1 #ifndef _LINUX_KERNEL_H 2 #define _LINUX_KERNEL_H 3 4 5 #include <stdarg.h> 6 #include <linux/linkage.h> 7 #include <linux/stddef.h> 8 #include <linux/types.h> 9 #include <linux/compiler.h> 10 #include <linux/bitops.h> 11 #include <linux/log2.h> 12 #include <linux/typecheck.h> 13 #include <linux/printk.h> 14 #include <linux/dynamic_debug.h> 15 #include <asm/byteorder.h> 16 #include <uapi/linux/kernel.h> 17 18 #define USHRT_MAX ((u16)(~0U)) 19 #define SHRT_MAX ((s16)(USHRT_MAX>>1)) 20 #define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 21 #define INT_MAX ((int)(~0U>>1)) 22 #define INT_MIN (-INT_MAX - 1) 23 #define UINT_MAX (~0U) 24 #define LONG_MAX ((long)(~0UL>>1)) 25 #define LONG_MIN (-LONG_MAX - 1) 26 #define ULONG_MAX (~0UL) 27 #define LLONG_MAX ((long long)(~0ULL>>1)) 28 #define LLONG_MIN (-LLONG_MAX - 1) 29 #define ULLONG_MAX (~0ULL) 30 #define SIZE_MAX (~(size_t)0) 31 32 #define U8_MAX ((u8)~0U) 33 #define S8_MAX ((s8)(U8_MAX>>1)) 34 #define S8_MIN ((s8)(-S8_MAX - 1)) 35 #define U16_MAX ((u16)~0U) 36 #define S16_MAX ((s16)(U16_MAX>>1)) 37 #define S16_MIN ((s16)(-S16_MAX - 1)) 38 #define U32_MAX ((u32)~0U) 39 #define S32_MAX ((s32)(U32_MAX>>1)) 40 #define S32_MIN ((s32)(-S32_MAX - 1)) 41 #define U64_MAX ((u64)~0ULL) 42 #define S64_MAX ((s64)(U64_MAX>>1)) 43 #define S64_MIN ((s64)(-S64_MAX - 1)) 44 45 #define STACK_MAGIC 0xdeadbeef 46 47 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 48 49 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 50 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 51 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 52 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 53 54 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 55 56 /* 57 * This looks more complex than it should be. But we need to 58 * get the type for the ~ right in round_down (it needs to be 59 * as wide as the result!), and we want to evaluate the macro 60 * arguments just once each. 61 */ 62 #define __round_mask(x, y) ((__typeof__(x))((y)-1)) 63 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 64 #define round_down(x, y) ((x) & ~__round_mask(x, y)) 65 66 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 67 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) 68 #define DIV_ROUND_UP_ULL(ll,d) \ 69 ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; }) 70 71 #if BITS_PER_LONG == 32 72 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 73 #else 74 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 75 #endif 76 77 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ 78 #define roundup(x, y) ( \ 79 { \ 80 const typeof(y) __y = y; \ 81 (((x) + (__y - 1)) / __y) * __y; \ 82 } \ 83 ) 84 #define rounddown(x, y) ( \ 85 { \ 86 typeof(x) __x = (x); \ 87 __x - (__x % (y)); \ 88 } \ 89 ) 90 91 /* 92 * Divide positive or negative dividend by positive divisor and round 93 * to closest integer. Result is undefined for negative divisors and 94 * for negative dividends if the divisor variable type is unsigned. 95 */ 96 #define DIV_ROUND_CLOSEST(x, divisor)( \ 97 { \ 98 typeof(x) __x = x; \ 99 typeof(divisor) __d = divisor; \ 100 (((typeof(x))-1) > 0 || \ 101 ((typeof(divisor))-1) > 0 || (__x) > 0) ? \ 102 (((__x) + ((__d) / 2)) / (__d)) : \ 103 (((__x) - ((__d) / 2)) / (__d)); \ 104 } \ 105 ) 106 107 /* 108 * Multiplies an integer by a fraction, while avoiding unnecessary 109 * overflow or loss of precision. 110 */ 111 #define mult_frac(x, numer, denom)( \ 112 { \ 113 typeof(x) quot = (x) / (denom); \ 114 typeof(x) rem = (x) % (denom); \ 115 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 116 } \ 117 ) 118 119 120 #define _RET_IP_ (unsigned long)__builtin_return_address(0) 121 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 122 123 #ifdef CONFIG_LBDAF 124 # include <asm/div64.h> 125 # define sector_div(a, b) do_div(a, b) 126 #else 127 # define sector_div(n, b)( \ 128 { \ 129 int _res; \ 130 _res = (n) % (b); \ 131 (n) /= (b); \ 132 _res; \ 133 } \ 134 ) 135 #endif 136 137 /** 138 * upper_32_bits - return bits 32-63 of a number 139 * @n: the number we're accessing 140 * 141 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 142 * the "right shift count >= width of type" warning when that quantity is 143 * 32-bits. 144 */ 145 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 146 147 /** 148 * lower_32_bits - return bits 0-31 of a number 149 * @n: the number we're accessing 150 */ 151 #define lower_32_bits(n) ((u32)(n)) 152 153 struct completion; 154 struct pt_regs; 155 struct user; 156 157 #ifdef CONFIG_PREEMPT_VOLUNTARY 158 extern int _cond_resched(void); 159 # define might_resched() _cond_resched() 160 #else 161 # define might_resched() do { } while (0) 162 #endif 163 164 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 165 void __might_sleep(const char *file, int line, int preempt_offset); 166 /** 167 * might_sleep - annotation for functions that can sleep 168 * 169 * this macro will print a stack trace if it is executed in an atomic 170 * context (spinlock, irq-handler, ...). 171 * 172 * This is a useful debugging help to be able to catch problems early and not 173 * be bitten later when the calling function happens to sleep when it is not 174 * supposed to. 175 */ 176 # define might_sleep() \ 177 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 178 #else 179 static inline void __might_sleep(const char *file, int line, 180 int preempt_offset) { } 181 # define might_sleep() do { might_resched(); } while (0) 182 #endif 183 184 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 185 186 /* 187 * abs() handles unsigned and signed longs, ints, shorts and chars. For all 188 * input types abs() returns a signed long. 189 * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64() 190 * for those. 191 */ 192 #define abs(x) ({ \ 193 long ret; \ 194 if (sizeof(x) == sizeof(long)) { \ 195 long __x = (x); \ 196 ret = (__x < 0) ? -__x : __x; \ 197 } else { \ 198 int __x = (x); \ 199 ret = (__x < 0) ? -__x : __x; \ 200 } \ 201 ret; \ 202 }) 203 204 #define abs64(x) ({ \ 205 s64 __x = (x); \ 206 (__x < 0) ? -__x : __x; \ 207 }) 208 209 #ifdef CONFIG_PROVE_LOCKING 210 void might_fault(void); 211 #else 212 static inline void might_fault(void) 213 { 214 might_sleep(); 215 } 216 #endif 217 218 extern struct atomic_notifier_head panic_notifier_list; 219 extern long (*panic_blink)(int state); 220 __printf(1, 2) 221 void panic(const char *fmt, ...) 222 __noreturn __cold; 223 extern void oops_enter(void); 224 extern void oops_exit(void); 225 void print_oops_end_marker(void); 226 extern int oops_may_print(void); 227 void do_exit(long error_code) 228 __noreturn; 229 void complete_and_exit(struct completion *, long) 230 __noreturn; 231 232 /* Internal, do not use. */ 233 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 234 int __must_check _kstrtol(const char *s, unsigned int base, long *res); 235 236 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 237 int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 238 239 /** 240 * kstrtoul - convert a string to an unsigned long 241 * @s: The start of the string. The string must be null-terminated, and may also 242 * include a single newline before its terminating null. The first character 243 * may also be a plus sign, but not a minus sign. 244 * @base: The number base to use. The maximum supported base is 16. If base is 245 * given as 0, then the base of the string is automatically detected with the 246 * conventional semantics - If it begins with 0x the number will be parsed as a 247 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 248 * parsed as an octal number. Otherwise it will be parsed as a decimal. 249 * @res: Where to write the result of the conversion on success. 250 * 251 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 252 * Used as a replacement for the obsolete simple_strtoull. Return code must 253 * be checked. 254 */ 255 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 256 { 257 /* 258 * We want to shortcut function call, but 259 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 260 */ 261 if (sizeof(unsigned long) == sizeof(unsigned long long) && 262 __alignof__(unsigned long) == __alignof__(unsigned long long)) 263 return kstrtoull(s, base, (unsigned long long *)res); 264 else 265 return _kstrtoul(s, base, res); 266 } 267 268 /** 269 * kstrtol - convert a string to a long 270 * @s: The start of the string. The string must be null-terminated, and may also 271 * include a single newline before its terminating null. The first character 272 * may also be a plus sign or a minus sign. 273 * @base: The number base to use. The maximum supported base is 16. If base is 274 * given as 0, then the base of the string is automatically detected with the 275 * conventional semantics - If it begins with 0x the number will be parsed as a 276 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 277 * parsed as an octal number. Otherwise it will be parsed as a decimal. 278 * @res: Where to write the result of the conversion on success. 279 * 280 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 281 * Used as a replacement for the obsolete simple_strtoull. Return code must 282 * be checked. 283 */ 284 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 285 { 286 /* 287 * We want to shortcut function call, but 288 * __builtin_types_compatible_p(long, long long) = 0. 289 */ 290 if (sizeof(long) == sizeof(long long) && 291 __alignof__(long) == __alignof__(long long)) 292 return kstrtoll(s, base, (long long *)res); 293 else 294 return _kstrtol(s, base, res); 295 } 296 297 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 298 int __must_check kstrtoint(const char *s, unsigned int base, int *res); 299 300 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 301 { 302 return kstrtoull(s, base, res); 303 } 304 305 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 306 { 307 return kstrtoll(s, base, res); 308 } 309 310 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 311 { 312 return kstrtouint(s, base, res); 313 } 314 315 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 316 { 317 return kstrtoint(s, base, res); 318 } 319 320 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 321 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 322 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 323 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 324 325 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 326 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 327 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 328 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 329 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 330 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 331 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 332 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 333 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 334 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 335 336 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 337 { 338 return kstrtoull_from_user(s, count, base, res); 339 } 340 341 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 342 { 343 return kstrtoll_from_user(s, count, base, res); 344 } 345 346 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 347 { 348 return kstrtouint_from_user(s, count, base, res); 349 } 350 351 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 352 { 353 return kstrtoint_from_user(s, count, base, res); 354 } 355 356 /* Obsolete, do not use. Use kstrto<foo> instead */ 357 358 extern unsigned long simple_strtoul(const char *,char **,unsigned int); 359 extern long simple_strtol(const char *,char **,unsigned int); 360 extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 361 extern long long simple_strtoll(const char *,char **,unsigned int); 362 #define strict_strtoul kstrtoul 363 #define strict_strtol kstrtol 364 #define strict_strtoull kstrtoull 365 #define strict_strtoll kstrtoll 366 367 extern int num_to_str(char *buf, int size, unsigned long long num); 368 369 /* lib/printf utilities */ 370 371 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 372 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 373 extern __printf(3, 4) 374 int snprintf(char *buf, size_t size, const char *fmt, ...); 375 extern __printf(3, 0) 376 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 377 extern __printf(3, 4) 378 int scnprintf(char *buf, size_t size, const char *fmt, ...); 379 extern __printf(3, 0) 380 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 381 extern __printf(2, 3) 382 char *kasprintf(gfp_t gfp, const char *fmt, ...); 383 extern char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 384 385 extern __scanf(2, 3) 386 int sscanf(const char *, const char *, ...); 387 extern __scanf(2, 0) 388 int vsscanf(const char *, const char *, va_list); 389 390 extern int get_option(char **str, int *pint); 391 extern char *get_options(const char *str, int nints, int *ints); 392 extern unsigned long long memparse(const char *ptr, char **retptr); 393 394 extern int core_kernel_text(unsigned long addr); 395 extern int core_kernel_data(unsigned long addr); 396 extern int __kernel_text_address(unsigned long addr); 397 extern int kernel_text_address(unsigned long addr); 398 extern int func_ptr_is_kernel_text(void *ptr); 399 400 struct pid; 401 extern struct pid *session_of_pgrp(struct pid *pgrp); 402 403 unsigned long int_sqrt(unsigned long); 404 405 extern void bust_spinlocks(int yes); 406 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 407 extern int panic_timeout; 408 extern int panic_on_oops; 409 extern int panic_on_unrecovered_nmi; 410 extern int panic_on_io_nmi; 411 extern int sysctl_panic_on_stackoverflow; 412 extern const char *print_tainted(void); 413 enum lockdep_ok { 414 LOCKDEP_STILL_OK, 415 LOCKDEP_NOW_UNRELIABLE 416 }; 417 extern void add_taint(unsigned flag, enum lockdep_ok); 418 extern int test_taint(unsigned flag); 419 extern unsigned long get_taint(void); 420 extern int root_mountflags; 421 422 extern bool early_boot_irqs_disabled; 423 424 /* Values used for system_state */ 425 extern enum system_states { 426 SYSTEM_BOOTING, 427 SYSTEM_RUNNING, 428 SYSTEM_HALT, 429 SYSTEM_POWER_OFF, 430 SYSTEM_RESTART, 431 } system_state; 432 433 #define TAINT_PROPRIETARY_MODULE 0 434 #define TAINT_FORCED_MODULE 1 435 #define TAINT_UNSAFE_SMP 2 436 #define TAINT_FORCED_RMMOD 3 437 #define TAINT_MACHINE_CHECK 4 438 #define TAINT_BAD_PAGE 5 439 #define TAINT_USER 6 440 #define TAINT_DIE 7 441 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 442 #define TAINT_WARN 9 443 #define TAINT_CRAP 10 444 #define TAINT_FIRMWARE_WORKAROUND 11 445 #define TAINT_OOT_MODULE 12 446 447 extern const char hex_asc[]; 448 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 449 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 450 451 static inline char *hex_byte_pack(char *buf, u8 byte) 452 { 453 *buf++ = hex_asc_hi(byte); 454 *buf++ = hex_asc_lo(byte); 455 return buf; 456 } 457 458 static inline char * __deprecated pack_hex_byte(char *buf, u8 byte) 459 { 460 return hex_byte_pack(buf, byte); 461 } 462 463 extern int hex_to_bin(char ch); 464 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 465 466 /* 467 * General tracing related utility functions - trace_printk(), 468 * tracing_on/tracing_off and tracing_start()/tracing_stop 469 * 470 * Use tracing_on/tracing_off when you want to quickly turn on or off 471 * tracing. It simply enables or disables the recording of the trace events. 472 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 473 * file, which gives a means for the kernel and userspace to interact. 474 * Place a tracing_off() in the kernel where you want tracing to end. 475 * From user space, examine the trace, and then echo 1 > tracing_on 476 * to continue tracing. 477 * 478 * tracing_stop/tracing_start has slightly more overhead. It is used 479 * by things like suspend to ram where disabling the recording of the 480 * trace is not enough, but tracing must actually stop because things 481 * like calling smp_processor_id() may crash the system. 482 * 483 * Most likely, you want to use tracing_on/tracing_off. 484 */ 485 #ifdef CONFIG_RING_BUFFER 486 /* trace_off_permanent stops recording with no way to bring it back */ 487 void tracing_off_permanent(void); 488 #else 489 static inline void tracing_off_permanent(void) { } 490 #endif 491 492 enum ftrace_dump_mode { 493 DUMP_NONE, 494 DUMP_ALL, 495 DUMP_ORIG, 496 }; 497 498 #ifdef CONFIG_TRACING 499 void tracing_on(void); 500 void tracing_off(void); 501 int tracing_is_on(void); 502 void tracing_snapshot(void); 503 void tracing_snapshot_alloc(void); 504 505 extern void tracing_start(void); 506 extern void tracing_stop(void); 507 extern void ftrace_off_permanent(void); 508 509 static inline __printf(1, 2) 510 void ____trace_printk_check_format(const char *fmt, ...) 511 { 512 } 513 #define __trace_printk_check_format(fmt, args...) \ 514 do { \ 515 if (0) \ 516 ____trace_printk_check_format(fmt, ##args); \ 517 } while (0) 518 519 /** 520 * trace_printk - printf formatting in the ftrace buffer 521 * @fmt: the printf format for printing 522 * 523 * Note: __trace_printk is an internal function for trace_printk and 524 * the @ip is passed in via the trace_printk macro. 525 * 526 * This function allows a kernel developer to debug fast path sections 527 * that printk is not appropriate for. By scattering in various 528 * printk like tracing in the code, a developer can quickly see 529 * where problems are occurring. 530 * 531 * This is intended as a debugging tool for the developer only. 532 * Please refrain from leaving trace_printks scattered around in 533 * your code. (Extra memory is used for special buffers that are 534 * allocated when trace_printk() is used) 535 * 536 * A little optization trick is done here. If there's only one 537 * argument, there's no need to scan the string for printf formats. 538 * The trace_puts() will suffice. But how can we take advantage of 539 * using trace_puts() when trace_printk() has only one argument? 540 * By stringifying the args and checking the size we can tell 541 * whether or not there are args. __stringify((__VA_ARGS__)) will 542 * turn into "()\0" with a size of 3 when there are no args, anything 543 * else will be bigger. All we need to do is define a string to this, 544 * and then take its size and compare to 3. If it's bigger, use 545 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 546 * let gcc optimize the rest. 547 */ 548 549 #define trace_printk(fmt, ...) \ 550 do { \ 551 char _______STR[] = __stringify((__VA_ARGS__)); \ 552 if (sizeof(_______STR) > 3) \ 553 do_trace_printk(fmt, ##__VA_ARGS__); \ 554 else \ 555 trace_puts(fmt); \ 556 } while (0) 557 558 #define do_trace_printk(fmt, args...) \ 559 do { \ 560 static const char *trace_printk_fmt __used \ 561 __attribute__((section("__trace_printk_fmt"))) = \ 562 __builtin_constant_p(fmt) ? fmt : NULL; \ 563 \ 564 __trace_printk_check_format(fmt, ##args); \ 565 \ 566 if (__builtin_constant_p(fmt)) \ 567 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 568 else \ 569 __trace_printk(_THIS_IP_, fmt, ##args); \ 570 } while (0) 571 572 extern __printf(2, 3) 573 int __trace_bprintk(unsigned long ip, const char *fmt, ...); 574 575 extern __printf(2, 3) 576 int __trace_printk(unsigned long ip, const char *fmt, ...); 577 578 extern int __trace_bputs(unsigned long ip, const char *str); 579 extern int __trace_puts(unsigned long ip, const char *str, int size); 580 581 /** 582 * trace_puts - write a string into the ftrace buffer 583 * @str: the string to record 584 * 585 * Note: __trace_bputs is an internal function for trace_puts and 586 * the @ip is passed in via the trace_puts macro. 587 * 588 * This is similar to trace_printk() but is made for those really fast 589 * paths that a developer wants the least amount of "Heisenbug" affects, 590 * where the processing of the print format is still too much. 591 * 592 * This function allows a kernel developer to debug fast path sections 593 * that printk is not appropriate for. By scattering in various 594 * printk like tracing in the code, a developer can quickly see 595 * where problems are occurring. 596 * 597 * This is intended as a debugging tool for the developer only. 598 * Please refrain from leaving trace_puts scattered around in 599 * your code. (Extra memory is used for special buffers that are 600 * allocated when trace_puts() is used) 601 * 602 * Returns: 0 if nothing was written, positive # if string was. 603 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 604 */ 605 606 #define trace_puts(str) ({ \ 607 static const char *trace_printk_fmt __used \ 608 __attribute__((section("__trace_printk_fmt"))) = \ 609 __builtin_constant_p(str) ? str : NULL; \ 610 \ 611 if (__builtin_constant_p(str)) \ 612 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 613 else \ 614 __trace_puts(_THIS_IP_, str, strlen(str)); \ 615 }) 616 617 extern void trace_dump_stack(int skip); 618 619 /* 620 * The double __builtin_constant_p is because gcc will give us an error 621 * if we try to allocate the static variable to fmt if it is not a 622 * constant. Even with the outer if statement. 623 */ 624 #define ftrace_vprintk(fmt, vargs) \ 625 do { \ 626 if (__builtin_constant_p(fmt)) { \ 627 static const char *trace_printk_fmt __used \ 628 __attribute__((section("__trace_printk_fmt"))) = \ 629 __builtin_constant_p(fmt) ? fmt : NULL; \ 630 \ 631 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 632 } else \ 633 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 634 } while (0) 635 636 extern int 637 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 638 639 extern int 640 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 641 642 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 643 #else 644 static inline void tracing_start(void) { } 645 static inline void tracing_stop(void) { } 646 static inline void ftrace_off_permanent(void) { } 647 static inline void trace_dump_stack(void) { } 648 649 static inline void tracing_on(void) { } 650 static inline void tracing_off(void) { } 651 static inline int tracing_is_on(void) { return 0; } 652 static inline void tracing_snapshot(void) { } 653 static inline void tracing_snapshot_alloc(void) { } 654 655 static inline __printf(1, 2) 656 int trace_printk(const char *fmt, ...) 657 { 658 return 0; 659 } 660 static inline int 661 ftrace_vprintk(const char *fmt, va_list ap) 662 { 663 return 0; 664 } 665 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 666 #endif /* CONFIG_TRACING */ 667 668 /* 669 * min()/max()/clamp() macros that also do 670 * strict type-checking.. See the 671 * "unnecessary" pointer comparison. 672 */ 673 #define min(x, y) ({ \ 674 typeof(x) _min1 = (x); \ 675 typeof(y) _min2 = (y); \ 676 (void) (&_min1 == &_min2); \ 677 _min1 < _min2 ? _min1 : _min2; }) 678 679 #define max(x, y) ({ \ 680 typeof(x) _max1 = (x); \ 681 typeof(y) _max2 = (y); \ 682 (void) (&_max1 == &_max2); \ 683 _max1 > _max2 ? _max1 : _max2; }) 684 685 #define min3(x, y, z) ({ \ 686 typeof(x) _min1 = (x); \ 687 typeof(y) _min2 = (y); \ 688 typeof(z) _min3 = (z); \ 689 (void) (&_min1 == &_min2); \ 690 (void) (&_min1 == &_min3); \ 691 _min1 < _min2 ? (_min1 < _min3 ? _min1 : _min3) : \ 692 (_min2 < _min3 ? _min2 : _min3); }) 693 694 #define max3(x, y, z) ({ \ 695 typeof(x) _max1 = (x); \ 696 typeof(y) _max2 = (y); \ 697 typeof(z) _max3 = (z); \ 698 (void) (&_max1 == &_max2); \ 699 (void) (&_max1 == &_max3); \ 700 _max1 > _max2 ? (_max1 > _max3 ? _max1 : _max3) : \ 701 (_max2 > _max3 ? _max2 : _max3); }) 702 703 /** 704 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 705 * @x: value1 706 * @y: value2 707 */ 708 #define min_not_zero(x, y) ({ \ 709 typeof(x) __x = (x); \ 710 typeof(y) __y = (y); \ 711 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 712 713 /** 714 * clamp - return a value clamped to a given range with strict typechecking 715 * @val: current value 716 * @min: minimum allowable value 717 * @max: maximum allowable value 718 * 719 * This macro does strict typechecking of min/max to make sure they are of the 720 * same type as val. See the unnecessary pointer comparisons. 721 */ 722 #define clamp(val, min, max) ({ \ 723 typeof(val) __val = (val); \ 724 typeof(min) __min = (min); \ 725 typeof(max) __max = (max); \ 726 (void) (&__val == &__min); \ 727 (void) (&__val == &__max); \ 728 __val = __val < __min ? __min: __val; \ 729 __val > __max ? __max: __val; }) 730 731 /* 732 * ..and if you can't take the strict 733 * types, you can specify one yourself. 734 * 735 * Or not use min/max/clamp at all, of course. 736 */ 737 #define min_t(type, x, y) ({ \ 738 type __min1 = (x); \ 739 type __min2 = (y); \ 740 __min1 < __min2 ? __min1: __min2; }) 741 742 #define max_t(type, x, y) ({ \ 743 type __max1 = (x); \ 744 type __max2 = (y); \ 745 __max1 > __max2 ? __max1: __max2; }) 746 747 /** 748 * clamp_t - return a value clamped to a given range using a given type 749 * @type: the type of variable to use 750 * @val: current value 751 * @min: minimum allowable value 752 * @max: maximum allowable value 753 * 754 * This macro does no typechecking and uses temporary variables of type 755 * 'type' to make all the comparisons. 756 */ 757 #define clamp_t(type, val, min, max) ({ \ 758 type __val = (val); \ 759 type __min = (min); \ 760 type __max = (max); \ 761 __val = __val < __min ? __min: __val; \ 762 __val > __max ? __max: __val; }) 763 764 /** 765 * clamp_val - return a value clamped to a given range using val's type 766 * @val: current value 767 * @min: minimum allowable value 768 * @max: maximum allowable value 769 * 770 * This macro does no typechecking and uses temporary variables of whatever 771 * type the input argument 'val' is. This is useful when val is an unsigned 772 * type and min and max are literals that will otherwise be assigned a signed 773 * integer type. 774 */ 775 #define clamp_val(val, min, max) ({ \ 776 typeof(val) __val = (val); \ 777 typeof(val) __min = (min); \ 778 typeof(val) __max = (max); \ 779 __val = __val < __min ? __min: __val; \ 780 __val > __max ? __max: __val; }) 781 782 783 /* 784 * swap - swap value of @a and @b 785 */ 786 #define swap(a, b) \ 787 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 788 789 /** 790 * container_of - cast a member of a structure out to the containing structure 791 * @ptr: the pointer to the member. 792 * @type: the type of the container struct this is embedded in. 793 * @member: the name of the member within the struct. 794 * 795 */ 796 #define container_of(ptr, type, member) ({ \ 797 const typeof( ((type *)0)->member ) *__mptr = (ptr); \ 798 (type *)( (char *)__mptr - offsetof(type,member) );}) 799 800 /* Trap pasters of __FUNCTION__ at compile-time */ 801 #define __FUNCTION__ (__func__) 802 803 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 804 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 805 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 806 #endif 807 808 #endif 809
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.