1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21 #ifndef LINUX_DMAENGINE_H 22 #define LINUX_DMAENGINE_H 23 24 #include <linux/device.h> 25 #include <linux/err.h> 26 #include <linux/uio.h> 27 #include <linux/bug.h> 28 #include <linux/scatterlist.h> 29 #include <linux/bitmap.h> 30 #include <linux/types.h> 31 #include <asm/page.h> 32 33 /** 34 * typedef dma_cookie_t - an opaque DMA cookie 35 * 36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 37 */ 38 typedef s32 dma_cookie_t; 39 #define DMA_MIN_COOKIE 1 40 41 static inline int dma_submit_error(dma_cookie_t cookie) 42 { 43 return cookie < 0 ? cookie : 0; 44 } 45 46 /** 47 * enum dma_status - DMA transaction status 48 * @DMA_COMPLETE: transaction completed 49 * @DMA_IN_PROGRESS: transaction not yet processed 50 * @DMA_PAUSED: transaction is paused 51 * @DMA_ERROR: transaction failed 52 */ 53 enum dma_status { 54 DMA_COMPLETE, 55 DMA_IN_PROGRESS, 56 DMA_PAUSED, 57 DMA_ERROR, 58 }; 59 60 /** 61 * enum dma_transaction_type - DMA transaction types/indexes 62 * 63 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 64 * automatically set as dma devices are registered. 65 */ 66 enum dma_transaction_type { 67 DMA_MEMCPY, 68 DMA_XOR, 69 DMA_PQ, 70 DMA_XOR_VAL, 71 DMA_PQ_VAL, 72 DMA_INTERRUPT, 73 DMA_SG, 74 DMA_PRIVATE, 75 DMA_ASYNC_TX, 76 DMA_SLAVE, 77 DMA_CYCLIC, 78 DMA_INTERLEAVE, 79 /* last transaction type for creation of the capabilities mask */ 80 DMA_TX_TYPE_END, 81 }; 82 83 /** 84 * enum dma_transfer_direction - dma transfer mode and direction indicator 85 * @DMA_MEM_TO_MEM: Async/Memcpy mode 86 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 87 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 88 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 89 */ 90 enum dma_transfer_direction { 91 DMA_MEM_TO_MEM, 92 DMA_MEM_TO_DEV, 93 DMA_DEV_TO_MEM, 94 DMA_DEV_TO_DEV, 95 DMA_TRANS_NONE, 96 }; 97 98 /** 99 * Interleaved Transfer Request 100 * ---------------------------- 101 * A chunk is collection of contiguous bytes to be transfered. 102 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 103 * ICGs may or maynot change between chunks. 104 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 105 * that when repeated an integral number of times, specifies the transfer. 106 * A transfer template is specification of a Frame, the number of times 107 * it is to be repeated and other per-transfer attributes. 108 * 109 * Practically, a client driver would have ready a template for each 110 * type of transfer it is going to need during its lifetime and 111 * set only 'src_start' and 'dst_start' before submitting the requests. 112 * 113 * 114 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 115 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 116 * 117 * == Chunk size 118 * ... ICG 119 */ 120 121 /** 122 * struct data_chunk - Element of scatter-gather list that makes a frame. 123 * @size: Number of bytes to read from source. 124 * size_dst := fn(op, size_src), so doesn't mean much for destination. 125 * @icg: Number of bytes to jump after last src/dst address of this 126 * chunk and before first src/dst address for next chunk. 127 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 128 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 129 */ 130 struct data_chunk { 131 size_t size; 132 size_t icg; 133 }; 134 135 /** 136 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 137 * and attributes. 138 * @src_start: Bus address of source for the first chunk. 139 * @dst_start: Bus address of destination for the first chunk. 140 * @dir: Specifies the type of Source and Destination. 141 * @src_inc: If the source address increments after reading from it. 142 * @dst_inc: If the destination address increments after writing to it. 143 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 144 * Otherwise, source is read contiguously (icg ignored). 145 * Ignored if src_inc is false. 146 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 147 * Otherwise, destination is filled contiguously (icg ignored). 148 * Ignored if dst_inc is false. 149 * @numf: Number of frames in this template. 150 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 151 * @sgl: Array of {chunk,icg} pairs that make up a frame. 152 */ 153 struct dma_interleaved_template { 154 dma_addr_t src_start; 155 dma_addr_t dst_start; 156 enum dma_transfer_direction dir; 157 bool src_inc; 158 bool dst_inc; 159 bool src_sgl; 160 bool dst_sgl; 161 size_t numf; 162 size_t frame_size; 163 struct data_chunk sgl[0]; 164 }; 165 166 /** 167 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 168 * control completion, and communicate status. 