1 /* 2 * Scatterlist Cryptographic API. 3 * 4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 5 * Copyright (c) 2002 David S. Miller (davem@redhat.com) 6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> 7 * 8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> 9 * and Nettle, by Niels Möller. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 * 16 */ 17 #ifndef _LINUX_CRYPTO_H 18 #define _LINUX_CRYPTO_H 19 20 #include <linux/atomic.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/bug.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <linux/uaccess.h> 27 #include <linux/completion.h> 28 29 /* 30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 31 * arbitrary modules to be loaded. Loading from userspace may still need the 32 * unprefixed names, so retains those aliases as well. 33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 35 * expands twice on the same line. Instead, use a separate base name for the 36 * alias. 37 */ 38 #define MODULE_ALIAS_CRYPTO(name) \ 39 __MODULE_INFO(alias, alias_userspace, name); \ 40 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 41 42 /* 43 * Algorithm masks and types. 44 */ 45 #define CRYPTO_ALG_TYPE_MASK 0x0000000f 46 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 47 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 48 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 49 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 50 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 51 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 52 #define CRYPTO_ALG_TYPE_KPP 0x00000008 53 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 54 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 55 #define CRYPTO_ALG_TYPE_RNG 0x0000000c 56 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 57 #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e 58 #define CRYPTO_ALG_TYPE_HASH 0x0000000e 59 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e 60 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f 61 62 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 63 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 64 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c 65 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 66 67 #define CRYPTO_ALG_LARVAL 0x00000010 68 #define CRYPTO_ALG_DEAD 0x00000020 69 #define CRYPTO_ALG_DYING 0x00000040 70 #define CRYPTO_ALG_ASYNC 0x00000080 71 72 /* 73 * Set this bit if and only if the algorithm requires another algorithm of 74 * the same type to handle corner cases. 75 */ 76 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 77 78 /* 79 * Set if the algorithm has passed automated run-time testing. Note that 80 * if there is no run-time testing for a given algorithm it is considered 81 * to have passed. 82 */ 83 84 #define CRYPTO_ALG_TESTED 0x00000400 85 86 /* 87 * Set if the algorithm is an instance that is built from templates. 88 */ 89 #define CRYPTO_ALG_INSTANCE 0x00000800 90 91 /* Set this bit if the algorithm provided is hardware accelerated but 92 * not available to userspace via instruction set or so. 93 */ 94 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 95 96 /* 97 * Mark a cipher as a service implementation only usable by another 98 * cipher and never by a normal user of the kernel crypto API 99 */ 100 #define CRYPTO_ALG_INTERNAL 0x00002000 101 102 /* 103 * Set if the algorithm has a ->setkey() method but can be used without 104 * calling it first, i.e. there is a default key. 105 */ 106 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 107 108 /* 109 * Don't trigger module loading 110 */ 111 #define CRYPTO_NOLOAD 0x00008000 112 113 /* 114 * Transform masks and values (for crt_flags). 115 */ 116 #define CRYPTO_TFM_NEED_KEY 0x00000001 117 118 #define CRYPTO_TFM_REQ_MASK 0x000fff00 119 #define CRYPTO_TFM_RES_MASK 0xfff00000 120 121 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100 122 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 123 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 124 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 125 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 126 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 127 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 128 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 129 130 /* 131 * Miscellaneous stuff. 132 */ 133 #define CRYPTO_MAX_ALG_NAME 128 134 135 /* 136 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 137 * declaration) is used to ensure that the crypto_tfm context structure is 138 * aligned correctly for the given architecture so that there are no alignment 139 * faults for C data types. In particular, this is required on platforms such 140 * as arm where pointers are 32-bit aligned but there are data types such as 141 * u64 which require 64-bit alignment. 142 */ 143 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 144 145 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 146 147 struct scatterlist; 148 struct crypto_ablkcipher; 149 struct crypto_async_request; 150 struct crypto_blkcipher; 151 struct crypto_tfm; 152 struct crypto_type; 153 154 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 155 156 /** 157 * DOC: Block Cipher Context Data Structures 158 * 159 * These data structures define the operating context for each block cipher 160 * type. 161 */ 162 163 struct crypto_async_request { 164 struct list_head list; 165 crypto_completion_t complete; 166 void *data; 167 struct crypto_tfm *tfm; 168 169 u32 flags; 170 }; 171 172 struct ablkcipher_request { 173 struct crypto_async_request base; 174 175 unsigned int nbytes; 176 177 void *info; 178 179 struct scatterlist *src; 180 struct scatterlist *dst; 181 182 void *__ctx[] CRYPTO_MINALIGN_ATTR; 183 }; 184 185 struct blkcipher_desc { 186 struct crypto_blkcipher *tfm; 187 void *info; 188 u32 flags; 189 }; 190 191 struct cipher_desc { 192 struct crypto_tfm *tfm; 193 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 194 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst, 195 const u8 *src, unsigned int nbytes); 196 void *info; 197 }; 198 199 /** 200 * DOC: Block Cipher Algorithm Definitions 201 * 202 * These data structures define modular crypto algorithm implementations, 203 * managed via crypto_register_alg() and crypto_unregister_alg(). 204 */ 205 206 /** 207 * struct ablkcipher_alg - asynchronous block cipher definition 208 * @min_keysize: Minimum key size supported by the transformation. This is the 209 * smallest key length supported by this transformation algorithm. 210 * This must be set to one of the pre-defined values as this is 211 * not hardware specific. Possible values for this field can be 212 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 213 * @max_keysize: Maximum key size supported by the transformation. This is the 214 * largest key length supported by this transformation algorithm. 215 * This must be set to one of the pre-defined values as this is 216 * not hardware specific. Possible values for this field can be 217 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 218 * @setkey: Set key for the transformation. This function is used to either 219 * program a supplied key into the hardware or store the key in the 220 * transformation context for programming it later. Note that this 221 * function does modify the transformation context. This function can 222 * be called multiple times during the existence of the transformation 223 * object, so one must make sure the key is properly reprogrammed into 224 * the hardware. This function is also responsible for checking the key 225 * length for validity. In case a software fallback was put in place in 226 * the @cra_init call, this function might need to use the fallback if 227 * the algorithm doesn't support all of the key sizes. 228 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 229 * the supplied scatterlist containing the blocks of data. The crypto 230 * API consumer is responsible for aligning the entries of the 231 * scatterlist properly and making sure the chunks are correctly 232 * sized. In case a software fallback was put in place in the 233 * @cra_init call, this function might need to use the fallback if 234 * the algorithm doesn't support all of the key sizes. In case the 235 * key was stored in transformation context, the key might need to be 236 * re-programmed into the hardware in this function. This function 237 * shall not modify the transformation context, as this function may 238 * be called in parallel with the same transformation object. 239 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 240 * and the conditions are exactly the same. 241 * @ivsize: IV size applicable for transformation. The consumer must provide an 242 * IV of exactly that size to perform the encrypt or decrypt operation. 243 * 244 * All fields except @ivsize are mandatory and must be filled. 245 */ 246 struct ablkcipher_alg { 247 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 248 unsigned int keylen); 249 int (*encrypt)(struct ablkcipher_request *req); 250 int (*decrypt)(struct ablkcipher_request *req); 251 252 unsigned int min_keysize; 253 unsigned int max_keysize; 254 unsigned int ivsize; 255 }; 256 257 /** 258 * struct blkcipher_alg - synchronous block cipher definition 259 * @min_keysize: see struct ablkcipher_alg 260 * @max_keysize: see struct ablkcipher_alg 261 * @setkey: see struct ablkcipher_alg 262 * @encrypt: see struct ablkcipher_alg 263 * @decrypt: see struct ablkcipher_alg 264 * @ivsize: see struct ablkcipher_alg 265 * 266 * All fields except @ivsize are mandatory and must be filled. 267 */ 268 struct blkcipher_alg { 269 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 270 unsigned int keylen); 271 int (*encrypt)(struct blkcipher_desc *desc, 272 struct scatterlist *dst, struct scatterlist *src, 273 unsigned int nbytes); 274 int (*decrypt)(struct blkcipher_desc *desc, 275 struct scatterlist *dst, struct scatterlist *src, 276 unsigned int nbytes); 277 278 unsigned int min_keysize; 279 unsigned int max_keysize; 280 unsigned int ivsize; 281 }; 282 283 /** 284 * struct cipher_alg - single-block symmetric ciphers definition 285 * @cia_min_keysize: Minimum key size supported by the transformation. This is 286 * the smallest key length supported by this transformation 287 * algorithm. This must be set to one of the pre-defined 288 * values as this is not hardware specific. Possible values 289 * for this field can be found via git grep "_MIN_KEY_SIZE" 290 * include/crypto/ 291 * @cia_max_keysize: Maximum key size supported by the transformation. This is 292 * the largest key length supported by this transformation 293 * algorithm. This must be set to one of the pre-defined values 294 * as this is not hardware specific. Possible values for this 295 * field can be found via git grep "_MAX_KEY_SIZE" 296 * include/crypto/ 297 * @cia_setkey: Set key for the transformation. This function is used to either 298 * program a supplied key into the hardware or store the key in the 299 * transformation context for programming it later. Note that this 300 * function does modify the transformation context. This function 301 * can be called multiple times during the existence of the 302 * transformation object, so one must make sure the key is properly 303 * reprogrammed into the hardware. This function is also 304 * responsible for checking the key length for validity. 305 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 306 * single block of data, which must be @cra_blocksize big. This 307 * always operates on a full @cra_blocksize and it is not possible 308 * to encrypt a block of smaller size. The supplied buffers must 309 * therefore also be at least of @cra_blocksize size. Both the 310 * input and output buffers are always aligned to @cra_alignmask. 311 * In case either of the input or output buffer supplied by user 312 * of the crypto API is not aligned to @cra_alignmask, the crypto 313 * API will re-align the buffers. The re-alignment means that a 314 * new buffer will be allocated, the data will be copied into the 315 * new buffer, then the processing will happen on the new buffer, 316 * then the data will be copied back into the original buffer and 317 * finally the new buffer will be freed. In case a software 318 * fallback was put in place in the @cra_init call, this function 319 * might need to use the fallback if the algorithm doesn't support 320 * all of the key sizes. In case the key was stored in 321 * transformation context, the key might need to be re-programmed 322 * into the hardware in this function. This function shall not 323 * modify the transformation context, as this function may be 324 * called in parallel with the same transformation object. 325 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 326 * @cia_encrypt, and the conditions are exactly the same. 327 * 328 * All fields are mandatory and must be filled. 329 */ 330 struct cipher_alg { 331 unsigned int cia_min_keysize; 332 unsigned int cia_max_keysize; 333 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 334 unsigned int keylen); 335 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 336 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 337 }; 338 339 struct compress_alg { 340 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 341 unsigned int slen, u8 *dst, unsigned int *dlen); 342 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 343 unsigned int slen, u8 *dst, unsigned int *dlen); 344 }; 345 346 #ifdef CONFIG_CRYPTO_STATS 347 /* 348 * struct crypto_istat_aead - statistics for AEAD algorithm 349 * @encrypt_cnt: number of encrypt requests 350 * @encrypt_tlen: total data size handled by encrypt requests 351 * @decrypt_cnt: number of decrypt requests 352 * @decrypt_tlen: total data size handled by decrypt requests 353 * @err_cnt: number of error for AEAD requests 354 */ 355 struct crypto_istat_aead { 356 atomic64_t encrypt_cnt; 357 atomic64_t encrypt_tlen; 358 atomic64_t decrypt_cnt; 359 atomic64_t decrypt_tlen; 360 atomic64_t err_cnt; 361 }; 362 363 /* 364 * struct crypto_istat_akcipher - statistics for akcipher algorithm 365 * @encrypt_cnt: number of encrypt requests 366 * @encrypt_tlen: total data size handled by encrypt requests 367 * @decrypt_cnt: number of decrypt requests 368 * @decrypt_tlen: total data size handled by decrypt requests 369 * @verify_cnt: number of verify operation 370 * @sign_cnt: number of sign requests 371 * @err_cnt: number of error for akcipher requests 372 */ 373 struct crypto_istat_akcipher { 374 atomic64_t encrypt_cnt; 375 atomic64_t encrypt_tlen; 376 atomic64_t decrypt_cnt; 377 atomic64_t decrypt_tlen; 378 atomic64_t verify_cnt; 379 atomic64_t sign_cnt; 380 atomic64_t err_cnt; 381 }; 382 383 /* 384 * struct crypto_istat_cipher - statistics for cipher algorithm 385 * @encrypt_cnt: number of encrypt requests 386 * @encrypt_tlen: total data size handled by encrypt requests 387 * @decrypt_cnt: number of decrypt requests 388 * @decrypt_tlen: total data size handled by decrypt requests 389 * @err_cnt: number of error for cipher requests 390 */ 391 struct crypto_istat_cipher { 392 atomic64_t encrypt_cnt; 393 atomic64_t encrypt_tlen; 394 atomic64_t decrypt_cnt; 395 atomic64_t decrypt_tlen; 396 atomic64_t err_cnt; 397 }; 398 399 /* 400 * struct crypto_istat_compress - statistics for compress algorithm 401 * @compress_cnt: number of compress requests 402 * @compress_tlen: total data size handled by compress requests 403 * @decompress_cnt: number of decompress requests 404 * @decompress_tlen: total data size handled by decompress requests 405 * @err_cnt: number of error for compress requests 406 */ 407 struct crypto_istat_compress { 408 atomic64_t compress_cnt; 409 atomic64_t compress_tlen; 410 atomic64_t decompress_cnt; 411 atomic64_t decompress_tlen; 412 atomic64_t err_cnt; 413 }; 414 415 /* 416 * struct crypto_istat_hash - statistics for has algorithm 417 * @hash_cnt: number of hash requests 418 * @hash_tlen: total data size hashed 419 * @err_cnt: number of error for hash requests 420 */ 421 struct crypto_istat_hash { 422 atomic64_t hash_cnt; 423 atomic64_t hash_tlen; 424 atomic64_t err_cnt; 425 }; 426 427 /* 428 * struct crypto_istat_kpp - statistics for KPP algorithm 429 * @setsecret_cnt: number of setsecrey operation 430 * @generate_public_key_cnt: number of generate_public_key operation 431 * @compute_shared_secret_cnt: number of compute_shared_secret operation 432 * @err_cnt: number of error for KPP requests 433 */ 434 struct crypto_istat_kpp { 435 atomic64_t setsecret_cnt; 436 atomic64_t generate_public_key_cnt; 437 atomic64_t compute_shared_secret_cnt; 438 atomic64_t err_cnt; 439 }; 440 441 /* 442 * struct crypto_istat_rng: statistics for RNG algorithm 443 * @generate_cnt: number of RNG generate requests 444 * @generate_tlen: total data size of generated data by the RNG 445 * @seed_cnt: number of times the RNG was seeded 446 * @err_cnt: number of error for RNG requests 447 */ 448 struct crypto_istat_rng { 449 atomic64_t generate_cnt; 450 atomic64_t generate_tlen; 451 atomic64_t seed_cnt; 452 atomic64_t err_cnt; 453 }; 454 #endif /* CONFIG_CRYPTO_STATS */ 455 456 #define cra_ablkcipher cra_u.ablkcipher 457 #define cra_blkcipher cra_u.blkcipher 458 #define cra_cipher cra_u.cipher 459 #define cra_compress cra_u.compress 460 461 /** 462 * struct crypto_alg - definition of a cryptograpic cipher algorithm 463 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 464 * CRYPTO_ALG_* flags for the flags which go in here. Those are 465 * used for fine-tuning the description of the transformation 466 * algorithm. 467 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 468 * of the smallest possible unit which can be transformed with 469 * this algorithm. The users must respect this value. 470 * In case of HASH transformation, it is possible for a smaller 471 * block than @cra_blocksize to be passed to the crypto API for 472 * transformation, in case of any other transformation type, an 473 * error will be returned upon any attempt to transform smaller 474 * than @cra_blocksize chunks. 475 * @cra_ctxsize: Size of the operational context of the transformation. This 476 * value informs the kernel crypto API about the memory size 477 * needed to be allocated for the transformation context. 478 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 479 * buffer containing the input data for the algorithm must be 480 * aligned to this alignment mask. The data buffer for the 481 * output data must be aligned to this alignment mask. Note that 482 * the Crypto API will do the re-alignment in software, but 483 * only under special conditions and there is a performance hit. 484 * The re-alignment happens at these occasions for different 485 * @cra_u types: cipher -- For both input data and output data 486 * buffer; ahash -- For output hash destination buf; shash -- 487 * For output hash destination buf. 488 * This is needed on hardware which is flawed by design and 489 * cannot pick data from arbitrary addresses. 490 * @cra_priority: Priority of this transformation implementation. In case 491 * multiple transformations with same @cra_name are available to 492 * the Crypto API, the kernel will use the one with highest 493 * @cra_priority. 494 * @cra_name: Generic name (usable by multiple implementations) of the 495 * transformation algorithm. This is the name of the transformation 496 * itself. This field is used by the kernel when looking up the 497 * providers of particular transformation. 498 * @cra_driver_name: Unique name of the transformation provider. This is the 499 * name of the provider of the transformation. This can be any 500 * arbitrary value, but in the usual case, this contains the 501 * name of the chip or provider and the name of the 502 * transformation algorithm. 503 * @cra_type: Type of the cryptographic transformation. This is a pointer to 504 * struct crypto_type, which implements callbacks common for all 505 * transformation types. There are multiple options: 506 * &crypto_blkcipher_type, &crypto_ablkcipher_type, 507 * &crypto_ahash_type, &crypto_rng_type. 508 * This field might be empty. In that case, there are no common 509 * callbacks. This is the case for: cipher, compress, shash. 510 * @cra_u: Callbacks implementing the transformation. This is a union of 511 * multiple structures. Depending on the type of transformation selected 512 * by @cra_type and @cra_flags above, the associated structure must be 513 * filled with callbacks. This field might be empty. This is the case 514 * for ahash, shash. 515 * @cra_init: Initialize the cryptographic transformation object. This function 516 * is used to initialize the cryptographic transformation object. 517 * This function is called only once at the instantiation time, right 518 * after the transformation context was allocated. In case the 519 * cryptographic hardware has some special requirements which need to 520 * be handled by software, this function shall check for the precise 521 * requirement of the transformation and put any software fallbacks 522 * in place. 523 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 524 * counterpart to @cra_init, used to remove various changes set in 525 * @cra_init. 526 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher 527 * definition. See @struct @ablkcipher_alg. 528 * @cra_u.blkcipher: Union member which contains a synchronous block cipher 529 * definition See @struct @blkcipher_alg. 530 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 531 * definition. See @struct @cipher_alg. 532 * @cra_u.compress: Union member which contains a (de)compression algorithm. 533 * See @struct @compress_alg. 534 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 535 * @cra_list: internally used 536 * @cra_users: internally used 537 * @cra_refcnt: internally used 538 * @cra_destroy: internally used 539 * 540 * @stats: union of all possible crypto_istat_xxx structures 541 * @stats.aead: statistics for AEAD algorithm 542 * @stats.akcipher: statistics for akcipher algorithm 543 * @stats.cipher: statistics for cipher algorithm 544 * @stats.compress: statistics for compress algorithm 545 * @stats.hash: statistics for hash algorithm 546 * @stats.rng: statistics for rng algorithm 547 * @stats.kpp: statistics for KPP algorithm 548 * 549 * The struct crypto_alg describes a generic Crypto API algorithm and is common 550 * for all of the transformations. Any variable not documented here shall not 551 * be used by a cipher implementation as it is internal to the Crypto API. 552 */ 553 struct crypto_alg { 554 struct list_head cra_list; 555 struct list_head cra_users; 556 557 u32 cra_flags; 558 unsigned int cra_blocksize; 559 unsigned int cra_ctxsize; 560 unsigned int cra_alignmask; 561 562 int cra_priority; 563 refcount_t cra_refcnt; 564 565 char cra_name[CRYPTO_MAX_ALG_NAME]; 566 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 567 568 const struct crypto_type *cra_type; 569 570 union { 571 struct ablkcipher_alg ablkcipher; 572 struct blkcipher_alg blkcipher; 573 struct cipher_alg cipher; 574 struct compress_alg compress; 575 } cra_u; 576 577 int (*cra_init)(struct crypto_tfm *tfm); 578 void (*cra_exit)(struct crypto_tfm *tfm); 579 void (*cra_destroy)(struct crypto_alg *alg); 580 581 struct module *cra_module; 582 583 #ifdef CONFIG_CRYPTO_STATS 584 union { 585 struct crypto_istat_aead aead; 586 struct crypto_istat_akcipher akcipher; 587 struct crypto_istat_cipher cipher; 588 struct crypto_istat_compress compress; 589 struct crypto_istat_hash hash; 590 struct crypto_istat_rng rng; 591 struct crypto_istat_kpp kpp; 592 } stats; 593 #endif /* CONFIG_CRYPTO_STATS */ 594 595 } CRYPTO_MINALIGN_ATTR; 596 597 #ifdef CONFIG_CRYPTO_STATS 598 void crypto_stats_init(struct crypto_alg *alg); 599 void crypto_stats_get(struct crypto_alg *alg); 600 void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg); 601 void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg); 602 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 603 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 604 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 605 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 606 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 607 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 608 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 609 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 610 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 611 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 612 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 613 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 614 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 615 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 616 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 617 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 618 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 619 #else 620 static inline void crypto_stats_init(struct crypto_alg *alg) 621 {} 622 static inline void crypto_stats_get(struct crypto_alg *alg) 623 {} 624 static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg) 625 {} 626 static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg) 627 {} 628 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 629 {} 630 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 631 {} 632 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 633 {} 634 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 635 {} 636 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 637 {} 638 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 639 {} 640 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 641 {} 642 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 643 {} 644 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 645 {} 646 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 647 {} 648 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 649 {} 650 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 651 {} 652 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 653 {} 654 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 655 {} 656 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 657 {} 658 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 659 {} 660 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 661 {} 662 #endif 663 /* 664 * A helper struct for waiting for completion of async crypto ops 665 */ 666 struct crypto_wait { 667 struct completion completion; 668 int err; 669 }; 670 671 /* 672 * Macro for declaring a crypto op async wait object on stack 673 */ 674 #define DECLARE_CRYPTO_WAIT(_wait) \ 675 struct crypto_wait _wait = { \ 676 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 677 678 /* 679 * Async ops completion helper functioons 680 */ 681 void crypto_req_done(struct crypto_async_request *req, int err); 682 683 static inline int crypto_wait_req(int err, struct crypto_wait *wait) 684 { 685 switch (err) { 686 case -EINPROGRESS: 687 case -EBUSY: 688 wait_for_completion(&wait->completion); 689 reinit_completion(&wait->completion); 690 err = wait->err; 691 break; 692 }; 693 694 return err; 695 } 696 697 static inline void crypto_init_wait(struct crypto_wait *wait) 698 { 699 init_completion(&wait->completion); 700 } 701 702 /* 703 * Algorithm registration interface. 704 */ 705 int crypto_register_alg(struct crypto_alg *alg); 706 int crypto_unregister_alg(struct crypto_alg *alg); 707 int crypto_register_algs(struct crypto_alg *algs, int count); 708 int crypto_unregister_algs(struct crypto_alg *algs, int count); 709 710 /* 711 * Algorithm query interface. 712 */ 713 int crypto_has_alg(const char *name, u32 type, u32 mask); 714 715 /* 716 * Transforms: user-instantiated objects which encapsulate algorithms 717 * and core processing logic. Managed via crypto_alloc_*() and 718 * crypto_free_*(), as well as the various helpers below. 719 */ 720 721 struct ablkcipher_tfm { 722 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 723 unsigned int keylen); 724 int (*encrypt)(struct ablkcipher_request *req); 725 int (*decrypt)(struct ablkcipher_request *req); 726 727 struct crypto_ablkcipher *base; 728 729 unsigned int ivsize; 730 unsigned int reqsize; 731 }; 732 733 struct blkcipher_tfm { 734 void *iv; 735 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 736 unsigned int keylen); 737 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 738 struct scatterlist *src, unsigned int nbytes); 739 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 740 struct scatterlist *src, unsigned int nbytes); 741 }; 742 743 struct cipher_tfm { 744 int (*cit_setkey)(struct crypto_tfm *tfm, 745 const u8 *key, unsigned int keylen); 746 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 747 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 748 }; 749 750 struct compress_tfm { 751 int (*cot_compress)(struct crypto_tfm *tfm, 752 const u8 *src, unsigned int slen, 753 u8 *dst, unsigned int *dlen); 754 int (*cot_decompress)(struct crypto_tfm *tfm, 755 const u8 *src, unsigned int slen, 756 u8 *dst, unsigned int *dlen); 757 }; 758 759 #define crt_ablkcipher crt_u.ablkcipher 760 #define crt_blkcipher crt_u.blkcipher 761 #define crt_cipher crt_u.cipher 762 #define crt_compress crt_u.compress 763 764 struct crypto_tfm { 765 766 u32 crt_flags; 767 768 union { 769 struct ablkcipher_tfm ablkcipher; 770 struct blkcipher_tfm blkcipher; 771 struct cipher_tfm cipher; 772 struct compress_tfm compress; 773 } crt_u; 774 775 void (*exit)(struct crypto_tfm *tfm); 776 777 struct crypto_alg *__crt_alg; 778 779 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 780 }; 781 782 struct crypto_ablkcipher { 783 struct crypto_tfm base; 784 }; 785 786 struct crypto_blkcipher { 787 struct crypto_tfm base; 788 }; 789 790 struct crypto_cipher { 791 struct crypto_tfm base; 792 }; 793 794 struct crypto_comp { 795 struct crypto_tfm base; 796 }; 797 798 enum { 799 CRYPTOA_UNSPEC, 800 CRYPTOA_ALG, 801 CRYPTOA_TYPE, 802 CRYPTOA_U32, 803 __CRYPTOA_MAX, 804 }; 805 806 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 807 808 /* Maximum number of (rtattr) parameters for each template. */ 809 #define CRYPTO_MAX_ATTRS 32 810 811 struct crypto_attr_alg { 812 char name[CRYPTO_MAX_ALG_NAME]; 813 }; 814 815 struct crypto_attr_type { 816 u32 type; 817 u32 mask; 818 }; 819 820 struct crypto_attr_u32 { 821 u32 num; 822 }; 823 824 /* 825 * Transform user interface. 826 */ 827 828 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 829 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 830 831 static inline void crypto_free_tfm(struct crypto_tfm *tfm) 832 { 833 return crypto_destroy_tfm(tfm, tfm); 834 } 835 836 int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 837 838 /* 839 * Transform helpers which query the underlying algorithm. 840 */ 841 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 842 { 843 return tfm->__crt_alg->cra_name; 844 } 845 846 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 847 { 848 return tfm->__crt_alg->cra_driver_name; 849 } 850 851 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 852 { 853 return tfm->__crt_alg->cra_priority; 854 } 855 856 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 857 { 858 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 859 } 860 861 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 862 { 863 return tfm->__crt_alg->cra_blocksize; 864 } 865 866 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 867 { 868 return tfm->__crt_alg->cra_alignmask; 869 } 870 871 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 872 { 873 return tfm->crt_flags; 874 } 875 876 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 877 { 878 tfm->crt_flags |= flags; 879 } 880 881 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 882 { 883 tfm->crt_flags &= ~flags; 884 } 885 886 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 887 { 888 return tfm->__crt_ctx; 889 } 890 891 static inline unsigned int crypto_tfm_ctx_alignment(void) 892 { 893 struct crypto_tfm *tfm; 894 return __alignof__(tfm->__crt_ctx); 895 } 896 897 /* 898 * API wrappers. 899 */ 900 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( 901 struct crypto_tfm *tfm) 902 { 903 return (struct crypto_ablkcipher *)tfm; 904 } 905 906 static inline u32 crypto_skcipher_type(u32 type) 907 { 908 type &= ~CRYPTO_ALG_TYPE_MASK; 909 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 910 return type; 911 } 912 913 static inline u32 crypto_skcipher_mask(u32 mask) 914 { 915 mask &= ~CRYPTO_ALG_TYPE_MASK; 916 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; 917 return mask; 918 } 919 920 /** 921 * DOC: Asynchronous Block Cipher API 922 * 923 * Asynchronous block cipher API is used with the ciphers of type 924 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). 925 * 926 * Asynchronous cipher operations imply that the function invocation for a 927 * cipher request returns immediately before the completion of the operation. 928 * The cipher request is scheduled as a separate kernel thread and therefore 929 * load-balanced on the different CPUs via the process scheduler. To allow 930 * the kernel crypto API to inform the caller about the completion of a cipher 931 * request, the caller must provide a callback function. That function is 932 * invoked with the cipher handle when the request completes. 933 * 934 * To support the asynchronous operation, additional information than just the 935 * cipher handle must be supplied to the kernel crypto API. That additional 936 * information is given by filling in the ablkcipher_request data structure. 937 * 938 * For the asynchronous block cipher API, the state is maintained with the tfm 939 * cipher handle. A single tfm can be used across multiple calls and in 940 * parallel. For asynchronous block cipher calls, context data supplied and 941 * only used by the caller can be referenced the request data structure in 942 * addition to the IV used for the cipher request. The maintenance of such 943 * state information would be important for a crypto driver implementer to 944 * have, because when calling the callback function upon completion of the 945 * cipher operation, that callback function may need some information about 946 * which operation just finished if it invoked multiple in parallel. This 947 * state information is unused by the kernel crypto API. 948 */ 949 950 static inline struct crypto_tfm *crypto_ablkcipher_tfm( 951 struct crypto_ablkcipher *tfm) 952 { 953 return &tfm->base; 954 } 955 956 /** 957 * crypto_free_ablkcipher() - zeroize and free cipher handle 958 * @tfm: cipher handle to be freed 959 */ 960 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) 961 { 962 crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); 963 } 964 965 /** 966 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. 967 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 968 * ablkcipher 969 * @type: specifies the type of the cipher 970 * @mask: specifies the mask for the cipher 971 * 972 * Return: true when the ablkcipher is known to the kernel crypto API; false 973 * otherwise 974 */ 975 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, 976 u32 mask) 977 { 978 return crypto_has_alg(alg_name, crypto_skcipher_type(type), 979 crypto_skcipher_mask(mask)); 980 } 981 982 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( 983 struct crypto_ablkcipher *tfm) 984 { 985 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; 986 } 987 988 /** 989 * crypto_ablkcipher_ivsize() - obtain IV size 990 * @tfm: cipher handle 991 * 992 * The size of the IV for the ablkcipher referenced by the cipher handle is 993 * returned. This IV size may be zero if the cipher does not need an IV. 994 * 995 * Return: IV size in bytes 996 */ 997 static inline unsigned int crypto_ablkcipher_ivsize( 998 struct crypto_ablkcipher *tfm) 999 { 1000 return crypto_ablkcipher_crt(tfm)->ivsize; 1001 } 1002 1003 /** 1004 * crypto_ablkcipher_blocksize() - obtain block size of cipher 1005 * @tfm: cipher handle 1006 * 1007 * The block size for the ablkcipher referenced with the cipher handle is 1008 * returned. The caller may use that information to allocate appropriate 1009 * memory for the data returned by the encryption or decryption operation 1010 * 1011 * Return: block size of cipher 1012 */ 1013 static inline unsigned int crypto_ablkcipher_blocksize( 1014 struct crypto_ablkcipher *tfm) 1015 { 1016 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); 1017 } 1018 1019 static inline unsigned int crypto_ablkcipher_alignmask( 1020 struct crypto_ablkcipher *tfm) 1021 { 1022 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); 1023 } 1024 1025 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) 1026 { 1027 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); 1028 } 1029 1030 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, 1031 u32 flags) 1032 { 1033 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); 1034 } 1035 1036 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, 1037 u32 flags) 1038 { 1039 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); 1040 } 1041 1042 /** 1043 * crypto_ablkcipher_setkey() - set key for cipher 1044 * @tfm: cipher handle 1045 * @key: buffer holding the key 1046 * @keylen: length of the key in bytes 1047 * 1048 * The caller provided key is set for the ablkcipher referenced by the cipher 1049 * handle. 1050 * 1051 * Note, the key length determines the cipher type. Many block ciphers implement 1052 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1053 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1054 * is performed. 1055 * 1056 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1057 */ 1058 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, 1059 const u8 *key, unsigned int keylen) 1060 { 1061 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); 1062 1063 return crt->setkey(crt->base, key, keylen); 1064 } 1065 1066 /** 1067 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request 1068 * @req: ablkcipher_request out of which the cipher handle is to be obtained 1069 * 1070 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request 1071 * data structure. 1072 * 1073 * Return: crypto_ablkcipher handle 1074 */ 1075 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( 1076 struct ablkcipher_request *req) 1077 { 1078 return __crypto_ablkcipher_cast(req->base.tfm); 1079 } 1080 1081 /** 1082 * crypto_ablkcipher_encrypt() - encrypt plaintext 1083 * @req: reference to the ablkcipher_request handle that holds all information 1084 * needed to perform the cipher operation 1085 * 1086 * Encrypt plaintext data using the ablkcipher_request handle. That data 1087 * structure and how it is filled with data is discussed with the 1088 * ablkcipher_request_* functions. 1089 * 1090 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1091 */ 1092 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) 1093 { 1094 struct ablkcipher_tfm *crt = 1095 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1096 struct crypto_alg *alg = crt->base->base.__crt_alg; 1097 unsigned int nbytes = req->nbytes; 1098 int ret; 1099 1100 crypto_stats_get(alg); 1101 ret = crt->encrypt(req); 1102 crypto_stats_ablkcipher_encrypt(nbytes, ret, alg); 1103 return ret; 1104 } 1105 1106 /** 1107 * crypto_ablkcipher_decrypt() - decrypt ciphertext 1108 * @req: reference to the ablkcipher_request handle that holds all information 1109 * needed to perform the cipher operation 1110 * 1111 * Decrypt ciphertext data using the ablkcipher_request handle. That data 1112 * structure and how it is filled with data is discussed with the 1113 * ablkcipher_request_* functions. 1114 * 1115 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1116 */ 1117 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) 1118 { 1119 struct ablkcipher_tfm *crt = 1120 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1121 struct crypto_alg *alg = crt->base->base.__crt_alg; 1122 unsigned int nbytes = req->nbytes; 1123 int ret; 1124 1125 crypto_stats_get(alg); 1126 ret = crt->decrypt(req); 1127 crypto_stats_ablkcipher_decrypt(nbytes, ret, alg); 1128 return ret; 1129 } 1130 1131 /** 1132 * DOC: Asynchronous Cipher Request Handle 1133 * 1134 * The ablkcipher_request data structure contains all pointers to data 1135 * required for the asynchronous cipher operation. This includes the cipher 1136 * handle (which can be used by multiple ablkcipher_request instances), pointer 1137 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 1138 * as a handle to the ablkcipher_request_* API calls in a similar way as 1139 * ablkcipher handle to the crypto_ablkcipher_* API calls. 1140 */ 1141 1142 /** 1143 * crypto_ablkcipher_reqsize() - obtain size of the request data structure 1144 * @tfm: cipher handle 1145 * 1146 * Return: number of bytes 1147 */ 1148 static inline unsigned int crypto_ablkcipher_reqsize( 1149 struct crypto_ablkcipher *tfm) 1150 { 1151 return crypto_ablkcipher_crt(tfm)->reqsize; 1152 } 1153 1154 /** 1155 * ablkcipher_request_set_tfm() - update cipher handle reference in request 1156 * @req: request handle to be modified 1157 * @tfm: cipher handle that shall be added to the request handle 1158 * 1159 * Allow the caller to replace the existing ablkcipher handle in the request 1160 * data structure with a different one. 1161 */ 1162 static inline void ablkcipher_request_set_tfm( 1163 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) 1164 { 1165 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); 1166 } 1167 1168 static inline struct ablkcipher_request *ablkcipher_request_cast( 1169 struct crypto_async_request *req) 1170 { 1171 return container_of(req, struct ablkcipher_request, base); 1172 } 1173 1174 /** 1175 * ablkcipher_request_alloc() - allocate request data structure 1176 * @tfm: cipher handle to be registered with the request 1177 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 1178 * 1179 * Allocate the request data structure that must be used with the ablkcipher 1180 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher 1181 * handle is registered in the request data structure. 1182 * 1183 * Return: allocated request handle in case of success, or NULL if out of memory 1184 */ 1185 static inline struct ablkcipher_request *ablkcipher_request_alloc( 1186 struct crypto_ablkcipher *tfm, gfp_t gfp) 1187 { 1188 struct ablkcipher_request *req; 1189 1190 req = kmalloc(sizeof(struct ablkcipher_request) + 1191 crypto_ablkcipher_reqsize(tfm), gfp); 1192 1193 if (likely(req)) 1194 ablkcipher_request_set_tfm(req, tfm); 1195 1196 return req; 1197 } 1198 1199 /** 1200 * ablkcipher_request_free() - zeroize and free request data structure 1201 * @req: request data structure cipher handle to be freed 1202 */ 1203 static inline void ablkcipher_request_free(struct ablkcipher_request *req) 1204 { 1205 kzfree(req); 1206 } 1207 1208 /** 1209 * ablkcipher_request_set_callback() - set asynchronous callback function 1210 * @req: request handle 1211 * @flags: specify zero or an ORing of the flags 1212 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 1213 * increase the wait queue beyond the initial maximum size; 1214 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 1215 * @compl: callback function pointer to be registered with the request handle 1216 * @data: The data pointer refers to memory that is not used by the kernel 1217 * crypto API, but provided to the callback function for it to use. Here, 1218 * the caller can provide a reference to memory the callback function can 1219 * operate on. As the callback function is invoked asynchronously to the 1220 * related functionality, it may need to access data structures of the 1221 * related functionality which can be referenced using this pointer. The 1222 * callback function can access the memory via the "data" field in the 1223 * crypto_async_request data structure provided to the callback function. 1224 * 1225 * This function allows setting the callback function that is triggered once the 1226 * cipher operation completes. 1227 * 1228 * The callback function is registered with the ablkcipher_request handle and 1229 * must comply with the following template:: 1230 * 1231 * void callback_function(struct crypto_async_request *req, int error) 1232 */ 1233 static inline void ablkcipher_request_set_callback( 1234 struct ablkcipher_request *req, 1235 u32 flags, crypto_completion_t compl, void *data) 1236 { 1237 req->base.complete = compl; 1238 req->base.data = data; 1239 req->base.flags = flags; 1240 } 1241 1242 /** 1243 * ablkcipher_request_set_crypt() - set data buffers 1244 * @req: request handle 1245 * @src: source scatter / gather list 1246 * @dst: destination scatter / gather list 1247 * @nbytes: number of bytes to process from @src 1248 * @iv: IV for the cipher operation which must comply with the IV size defined 1249 * by crypto_ablkcipher_ivsize 1250 * 1251 * This function allows setting of the source data and destination data 1252 * scatter / gather lists. 1253 * 1254 * For encryption, the source is treated as the plaintext and the 1255 * destination is the ciphertext. For a decryption operation, the use is 1256 * reversed - the source is the ciphertext and the destination is the plaintext. 1257 */ 1258 static inline void ablkcipher_request_set_crypt( 1259 struct ablkcipher_request *req, 1260 struct scatterlist *src, struct scatterlist *dst, 1261 unsigned int nbytes, void *iv) 1262 { 1263 req->src = src; 1264 req->dst = dst; 1265 req->nbytes = nbytes; 1266 req->info = iv; 1267 } 1268 1269 /** 1270 * DOC: Synchronous Block Cipher API 1271 * 1272 * The synchronous block cipher API is used with the ciphers of type 1273 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) 1274 * 1275 * Synchronous calls, have a context in the tfm. But since a single tfm can be 1276 * used in multiple calls and in parallel, this info should not be changeable 1277 * (unless a lock is used). This applies, for example, to the symmetric key. 1278 * However, the IV is changeable, so there is an iv field in blkcipher_tfm 1279 * structure for synchronous blkcipher api. So, its the only state info that can 1280 * be kept for synchronous calls without using a big lock across a tfm. 1281 * 1282 * The block cipher API allows the use of a complete cipher, i.e. a cipher 1283 * consisting of a template (a block chaining mode) and a single block cipher 1284 * primitive (e.g. AES). 1285 * 1286 * The plaintext data buffer and the ciphertext data buffer are pointed to 1287 * by using scatter/gather lists. The cipher operation is performed 1288 * on all segments of the provided scatter/gather lists. 1289 * 1290 * The kernel crypto API supports a cipher operation "in-place" which means that 1291 * the caller may provide the same scatter/gather list for the plaintext and 1292 * cipher text. After the completion of the cipher operation, the plaintext 1293 * data is replaced with the ciphertext data in case of an encryption and vice 1294 * versa for a decryption. The caller must ensure that the scatter/gather lists 1295 * for the output data point to sufficiently large buffers, i.e. multiples of 1296 * the block size of the cipher. 1297 */ 1298 1299 static inline struct crypto_blkcipher *__crypto_blkcipher_cast( 1300 struct crypto_tfm *tfm) 1301 { 1302 return (struct crypto_blkcipher *)tfm; 1303 } 1304 1305 static inline struct crypto_blkcipher *crypto_blkcipher_cast( 1306 struct crypto_tfm *tfm) 1307 { 1308 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); 1309 return __crypto_blkcipher_cast(tfm); 1310 } 1311 1312 /** 1313 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle 1314 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1315 * blkcipher cipher 1316 * @type: specifies the type of the cipher 1317 * @mask: specifies the mask for the cipher 1318 * 1319 * Allocate a cipher handle for a block cipher. The returned struct 1320 * crypto_blkcipher is the cipher handle that is required for any subsequent 1321 * API invocation for that block cipher. 1322 * 1323 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1324 * of an error, PTR_ERR() returns the error code. 1325 */ 1326 static inline struct crypto_blkcipher *crypto_alloc_blkcipher( 1327 const char *alg_name, u32 type, u32 mask) 1328 { 1329 type &= ~CRYPTO_ALG_TYPE_MASK; 1330 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1331 mask |= CRYPTO_ALG_TYPE_MASK; 1332 1333 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); 1334 } 1335 1336 static inline struct crypto_tfm *crypto_blkcipher_tfm( 1337 struct crypto_blkcipher *tfm) 1338 { 1339 return &tfm->base; 1340 } 1341 1342 /** 1343 * crypto_free_blkcipher() - zeroize and free the block cipher handle 1344 * @tfm: cipher handle to be freed 1345 */ 1346 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) 1347 { 1348 crypto_free_tfm(crypto_blkcipher_tfm(tfm)); 1349 } 1350 1351 /** 1352 * crypto_has_blkcipher() - Search for the availability of a block cipher 1353 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1354 * block cipher 1355 * @type: specifies the type of the cipher 1356 * @mask: specifies the mask for the cipher 1357 * 1358 * Return: true when the block cipher is known to the kernel crypto API; false 1359 * otherwise 1360 */ 1361 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) 1362 { 1363 type &= ~CRYPTO_ALG_TYPE_MASK; 1364 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1365 