1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Scatterlist Cryptographic API. 4 * 5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 6 * Copyright (c) 2002 David S. Miller (davem@redhat.com) 7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> 8 * 9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> 10 * and Nettle, by Niels Möller. 11 */ 12 #ifndef _LINUX_CRYPTO_H 13 #define _LINUX_CRYPTO_H 14 15 #include <linux/atomic.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/bug.h> 19 #include <linux/refcount.h> 20 #include <linux/slab.h> 21 #include <linux/completion.h> 22 23 /* 24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 25 * arbitrary modules to be loaded. Loading from userspace may still need the 26 * unprefixed names, so retains those aliases as well. 27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 29 * expands twice on the same line. Instead, use a separate base name for the 30 * alias. 31 */ 32 #define MODULE_ALIAS_CRYPTO(name) \ 33 __MODULE_INFO(alias, alias_userspace, name); \ 34 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 35 36 /* 37 * Algorithm masks and types. 38 */ 39 #define CRYPTO_ALG_TYPE_MASK 0x0000000f 40 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 41 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 42 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 43 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 44 #define CRYPTO_ALG_TYPE_KPP 0x00000008 45 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 46 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 47 #define CRYPTO_ALG_TYPE_RNG 0x0000000c 48 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 49 #define CRYPTO_ALG_TYPE_HASH 0x0000000e 50 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e 51 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f 52 53 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 54 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 56 57 #define CRYPTO_ALG_LARVAL 0x00000010 58 #define CRYPTO_ALG_DEAD 0x00000020 59 #define CRYPTO_ALG_DYING 0x00000040 60 #define CRYPTO_ALG_ASYNC 0x00000080 61 62 /* 63 * Set if the algorithm (or an algorithm which it uses) requires another 64 * algorithm of the same type to handle corner cases. 65 */ 66 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 67 68 /* 69 * Set if the algorithm has passed automated run-time testing. Note that 70 * if there is no run-time testing for a given algorithm it is considered 71 * to have passed. 72 */ 73 74 #define CRYPTO_ALG_TESTED 0x00000400 75 76 /* 77 * Set if the algorithm is an instance that is built from templates. 78 */ 79 #define CRYPTO_ALG_INSTANCE 0x00000800 80 81 /* Set this bit if the algorithm provided is hardware accelerated but 82 * not available to userspace via instruction set or so. 83 */ 84 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 85 86 /* 87 * Mark a cipher as a service implementation only usable by another 88 * cipher and never by a normal user of the kernel crypto API 89 */ 90 #define CRYPTO_ALG_INTERNAL 0x00002000 91 92 /* 93 * Set if the algorithm has a ->setkey() method but can be used without 94 * calling it first, i.e. there is a default key. 95 */ 96 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 97 98 /* 99 * Don't trigger module loading 100 */ 101 #define CRYPTO_NOLOAD 0x00008000 102 103 /* 104 * The algorithm may allocate memory during request processing, i.e. during 105 * encryption, decryption, or hashing. Users can request an algorithm with this 106 * flag unset if they can't handle memory allocation failures. 107 * 108 * This flag is currently only implemented for algorithms of type "skcipher", 109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not 110 * have this flag set even if they allocate memory. 111 * 112 * In some edge cases, algorithms can allocate memory regardless of this flag. 113 * To avoid these cases, users must obey the following usage constraints: 114 * skcipher: 115 * - The IV buffer and all scatterlist elements must be aligned to the 116 * algorithm's alignmask. 117 * - If the data were to be divided into chunks of size 118 * crypto_skcipher_walksize() (with any remainder going at the end), no 119 * chunk can cross a page boundary or a scatterlist element boundary. 120 * aead: 121 * - The IV buffer and all scatterlist elements must be aligned to the 122 * algorithm's alignmask. 123 * - The first scatterlist element must contain all the associated data, 124 * and its pages must be !PageHighMem. 125 * - If the plaintext/ciphertext were to be divided into chunks of size 126 * crypto_aead_walksize() (with the remainder going at the end), no chunk 127 * can cross a page boundary or a scatterlist element boundary. 128 * ahash: 129 * - The result buffer must be aligned to the algorithm's alignmask. 130 * - crypto_ahash_finup() must not be used unless the algorithm implements 131 * ->finup() natively. 132 */ 133 #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 134 135 /* 136 * Transform masks and values (for crt_flags). 137 */ 138 #define CRYPTO_TFM_NEED_KEY 0x00000001 139 140 #define CRYPTO_TFM_REQ_MASK 0x000fff00 141 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 142 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 143 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 144 145 /* 146 * Miscellaneous stuff. 147 */ 148 #define CRYPTO_MAX_ALG_NAME 128 149 150 /* 151 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 152 * declaration) is used to ensure that the crypto_tfm context structure is 153 * aligned correctly for the given architecture so that there are no alignment 154 * faults for C data types. On architectures that support non-cache coherent 155 * DMA, such as ARM or arm64, it also takes into account the minimal alignment 156 * that is required to ensure that the context struct member does not share any 157 * cachelines with the rest of the struct. This is needed to ensure that cache 158 * maintenance for non-coherent DMA (cache invalidation in particular) does not 159 * affect data that may be accessed by the CPU concurrently. 160 */ 161 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 162 163 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 164 165 struct scatterlist; 166 struct crypto_async_request; 167 struct crypto_tfm; 168 struct crypto_type; 169 170 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 171 172 /** 173 * DOC: Block Cipher Context Data Structures 174 * 175 * These data structures define the operating context for each block cipher 176 * type. 177 */ 178 179 struct crypto_async_request { 180 struct list_head list; 181 crypto_completion_t complete; 182 void *data; 183 struct crypto_tfm *tfm; 184 185 u32 flags; 186 }; 187 188 /** 189 * DOC: Block Cipher Algorithm Definitions 190 * 191 * These data structures define modular crypto algorithm implementations, 192 * managed via crypto_register_alg() and crypto_unregister_alg(). 193 */ 194 195 /** 196 * struct cipher_alg - single-block symmetric ciphers definition 197 * @cia_min_keysize: Minimum key size supported by the transformation. This is 198 * the smallest key length supported by this transformation 199 * algorithm. This must be set to one of the pre-defined 200 * values as this is not hardware specific. Possible values 201 * for this field can be found via git grep "_MIN_KEY_SIZE" 202 * include/crypto/ 203 * @cia_max_keysize: Maximum key size supported by the transformation. This is 204 * the largest key length supported by this transformation 205 * algorithm. This must be set to one of the pre-defined values 206 * as this is not hardware specific. Possible values for this 207 * field can be found via git grep "_MAX_KEY_SIZE" 208 * include/crypto/ 209 * @cia_setkey: Set key for the transformation. This function is used to either 210 * program a supplied key into the hardware or store the key in the 211 * transformation context for programming it later. Note that this 212 * function does modify the transformation context. This function 213 * can be called multiple times during the existence of the 214 * transformation object, so one must make sure the key is properly 215 * reprogrammed into the hardware. This function is also 216 * responsible for checking the key length for validity. 217 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 218 * single block of data, which must be @cra_blocksize big. This 219 * always operates on a full @cra_blocksize and it is not possible 220 * to encrypt a block of smaller size. The supplied buffers must 221 * therefore also be at least of @cra_blocksize size. Both the 222 * input and output buffers are always aligned to @cra_alignmask. 223 * In case either of the input or output buffer supplied by user 224 * of the crypto API is not aligned to @cra_alignmask, the crypto 225 * API will re-align the buffers. The re-alignment means that a 226 * new buffer will be allocated, the data will be copied into the 227 * new buffer, then the processing will happen on the new buffer, 228 * then the data will be copied back into the original buffer and 229 * finally the new buffer will be freed. In case a software 230 * fallback was put in place in the @cra_init call, this function 231 * might need to use the fallback if the algorithm doesn't support 232 * all of the key sizes. In case the key was stored in 233 * transformation context, the key might need to be re-programmed 234 * into the hardware in this function. This function shall not 235 * modify the transformation context, as this function may be 236 * called in parallel with the same transformation object. 237 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 238 * @cia_encrypt, and the conditions are exactly the same. 239 * 240 * All fields are mandatory and must be filled. 241 */ 242 struct cipher_alg { 243 unsigned int cia_min_keysize; 244 unsigned int cia_max_keysize; 245 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 246 unsigned int keylen); 247 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 248 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 249 }; 250 251 /** 252 * struct compress_alg - compression/decompression algorithm 253 * @coa_compress: Compress a buffer of specified length, storing the resulting 254 * data in the specified buffer. Return the length of the 255 * compressed data in dlen. 256 * @coa_decompress: Decompress the source buffer, storing the uncompressed 257 * data in the specified buffer. The length of the data is 258 * returned in dlen. 259 * 260 * All fields are mandatory. 261 */ 262 struct compress_alg { 263 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 264 unsigned int slen, u8 *dst, unsigned int *dlen); 265 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 266 unsigned int slen, u8 *dst, unsigned int *dlen); 267 }; 268 269 #ifdef CONFIG_CRYPTO_STATS 270 /* 271 * struct crypto_istat_aead - statistics for AEAD algorithm 272 * @encrypt_cnt: number of encrypt requests 273 * @encrypt_tlen: total data size handled by encrypt requests 274 * @decrypt_cnt: number of decrypt requests 275 * @decrypt_tlen: total data size handled by decrypt requests 276 * @err_cnt: number of error for AEAD requests 277 */ 278 struct crypto_istat_aead { 279 atomic64_t encrypt_cnt; 280 atomic64_t encrypt_tlen; 281 atomic64_t decrypt_cnt; 282 atomic64_t decrypt_tlen; 283 atomic64_t err_cnt; 284 }; 285 286 /* 287 * struct crypto_istat_akcipher - statistics for akcipher algorithm 288 * @encrypt_cnt: number of encrypt requests 289 * @encrypt_tlen: total data size handled by encrypt requests 290 * @decrypt_cnt: number of decrypt requests 291 * @decrypt_tlen: total data size handled by decrypt requests 292 * @verify_cnt: number of verify operation 293 * @sign_cnt: number of sign requests 294 * @err_cnt: number of error for akcipher requests 295 */ 296 struct crypto_istat_akcipher { 297 atomic64_t encrypt_cnt; 298 atomic64_t encrypt_tlen; 299 atomic64_t decrypt_cnt; 300 atomic64_t decrypt_tlen; 301 atomic64_t verify_cnt; 302 atomic64_t sign_cnt; 303 atomic64_t err_cnt; 304 }; 305 306 /* 307 * struct crypto_istat_cipher - statistics for cipher algorithm 308 * @encrypt_cnt: number of encrypt requests 309 * @encrypt_tlen: total data size handled by encrypt requests 310 * @decrypt_cnt: number of decrypt requests 311 * @decrypt_tlen: total data size handled by decrypt requests 312 * @err_cnt: number of error for cipher requests 313 */ 314 struct crypto_istat_cipher { 315 atomic64_t encrypt_cnt; 316 atomic64_t encrypt_tlen; 317 atomic64_t decrypt_cnt; 318 atomic64_t decrypt_tlen; 319 atomic64_t err_cnt; 320 }; 321 322 /* 323 * struct crypto_istat_compress - statistics for compress algorithm 324 * @compress_cnt: number of compress requests 325 * @compress_tlen: total data size handled by compress requests 326 * @decompress_cnt: number of decompress requests 327 * @decompress_tlen: total data size handled by decompress requests 328 * @err_cnt: number of error for compress requests 329 */ 330 struct crypto_istat_compress { 331 atomic64_t compress_cnt; 332 atomic64_t compress_tlen; 333 atomic64_t decompress_cnt; 334 atomic64_t decompress_tlen; 335 atomic64_t err_cnt; 336 }; 337 338 /* 339 * struct crypto_istat_hash - statistics for has algorithm 340 * @hash_cnt: number of hash requests 341 * @hash_tlen: total data size hashed 342 * @err_cnt: number of error for hash requests 343 */ 344 struct crypto_istat_hash { 345 atomic64_t hash_cnt; 346 atomic64_t hash_tlen; 347 atomic64_t err_cnt; 348 }; 349 350 /* 351 * struct crypto_istat_kpp - statistics for KPP algorithm 352 * @setsecret_cnt: number of setsecrey operation 353 * @generate_public_key_cnt: number of generate_public_key operation 354 * @compute_shared_secret_cnt: number of compute_shared_secret operation 355 * @err_cnt: number of error for KPP requests 356 */ 357 struct crypto_istat_kpp { 358 atomic64_t setsecret_cnt; 359 atomic64_t generate_public_key_cnt; 360 atomic64_t