~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/capability.h

Version: ~ [ linux-5.2 ] ~ [ linux-5.1.16 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.57 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.132 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.184 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.184 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.69 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  * This is <linux/capability.h>
  4  *
  5  * Andrew G. Morgan <morgan@kernel.org>
  6  * Alexander Kjeldaas <astor@guardian.no>
  7  * with help from Aleph1, Roland Buresund and Andrew Main.
  8  *
  9  * See here for the libcap library ("POSIX draft" compliance):
 10  *
 11  * ftp://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.6/
 12  */
 13 #ifndef _LINUX_CAPABILITY_H
 14 #define _LINUX_CAPABILITY_H
 15 
 16 #include <uapi/linux/capability.h>
 17 
 18 
 19 #define _KERNEL_CAPABILITY_VERSION _LINUX_CAPABILITY_VERSION_3
 20 #define _KERNEL_CAPABILITY_U32S    _LINUX_CAPABILITY_U32S_3
 21 
 22 extern int file_caps_enabled;
 23 
 24 typedef struct kernel_cap_struct {
 25         __u32 cap[_KERNEL_CAPABILITY_U32S];
 26 } kernel_cap_t;
 27 
 28 /* exact same as vfs_cap_data but in cpu endian and always filled completely */
 29 struct cpu_vfs_cap_data {
 30         __u32 magic_etc;
 31         kernel_cap_t permitted;
 32         kernel_cap_t inheritable;
 33 };
 34 
 35 #define _USER_CAP_HEADER_SIZE  (sizeof(struct __user_cap_header_struct))
 36 #define _KERNEL_CAP_T_SIZE     (sizeof(kernel_cap_t))
 37 
 38 
 39 struct file;
 40 struct inode;
 41 struct dentry;
 42 struct task_struct;
 43 struct user_namespace;
 44 
 45 extern const kernel_cap_t __cap_empty_set;
 46 extern const kernel_cap_t __cap_init_eff_set;
 47 
 48 /*
 49  * Internal kernel functions only
 50  */
 51 
 52 #define CAP_FOR_EACH_U32(__capi)  \
 53         for (__capi = 0; __capi < _KERNEL_CAPABILITY_U32S; ++__capi)
 54 
 55 /*
 56  * CAP_FS_MASK and CAP_NFSD_MASKS:
 57  *
 58  * The fs mask is all the privileges that fsuid==0 historically meant.
 59  * At one time in the past, that included CAP_MKNOD and CAP_LINUX_IMMUTABLE.
 60  *
 61  * It has never meant setting security.* and trusted.* xattrs.
 62  *
 63  * We could also define fsmask as follows:
 64  *   1. CAP_FS_MASK is the privilege to bypass all fs-related DAC permissions
 65  *   2. The security.* and trusted.* xattrs are fs-related MAC permissions
 66  */
 67 
 68 # define CAP_FS_MASK_B0     (CAP_TO_MASK(CAP_CHOWN)             \
 69                             | CAP_TO_MASK(CAP_MKNOD)            \
 70                             | CAP_TO_MASK(CAP_DAC_OVERRIDE)     \
 71                             | CAP_TO_MASK(CAP_DAC_READ_SEARCH)  \
 72                             | CAP_TO_MASK(CAP_FOWNER)           \
 73                             | CAP_TO_MASK(CAP_FSETID))
 74 
 75 # define CAP_FS_MASK_B1     (CAP_TO_MASK(CAP_MAC_OVERRIDE))
 76 
 77 #if _KERNEL_CAPABILITY_U32S != 2
 78 # error Fix up hand-coded capability macro initializers
 79 #else /* HAND-CODED capability initializers */
 80 
 81 #define CAP_LAST_U32                    ((_KERNEL_CAPABILITY_U32S) - 1)
 82 #define CAP_LAST_U32_VALID_MASK         (CAP_TO_MASK(CAP_LAST_CAP + 1) -1)
 83 
 84 # define CAP_EMPTY_SET    ((kernel_cap_t){{ 0, 0 }})
 85 # define CAP_FULL_SET     ((kernel_cap_t){{ ~0, CAP_LAST_U32_VALID_MASK }})
 86 # define CAP_FS_SET       ((kernel_cap_t){{ CAP_FS_MASK_B0 \
 87                                     | CAP_TO_MASK(CAP_LINUX_IMMUTABLE), \
 88                                     CAP_FS_MASK_B1 } })
 89 # define CAP_NFSD_SET     ((kernel_cap_t){{ CAP_FS_MASK_B0 \
 90                                     | CAP_TO_MASK(CAP_SYS_RESOURCE), \
 91                                     CAP_FS_MASK_B1 } })
 92 
 93 #endif /* _KERNEL_CAPABILITY_U32S != 2 */
 94 
 95 # define cap_clear(c)         do { (c) = __cap_empty_set; } while (0)
 96 
 97 #define cap_raise(c, flag)  ((c).cap[CAP_TO_INDEX(flag)] |= CAP_TO_MASK(flag))
 98 #define cap_lower(c, flag)  ((c).cap[CAP_TO_INDEX(flag)] &= ~CAP_TO_MASK(flag))
 99 #define cap_raised(c, flag) ((c).cap[CAP_TO_INDEX(flag)] & CAP_TO_MASK(flag))
100 
101 #define CAP_BOP_ALL(c, a, b, OP)                                    \
102 do {                                                                \
103         unsigned __capi;                                            \
104         CAP_FOR_EACH_U32(__capi) {                                  \
105                 c.cap[__capi] = a.cap[__capi] OP b.cap[__capi];     \
106         }                                                           \
107 } while (0)
108 
109 #define CAP_UOP_ALL(c, a, OP)                                       \
110 do {                                                                \
111         unsigned __capi;                                            \
112         CAP_FOR_EACH_U32(__capi) {                                  \
113                 c.cap[__capi] = OP a.cap[__capi];                   \