mask |= CRYPTO_ALG_TYPE_MASK; 1366 1367 return crypto_has_alg(alg_name, type, mask); 1368 } 1369 1370 /** 1371 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle 1372 * @tfm: cipher handle 1373 * 1374 * Return: The character string holding the name of the cipher 1375 */ 1376 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) 1377 { 1378 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); 1379 } 1380 1381 static inline struct blkcipher_tfm *crypto_blkcipher_crt( 1382 struct crypto_blkcipher *tfm) 1383 { 1384 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; 1385 } 1386 1387 static inline struct blkcipher_alg *crypto_blkcipher_alg( 1388 struct crypto_blkcipher *tfm) 1389 { 1390 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; 1391 } 1392 1393 /** 1394 * crypto_blkcipher_ivsize() - obtain IV size 1395 * @tfm: cipher handle 1396 * 1397 * The size of the IV for the block cipher referenced by the cipher handle is 1398 * returned. This IV size may be zero if the cipher does not need an IV. 1399 * 1400 * Return: IV size in bytes 1401 */ 1402 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) 1403 { 1404 return crypto_blkcipher_alg(tfm)->ivsize; 1405 } 1406 1407 /** 1408 * crypto_blkcipher_blocksize() - obtain block size of cipher 1409 * @tfm: cipher handle 1410 * 1411 * The block size for the block cipher referenced with the cipher handle is 1412 * returned. The caller may use that information to allocate appropriate 1413 * memory for the data returned by the encryption or decryption operation. 1414 * 1415 * Return: block size of cipher 1416 */ 1417 static inline unsigned int crypto_blkcipher_blocksize( 1418 struct crypto_blkcipher *tfm) 1419 { 1420 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); 1421 } 1422 1423 static inline unsigned int crypto_blkcipher_alignmask( 1424 struct crypto_blkcipher *tfm) 1425 { 1426 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); 1427 } 1428 1429 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) 1430 { 1431 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); 1432 } 1433 1434 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, 1435 u32 flags) 1436 { 1437 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); 1438 } 1439 1440 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, 1441 u32 flags) 1442 { 1443 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); 1444 } 1445 1446 /** 1447 * crypto_blkcipher_setkey() - set key for cipher 1448 * @tfm: cipher handle 1449 * @key: buffer holding the key 1450 * @keylen: length of the key in bytes 1451 * 1452 * The caller provided key is set for the block cipher referenced by the cipher 1453 * handle. 1454 * 1455 * Note, the key length determines the cipher type. Many block ciphers implement 1456 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1457 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1458 * is performed. 1459 * 1460 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1461 */ 1462 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, 1463 const u8 *key, unsigned int keylen) 1464 { 1465 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), 1466 key, keylen); 1467 } 1468 1469 /** 1470 * crypto_blkcipher_encrypt() - encrypt plaintext 1471 * @desc: reference to the block cipher handle with meta data 1472 * @dst: scatter/gather list that is filled by the cipher operation with the 1473 * ciphertext 1474 * @src: scatter/gather list that holds the plaintext 1475 * @nbytes: number of bytes of the plaintext to encrypt. 1476 * 1477 * Encrypt plaintext data using the IV set by the caller with a preceding 1478 * call of crypto_blkcipher_set_iv. 1479 * 1480 * The blkcipher_desc data structure must be filled by the caller and can 1481 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1482 * with the block cipher handle; desc.flags is filled with either 1483 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1484 * 1485 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1486 */ 1487 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, 1488 struct scatterlist *dst, 1489 struct scatterlist *src, 1490 unsigned int nbytes) 1491 { 1492 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1493 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1494 } 1495 1496 /** 1497 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV 1498 * @desc: reference to the block cipher handle with meta data 1499 * @dst: scatter/gather list that is filled by the cipher operation with the 1500 * ciphertext 1501 * @src: scatter/gather list that holds the plaintext 1502 * @nbytes: number of bytes of the plaintext to encrypt. 1503 * 1504 * Encrypt plaintext data with the use of an IV that is solely used for this 1505 * cipher operation. Any previously set IV is not used. 1506 * 1507 * The blkcipher_desc data structure must be filled by the caller and can 1508 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1509 * with the block cipher handle; desc.info is filled with the IV to be used for 1510 * the current operation; desc.flags is filled with either 1511 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1512 * 1513 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1514 */ 1515 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, 1516 struct scatterlist *dst, 1517 struct scatterlist *src, 1518 unsigned int nbytes) 1519 { 1520 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1521 } 1522 1523 /** 1524 * crypto_blkcipher_decrypt() - decrypt ciphertext 1525 * @desc: reference to the block cipher handle with meta data 1526 * @dst: scatter/gather list that is filled by the cipher operation with the 1527 * plaintext 1528 * @src: scatter/gather list that holds the ciphertext 1529 * @nbytes: number of bytes of the ciphertext to decrypt. 1530 * 1531 * Decrypt ciphertext data using the IV set by the caller with a preceding 1532 * call of crypto_blkcipher_set_iv. 1533 * 1534 * The blkcipher_desc data structure must be filled by the caller as documented 1535 * for the crypto_blkcipher_encrypt call above. 1536 * 1537 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1538 * 1539 */ 1540 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, 1541 struct scatterlist *dst, 1542 struct scatterlist *src, 1543 unsigned int nbytes) 1544 { 1545 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1546 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1547 } 1548 1549 /** 1550 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV 1551 * @desc: reference to the block cipher handle with meta data 1552 * @dst: scatter/gather list that is filled by the cipher operation with the 1553 * plaintext 1554 * @src: scatter/gather list that holds the ciphertext 1555 * @nbytes: number of bytes of the ciphertext to decrypt. 1556 * 1557 * Decrypt ciphertext data with the use of an IV that is solely used for this 1558 * cipher operation. Any previously set IV is not used. 1559 * 1560 * The blkcipher_desc data structure must be filled by the caller as documented 1561 * for the crypto_blkcipher_encrypt_iv call above. 1562 * 1563 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1564 */ 1565 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, 1566 struct scatterlist *dst, 1567 struct scatterlist *src, 1568 unsigned int nbytes) 1569 { 1570 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1571 } 1572 1573 /** 1574 * crypto_blkcipher_set_iv() - set IV for cipher 1575 * @tfm: cipher handle 1576 * @src: buffer holding the IV 1577 * @len: length of the IV in bytes 1578 * 1579 * The caller provided IV is set for the block cipher referenced by the cipher 1580 * handle. 1581 */ 1582 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, 1583 const u8 *src, unsigned int len) 1584 { 1585 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); 1586 } 1587 1588 /** 1589 * crypto_blkcipher_get_iv() - obtain IV from cipher 1590 * @tfm: cipher handle 1591 * @dst: buffer filled with the IV 1592 * @len: length of the buffer dst 1593 * 1594 * The caller can obtain the IV set for the block cipher referenced by the 1595 * cipher handle and store it into the user-provided buffer. If the buffer 1596 * has an insufficient space, the IV is truncated to fit the buffer. 1597 */ 1598 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, 1599 u8 *dst, unsigned int len) 1600 { 1601 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); 1602 } 1603 1604 /** 1605 * DOC: Single Block Cipher API 1606 * 1607 * The single block cipher API is used with the ciphers of type 1608 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 1609 * 1610 * Using the single block cipher API calls, operations with the basic cipher 1611 * primitive can be implemented. These cipher primitives exclude any block 1612 * chaining operations including IV handling. 1613 * 1614 * The purpose of this single block cipher API is to support the implementation 1615 * of templates or other concepts that only need to perform the cipher operation 1616 * on one block at a time. Templates invoke the underlying cipher primitive 1617 * block-wise and process either the input or the output data of these cipher 1618 * operations. 1619 */ 1620 1621 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 1622 { 1623 return (struct crypto_cipher *)tfm; 1624 } 1625 1626 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) 1627 { 1628 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); 1629 return __crypto_cipher_cast(tfm); 1630 } 1631 1632 /** 1633 * crypto_alloc_cipher() - allocate single block cipher handle 1634 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1635 * single block cipher 1636 * @type: specifies the type of the cipher 1637 * @mask: specifies the mask for the cipher 1638 * 1639 * Allocate a cipher handle for a single block cipher. The returned struct 1640 * crypto_cipher is the cipher handle that is required for any subsequent API 1641 * invocation for that single block cipher. 1642 * 1643 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1644 * of an error, PTR_ERR() returns the error code. 1645 */ 1646 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 1647 u32 type, u32 mask) 1648 { 1649 type &= ~CRYPTO_ALG_TYPE_MASK; 1650 type |= CRYPTO_ALG_TYPE_CIPHER; 1651 mask |= CRYPTO_ALG_TYPE_MASK; 1652 1653 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 1654 } 1655 1656 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 1657 { 1658 return &tfm->base; 1659 } 1660 1661 /** 1662 * crypto_free_cipher() - zeroize and free the single block cipher handle 1663 * @tfm: cipher handle to be freed 1664 */ 1665 static inline void crypto_free_cipher(struct crypto_cipher *tfm) 1666 { 1667 crypto_free_tfm(crypto_cipher_tfm(tfm)); 1668 } 1669 1670 /** 1671 * crypto_has_cipher() - Search for the availability of a single block cipher 1672 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1673 * single block cipher 1674 * @type: specifies the type of the cipher 1675 * @mask: specifies the mask for the cipher 1676 * 1677 * Return: true when the single block cipher is known to the kernel crypto API; 1678 * false otherwise 1679 */ 1680 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 1681 { 1682 type &= ~CRYPTO_ALG_TYPE_MASK; 1683 type |= CRYPTO_ALG_TYPE_CIPHER; 1684 mask |= CRYPTO_ALG_TYPE_MASK; 1685 1686 return crypto_has_alg(alg_name, type, mask); 1687 } 1688 1689 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) 1690 { 1691 return &crypto_cipher_tfm(tfm)->crt_cipher; 1692 } 1693 1694 /** 1695 * crypto_cipher_blocksize() - obtain block size for cipher 1696 * @tfm: cipher handle 1697 * 1698 * The block size for the single block cipher referenced with the cipher handle 1699 * tfm is returned. The caller may use that information to allocate appropriate 1700 * memory for the data returned by the encryption or decryption operation 1701 * 1702 * Return: block size of cipher 1703 */ 1704 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 1705 { 1706 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 1707 } 1708 1709 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 1710 { 1711 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 1712 } 1713 1714 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 1715 { 1716 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 1717 } 1718 1719 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 1720 u32 flags) 1721 { 1722 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 1723 } 1724 1725 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 1726 u32 flags) 1727 { 1728 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 1729 } 1730 1731 /** 1732 * crypto_cipher_setkey() - set key for cipher 1733 * @tfm: cipher handle 1734 * @key: buffer holding the key 1735 * @keylen: length of the key in bytes 1736 * 1737 * The caller provided key is set for the single block cipher referenced by the 1738 * cipher handle. 1739 * 1740 * Note, the key length determines the cipher type. Many block ciphers implement 1741 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1742 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1743 * is performed. 1744 * 1745 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1746 */ 1747 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 1748 const u8 *key, unsigned int keylen) 1749 { 1750 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), 1751 key, keylen); 1752 } 1753 1754 /** 1755 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 1756 * @tfm: cipher handle 1757 * @dst: points to the buffer that will be filled with the ciphertext 1758 * @src: buffer holding the plaintext to be encrypted 1759 * 1760 * Invoke the encryption operation of one block. The caller must ensure that 1761 * the plaintext and ciphertext buffers are at least one block in size. 1762 */ 1763 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 1764 u8 *dst, const u8 *src) 1765 { 1766 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), 1767 dst, src); 1768 } 1769 1770 /** 1771 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 1772 * @tfm: cipher handle 1773 * @dst: points to the buffer that will be filled with the plaintext 1774 * @src: buffer holding the ciphertext to be decrypted 1775 * 1776 * Invoke the decryption operation of one block. The caller must ensure that 1777 * the plaintext and ciphertext buffers are at least one block in size. 1778 */ 1779 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 1780 u8 *dst, const u8 *src) 1781 { 1782 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), 1783 dst, src); 1784 } 1785 1786 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 1787 { 1788 return (struct crypto_comp *)tfm; 1789 } 1790 1791 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) 1792 { 1793 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & 1794 CRYPTO_ALG_TYPE_MASK); 1795 return __crypto_comp_cast(tfm); 1796 } 1797 1798 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 1799 u32 type, u32 mask) 1800 { 1801 type &= ~CRYPTO_ALG_TYPE_MASK; 1802 type |= CRYPTO_ALG_TYPE_COMPRESS; 1803 mask |= CRYPTO_ALG_TYPE_MASK; 1804 1805 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 1806 } 1807 1808 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 1809 { 1810 return &tfm->base; 1811 } 1812 1813 static inline void crypto_free_comp(struct crypto_comp *tfm) 1814 { 1815 crypto_free_tfm(crypto_comp_tfm(tfm)); 1816 } 1817 1818 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 1819 { 1820 type &= ~CRYPTO_ALG_TYPE_MASK; 1821 type |= CRYPTO_ALG_TYPE_COMPRESS; 1822 mask |= CRYPTO_ALG_TYPE_MASK; 1823 1824 return crypto_has_alg(alg_name, type, mask); 1825 } 1826 1827 static inline const char *crypto_comp_name(struct crypto_comp *tfm) 1828 { 1829 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 1830 } 1831 1832 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) 1833 { 1834 return &crypto_comp_tfm(tfm)->crt_compress; 1835 } 1836 1837 static inline int crypto_comp_compress(struct crypto_comp *tfm, 1838 const u8 *src, unsigned int slen, 1839 u8 *dst, unsigned int *dlen) 1840 { 1841 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), 1842 src, slen, dst, dlen); 1843 } 1844 1845 static inline int crypto_comp_decompress(struct crypto_comp *tfm, 1846 const u8 *src, unsigned int slen, 1847 u8 *dst, unsigned int *dlen) 1848 { 1849 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), 1850 src, slen, dst, dlen); 1851 } 1852 1853 #endif /* _LINUX_CRYPTO_H */ 1854 1855
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.