compute_shared_secret_cnt; 361 atomic64_t err_cnt; 362 }; 363 364 /* 365 * struct crypto_istat_rng: statistics for RNG algorithm 366 * @generate_cnt: number of RNG generate requests 367 * @generate_tlen: total data size of generated data by the RNG 368 * @seed_cnt: number of times the RNG was seeded 369 * @err_cnt: number of error for RNG requests 370 */ 371 struct crypto_istat_rng { 372 atomic64_t generate_cnt; 373 atomic64_t generate_tlen; 374 atomic64_t seed_cnt; 375 atomic64_t err_cnt; 376 }; 377 #endif /* CONFIG_CRYPTO_STATS */ 378 379 #define cra_cipher cra_u.cipher 380 #define cra_compress cra_u.compress 381 382 /** 383 * struct crypto_alg - definition of a cryptograpic cipher algorithm 384 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 385 * CRYPTO_ALG_* flags for the flags which go in here. Those are 386 * used for fine-tuning the description of the transformation 387 * algorithm. 388 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 389 * of the smallest possible unit which can be transformed with 390 * this algorithm. The users must respect this value. 391 * In case of HASH transformation, it is possible for a smaller 392 * block than @cra_blocksize to be passed to the crypto API for 393 * transformation, in case of any other transformation type, an 394 * error will be returned upon any attempt to transform smaller 395 * than @cra_blocksize chunks. 396 * @cra_ctxsize: Size of the operational context of the transformation. This 397 * value informs the kernel crypto API about the memory size 398 * needed to be allocated for the transformation context. 399 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 400 * buffer containing the input data for the algorithm must be 401 * aligned to this alignment mask. The data buffer for the 402 * output data must be aligned to this alignment mask. Note that 403 * the Crypto API will do the re-alignment in software, but 404 * only under special conditions and there is a performance hit. 405 * The re-alignment happens at these occasions for different 406 * @cra_u types: cipher -- For both input data and output data 407 * buffer; ahash -- For output hash destination buf; shash -- 408 * For output hash destination buf. 409 * This is needed on hardware which is flawed by design and 410 * cannot pick data from arbitrary addresses. 411 * @cra_priority: Priority of this transformation implementation. In case 412 * multiple transformations with same @cra_name are available to 413 * the Crypto API, the kernel will use the one with highest 414 * @cra_priority. 415 * @cra_name: Generic name (usable by multiple implementations) of the 416 * transformation algorithm. This is the name of the transformation 417 * itself. This field is used by the kernel when looking up the 418 * providers of particular transformation. 419 * @cra_driver_name: Unique name of the transformation provider. This is the 420 * name of the provider of the transformation. This can be any 421 * arbitrary value, but in the usual case, this contains the 422 * name of the chip or provider and the name of the 423 * transformation algorithm. 424 * @cra_type: Type of the cryptographic transformation. This is a pointer to 425 * struct crypto_type, which implements callbacks common for all 426 * transformation types. There are multiple options, such as 427 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. 428 * This field might be empty. In that case, there are no common 429 * callbacks. This is the case for: cipher, compress, shash. 430 * @cra_u: Callbacks implementing the transformation. This is a union of 431 * multiple structures. Depending on the type of transformation selected 432 * by @cra_type and @cra_flags above, the associated structure must be 433 * filled with callbacks. This field might be empty. This is the case 434 * for ahash, shash. 435 * @cra_init: Initialize the cryptographic transformation object. This function 436 * is used to initialize the cryptographic transformation object. 437 * This function is called only once at the instantiation time, right 438 * after the transformation context was allocated. In case the 439 * cryptographic hardware has some special requirements which need to 440 * be handled by software, this function shall check for the precise 441 * requirement of the transformation and put any software fallbacks 442 * in place. 443 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 444 * counterpart to @cra_init, used to remove various changes set in 445 * @cra_init. 446 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 447 * definition. See @struct @cipher_alg. 448 * @cra_u.compress: Union member which contains a (de)compression algorithm. 449 * See @struct @compress_alg. 450 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 451 * @cra_list: internally used 452 * @cra_users: internally used 453 * @cra_refcnt: internally used 454 * @cra_destroy: internally used 455 * 456 * @stats: union of all possible crypto_istat_xxx structures 457 * @stats.aead: statistics for AEAD algorithm 458 * @stats.akcipher: statistics for akcipher algorithm 459 * @stats.cipher: statistics for cipher algorithm 460 * @stats.compress: statistics for compress algorithm 461 * @stats.hash: statistics for hash algorithm 462 * @stats.rng: statistics for rng algorithm 463 * @stats.kpp: statistics for KPP algorithm 464 * 465 * The struct crypto_alg describes a generic Crypto API algorithm and is common 466 * for all of the transformations. Any variable not documented here shall not 467 * be used by a cipher implementation as it is internal to the Crypto API. 468 */ 469 struct crypto_alg { 470 struct list_head cra_list; 471 struct list_head cra_users; 472 473 u32 cra_flags; 474 unsigned int cra_blocksize; 475 unsigned int cra_ctxsize; 476 unsigned int cra_alignmask; 477 478 int cra_priority; 479 refcount_t cra_refcnt; 480 481 char cra_name[CRYPTO_MAX_ALG_NAME]; 482 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 483 484 const struct crypto_type *cra_type; 485 486 union { 487 struct cipher_alg cipher; 488 struct compress_alg compress; 489 } cra_u; 490 491 int (*cra_init)(struct crypto_tfm *tfm); 492 void (*cra_exit)(struct crypto_tfm *tfm); 493 void (*cra_destroy)(struct crypto_alg *alg); 494 495 struct module *cra_module; 496 497 #ifdef CONFIG_CRYPTO_STATS 498 union { 499 struct crypto_istat_aead aead; 500 struct crypto_istat_akcipher akcipher; 501 struct crypto_istat_cipher cipher; 502 struct crypto_istat_compress compress; 503 struct crypto_istat_hash hash; 504 struct crypto_istat_rng rng; 505 struct crypto_istat_kpp kpp; 506 } stats; 507 #endif /* CONFIG_CRYPTO_STATS */ 508 509 } CRYPTO_MINALIGN_ATTR; 510 511 #ifdef CONFIG_CRYPTO_STATS 512 void crypto_stats_init(struct crypto_alg *alg); 513 void crypto_stats_get(struct crypto_alg *alg); 514 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 515 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 516 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 517 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 518 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 519 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 520 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 521 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 522 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 523 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 524 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 525 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 526 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 527 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 528 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 529 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 530 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 531 #else 532 static inline void crypto_stats_init(struct crypto_alg *alg) 533 {} 534 static inline void crypto_stats_get(struct crypto_alg *alg) 535 {} 536 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 537 {} 538 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 539 {} 540 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 541 {} 542 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 543 {} 544 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 545 {} 546 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 547 {} 548 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 549 {} 550 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 551 {} 552 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 553 {} 554 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 555 {} 556 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 557 {} 558 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 559 {} 560 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 561 {} 562 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 563 {} 564 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 565 {} 566 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 567 {} 568 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 569 {} 570 #endif 571 /* 572 * A helper struct for waiting for completion of async crypto ops 573 */ 574 struct crypto_wait { 575 struct completion completion; 576 int err; 577 }; 578 579 /* 580 * Macro for declaring a crypto op async wait object on stack 581 */ 582 #define DECLARE_CRYPTO_WAIT(_wait) \ 583 struct crypto_wait _wait = { \ 584 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 585 586 /* 587 * Async ops completion helper functioons 588 */ 589 void crypto_req_done(struct crypto_async_request *req, int err); 590 591 static inline int crypto_wait_req(int err, struct crypto_wait *wait) 592 { 593 switch (err) { 594 case -EINPROGRESS: 595 case -EBUSY: 596 wait_for_completion(&wait->completion); 597 reinit_completion(&wait->completion); 598 err = wait->err; 599 break; 600 } 601 602 return err; 603 } 604 605 static inline void crypto_init_wait(struct crypto_wait *wait) 606 { 607 init_completion(&wait->completion); 608 } 609 610 /* 611 * Algorithm registration interface. 612 */ 613 int crypto_register_alg(struct crypto_alg *alg); 614 void crypto_unregister_alg(struct crypto_alg *alg); 615 int crypto_register_algs(struct crypto_alg *algs, int count); 616 void crypto_unregister_algs(struct crypto_alg *algs, int count); 617 618 /* 619 * Algorithm query interface. 620 */ 621 int crypto_has_alg(const char *name, u32 type, u32 mask); 622 623 /* 624 * Transforms: user-instantiated objects which encapsulate algorithms 625 * and core processing logic. Managed via crypto_alloc_*() and 626 * crypto_free_*(), as well as the various helpers below. 627 */ 628 629 struct crypto_tfm { 630 631 u32 crt_flags; 632 633 int node; 634 635 void (*exit)(struct crypto_tfm *tfm); 636 637 struct crypto_alg *__crt_alg; 638 639 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 640 }; 641 642 struct crypto_comp { 643 struct crypto_tfm base; 644 }; 645 646 /* 647 * Transform user interface. 648 */ 649 650 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 651 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 652 653 static inline void crypto_free_tfm(struct crypto_tfm *tfm) 654 { 655 return crypto_destroy_tfm(tfm, tfm); 656 } 657 658 int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 659 660 /* 661 * Transform helpers which query the underlying algorithm. 662 */ 663 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 664 { 665 return tfm->__crt_alg->cra_name; 666 } 667 668 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 669 { 670 return tfm->__crt_alg->cra_driver_name; 671 } 672 673 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 674 { 675 return tfm->__crt_alg->cra_priority; 676 } 677 678 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 679 { 680 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 681 } 682 683 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 684 { 685 return tfm->__crt_alg->cra_blocksize; 686 } 687 688 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 689 { 690 return tfm->__crt_alg->cra_alignmask; 691 } 692 693 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 694 { 695 return tfm->crt_flags; 696 } 697 698 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 699 { 700 tfm->crt_flags |= flags; 701 } 702 703 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 704 { 705 tfm->crt_flags &= ~flags; 706 } 707 708 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 709 { 710 return tfm->__crt_ctx; 711 } 712 713 static inline unsigned int crypto_tfm_ctx_alignment(void) 714 { 715 struct crypto_tfm *tfm; 716 return __alignof__(tfm->__crt_ctx); 717 } 718 719 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 720 { 721 return (struct crypto_comp *)tfm; 722 } 723 724 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 725 u32 type, u32 mask) 726 { 727 type &= ~CRYPTO_ALG_TYPE_MASK; 728 type |= CRYPTO_ALG_TYPE_COMPRESS; 729 mask |= CRYPTO_ALG_TYPE_MASK; 730 731 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 732 } 733 734 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 735 { 736 return &tfm->base; 737 } 738 739 static inline void crypto_free_comp(struct crypto_comp *tfm) 740 { 741 crypto_free_tfm(crypto_comp_tfm(tfm)); 742 } 743 744 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 745 { 746 type &= ~CRYPTO_ALG_TYPE_MASK; 747 type |= CRYPTO_ALG_TYPE_COMPRESS; 748 mask |= CRYPTO_ALG_TYPE_MASK; 749 750 return crypto_has_alg(alg_name, type, mask); 751 } 752 753 static inline const char *crypto_comp_name(struct crypto_comp *tfm) 754 { 755 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 756 } 757 758 int crypto_comp_compress(struct crypto_comp *tfm, 759 const u8 *src, unsigned int slen, 760 u8 *dst, unsigned int *dlen); 761 762 int crypto_comp_decompress(struct crypto_comp *tfm, 763 const u8 *src, unsigned int slen, 764 u8 *dst, unsigned int *dlen); 765 766 #endif /* _LINUX_CRYPTO_H */ 767 768
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.