114         }                                                           \
115 } while (0)
116 
117 static inline kernel_cap_t cap_combine(const kernel_cap_t a,
118                                        const kernel_cap_t b)
119 {
120         kernel_cap_t dest;
121         CAP_BOP_ALL(dest, a, b, |);
122         return dest;
123 }
124 
125 static inline kernel_cap_t cap_intersect(const kernel_cap_t a,
126                                          const kernel_cap_t b)
127 {
128         kernel_cap_t dest;
129         CAP_BOP_ALL(dest, a, b, &);
130         return dest;
131 }
132 
133 static inline kernel_cap_t cap_drop(const kernel_cap_t a,
134                                     const kernel_cap_t drop)
135 {
136         kernel_cap_t dest;
137         CAP_BOP_ALL(dest, a, drop, &~);
138         return dest;
139 }
140 
141 static inline kernel_cap_t cap_invert(const kernel_cap_t c)
142 {
143         kernel_cap_t dest;
144         CAP_UOP_ALL(dest, c, ~);
145         return dest;
146 }
147 
148 static inline bool cap_isclear(const kernel_cap_t a)
149 {
150         unsigned __capi;
151         CAP_FOR_EACH_U32(__capi) {
152                 if (a.cap[__capi] != 0)
153                         return false;
154         }
155         return true;
156 }
157 
158 /*
159  * Check if "a" is a subset of "set".
160  * return true if ALL of the capabilities in "a" are also in "set"
161  *      cap_issubset(0101, 1111) will return true
162  * return false if ANY of the capabilities in "a" are not in "set"
163  *      cap_issubset(1111, 0101) will return false
164  */
165 static inline bool cap_issubset(const kernel_cap_t a, const kernel_cap_t set)
166 {
167         kernel_cap_t dest;
168         dest = cap_drop(a, set);
169         return cap_isclear(dest);
170 }
171 
172 /* Used to decide between falling back on the old suser() or fsuser(). */
173 
174 static inline kernel_cap_t cap_drop_fs_set(const kernel_cap_t a)
175 {
176         const kernel_cap_t __cap_fs_set = CAP_FS_SET;
177         return cap_drop(a, __cap_fs_set);
178 }
179 
180 static inline kernel_cap_t cap_raise_fs_set(const kernel_cap_t a,
181                                             const kernel_cap_t permitted)
182 {
183         const kernel_cap_t __cap_fs_set = CAP_FS_SET;
184         return cap_combine(a,
185                            cap_intersect(permitted, __cap_fs_set));
186 }
187 
188 static inline kernel_cap_t cap_drop_nfsd_set(const kernel_cap_t a)
189 {
190         const kernel_cap_t __cap_fs_set = CAP_NFSD_SET;
191         return cap_drop(a, __cap_fs_set);
192 }
193 
194 static inline kernel_cap_t cap_raise_nfsd_set(const kernel_cap_t a,
195                                               const kernel_cap_t permitted)
196 {
197         const kernel_cap_t __cap_nfsd_set = CAP_NFSD_SET;
198         return cap_combine(a,
199                            cap_intersect(permitted, __cap_nfsd_set));
200 }
201 
202 #ifdef CONFIG_MULTIUSER
203 extern bool has_capability(struct task_struct *t, int cap);
204 extern bool has_ns_capability(struct task_struct *t,
205                               struct user_namespace *ns, int cap);
206 extern bool has_capability_noaudit(struct task_struct *t, int cap);
207 extern bool has_ns_capability_noaudit(struct task_struct *t,
208                                       struct user_namespace *ns, int cap);
209 extern bool capable(int cap);
210 extern bool ns_capable(struct user_namespace *ns, int cap);
211 extern bool ns_capable_noaudit(struct user_namespace *ns, int cap);
212 #else
213 static inline bool has_capability(struct task_struct *t, int cap)
214 {
215         return true;
216 }
217 static inline bool has_ns_capability(struct task_struct *t,
218                               struct user_namespace *ns, int cap)
219 {
220         return true;
221 }
222 static inline bool has_capability_noaudit(struct task_struct *t, int cap)
223 {
224         return true;
225 }
226 static inline bool has_ns_capability_noaudit(struct task_struct *t,
227                                       struct user_namespace *ns, int cap)
228 {
229         return true;
230 }
231 static inline bool capable(int cap)
232 {
233         return true;
234 }
235 static inline bool ns_capable(struct user_namespace *ns, int cap)
236 {
237         return true;
238 }
239 static inline bool ns_capable_noaudit(struct user_namespace *ns, int cap)
240 {
241         return true;
242 }
243 #endif /* CONFIG_MULTIUSER */
244 extern bool privileged_wrt_inode_uidgid(struct user_namespace *ns, const struct inode *inode);
245 extern bool capable_wrt_inode_uidgid(const struct inode *inode, int cap);
246 extern bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap);
247 extern bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns);
248 
249 /* audit system wants to get cap info from files as well */
250 extern int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps);
251 
252 extern int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size);
253 
254 #endif /* !_LINUX_CAPABILITY_H */
255 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp