389 {
390         return tfm->reqsize;
391 }
392 
393 static inline void *ahash_request_ctx(struct ahash_request *req)
394 {
395         return req->__ctx;
396 }
397 
398 /**
399  * crypto_ahash_setkey - set key for cipher handle
400  * @tfm: cipher handle
401  * @key: buffer holding the key
402  * @keylen: length of the key in bytes
403  *
404  * The caller provided key is set for the ahash cipher. The cipher
405  * handle must point to a keyed hash in order for this function to succeed.
406  *
407  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
408  */
409 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
410                         unsigned int keylen);
411 
412 /**
413  * crypto_ahash_finup() - update and finalize message digest
414  * @req: reference to the ahash_request handle that holds all information
415  *       needed to perform the cipher operation
416  *
417  * This function is a "short-hand" for the function calls of
418  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
419  * meaning as discussed for those separate functions.
420  *
421  * Return: see crypto_ahash_final()
422  */
423 int crypto_ahash_finup(struct ahash_request *req);
424 
425 /**
426  * crypto_ahash_final() - calculate message digest
427  * @req: reference to the ahash_request handle that holds all information
428  *       needed to perform the cipher operation
429  *
430  * Finalize the message digest operation and create the message digest
431  * based on all data added to the cipher handle. The message digest is placed
432  * into the output buffer registered with the ahash_request handle.
433  *
434  * Return:
435  * 0            if the message digest was successfully calculated;
436  * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
437  * -EBUSY       if queue is full and request should be resubmitted later;
438  * other < 0    if an error occurred
439  */
440 int crypto_ahash_final(struct ahash_request *req);
441 
442 /**
443  * crypto_ahash_digest() - calculate message digest for a buffer
444  * @req: reference to the ahash_request handle that holds all information
445  *       needed to perform the cipher operation
446  *
447  * This function is a "short-hand" for the function calls of crypto_ahash_init,
448  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
449  * meaning as discussed for those separate three functions.
450  *
451  * Return: see crypto_ahash_final()
452  */
453 int crypto_ahash_digest(struct ahash_request *req);
454 
455 /**
456  * crypto_ahash_export() - extract current message digest state
457  * @req: reference to the ahash_request handle whose state is exported
458  * @out: output buffer of sufficient size that can hold the hash state
459  *
460  * This function exports the hash state of the ahash_request handle into the
461  * caller-allocated output buffer out which must have sufficient size (e.g. by
462  * calling crypto_ahash_statesize()).
463  *
464  * Return: 0 if the export was successful; < 0 if an error occurred
465  */
466 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
467 {
468         return crypto_ahash_reqtfm(req)->export(req, out);
469 }
470 
471 /**
472  * crypto_ahash_import() - import message digest state
473  * @req: reference to ahash_request handle the state is imported into
474  * @in: buffer holding the state
475  *
476  * This function imports the hash state into the ahash_request handle from the
477  * input buffer. That buffer should have been generated with the
478  * crypto_ahash_export function.
479  *
480  * Return: 0 if the import was successful; < 0 if an error occurred
481  */
482 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
483 {
484         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
485 
486         if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
487                 return -ENOKEY;
488 
489         return tfm->import(req, in);
490 }
491 
492 /**
493  * crypto_ahash_init() - (re)initialize message digest handle
494  * @req: ahash_request handle that already is initialized with all necessary
495  *       data using the ahash_request_* API functions
496  *
497  * The call (re-)initializes the message digest referenced by the ahash_request
498  * handle. Any potentially existing state created by previous operations is
499  * discarded.
500  *
501  * Return: see crypto_ahash_final()
502  */
503 static inline int crypto_ahash_init(struct ahash_request *req)
504 {
505         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
506 
507         if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
508                 return -ENOKEY;
509 
510         return tfm->init(req);
511 }
512 
513 /**
514  * crypto_ahash_update() - add data to message digest for processing
515  * @req: ahash_request handle that was previously initialized with the
516  *       crypto_ahash_init call.
517  *
518  * Updates the message digest state of the &ahash_request handle. The input data
519  * is pointed to by the scatter/gather list registered in the &ahash_request
520  * handle
521  *
522  * Return: see crypto_ahash_final()
523  */
524 static inline int crypto_ahash_update(struct ahash_request *req)
525 {
526         return crypto_ahash_reqtfm(req)->update(req);
527 }
528 
529 /**
530  * DOC: Asynchronous Hash Request Handle
531  *
532  * The &ahash_request data structure contains all pointers to data
533  * required for the asynchronous cipher operation. This includes the cipher
534  * handle (which can be used by multiple &ahash_request instances), pointer
535  * to plaintext and the message digest output buffer, asynchronous callback
536  * function, etc. It acts as a handle to the ahash_request_* API calls in a
537  * similar way as ahash handle to the crypto_ahash_* API calls.
538  */
539 
540 /**
541  * ahash_request_set_tfm() - update cipher handle reference in request
542  * @req: request handle to be modified
543  * @tfm: cipher handle that shall be added to the request handle
544  *
545  * Allow the caller to replace the existing ahash handle in the request
546  * data structure with a different one.
547  */
548 static inline void ahash_request_set_tfm(struct ahash_request *req,
549                                          struct crypto_ahash *tfm)
550 {
551         req->base.tfm = crypto_ahash_tfm(tfm);
552 }
553 
554 /**
555  * ahash_request_alloc() - allocate request data structure
556  * @tfm: cipher handle to be registered with the request
557  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
558  *
559  * Allocate the request data structure that must be used with the ahash
560  * message digest API calls. During
561  * the allocation, the provided ahash handle
562  * is registered in the request data structure.
563  *
564  * Return: allocated request handle in case of success, or NULL if out of memory
565  */
566 static inline struct ahash_request *ahash_request_alloc(
567         struct crypto_ahash *tfm, gfp_t gfp)
568 {
569         struct ahash_request *req;
570 
571         req = kmalloc(sizeof(struct ahash_request) +
572                       crypto_ahash_reqsize(tfm), gfp);
573 
574         if (likely(req))
575                 ahash_request_set_tfm(req, tfm);
576 
577         return req;
578 }
579 
580 /**
581  * ahash_request_free() - zeroize and free the request data structure
582  * @req: request data structure cipher handle to be freed
583  */
584 static inline void ahash_request_free(struct ahash_request *req)
585 {
586         kzfree(req);
587 }
588 
589 static inline void ahash_request_zero(struct ahash_request *req)
590 {
591         memzero_explicit(req, sizeof(*req) +
592                               crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
593 }
594 
595 static inline struct ahash_request *ahash_request_cast(
596         struct crypto_async_request *req)
597 {
598         return container_of(req, struct ahash_request, base);
599 }
600 
601 /**
602  * ahash_request_set_callback() - set asynchronous callback function
603  * @req: request handle
604  * @flags: specify zero or an ORing of the flags
605  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
606  *         increase the wait queue beyond the initial maximum size;
607  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
608  * @compl: callback function pointer to be registered with the request handle
609  * @data: The data pointer refers to memory that is not used by the kernel
610  *        crypto API, but provided to the callback function for it to use. Here,
611  *        the caller can provide a reference to memory the callback function can
612  *        operate on. As the callback function is invoked asynchronously to the
613  *        related functionality, it may need to access data structures of the
614  *        related functionality which can be referenced using this pointer. The
615  *        callback function can access the memory via the "data" field in the
616  *        &crypto_async_request data structure provided to the callback function.
617  *
618  * This function allows setting the callback function that is triggered once
619  * the cipher operation completes.
620  *
621  * The callback function is registered with the &ahash_request handle and
622  * must comply with the following template::
623  *
624  *      void callback_function(struct crypto_async_request *req, int error)
625  */
626 static inline void ahash_request_set_callback(struct ahash_request *req,
627                                               u32 flags,
628                                               crypto_completion_t compl,
629                                               void *data)
630 {
631         req->base.complete = compl;
632         req->base.data = data;
633         req->base.flags = flags;
634 }
635 
636 /**
637  * ahash_request_set_crypt() - set data buffers
638  * @req: ahash_request handle to be updated
639  * @src: source scatter/gather list
640  * @result: buffer that is filled with the message digest -- the caller must
641  *          ensure that the buffer has sufficient space by, for example, calling
642  *          crypto_ahash_digestsize()
643  * @nbytes: number of bytes to process from the source scatter/gather list
644  *
645  * By using this call, the caller references the source scatter/gather list.