169 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 170 * this transaction 171 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 172 * acknowledges receipt, i.e. has has a chance to establish any dependency 173 * chains 174 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 175 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 176 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 177 * sources that were the result of a previous operation, in the case of a PQ 178 * operation it continues the calculation with new sources 179 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 180 * on the result of this operation 181 */ 182 enum dma_ctrl_flags { 183 DMA_PREP_INTERRUPT = (1 << 0), 184 DMA_CTRL_ACK = (1 << 1), 185 DMA_PREP_PQ_DISABLE_P = (1 << 2), 186 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 187 DMA_PREP_CONTINUE = (1 << 4), 188 DMA_PREP_FENCE = (1 << 5), 189 }; 190 191 /** 192 * enum sum_check_bits - bit position of pq_check_flags 193 */ 194 enum sum_check_bits { 195 SUM_CHECK_P = 0, 196 SUM_CHECK_Q = 1, 197 }; 198 199 /** 200 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 201 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 202 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 203 */ 204 enum sum_check_flags { 205 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 206 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 207 }; 208 209 210 /** 211 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 212 * See linux/cpumask.h 213 */ 214 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 215 216 /** 217 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 218 * @memcpy_count: transaction counter 219 * @bytes_transferred: byte counter 220 */ 221 222 struct dma_chan_percpu { 223 /* stats */ 224 unsigned long memcpy_count; 225 unsigned long bytes_transferred; 226 }; 227 228 /** 229 * struct dma_chan - devices supply DMA channels, clients use them 230 * @device: ptr to the dma device who supplies this channel, always !%NULL 231 * @cookie: last cookie value returned to client 232 * @completed_cookie: last completed cookie for this channel 233 * @chan_id: channel ID for sysfs 234 * @dev: class device for sysfs 235 * @device_node: used to add this to the device chan list 236 * @local: per-cpu pointer to a struct dma_chan_percpu 237 * @client_count: how many clients are using this channel 238 * @table_count: number of appearances in the mem-to-mem allocation table 239 * @private: private data for certain client-channel associations 240 */ 241 struct dma_chan { 242 struct dma_device *device; 243 dma_cookie_t cookie; 244 dma_cookie_t completed_cookie; 245 246 /* sysfs */ 247 int chan_id; 248 struct dma_chan_dev *dev; 249 250 struct list_head device_node; 251 struct dma_chan_percpu __percpu *local; 252 int client_count; 253 int table_count; 254 void *private; 255 }; 256 257 /** 258 * struct dma_chan_dev - relate sysfs device node to backing channel device 259 * @chan: driver channel device 260 * @device: sysfs device 261 * @dev_id: parent dma_device dev_id 262 * @idr_ref: reference count to gate release of dma_device dev_id 263 */ 264 struct dma_chan_dev { 265 struct dma_chan *chan; 266 struct device device; 267 int dev_id; 268 atomic_t *idr_ref; 269 }; 270 271 /** 272 * enum dma_slave_buswidth - defines bus width of the DMA slave 273 * device, source or target buses 274 */ 275 enum dma_slave_buswidth { 276 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 277 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 278 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 279 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 280 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 281 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 282 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 283 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 284 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 285 }; 286 287 /** 288 * struct dma_slave_config - dma slave channel runtime config 289 * @direction: whether the data shall go in or out on this slave 290 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 291 * legal values. DEPRECATED, drivers should use the direction argument 292 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 293 * the dir field in the dma_interleaved_template structure. 294 * @src_addr: this is the physical address where DMA slave data 295 * should be read (RX), if the source is memory this argument is 296 * ignored. 297 * @dst_addr: this is the physical address where DMA slave data 298 * should be written (TX), if the source is memory this argument 299 * is ignored. 300 * @src_addr_width: this is the width in bytes of the source (RX) 301 * register where DMA data shall be read. If the source 302 * is memory this may be ignored depending on architecture. 303 * Legal values: 1, 2, 4, 8. 304 * @dst_addr_width: same as src_addr_width but for destination 305 * target (TX) mutatis mutandis. 306 * @src_maxburst: the maximum number of words (note: words, as in 307 * units of the src_addr_width member, not bytes) that can be sent 308 * in one burst to the device. Typically something like half the 309 * FIFO depth on I/O peripherals so you don't overflow it. This 310 * may or may not be applicable on memory sources. 311 * @dst_maxburst: same as src_maxburst but for destination target 312 * mutatis mutandis. 313 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 314 * with 'true' if peripheral should be flow controller. Direction will be 315 * selected at Runtime. 316 * @slave_id: Slave requester id. Only valid for slave channels. The dma 317 * slave peripheral will have unique id as dma requester which need to be 318 * pass as slave config. 319 * 320 * This struct is passed in as configuration data to a DMA engine 321 * in order to set up a certain channel for DMA transport at runtime. 322 * The DMA device/engine has to provide support for an additional 323 * callback in the dma_device structure, device_config and this struct 324 * will then be passed in as an argument to the function. 325 * 326 * The rationale for adding configuration information to this struct is as 327 * follows: if it is likely that more than one DMA slave controllers in 328 * the world will support the configuration option, then make it generic. 329 * If not: if it is fixed so that it be sent in static from the platform 330 * data, then prefer to do that. 331 */ 332 struct dma_slave_config { 333 enum dma_transfer_direction direction; 334 dma_addr_t src_addr; 335 dma_addr_t dst_addr; 336 enum dma_slave_buswidth src_addr_width; 337 enum dma_slave_buswidth dst_addr_width; 338 u32 src_maxburst; 339 u32 dst_maxburst; 340 bool device_fc; 341 unsigned int slave_id; 342 }; 343 344 /** 345 * enum dma_residue_granularity - Granularity of the reported transfer residue 346 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 347 * DMA channel is only able to tell whether a descriptor has been completed or 348 * not, which means residue reporting is not supported by this channel. The 349 * residue field of the dma_tx_state field will always be 0. 350 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 351 * completed segment of the transfer (For cyclic transfers this is after each 352 * period). This is typically implemented by having the hardware generate an 353 * interrupt after each transferred segment and then the drivers updates the 354 * outstanding residue by the size of the segment. Another possibility is if 355 * the hardware supports scatter-gather and the segment descriptor has a field 356 * which gets set after the segment has been completed. The driver then counts 357 * the number of segments without the flag set to compute the residue. 358 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 359 * burst. This is typically only supported if the hardware has a progress 360 * register of some sort (E.g. a register with the current read/write address 361 * or a register with the amount of bursts/beats/bytes that have been 362 * transferred or still need to be transferred). 363 */ 364 enum dma_residue_granularity { 365 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 366 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 367 DMA_RESIDUE_GRANULARITY_BURST = 2, 368 }; 369 370 /* struct dma_slave_caps - expose capabilities of a slave channel only 371 * 372 * @src_addr_widths: bit mask of src addr widths the channel supports 373 * @dst_addr_widths: bit mask of dstn addr widths the channel supports 374 * @directions: bit mask of slave direction the channel supported 375 * since the enum dma_transfer_direction is not defined as bits for each 376 * type of direction, the dma controller should fill (1 << <TYPE>) and same 377 * should be checked by controller as well 378 * @cmd_pause: true, if pause and thereby resume is supported 379 * @cmd_terminate: true, if terminate cmd is supported 380 * @residue_granularity: granularity of the reported transfer residue 381 */ 382 struct dma_slave_caps { 383 u32 src_addr_widths; 384 u32 dst_addr_widths; 385 u32 directions; 386 bool cmd_pause; 387 bool cmd_terminate; 388 enum dma_residue_granularity residue_granularity; 389 }; 390 391 static inline const char *dma_chan_name(struct dma_chan *chan) 392 { 393 return dev_name(&chan->dev->device); 394 } 395 396 void dma_chan_cleanup(struct kref *kref); 397 398 /** 399 * typedef dma_filter_fn - callback filter for dma_request_channel 400 * @chan: channel to be reviewed 401 * @filter_param: opaque parameter passed through dma_request_channel 402 * 403 * When this optional parameter is specified in a call to dma_request_channel a 404 * suitable channel is passed to this routine for further dispositioning before 405 * being returned. Where 'suitable' indicates a non-busy channel that 406 * satisfies the given capability mask. It returns 'true' to indicate that the 407 * channel is suitable. 408 */ 409 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 410 411 typedef void (*dma_async_tx_callback)(void *dma_async_param); 412 413 struct dmaengine_unmap_data { 414 u8 map_cnt; 415 u8 to_cnt; 416 u8 from_cnt; 417 u8 bidi_cnt; 418 struct device *dev; 419 struct kref kref; 420 size_t len; 421 dma_addr_t addr[0]; 422 }; 423 424 /** 425 * struct dma_async_tx_descriptor - async transaction descriptor 426 * ---dma generic offload fields--- 427 * @cookie: tracking cookie for this transaction, set to -EBUSY if 428 * this tx is sitting on a dependency list 429 * @flags: flags to augment operation preparation, control completion, and 430 * communicate status 431 * @phys: physical address of the descriptor 432 * @chan: target channel for this operation 433 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 434 * descriptor pending. To be pushed on .issue_pending() call 435 * @callback: routine to call after this operation is complete 436 * @callback_param: general parameter to pass to the callback routine 437 * ---async_tx api specific fields--- 438 * @next: at completion submit this descriptor 439 * @parent: pointer to the next level up in the dependency chain 440 * @lock: protect the parent and next pointers 441 */ 442 struct dma_async_tx_descriptor { 443 dma_cookie_t cookie; 444 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 445 dma_addr_t phys; 446 struct dma_chan *chan; 447 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 448 dma_async_tx_callback callback; 449 void *callback_param; 450 struct dmaengine_unmap_data *unmap; 451 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 452 struct dma_async_tx_descriptor *next; 453 struct dma_async_tx_descriptor *parent; 454 spinlock_t lock; 455 #endif 456 }; 457 458 #ifdef CONFIG_DMA_ENGINE 459 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 460 struct dmaengine_unmap_data *unmap) 461 { 462 kref_get(&unmap->kref); 463 tx->unmap = unmap; 464 } 465 466 struct dmaengine_unmap_data * 467 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 468 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 469 #else 470 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 471 struct dmaengine_unmap_data *unmap) 472 { 473 } 474 static inline struct dmaengine_unmap_data * 475 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 476 { 477 return NULL; 478 } 479 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 480 { 481 } 482 #endif 483 484 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 485 { 486 if (tx->unmap) { 487 dmaengine_unmap_put(tx->unmap); 488 tx->unmap = NULL; 489 } 490 } 491 492 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 493 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 494 { 495 } 496 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 497 { 498 } 499 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 500 { 501 BUG(); 502 } 503 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 504 { 505 } 506 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 507 { 508 } 509 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 510 { 511 return NULL; 512 } 513 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 514 { 515 return NULL; 516 } 517 518 #else 519 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 520 { 521 spin_lock_bh(&txd->lock); 522 } 523 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 524 { 525 spin_unlock_bh(&txd->lock); 526 } 527 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 528 { 529 txd->next = next; 530 next->parent = txd; 531 } 532 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 533 { 534 txd->parent = NULL; 535 } 536 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 537 { 538 txd->next = NULL; 539 } 540 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 541 { 542 return txd->parent; 543 } 544 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 545 { 546 return txd->next; 547 } 548 #endif 549 550 /** 551 * struct dma_tx_state - filled in to report the status of 552 * a transfer. 553 * @last: last completed DMA cookie 554 * @used: last issued DMA cookie (i.e. the one in progress) 555 * @residue: the remaining number of bytes left to transmit 556 * on the selected transfer for states DMA_IN_PROGRESS and 557 * DMA_PAUSED if this is implemented in the driver, else 0 558 */ 559 struct dma_tx_state { 560 dma_cookie_t last; 561 dma_cookie_t used; 562 u32 residue; 563 }; 564 565 /** 566 * struct dma_device - info on the entity supplying DMA services 567 * @chancnt: how many DMA channels are supported 568 * @privatecnt: how many DMA channels are requested by dma_request_channel 569 * @channels: the list of struct dma_chan 570 * @global_node: list_head for global dma_device_list 571 * @cap_mask: one or more dma_capability flags 572 * @max_xor: maximum number of xor sources, 0 if no capability 573 * @max_pq: maximum number of PQ sources and PQ-continue capability 574 * @copy_align: alignment shift for memcpy operations 575 * @xor_align: alignment shift for xor operations 576 * @pq_align: alignment shift for pq operations 577 * @fill_align: alignment shift for memset operations 578 * @dev_id: unique device ID 579 * @dev: struct device reference for dma mapping api 580 * @src_addr_widths: bit mask of src addr widths the device supports 581 * @dst_addr_widths: bit mask of dst addr widths the device supports 582 * @directions: bit mask of slave direction the device supports since 583 * the enum dma_transfer_direction is not defined as bits for 584 * each type of direction, the dma controller should fill (1 << 585 * <TYPE>) and same should be checked by controller as well 586 * @residue_granularity: granularity of the transfer residue reported 587 * by tx_status 588 * @device_alloc_chan_resources: allocate resources and return the 589 * number of allocated descriptors 590 * @device_free_chan_resources: release DMA channel's resources 591 * @device_prep_dma_memcpy: prepares a memcpy operation 592 * @device_prep_dma_xor: prepares a xor operation 593 * @device_prep_dma_xor_val: prepares a xor validation operation 594 * @device_prep_dma_pq: prepares a pq operation 595 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 596 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 597 * @device_prep_slave_sg: prepares a slave dma operation 598 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 599 * The function takes a buffer of size buf_len. The callback function will 600 * be called after period_len bytes have been transferred. 601 * @device_prep_interleaved_dma: Transfer expression in a generic way. 602 * @device_config: Pushes a new configuration to a channel, return 0 or an error 603 * code 604 * @device_pause: Pauses any transfer happening on a channel. Returns 605 * 0 or an error code 606 * @device_resume: Resumes any transfer on a channel previously 607 * paused. Returns 0 or an error code 608 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 609 * or an error code 610 * @device_tx_status: poll for transaction completion, the optional 611 * txstate parameter can be supplied with a pointer to get a 612 * struct with auxiliary transfer status information, otherwise the call 613 * will just return a simple status code 614 * @device_issue_pending: push pending transactions to hardware 615 */ 616 struct dma_device { 617 618 unsigned int chancnt; 619 unsigned int privatecnt; 620 struct list_head channels; 621 struct list_head global_node; 622 dma_cap_mask_t cap_mask; 623 unsigned short max_xor; 624 unsigned short max_pq; 625 u8 copy_align; 626 u8 xor_align; 627 u8 pq_align; 628 u8 fill_align; 629 #define DMA_HAS_PQ_CONTINUE (1 << 15) 630 631 int dev_id; 632 struct device *dev; 633 634 u32 src_addr_widths; 635 u32 dst_addr_widths; 636 u32 directions; 637 enum dma_residue_granularity residue_granularity; 638 639 int (*device_alloc_chan_resources)(struct dma_chan *chan); 640 void (*device_free_chan_resources)(struct dma_chan *chan); 641 642 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 643 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 644 size_t len, unsigned long flags); 645 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 646 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 647 unsigned int src_cnt, size_t len, unsigned long flags); 648 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 649 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 650 size_t len, enum sum_check_flags *result, unsigned long flags); 651 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 652 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 653 unsigned int src_cnt, const unsigned char *scf, 654 size_t len, unsigned long flags); 655 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 656 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 657 unsigned int src_cnt, const unsigned char *scf, size_t len, 658 enum sum_check_flags *pqres, unsigned long flags); 659 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 660 struct dma_chan *chan, unsigned long flags); 661 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 662 struct dma_chan *chan, 663 struct scatterlist *dst_sg, unsigned int dst_nents, 664 struct scatterlist *src_sg, unsigned int src_nents, 665 unsigned long flags); 666 667 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 668 struct dma_chan *chan, struct scatterlist *sgl, 669 unsigned int sg_len, enum dma_transfer_direction direction, 670 unsigned long flags, void *context); 671 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 672 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 673 size_t period_len, enum dma_transfer_direction direction, 674 unsigned long flags); 675 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 676 struct dma_chan *chan, struct dma_interleaved_template *xt, 677 unsigned long flags); 678 679 int (*device_config)(struct dma_chan *chan, 680 struct dma_slave_config *config); 681 int (*device_pause)(struct dma_chan *chan); 682 int (*device_resume)(struct dma_chan *chan); 683 int (*device_terminate_all)(struct dma_chan *chan); 684 685 enum dma_status (*device_tx_status)(struct dma_chan *chan, 686 dma_cookie_t cookie, 687 struct dma_tx_state *txstate); 688 void (*device_issue_pending)(struct dma_chan *chan); 689 }; 690 691 static inline int dmaengine_slave_config(struct dma_chan *chan, 692 struct dma_slave_config *config) 693 { 694 if (chan->device->device_config) 695 return chan->device->device_config(chan, config); 696 697 return -ENOSYS; 698 } 699 700 static inline bool is_slave_direction(enum dma_transfer_direction direction) 701 { 702 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 703 } 704 705 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 706 struct dma_chan *chan, dma_addr_t buf, size_t len, 707 enum dma_transfer_direction dir, unsigned long flags) 708 { 709 struct scatterlist sg; 710 sg_init_table(&sg, 1); 711 sg_dma_address(&sg) = buf; 712 sg_dma_len(&sg) = len; 713 714 return chan->device->device_prep_slave_sg(chan, &sg, 1, 715 dir, flags, NULL); 716 } 717 718 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 719 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 720 enum dma_transfer_direction dir, unsigned long flags) 721 { 722 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 723 dir, flags, NULL); 724 } 725 726 #ifdef CONFIG_RAPIDIO_DMA_ENGINE 727 struct rio_dma_ext; 728 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 729 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 730 enum dma_transfer_direction dir, unsigned long flags, 731 struct rio_dma_ext *rio_ext) 732 { 733 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 734 dir, flags, rio_ext); 735 } 736 #endif 737 738 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 739 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 740 size_t period_len, enum dma_transfer_direction dir, 741 unsigned long flags) 742 { 743 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 744 period_len, dir, flags); 745 } 746 747 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 748 struct dma_chan *chan, struct dma_interleaved_template *xt, 749 unsigned long flags) 750 { 751 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 752 } 753 754 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg( 755 struct dma_chan *chan, 756 struct scatterlist *dst_sg, unsigned int dst_nents, 757 struct scatterlist *src_sg, unsigned int src_nents, 758 unsigned long flags) 759 { 760 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents, 761 src_sg, src_nents, flags); 762 } 763 764 static inline int dmaengine_terminate_all(struct dma_chan *chan) 765 { 766 if (chan->device->device_terminate_all) 767 return chan->device->device_terminate_all(chan); 768 769 return -ENOSYS; 770 } 771 772 static inline int dmaengine_pause(struct dma_chan *chan) 773 { 774 if (chan->device->device_pause) 775 return chan->device->device_pause(chan); 776 777 return -ENOSYS; 778 } 779 780 static inline int dmaengine_resume(struct dma_chan *chan) 781 { 782 if (chan->device->device_resume) 783 return chan->device->device_resume(chan); 784 785 return -ENOSYS; 786 } 787 788 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 789 dma_cookie_t cookie, struct dma_tx_state *state) 790 { 791 return chan->device->device_tx_status(chan, cookie, state); 792 } 793 794 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 795 { 796 return desc->tx_submit(desc); 797 } 798 799 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 800 { 801 size_t mask; 802 803 if (!align) 804 return true; 805 mask = (1 << align) - 1; 806 if (mask & (off1 | off2 | len)) 807 return false; 808 return true; 809 } 810 811 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 812 size_t off2, size_t len) 813 { 814 return dmaengine_check_align(dev->copy_align, off1, off2, len); 815 } 816 817 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 818 size_t off2, size_t len) 819 { 820 return dmaengine_check_align(dev->xor_align, off1, off2, len); 821 } 822 823 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 824 size_t off2, size_t len) 825 { 826 return dmaengine_check_align(dev->pq_align, off1, off2, len); 827 } 828 829 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 830 size_t off2, size_t len) 831 { 832 return dmaengine_check_align(dev->fill_align, off1, off2, len); 833 } 834 835 static inline void 836 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 837 { 838 dma->max_pq = maxpq; 839 if (has_pq_continue) 840 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 841 } 842 843 static inline bool dmaf_continue(enum dma_ctrl_flags flags) 844 { 845 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 846 } 847 848 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 849 { 850 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 851 852 return (flags & mask) == mask; 853 } 854 855 static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 856 { 857 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 858 } 859 860 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 861 { 862 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 863 } 864 865 /* dma_maxpq - reduce maxpq in the face of continued operations 866 * @dma - dma device with PQ capability 867 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 868 * 869 * When an engine does not support native continuation we need 3 extra 870 * source slots to reuse P and Q with the following coefficients: 871 * 1/ {00} * P : remove P from Q', but use it as a source for P' 872 * 2/ {01} * Q : use Q to continue Q' calculation 873 * 3/ {00} * Q : subtract Q from P' to cancel (2) 874 * 875 * In the case where P is disabled we only need 1 extra source: 876 * 1/ {01} * Q : use Q to continue Q' calculation 877 */ 878 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 879 { 880 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 881 return dma_dev_to_maxpq(dma); 882 else if (dmaf_p_disabled_continue(flags)) 883 return dma_dev_to_maxpq(dma) - 1; 884 else if (dmaf_continue(flags)) 885 return dma_dev_to_maxpq(dma) - 3; 886 BUG(); 887 } 888 889 /* --- public DMA engine API --- */ 890 891 #ifdef CONFIG_DMA_ENGINE 892 void dmaengine_get(void); 893 void dmaengine_put(void); 894 #else 895 static inline void dmaengine_get(void) 896 { 897 } 898 static inline void dmaengine_put(void) 899 { 900 } 901 #endif 902 903 #ifdef CONFIG_ASYNC_TX_DMA 904 #define async_dmaengine_get() dmaengine_get() 905 #define async_dmaengine_put() dmaengine_put() 906 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 907 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 908 #else 909 #define async_dma_find_channel(type) dma_find_channel(type) 910 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 911 #else 912 static inline void async_dmaengine_get(void) 913 { 914 } 915 static inline void async_dmaengine_put(void) 916 { 917 } 918 static inline struct dma_chan * 919 async_dma_find_channel(enum dma_transaction_type type) 920 { 921 return NULL; 922 } 923 #endif /* CONFIG_ASYNC_TX_DMA */ 924 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 925 struct dma_chan *chan); 926 927 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 928 { 929 tx->flags |= DMA_CTRL_ACK; 930 } 931 932 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 933 { 934 tx->flags &= ~DMA_CTRL_ACK; 935 } 936 937 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 938 { 939 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 940 } 941 942 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 943 static inline void 944 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 945 { 946 set_bit(tx_type, dstp->bits); 947 } 948 949 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 950 static inline void 951 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 952 { 953 clear_bit(tx_type, dstp->bits); 954 } 955 956 #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 957 static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 958 { 959 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 960 } 961 962 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 963 static inline int 964 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 965 { 966 return test_bit(tx_type, srcp->bits); 967 } 968 969 #define for_each_dma_cap_mask(cap, mask) \ 970 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 971 972 /** 973 * dma_async_issue_pending - flush pending transactions to HW 974 * @chan: target DMA channel 975 * 976 * This allows drivers to push copies to HW in batches, 977 * reducing MMIO writes where possible. 978 */ 979 static inline void dma_async_issue_pending(struct dma_chan *chan) 980 { 981 chan->device->device_issue_pending(chan); 982 } 983 984 /** 985 * dma_async_is_tx_complete - poll for transaction completion 986 * @chan: DMA channel 987 * @cookie: transaction identifier to check status of 988 * @last: returns last completed cookie, can be NULL 989 * @used: returns last issued cookie, can be NULL 990 * 991 * If @last and @used are passed in, upon return they reflect the driver 992 * internal state and can be used with dma_async_is_complete() to check 993 * the status of multiple cookies without re-checking hardware state. 994 */ 995 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 996 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 997 { 998 struct dma_tx_state state; 999 enum dma_status status; 1000 1001 status = chan->device->device_tx_status(chan, cookie, &state); 1002 if (last) 1003 *last = state.last; 1004 if (used) 1005 *used = state.used; 1006 return status; 1007 } 1008 1009 /** 1010 * dma_async_is_complete - test a cookie against chan state 1011 * @cookie: transaction identifier to test status of 1012 * @last_complete: last know completed transaction 1013 * @last_used: last cookie value handed out 1014 * 1015 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1016 * the test logic is separated for lightweight testing of multiple cookies 1017 */ 1018 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1019 dma_cookie_t last_complete, dma_cookie_t last_used) 1020 { 1021 if (last_complete <= last_used) { 1022 if ((cookie <= last_complete) || (cookie > last_used)) 1023 return DMA_COMPLETE; 1024 } else { 1025 if ((cookie <= last_complete) && (cookie > last_used)) 1026 return DMA_COMPLETE; 1027 } 1028 return DMA_IN_PROGRESS; 1029 } 1030 1031 static inline void 1032 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1033 { 1034 if (st) { 1035 st->last = last; 1036 st->used = used; 1037 st->residue = residue; 1038 } 1039 } 1040 1041 #ifdef CONFIG_DMA_ENGINE 1042 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1043 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1044 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1045 void dma_issue_pending_all(void); 1046 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1047 dma_filter_fn fn, void *fn_param); 1048 struct dma_chan *dma_request_slave_channel_reason(struct device *dev, 1049 const char *name); 1050 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1051 void dma_release_channel(struct dma_chan *chan); 1052 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1053 #else 1054 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1055 { 1056 return NULL; 1057 } 1058 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1059 { 1060 return DMA_COMPLETE; 1061 } 1062 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1063 { 1064 return DMA_COMPLETE; 1065 } 1066 static inline void dma_issue_pending_all(void) 1067 { 1068 } 1069 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1070 dma_filter_fn fn, void *fn_param) 1071 { 1072 return NULL; 1073 } 1074 static inline struct dma_chan *dma_request_slave_channel_reason( 1075 struct device *dev, const char *name) 1076 { 1077 return ERR_PTR(-ENODEV); 1078 } 1079 static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1080 const char *name) 1081 { 1082 return NULL; 1083 } 1084 static inline void dma_release_channel(struct dma_chan *chan) 1085 { 1086 } 1087 static inline int dma_get_slave_caps(struct dma_chan *chan, 1088 struct dma_slave_caps *caps) 1089 { 1090 return -ENXIO; 1091 } 1092 #endif 1093 1094 /* --- DMA device --- */ 1095 1096 int dma_async_device_register(struct dma_device *device); 1097 void dma_async_device_unregister(struct dma_device *device); 1098 void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1099 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); 1100 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); 1101 struct dma_chan *net_dma_find_channel(void); 1102 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1103 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1104 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1105 1106 static inline struct dma_chan 1107 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1108 dma_filter_fn fn, void *fn_param, 1109 struct device *dev, char *name) 1110 { 1111 struct dma_chan *chan; 1112 1113 chan = dma_request_slave_channel(dev, name); 1114 if (chan) 1115 return chan; 1116 1117 return __dma_request_channel(mask, fn, fn_param); 1118 } 1119 1120 /* --- Helper iov-locking functions --- */ 1121 1122 struct dma_page_list { 1123 char __user *base_address; 1124 int nr_pages; 1125 struct page **pages; 1126 }; 1127 1128 struct dma_pinned_list { 1129 int nr_iovecs; 1130 struct dma_page_list page_list[0]; 1131 }; 1132 1133 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 1134 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 1135 1136 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 1137 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 1138 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 1139 struct dma_pinned_list *pinned_list, struct page *page, 1140 unsigned int offset, size_t len); 1141 1142 #endif /* DMAENGINE_H */ 1143
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.