1 #ifndef _LINUX_DMA_MAPPING_H 2 #define _LINUX_DMA_MAPPING_H 3 4 #include <linux/sizes.h> 5 #include <linux/string.h> 6 #include <linux/device.h> 7 #include <linux/err.h> 8 #include <linux/dma-attrs.h> 9 #include <linux/dma-debug.h> 10 #include <linux/dma-direction.h> 11 #include <linux/scatterlist.h> 12 #include <linux/kmemcheck.h> 13 #include <linux/bug.h> 14 15 /* 16 * A dma_addr_t can hold any valid DMA or bus address for the platform. 17 * It can be given to a device to use as a DMA source or target. A CPU cannot 18 * reference a dma_addr_t directly because there may be translation between 19 * its physical address space and the bus address space. 20 */ 21 struct dma_map_ops { 22 void* (*alloc)(struct device *dev, size_t size, 23 dma_addr_t *dma_handle, gfp_t gfp, 24 struct dma_attrs *attrs); 25 void (*free)(struct device *dev, size_t size, 26 void *vaddr, dma_addr_t dma_handle, 27 struct dma_attrs *attrs); 28 int (*mmap)(struct device *, struct vm_area_struct *, 29 void *, dma_addr_t, size_t, struct dma_attrs *attrs); 30 31 int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *, 32 dma_addr_t, size_t, struct dma_attrs *attrs); 33 34 dma_addr_t (*map_page)(struct device *dev, struct page *page, 35 unsigned long offset, size_t size, 36 enum dma_data_direction dir, 37 struct dma_attrs *attrs); 38 void (*unmap_page)(struct device *dev, dma_addr_t dma_handle, 39 size_t size, enum dma_data_direction dir, 40 struct dma_attrs *attrs); 41 /* 42 * map_sg returns 0 on error and a value > 0 on success. 43 * It should never return a value < 0. 44 */ 45 int (*map_sg)(struct device *dev, struct scatterlist *sg, 46 int nents, enum dma_data_direction dir, 47 struct dma_attrs *attrs); 48 void (*unmap_sg)(struct device *dev, 49 struct scatterlist *sg, int nents, 50 enum dma_data_direction dir, 51 struct dma_attrs *attrs); 52 void (*sync_single_for_cpu)(struct device *dev, 53 dma_addr_t dma_handle, size_t size, 54 enum dma_data_direction dir); 55 void (*sync_single_for_device)(struct device *dev, 56 dma_addr_t dma_handle, size_t size, 57 enum dma_data_direction dir); 58 void (*sync_sg_for_cpu)(struct device *dev, 59 struct scatterlist *sg, int nents, 60 enum dma_data_direction dir); 61 void (*sync_sg_for_device)(struct device *dev, 62 struct scatterlist *sg, int nents, 63 enum dma_data_direction dir); 64 int (*mapping_error)(struct device *dev, dma_addr_t dma_addr); 65 int (*dma_supported)(struct device *dev, u64 mask); 66 int (*set_dma_mask)(struct device *dev, u64 mask); 67 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK 68 u64 (*get_required_mask)(struct device *dev); 69 #endif 70 int is_phys; 71 }; 72 73 extern struct dma_map_ops dma_noop_ops; 74 75 #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) 76 77 #define DMA_MASK_NONE 0x0ULL 78 79 static inline int valid_dma_direction(int dma_direction) 80 { 81 return ((dma_direction == DMA_BIDIRECTIONAL) || 82 (dma_direction == DMA_TO_DEVICE) || 83 (dma_direction == DMA_FROM_DEVICE)); 84 } 85 86 static inline int is_device_dma_capable(struct device *dev) 87 { 88 return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE; 89 } 90 91 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 92 /* 93 * These three functions are only for dma allocator. 94 * Don't use them in device drivers. 95 */ 96 int dma_alloc_from_coherent(struct device *dev, ssize_t size, 97 dma_addr_t *dma_handle, void **ret); 98 int dma_release_from_coherent(struct device *dev, int order, void *vaddr); 99 100 int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma, 101 void *cpu_addr, size_t size, int *ret); 102 #else 103 #define dma_alloc_from_coherent(dev, size, handle, ret) (0) 104 #define dma_release_from_coherent(dev, order, vaddr) (0) 105 #define dma_mmap_from_coherent(dev, vma, vaddr, order, ret) (0) 106 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 107 108 #ifdef CONFIG_HAS_DMA 109 #include <asm/dma-mapping.h> 110 #else 111 /* 112 * Define the dma api to allow compilation but not linking of 113 * dma dependent code. Code that depends on the dma-mapping 114 * API needs to set 'depends on HAS_DMA' in its Kconfig 115 */ 116 extern struct dma_map_ops bad_dma_ops; 117 static inline struct dma_map_ops *get_dma_ops(struct device *dev) 118 { 119 return &bad_dma_ops; 120 } 121 #endif 122 123 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, 124 size_t size, 125 enum dma_data_direction dir, 126 struct dma_attrs *attrs) 127 { 128 struct dma_map_ops *ops = get_dma_ops(dev); 129 dma_addr_t addr; 130 131 kmemcheck_mark_initialized(ptr, size); 132 BUG_ON(!valid_dma_direction(dir)); 133 addr = ops->map_page(dev, virt_to_page(ptr), 134 offset_in_page(ptr), size, 135 dir, attrs); 136 debug_dma_map_page(dev, virt_to_page(ptr), 137 offset_in_page(ptr), size, 138 dir, addr, true); 139 return addr; 140 } 141 142 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, 143 size_t size, 144 enum dma_data_direction dir, 145 struct dma_attrs *attrs) 146 { 147 struct dma_map_ops *ops = get_dma_ops(dev); 148 149 BUG_ON(!valid_dma_direction(dir)); 150 if (ops->unmap_page) 151 ops->unmap_page(dev, addr, size, dir, attrs); 152 debug_dma_unmap_page(dev, addr, size, dir, true); 153 } 154 155 /* 156 * dma_maps_sg_attrs returns 0 on error and > 0 on success. 157 * It should never return a value < 0. 158 */ 159 static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 160 int nents, enum dma_data_direction dir, 161 struct dma_attrs *attrs) 162 { 163 struct dma_map_ops *ops = get_dma_ops(dev); 164 int i, ents; 165 struct scatterlist *s; 166 167 for_each_sg(sg, s, nents, i) 168 kmemcheck_mark_initialized(sg_virt(s), s->length); 169 BUG_ON(!valid_dma_direction(dir)); 170 ents = ops->map_sg(dev, sg, nents, dir, attrs); 171 BUG_ON(ents < 0); 172 debug_dma_map_sg(dev, sg, nents, ents, dir); 173 174 return ents; 175 } 176 177 static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 178 int nents, enum dma_data_direction dir, 179 struct dma_attrs *attrs) 180 { 181 struct dma_map_ops *ops = get_dma_ops(dev); 182 183 BUG_ON(!valid_dma_direction(dir)); 184 debug_dma_unmap_sg(dev, sg, nents, dir); 185 if (ops->unmap_sg) 186 ops->unmap_sg(dev, sg, nents, dir, attrs); 187 } 188 189 static inline dma_addr_t dma_map_page(struct device *dev, struct page *page, 190 size_t offset, size_t size, 191 enum dma_data_direction dir) 192 { 193 struct dma_map_ops *ops = get_dma_ops(dev); 194 dma_addr_t addr; 195 196 kmemcheck_mark_initialized(page_address(page) + offset, size); 197 BUG_ON(!valid_dma_direction(dir)); 198 addr = ops->map_page(dev, page, offset, size, dir, NULL); 199 debug_dma_map_page(dev, page, offset, size, dir, addr, false); 200 201 return addr; 202 } 203 204 static inline void dma_unmap_page(struct device *dev, dma_addr_t addr, 205 size_t size, enum dma_data_direction dir) 206 { 207 struct dma_map_ops *ops = get_dma_ops(dev); 208 209 BUG_ON(!valid_dma_direction(dir)); 210 if (ops->unmap_page) 211 ops->unmap_page(dev, addr, size, dir, NULL); 212 debug_dma_unmap_page(dev, addr, size, dir, false); 213 } 214 215 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 216 size_t size, 217 enum dma_data_direction dir) 218 { 219 struct dma_map_ops *ops = get_dma_ops(dev); 220 221 BUG_ON(!valid_dma_direction(dir)); 222 if (ops->sync_single_for_cpu) 223 ops->sync_single_for_cpu(dev, addr, size, dir); 224 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 225 } 226 227 static inline void dma_sync_single_for_device(struct device *dev, 228 dma_addr_t addr, size_t size, 229 enum dma_data_direction dir) 230 { 231 struct dma_map_ops *ops = get_dma_ops(dev); 232 233 BUG_ON(!valid_dma_direction(dir)); 234 if (ops->sync_single_for_device) 235 ops->sync_single_for_device(dev, addr, size, dir); 236 debug_dma_sync_single_for_device(dev, addr, size, dir); 237 } 238 239 static inline void dma_sync_single_range_for_cpu(struct device *dev, 240 dma_addr_t addr, 241 unsigned long offset, 242 size_t size, 243 enum dma_data_direction dir) 244 { 245 const struct dma_map_ops *ops = get_dma_ops(dev); 246 247 BUG_ON(!valid_dma_direction(dir)); 248 if (ops->sync_single_for_cpu) 249 ops->sync_single_for_cpu(dev, addr + offset, size, dir); 250 debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir); 251 } 252 253 static inline void dma_sync_single_range_for_device(struct device *dev, 254 dma_addr_t addr, 255 unsigned long offset, 256 size_t size, 257 enum dma_data_direction dir) 258 { 259 const struct dma_map_ops *ops = get_dma_ops(dev); 260 261 BUG_ON(!valid_dma_direction(dir)); 262 if (ops->sync_single_for_device) 263 ops->sync_single_for_device(dev, addr + offset, size, dir); 264 debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir); 265 } 266 267 static inline void 268 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 269 int nelems, enum dma_data_direction dir) 270 { 271 struct dma_map_ops *ops = get_dma_ops(dev); 272 273 BUG_ON(!valid_dma_direction(dir)); 274 if (ops->sync_sg_for_cpu) 275 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 276 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 277 } 278 279 static inline void 280 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 281 int nelems, enum dma_data_direction dir) 282 { 283 struct dma_map_ops *ops = get_dma_ops(dev); 284 285 BUG_ON(!valid_dma_direction(dir)); 286 if (ops->sync_sg_for_device) 287 ops->sync_sg_for_device(dev, sg, nelems, dir); 288 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 289 290 } 291 292 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, NULL) 293 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, NULL) 294 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, NULL) 295 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, NULL) 296 297 extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, 298 void *cpu_addr, dma_addr_t dma_addr, size_t size); 299 300 void *dma_common_contiguous_remap(struct page *page, size_t size, 301 unsigned long vm_flags, 302 pgprot_t prot, const void *caller); 303 304 void *dma_common_pages_remap(struct page **pages, size_t size, 305 unsigned long vm_flags, pgprot_t prot, 306 const void *caller); 307 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags); 308 309 /** 310 * dma_mmap_attrs - map a coherent DMA allocation into user space 311 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 312 * @vma: vm_area_struct describing requested user mapping 313 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 314 * @handle: device-view address returned from dma_alloc_attrs 315 * @size: size of memory originally requested in dma_alloc_attrs 316 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 317 * 318 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs 319 * into user space. The coherent DMA buffer must not be freed by the 320 * driver until the user space mapping has been released. 321 */ 322 static inline int 323 dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, 324 dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs) 325 { 326 struct dma_map_ops *ops = get_dma_ops(dev); 327 BUG_ON(!ops); 328 if (ops->mmap) 329 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 330 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size); 331 } 332 333 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, NULL) 334 335 int 336 dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, 337 void *cpu_addr, dma_addr_t dma_addr, size_t size); 338 339 static inline int 340 dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, 341 dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs) 342 { 343 struct dma_map_ops *ops = get_dma_ops(dev); 344 BUG_ON(!ops); 345 if (ops->get_sgtable) 346 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, 347 attrs); 348 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size); 349 } 350 351 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, NULL) 352 353 #ifndef arch_dma_alloc_attrs 354 #define arch_dma_alloc_attrs(dev, flag) (true) 355 #endif 356 357 static inline void *dma_alloc_attrs(struct device *dev, size_t size, 358 dma_addr_t *dma_handle, gfp_t flag, 359 struct dma_attrs *attrs) 360 { 361 struct dma_map_ops *ops = get_dma_ops(dev); 362 void *cpu_addr; 363 364 BUG_ON(!ops); 365 366 if (dma_alloc_from_coherent(dev, size, dma_handle, &cpu_addr)) 367 return cpu_addr; 368 369 if (!arch_dma_alloc_attrs(&dev, &flag)) 370 return NULL; 371 if (!ops->alloc) 372 return NULL; 373 374 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 375 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); 376 return cpu_addr; 377 } 378 379 static inline void dma_free_attrs(struct device *dev, size_t size, 380 void *cpu_addr, dma_addr_t dma_handle, 381 struct dma_attrs *attrs) 382 { 383 struct dma_map_ops *ops = get_dma_ops(dev); 384 385 BUG_ON(!ops); 386 WARN_ON(irqs_disabled()); 387 388 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 389 return; 390 391 if (!ops->free || !cpu_addr) 392 return; 393 394 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 395 ops->free(dev, size, cpu_addr, dma_handle, attrs); 396 } 397 398 static inline void *dma_alloc_coherent(struct device *dev, size_t size, 399 dma_addr_t *dma_handle, gfp_t flag) 400 { 401 return dma_alloc_attrs(dev, size, dma_handle, flag, NULL); 402 } 403 404 static inline void dma_free_coherent(struct device *dev, size_t size, 405 void *cpu_addr, dma_addr_t dma_handle) 406 { 407 return dma_free_attrs(dev, size, cpu_addr, dma_handle, NULL); 408 } 409 410 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size, 411 dma_addr_t *dma_handle, gfp_t gfp) 412 { 413 DEFINE_DMA_ATTRS(attrs); 414 415 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &attrs); 416 return dma_alloc_attrs(dev, size, dma_handle, gfp, &attrs); 417 } 418 419 static inline void dma_free_noncoherent(struct device *dev, size_t size, 420 void *cpu_addr, dma_addr_t dma_handle) 421 { 422 DEFINE_DMA_ATTRS(attrs); 423 424 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &attrs); 425 dma_free_attrs(dev, size, cpu_addr, dma_handle, &attrs); 426 } 427 428 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 429 { 430 debug_dma_mapping_error(dev, dma_addr); 431 432 if (get_dma_ops(dev)->mapping_error) 433 return get_dma_ops(dev)->mapping_error(dev, dma_addr); 434 435 #ifdef DMA_ERROR_CODE 436 return dma_addr == DMA_ERROR_CODE; 437 #else 438 return 0; 439 #endif 440 } 441 442 #ifndef HAVE_ARCH_DMA_SUPPORTED 443 static inline int dma_supported(struct device *dev, u64 mask) 444 { 445 struct dma_map_ops *ops = get_dma_ops(dev); 446 447 if (!ops) 448 return 0; 449 if (!ops->dma_supported) 450 return 1; 451 return ops->dma_supported(dev, mask); 452 } 453 #endif 454 455 #ifndef HAVE_ARCH_DMA_SET_MASK 456 static inline int dma_set_mask(struct device *dev, u64 mask) 457 { 458 struct dma_map_ops *ops = get_dma_ops(dev); 459 460 if (ops->set_dma_mask) 461 return ops->set_dma_mask(dev, mask); 462 463 if (!dev->dma_mask || !dma_supported(dev, mask)) 464 return -EIO; 465 *dev->dma_mask = mask; 466 return 0; 467 } 468 #endif 469 470 static inline u64 dma_get_mask(struct device *dev) 471 { 472 if (dev && dev->dma_mask && *dev->dma_mask) 473 return *dev->dma_mask; 474 return DMA_BIT_MASK(32); 475 } 476 477 #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK 478 int dma_set_coherent_mask(struct device *dev, u64 mask); 479 #else 480 static inline int dma_set_coherent_mask(struct device *dev, u64 mask) 481 { 482 if (!dma_supported(dev, mask)) 483 return -EIO; 484 dev->coherent_dma_mask = mask; 485 return 0; 486 } 487 #endif 488 489 /* 490 * Set both the DMA mask and the coherent DMA mask to the same thing. 491 * Note that we don't check the return value from dma_set_coherent_mask() 492 * as the DMA API guarantees that the coherent DMA mask can be set to 493 * the same or smaller than the streaming DMA mask. 494 */ 495 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) 496 { 497 int rc = dma_set_mask(dev, mask); 498 if (rc == 0) 499 dma_set_coherent_mask(dev, mask); 500 return rc; 501 } 502 503 /* 504 * Similar to the above, except it deals with the case where the device 505 * does not have dev->dma_mask appropriately setup. 506 */ 507 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) 508 { 509 dev->dma_mask = &dev->coherent_dma_mask; 510 return dma_set_mask_and_coherent(dev, mask); 511 } 512 513 extern u64 dma_get_required_mask(struct device *dev); 514 515 #ifndef arch_setup_dma_ops 516 static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base, 517 u64 size, const struct iommu_ops *iommu, 518 bool coherent) { } 519 #endif 520 521 #ifndef arch_teardown_dma_ops 522 static inline void arch_teardown_dma_ops(struct device *dev) { } 523 #endif 524 525 static inline unsigned int dma_get_max_seg_size(struct device *dev) 526 { 527 if (dev->dma_parms && dev->dma_parms->max_segment_size) 528 return dev->dma_parms->max_segment_size; 529 return SZ_64K; 530 } 531 532 static inline unsigned int dma_set_max_seg_size(struct device *dev, 533 unsigned int size) 534 { 535 if (dev->dma_parms) { 536 dev->dma_parms->max_segment_size = size; 537 return 0; 538 } 539 return -EIO; 540 } 541 542 static inline unsigned long dma_get_seg_boundary(struct device *dev) 543 { 544 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) 545 return dev->dma_parms->segment_boundary_mask; 546 return DMA_BIT_MASK(32); 547 } 548 549 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) 550 { 551 if (dev->dma_parms) { 552 dev->dma_parms->segment_boundary_mask = mask; 553 return 0; 554 } 555 return -EIO; 556 } 557 558 #ifndef dma_max_pfn 559 static inline unsigned long dma_max_pfn(struct device *dev) 560 { 561 return *dev->dma_mask >> PAGE_SHIFT; 562 } 563 #endif 564 565 static inline void *dma_zalloc_coherent(struct device *dev, size_t size, 566 dma_addr_t *dma_handle, gfp_t flag) 567 { 568 void *ret = dma_alloc_coherent(dev, size, dma_handle, 569 flag | __GFP_ZERO); 570 return ret; 571 } 572 573 #ifdef CONFIG_HAS_DMA 574 static inline int dma_get_cache_alignment(void) 575 { 576 #ifdef ARCH_DMA_MINALIGN 577 return ARCH_DMA_MINALIGN; 578 #endif 579 return 1; 580 } 581 #endif 582 583 /* flags for the coherent memory api */ 584 #define DMA_MEMORY_MAP 0x01 585 #define DMA_MEMORY_IO 0x02 586 #define DMA_MEMORY_INCLUDES_CHILDREN 0x04 587 #define DMA_MEMORY_EXCLUSIVE 0x08 588 589 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 590 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 591 dma_addr_t device_addr, size_t size, int flags); 592 void dma_release_declared_memory(struct device *dev); 593 void *dma_mark_declared_memory_occupied(struct device *dev, 594 dma_addr_t device_addr, size_t size); 595 #else 596 static inline int 597 dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 598 dma_addr_t device_addr, size_t size, int flags) 599 { 600 return 0; 601 } 602 603 static inline void 604 dma_release_declared_memory(struct device *dev) 605 { 606 } 607 608 static inline void * 609 dma_mark_declared_memory_occupied(struct device *dev, 610 dma_addr_t device_addr, size_t size) 611 { 612 return ERR_PTR(-EBUSY); 613 } 614 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 615 616 /* 617 * Managed DMA API 618 */ 619 extern void *dmam_alloc_coherent(struct device *dev, size_t size, 620 dma_addr_t *dma_handle, gfp_t gfp); 621 extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 622 dma_addr_t dma_handle); 623 extern void *dmam_alloc_noncoherent(struct device *dev, size_t size, 624 dma_addr_t *dma_handle, gfp_t gfp); 625 extern void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr, 626 dma_addr_t dma_handle); 627 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 628 extern int dmam_declare_coherent_memory(struct device *dev, 629 phys_addr_t phys_addr, 630 dma_addr_t device_addr, size_t size, 631 int flags); 632 extern void dmam_release_declared_memory(struct device *dev); 633 #else /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 634 static inline int dmam_declare_coherent_memory(struct device *dev, 635 phys_addr_t phys_addr, dma_addr_t device_addr, 636 size_t size, gfp_t gfp) 637 { 638 return 0; 639 } 640 641 static inline void dmam_release_declared_memory(struct device *dev) 642 { 643 } 644 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 645 646 static inline void *dma_alloc_wc(struct device *dev, size_t size, 647 dma_addr_t *dma_addr, gfp_t gfp) 648 { 649 DEFINE_DMA_ATTRS(attrs); 650 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs); 651 return dma_alloc_attrs(dev, size, dma_addr, gfp, &attrs); 652 } 653 #ifndef dma_alloc_writecombine 654 #define dma_alloc_writecombine dma_alloc_wc 655 #endif 656 657 static inline void dma_free_wc(struct device *dev, size_t size, 658 void *cpu_addr, dma_addr_t dma_addr) 659 { 660 DEFINE_DMA_ATTRS(attrs); 661 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs); 662 return dma_free_attrs(dev, size, cpu_addr, dma_addr, &attrs); 663 } 664 #ifndef dma_free_writecombine 665 #define dma_free_writecombine dma_free_wc 666 #endif 667 668 static inline int dma_mmap_wc(struct device *dev, 669 struct vm_area_struct *vma, 670 void *cpu_addr, dma_addr_t dma_addr, 671 size_t size) 672 { 673 DEFINE_DMA_ATTRS(attrs); 674 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs); 675 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, &attrs); 676 } 677 #ifndef dma_mmap_writecombine 678 #define dma_mmap_writecombine dma_mmap_wc 679 #endif 680 681 #ifdef CONFIG_NEED_DMA_MAP_STATE 682 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME 683 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME 684 #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) 685 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) 686 #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) 687 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) 688 #else 689 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) 690 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) 691 #define dma_unmap_addr(PTR, ADDR_NAME) (0) 692 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) 693 #define dma_unmap_len(PTR, LEN_NAME) (0) 694 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) 695 #endif 696 697 #endif 698
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.