646  * The source scatter/gather list points to the data the message digest is to
647  * be calculated for.
648  */
649 static inline void ahash_request_set_crypt(struct ahash_request *req,
650                                            struct scatterlist *src, u8 *result,
651                                            unsigned int nbytes)
652 {
653         req->src = src;
654         req->nbytes = nbytes;
655         req->result = result;
656 }
657 
658 /**
659  * DOC: Synchronous Message Digest API
660  *
661  * The synchronous message digest API is used with the ciphers of type
662  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
663  *
664  * The message digest API is able to maintain state information for the
665  * caller.
666  *
667  * The synchronous message digest API can store user-related context in in its
668  * shash_desc request data structure.
669  */
670 
671 /**
672  * crypto_alloc_shash() - allocate message digest handle
673  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
674  *            message digest cipher
675  * @type: specifies the type of the cipher
676  * @mask: specifies the mask for the cipher
677  *
678  * Allocate a cipher handle for a message digest. The returned &struct
679  * crypto_shash is the cipher handle that is required for any subsequent
680  * API invocation for that message digest.
681  *
682  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
683  *         of an error, PTR_ERR() returns the error code.
684  */
685 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
686                                         u32 mask);
687 
688 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
689 {
690         return &tfm->base;
691 }
692 
693 /**
694  * crypto_free_shash() - zeroize and free the message digest handle
695  * @tfm: cipher handle to be freed
696  */
697 static inline void crypto_free_shash(struct crypto_shash *tfm)
698 {
699         crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
700 }
701 
702 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
703 {
704         return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
705 }
706 
707 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
708 {
709         return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
710 }
711 
712 static inline unsigned int crypto_shash_alignmask(
713         struct crypto_shash *tfm)
714 {
715         return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
716 }
717 
718 /**
719  * crypto_shash_blocksize() - obtain block size for cipher
720  * @tfm: cipher handle
721  *
722  * The block size for the message digest cipher referenced with the cipher
723  * handle is returned.
724  *
725  * Return: block size of cipher
726  */
727 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
728 {
729         return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
730 }
731 
732 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
733 {
734         return container_of(alg, struct shash_alg, base);
735 }
736 
737 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
738 {
739         return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
740 }
741 
742 /**
743  * crypto_shash_digestsize() - obtain message digest size
744  * @tfm: cipher handle
745  *
746  * The size for the message digest created by the message digest cipher
747  * referenced with the cipher handle is returned.
748  *
749  * Return: digest size of cipher
750  */
751 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
752 {
753         return crypto_shash_alg(tfm)->digestsize;
754 }
755 
756 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
757 {
758         return crypto_shash_alg(tfm)->statesize;
759 }
760 
761 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
762 {
763         return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
764 }
765 
766 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
767 {
768         crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
769 }
770 
771 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
772 {
773         crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
774 }
775 
776 /**
777  * crypto_shash_descsize() - obtain the operational state size
778  * @tfm: cipher handle
779  *
780  * The size of the operational state the cipher needs during operation is
781  * returned for the hash referenced with the cipher handle. This size is
782  * required to calculate the memory requirements to allow the caller allocating
783  * sufficient memory for operational state.
784  *
785  * The operational state is defined with struct shash_desc where the size of
786  * that data structure is to be calculated as
787  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
788  *
789  * Return: size of the operational state
790  */
791 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
792 {
793         return tfm->descsize;
794 }
795 
796 static inline void *shash_desc_ctx(struct shash_desc *desc)
797 {
798         return desc->__ctx;
799 }
800 
801 /**
802  * crypto_shash_setkey() - set key for message digest
803  * @tfm: cipher handle
804  * @key: buffer holding the key
805  * @keylen: length of the key in bytes
806  *
807  * The caller provided key is set for the keyed message digest cipher. The
808  * cipher handle must point to a keyed message digest cipher in order for this
809  * function to succeed.
810  *
811  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
812  */
813 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
814                         unsigned int keylen);
815 
816 /**
817  * crypto_shash_digest() - calculate message digest for buffer
818  * @desc: see crypto_shash_final()
819  * @data: see crypto_shash_update()
820  * @len: see crypto_shash_update()
821  * @out: see crypto_shash_final()
822  *
823  * This function is a "short-hand" for the function calls of crypto_shash_init,
824  * crypto_shash_update and crypto_shash_final. The parameters have the same
825  * meaning as discussed for those separate three functions.
826  *
827  * Return: 0 if the message digest creation was successful; < 0 if an error
828  *         occurred
829  */
830 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
831                         unsigned int len, u8 *out);
832 
833 /**
834  * crypto_shash_export() - extract operational state for message digest
835  * @desc: reference to the operational state handle whose state is exported
836  * @out: output buffer of sufficient size that can hold the hash state
837  *
838  * This function exports the hash state of the operational state handle into the
839  * caller-allocated output buffer out which must have sufficient size (e.g. by
840  * calling crypto_shash_descsize).
841  *
842  * Return: 0 if the export creation was successful; < 0 if an error occurred
843  */
844 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
845 {
846         return crypto_shash_alg(desc->tfm)->export(desc, out);
847 }
848 
849 /**
850  * crypto_shash_import() - import operational state
851  * @desc: reference to the operational state handle the state imported into
852  * @in: buffer holding the state
853  *
854  * This function imports the hash state into the operational state handle from
855  * the input buffer. That buffer should have been generated with the
856  * crypto_ahash_export function.
857  *
858  * Return: 0 if the import was successful; < 0 if an error occurred
859  */
860 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
861 {
862         struct crypto_shash *tfm = desc->tfm;
863 
864         if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
865                 return -ENOKEY;
866 
867         return crypto_shash_alg(tfm)->import(desc, in);
868 }
869 
870 /**
871  * crypto_shash_init() - (re)initialize message digest
872  * @desc: operational state handle that is already filled
873  *
874  * The call (re-)initializes the message digest referenced by the
875  * operational state handle. Any potentially existing state created by
876  * previous operations is discarded.
877  *
878  * Return: 0 if the message digest initialization was successful; < 0 if an
879  *         error occurred
880  */
881 static inline int crypto_shash_init(struct shash_desc *desc)
882 {
883         struct crypto_shash *tfm = desc->tfm;
884 
885         if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
886                 return -ENOKEY;
887 
888         return crypto_shash_alg(tfm)->init(desc);
889 }
890 
891 /**
892  * crypto_shash_update() - add data to message digest for processing
893  * @desc: operational state handle that is already initialized
894  * @data: input data to be added to the message digest
895  * @len: length of the input data
896  *
897  * Updates the message digest state of the operational state handle.
898  *
899  * Return: 0 if the message digest update was successful; < 0 if an error
900  *         occurred
901  */
902 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
903                         unsigned int len);
904 
905 /**
906  * crypto_shash_final() - calculate message digest
907  * @desc: operational state handle that is already filled with data
908  * @out: output buffer filled with the message digest
909  *
910  * Finalize the message digest operation and create the message digest
911  * based on all data added to the cipher handle. The message digest is placed
912  * into the output buffer. The caller must ensure that the output buffer is
913  * large enough by using crypto_shash_digestsize.
914  *
915  * Return: 0 if the message digest creation was successful; < 0 if an error
916  *         occurred
917  */
918 int crypto_shash_final(struct shash_desc *desc, u8 *out);
919 
920 /**
921  * crypto_shash_finup() - calculate message digest of buffer
922  * @desc: see crypto_shash_final()
923  * @data: see crypto_shash_update()
924  * @len: see crypto_shash_update()
925  * @out: see crypto_shash_final()
926  *
927  * This function is a "short-hand" for the function calls of
928  * crypto_shash_update and crypto_shash_final. The parameters have the same
929  * meaning as discussed for those separate functions.
930  *
931  * Return: 0 if the message digest creation was successful; < 0 if an error
932  *         occurred
933  */
934 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
935                        unsigned int len, u8 *out);
936 
937 static inline void shash_desc_zero(struct shash_desc *desc)
938 {
939         memzero_explicit(desc,
940                          sizeof(*desc) + crypto_shash_descsize(desc->tfm));
941 }
942 
943 #endif  /* _CRYPTO_HASH_H */
944 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp